TWI807314B - 半導體記憶裝置及半導體記憶裝置之製造方法 - Google Patents

半導體記憶裝置及半導體記憶裝置之製造方法 Download PDF

Info

Publication number
TWI807314B
TWI807314B TW110115979A TW110115979A TWI807314B TW I807314 B TWI807314 B TW I807314B TW 110115979 A TW110115979 A TW 110115979A TW 110115979 A TW110115979 A TW 110115979A TW I807314 B TWI807314 B TW I807314B
Authority
TW
Taiwan
Prior art keywords
wiring
layer
film
insulating film
memory device
Prior art date
Application number
TW110115979A
Other languages
English (en)
Other versions
TW202239032A (zh
Inventor
野田光太郎
野田恭子
星野健
津端修一
Original Assignee
日商鎧俠股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商鎧俠股份有限公司 filed Critical 日商鎧俠股份有限公司
Publication of TW202239032A publication Critical patent/TW202239032A/zh
Application granted granted Critical
Publication of TWI807314B publication Critical patent/TWI807314B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • H10B63/845Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays the switching components being connected to a common vertical conductor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5283Cross-sectional geometry
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
    • H10B63/84Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays arranged in a direction perpendicular to the substrate, e.g. 3D cell arrays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

實施形態,係提供一種能夠謀求電性特性之提升的半導體記憶裝置及半導體記憶裝置之製造方法。 本實施形態之半導體記憶裝置,係具有第1配線、和第2配線、和第1記憶層、以及第1絕緣膜。前述第1絕緣膜,係沿著前述第2配線之一部分之表面以及前述第1記憶層之表面而被作設置。前述第1絕緣膜,係由Si、N以及O所成。在前述第3方向上,將前述第1記憶層之前述第2配線側之端面之位置設為第1位置。將前述第2配線之與前述第1記憶層相反側之端面之位置設為第2位置。在前述第1位置處之前述第1絕緣膜之N與O之間的原子比(N/O),係為1.0以上。在前述第2位置處之前述第1絕緣膜之N與O之間的原子比(N/O),係為未滿1.0。

Description

半導體記憶裝置及半導體記憶裝置之製造方法
本發明之實施形態,係有關於半導體記憶裝置及半導體記憶裝置之製造方法。 [關連申請案]
本申請案,係享受以日本專利申請2021-044482號(申請日:2021年3月18日)作為基礎申請之優先權。本申請案,係藉由參照此基礎申請案,而包含基礎申請案之所有的內容。
使用有相變化記憶體(Phase-Change Memory:PCM)之具有交叉點構造之半導體記憶裝置,係為周知。
本發明所欲解決之課題,係在於提供一種能夠謀求電性特性之提升的半導體記憶裝置及半導體記憶裝置之製造方法。
本實施形態之半導體記憶裝置,係具有第1配線、和第2配線、和第1記憶層、以及第1絕緣膜。前述第1配線,係在第1方向上延伸。前述第2配線,係在與前述第1方向相交叉之第2方向上延伸,並在與前述第1方向以及前述第2方向相交叉之第3方向上而被設置於與前述第1配線相異之位置處。前述第1記憶層,係在前述第3方向上,被設置於前述第1配線與前述第2配線之間。前述第1絕緣膜,係沿著前述第2配線之一部分之表面以及前述第1記憶層之表面而被作設置。前述第1絕緣膜,係由Si、N以及O所成。在前述第3方向上,將前述第1記憶層之前述第2配線側之端面之位置設為第1位置。將前述第2配線之與前述第1記憶層相反側之端面之位置設為第2位置。在前述第1位置處之前述第1絕緣膜之N與O之間的原子比(N/O),係為1.0以上。在前述第2位置處之前述第1絕緣膜之N與O之間的原子比(N/O),係為未滿1.0。
以下,參照圖面,對實施形態之半導體記憶裝置作說明。在以下之說明中,對於相互具有相同或相類似之功能的構成,係附加相同之元件符號。針對相互具有相同或相類似之功能的構成,係會有並不反覆進行說明的情況。又,在本說明書中所記載之「平行」、「正交」、「相同」以及「同等」,係分別包含有「略平行」、「略正交」、「略相同」以及「略同等」的情況。
在本說明書中所記載之所謂「連接」,係並不被限定於被物理性連接的情況,而亦包含有被作電性連接的情況。亦即是,所謂「連接」,係並不被限定於2個的構件直接相接的情況,而亦包含有在2個的構件之間中介存在有其他之構件的情況。在本說明書中所記載之所謂「相接」,係指直接性接觸。在本說明書中所記載之所謂「重疊」、「面向」以及「相鄰」,係並不被限定於2個的構件相互直接對向或者是相接的情況,而亦包含有在2個的構件之間中介存在有與此些之2個的構件相異之構件的情況。所謂「XX上」,係指XX之上方(above),而亦包含有並未與XX相接的情況。
(第1實施形態) 以下,使用圖面,針對第1實施形態之半導體記憶裝置1之構成作說明。第1圖,係為對於半導體記憶裝置1作展示之概略立體圖。在以下之說明中,X方向(第2方向),係為與矽基板11之表面11a相平行之方向,並為字元線WL所延伸之方向。Y方向(第1方向),係為與矽基板11之表面11a相平行之方向,並為與X方向相交叉之方向,並且為位元線BL所延伸之方向。例如,Y方向,係與X方向略正交。Z方向(第3方向),係為矽基板11之厚度方向,並為與X方向以及Y方向相交叉之方向。例如,Z方向,係與X方向以及Y方向略正交。所謂在Z方向而向下之方向,係指沿著Z方向而朝向矽基板11之方向。所謂在Z方向而向上之方向,係指沿著Z方向而與朝向矽基板11之方向相反的方向。但是,在本說明書中之所謂「上」以及「下」,係僅為為了方便說明所作的表現,而並非為對於重力方向作規定。
(半導體記憶裝置1) 半導體記憶裝置1,例如,係身為使用有相變化記憶體(Phase-Change Memory:PCM)之所謂的交叉點型之半導體記憶裝置。半導體記憶裝置1,例如,係具備有矽基板11、和層間絕緣層12、和複數之字元線WL、和複數之位元線BL、以及複數之記憶體胞MC。
在矽基板11之表面11a處,係被形成有驅動半導體記憶裝置1之驅動電路(未圖示)。層間絕緣層12,係被形成於矽基板11之表面11a上,並且覆蓋驅動電路。層間絕緣層12,例如,係藉由矽氧化物(SiO 2)等而被形成。
複數之位元線BL之各者,係被形成為沿著Y方向之帶狀,並在Y方向(第1方向)上而延伸。複數之位元線BL,係在X方向(第2方向)以及Z方向(第3方向)上空出有間隔地而被作配列。複數之位元線BL,係在與X方向以及Y方向相交叉之Z方向上,被設置於與字元線WL相異之位置處。在X方向上而並排的複數之位元線BL,係位於Z方向之同一之位置處,並構成1個的位元線層25。位元線BL,例如係藉由鎢(W)等所形成。位元線BL,係為「第1配線」之其中一例。
複數之字元線WL之各者,係被形成為沿著X方向之帶狀,並在X方向上而延伸。複數之字元線WL,係在Y方向以及Z方向上空出有間隔地而被作配列。若是作詳細說明,則在Y方向上而並排的複數之字元線WL,係在Z方向上而位於同一之位置處,並構成1個的字元線層27。亦即是,字元線(第2配線)WL,係在與第1方向相交叉之第2方向上延伸,並在與第1方向以及第2方向相交叉之第3方向上而被設置於與位元線(第1配線)BL相異之位置處。複數之字元線層27,係在Z方向上空出有間隔地而被作配列。字元線WL,例如係藉由鎢(W)等所形成。字元線WL,係為「第2配線」之其中一例。但是,亦可設為使位元線BL相當於「第2配線」之其中一例,並使字元線WL相當於「第1配線」之其中一例。在Y方向上而與身為第2配線之字元線相鄰的字元線WL,係為「第3配線」之其中一例。
位元線層25,係被設置於在Z方向上而相鄰之2個的字元線層27之間,並相對於該些之2個的字元線層27而在Z方向上空出有間隔。複數之字元線層27和複數之位元線層25,係在Z方向上1層1層地交互被作配置。
各字元線WL之Y方向之寬幅以及各位元線BL之X方向之寬幅,係與半導體記憶裝置1之最小加工尺寸(minimum feature size)F為同等。於在各字元線層27中而相鄰的複數之字元線WL之間、以及於在各位元線層25處而相鄰的複數之位元線BL之間,係中介存在有層間絕緣膜38(參照第3圖)。
在從Z方向作觀察的情況時,字元線WL以及位元線BL係相互交叉地被作配置。在從Z方向作觀察的情況時,字元線WL以及位元線BL,例如係相互正交。在從Z方向作觀察的情況時,於字元線WL以及位元線BL相互重疊之重疊部分CP處,係被設置有記憶體胞MC。記憶體胞MC,係在Z方向上而中介存在於重疊部分CP之字元線WL與位元線BL之間。亦即是,複數之記憶體胞MC,係藉由被設置在複數之重疊部分CP處,而在X方向、Y方向以及Z方向上相互空出有間隔地來配列為3維矩陣狀。
第2圖,係為對於記憶體胞MC作展示之立體圖。如同第2圖中所示一般,記憶體胞MC,係藉由以Z方向作為長邊方向的略角柱狀之柱31而被構成。柱31之其中一方之端面31a,係以重疊部分CP之全體而與位元線BL相接。柱31之另外一方之端面31b,係以重疊部分CP之全體而與字元線WL相接。另外,於在X方向以及Y方向上而相鄰的記憶體胞MC之間,係被設置有層間絕緣膜38(參照第3圖)。又,後述之內襯膜70(參照第3圖),係將記憶體胞MC之周圍、字元線WL之一部分以及位元線BL之一部分作被覆。
針對記憶體胞MC,使用第3圖以及第4圖來作說明。第3圖,係為沿著第2圖中所示之記憶體胞MC之A-A'線的剖面圖。又,第4圖,係為沿著第2圖中所示之記憶體胞MC之B-B'線的剖面圖。記憶體胞MC,例如,係具有第1導電層20、記憶層30、第2導電層40、選擇器層50、第3導電層60。記憶體胞MC,係被內襯膜70所被覆,又,在記憶體胞MC之間,係被設置有層間絕緣膜38。另外,係將1個的記憶體胞設為第1記憶體胞MC,並將在Y方向上中介存在有層間絕緣膜38地而相鄰接之記憶體胞設為第2記憶體胞MCy,並且將在X方向上中介存在有層間絕緣膜38地而相鄰接之記憶體胞設為第3記憶體胞MCx。
層間絕緣膜38,係在Y方向上,被設置於覆蓋第1記憶體胞MC之內襯膜70與覆蓋第2記憶體胞MCy之內襯膜70之間。又,層間絕緣膜38,係在X方向上,被設置於覆蓋第1記憶體胞MC之內襯膜70與覆蓋第3記憶體胞MCx之內襯膜70之間。層間絕緣膜38,在Y方向以及X方向之寬幅處,係較內襯膜70而更厚。又,在第1記憶體胞MC與第2記憶體胞MCy之間,「覆蓋第1記憶體胞MC之內襯膜70的Y方向之寬幅」和「層間絕緣膜38之Y方向之寬幅」以及「覆蓋第2記憶體胞MCy之內襯膜70之Y方向之寬幅」之和,係與第1記憶體胞MC之Y方向之寬幅相等。在Z方向上,於從「與層間絕緣層12相接之內襯膜70之表面之位置」或者是「與字元線WL之上面相接之內襯膜之表面」起直到「位元線BL之上面(位元線BL之與第1導電層20相反側之端面)之位置」為止之間,係被設置有層間絕緣膜38。在層間絕緣膜38與層間絕緣層12之間,係存在有內襯膜70。
第1導電層20,係在Z方向上而被設置於字元線WL與位元線BL之間。第1導電層20,係在Z方向上而中介存在於記憶層30與位元線BL之間。第1導電層20,係對於記憶層30來作為電極而具有功能。又,第1導電層20,係具有對於記憶層30與位元線BL相互合金化的情形作抑制之功能。第1導電層20,例如,係可身為碳(C)或氮化碳(CN)等,亦可身為鎢(W)等,亦可身為被植入有磷(P)等之N型雜質之多晶矽等,亦可身為碳化鎢(WC)、氮碳化鎢(WCN)或氮碳化鎢矽化物(WCNSi)等,亦可身為其他之導電層。在Z方向上之第1導電層20之厚度(例如最大厚度),例如,係較在Z方向上之記憶層30之厚度(例如最大厚度)而更薄。
記憶層30,係藉由構成記憶層30之材料的狀態變化等,而記憶資訊。記憶層30,例如係藉由PCM而被形成。當記憶層30為藉由PCM而被形成的情況時,例如係藉由被稱作GST之鍺(Ge)、銻(Sb)、碲(Te) 之硫屬化物合金而被形成。Ge和Sb以及Te之組成比,例如係為2:2:5。記憶層30,係藉由較熔融溫度而更低並且較結晶化溫度而更高之溫度的加熱、和平緩的冷卻,而成為結晶狀態,並成為低阻抗狀態。記憶層30,係藉由熔融溫度以上之加熱和急速之冷卻,而成為非晶質狀態,並成為高阻抗狀態。在Z方向上之記憶層30之厚度(例如最大厚度),例如,係較選擇器層50之厚度(例如最大厚度)而更大,並例如較在Z方向上之字元線WL之厚度而更小。另外,第1記憶體胞MC中之記憶層30,係為「第1記憶層」之其中一例。第2記憶體胞MCy中之記憶層30,係為「第3記憶層」之其中一例。
亦即是,若是被施加於記憶層30處之電壓到達特定值,則記憶層30之內部的載體係增倍,記憶層30之阻抗係急遽地降低。若是在記憶層30處被施加有特定值以上之電壓,則係流動大的電流,並產生焦耳熱,記憶層30之溫度係上升。若是所施加之電壓被作控制,記憶層30之溫度係被保持於結晶化溫度區域,則記憶層30係變遷為多晶狀態,記憶層30之阻抗係降低。若是記憶層30成為多晶狀態,則就算是被施加之電壓成為零,多晶狀態也會被保持,記憶層30之阻抗係維持為低。若是在低阻抗狀態之記憶層30處被施加有高的電壓並流動大的電流,記憶層30之溫度超過硫屬化物合金等之熔點,則記憶層30之硫屬化物合金係熔融。若是被施加之電壓急遽降低,則記憶層30係被急速冷卻,但是記憶層30之阻抗係維持為高。
記憶層30,係為維持上述之低阻抗狀態或高阻抗狀態之層。記憶層30,係藉由被施加有電壓或者是被供給有電流,而能夠在室溫下將至少互為相異之2個的阻抗值以雙安定狀態來取得。藉由將此些之2個的安定之阻抗值作寫入以及讀出,係至少能夠實現2值之記憶體動作。在使記憶層30進行2值之記憶體動作的情況時,例如,係使記憶層30之安置(set)狀態對應於1,並使重置(reset)狀態對應於0。
第2導電層40,係被設置在記憶層30與選擇器層50之間。第2導電層40,係具有對於記憶層30與選擇器層50合金化的情形作抑制之功能以及將記憶層30與選擇器層50作電性連接之功能。第2導電層40,例如,係可身為碳(C)、氮化碳(CN)等,亦可身為鎢(W)等,亦可身為被植入有磷(P)等之N型雜質之多晶矽等,亦可身為碳化鎢(WC)、氮碳化鎢(WCN)或氮碳化鎢矽化物(WCNSi)等,亦可身為其他之導電層。在Z方向上之第2導電層40之厚度(例如最大厚度),例如,係較在Z方向上之記憶層30之厚度(例如最大厚度)而更薄。
選擇器層50,係身為作為記憶體胞MC之選擇元件而起作用之膜。選擇器層50,係被設置在記憶層30與字元線(第2配線)WL之間。選擇器層50,例如係亦可身為2端子間開關元件。當施加於2端子間之電壓係為臨限值以下的情況時,該開關元件係身為"高阻抗"狀態,例如身為電性非導通狀態。當施加於2端子間之電壓係為臨限值以上的情況時,開關元件係改變為"低阻抗"狀態,例如改變為電性導通狀態。開關元件,係亦可不論電壓為何者之極性均具有此功能。在此開關元件中,係包含有從由碲(Te)、硒(Se)以及硫(S)而成之群中所選擇之至少一種以上的硫族元素。此開關元件,係亦可包含有身為包含上述硫族元素之化合物的硫屬化物。此開關元件,除了上述元素之外,係亦可包含有從由硼(B)、鋁(Al)、鎵(Ga)、銦(In)、碳(C)、矽(Si)、鍺(Ge)、錫(Sn)、砷(As)、磷(P)、銻(Sb)而成之群中所選擇之至少1種以上之元素。在Z方向上之第2導電層40之厚度(例如最大厚度),例如,係較在Z方向上之記憶層30之厚度(例如最大厚度)而更薄。
第3導電層60,係被設置在選擇器層50與字元線WL之間。第3導電層60,係具有將選擇器層50與字元線WL作電性連接之功能。第3導電層60,例如,係可身為碳(C)、氮化碳(CN)等,亦可身為鎢(W)等,亦可身為被植入有磷(P)等之N型雜質之多晶矽等,亦可身為碳化鎢(WC)、氮碳化鎢(WCN)或氮碳化鎢矽化物(WCNSi)等,亦可身為其他之導電層。在Z方向上之第3導電層60之厚度(例如最大厚度),例如,係較在Z方向上之記憶層30之厚度(例如最大厚度)而更薄。
內襯膜70(第1絕緣膜),係身為將記憶體胞MC、字元線WL之一部分以及位元線BL之一部分作被覆的絕緣膜。內襯膜70,係如同第3圖以及第4圖中所示一般,將第1導電層20、記憶層30、第2導電層40、選擇器層50以及第3導電層60之周圍(X方向以及Y方向之周面)作覆蓋。亦即是,內襯膜70,係被覆記憶體胞MC。又,內襯膜70,係將字元線WL之一部分以及位元線BL之一部分作被覆。具體而言,在第3圖以及第4圖中,於第3方向上,當將朝向位元線BL接近之方向設為上,並將朝向層間絕緣層12接近之方向設為下時,內襯膜70,係將字元線WL以及位元線BL之上面以及側面之區域中的並未被形成有記憶體胞MC之區域作被覆。如同第3圖中所示一般,在Y方向上的內襯膜70之厚度(例如最大厚度),例如係為3nm~5nm。
在覆蓋第1記憶體胞MC之內襯膜70與覆蓋第2記憶體胞MCy之內襯膜70之間,係被設置有層間絕緣層38。在Y方向上之與第1記憶體胞MC相接之內襯膜70之厚度,係較在Y方向上之層間絕緣膜38之厚度而更薄。又,在X方向上之與第1記憶體胞MC相接之內襯膜70之厚度,係較在X方向上之層間絕緣膜38之厚度而更薄。內襯膜70之厚度,係為一定,並沿著第1記憶體胞MC而在Z方向上延伸。內襯膜70之一部分,係沿著「在第1記憶體胞MC與第2記憶體胞MCy之間而露出的層間絕緣層12」之表面,而被作設置。
內襯膜70,係身為由Si、O以及N所構成的SiON膜。內襯膜70,係在第3方向上,具有N區域72和O區域73以及邊界74(N之含量與O之含量為相等之邊界)。在N區域72處,N與O之間的原子比(N/O),係為1.0以上。亦即是,邊界74,係被包含於N區域72中。在O區域73處,N與O之間的原子比(N/O),係為未滿1.0。在第1實施形態中,邊界74,係在第3方向上,而位置於「第2導電層40之位元線BL側之端面」與「第2導電層40之字元線WL側之端面」之間。
在第5圖中,對於第1實施形態之記憶體胞的位置與能量分散型X光分析之結果之間的關係作展示。第5圖中之上部之示意圖,係對於記憶體胞之位置關係作展示,第5圖中之下部之圖表,係為針對在記憶體胞MC中之以虛線所示之方向上而進行了能量分散型X光分析後之結果作展示。在第5圖中之下部之圖表中,縱軸係對於在將單位設為原子%時的O以及N之比率作展示,橫軸係代表深度。
在第1實施形態中,如同第5圖中所示一般,在Z方向(第3方向)上,當將記憶層30之字元線WL側(下側)之端面處之位置設為第1位置G1時,在第1位置G1處之內襯膜70之N與O之間之原子比(N/O),係為1.0以上。在第1位置G1處之內襯膜70之N與O之間的原子比(N/O),係亦可為1.5以上。在第1位置處之內襯膜70之N與O之間的原子比(N/O),係亦可為7/3以上。另外,第1位置G1,在第1實施形態中,係成為記憶層30與第2導電層40之間之界面之位置。
在Z方向上,當將記憶層30之位元線(第1配線)BL側之端面(上側之端面)處的位置設為第3位置G3時,在Z方向上,於從第1位置G1起直到第3位置G3為止的範圍中,內襯膜70之N與O之間之原子比(N/O),例如係為1.0以上。另外,第3位置G3,在第1實施形態中,係成為第1導電層20與記憶層30之間之界面之位置。
在第1實施形態中,在Z方向上,當將字元線(第2配線)WL之與選擇器層50相反側之端面(下側之端面)之位置設為第2位置G2時,在第2位置G2處之內襯膜70之N與O之間之原子比(N/O),係為未滿1.0。在第2位置G2處之內襯膜70之N與O之間的原子比(N/O),係亦可為0.5以下。另外,第2位置G2,在第1實施形態中,係成為層間絕緣層12與字元線WL之間之界面之位置。
當將在第1方向上之內襯膜70之最小厚度設為第1距離時,在Z方向上,將從第2位置G2起朝向位元線BL而作了第1距離之分離的位置設為第4位置G4。在Z方向上,於從第2位置G2起直到第4位置G4為止的範圍中,內襯膜70之N與O之間之原子比(N/O),例如係為未滿1.0。在Z方向上,從第2位置G2起朝向位元線BL,於第1距離之範圍中(G2~G4之範圍),內襯膜70之N與O之間之原子比(N/O),係亦可為0.5以下。
在Z方向上,於從第2位置G2起直到選擇器層50之位元線BL側端面之位置為止的範圍中,例如,內襯膜70之N與O之間之原子比(N/O),例如係為未滿1.0。
內襯膜70中之Si、N以及O之各原子之含量(at%),係可藉由附屬於透射型電子顯微鏡(TEM)之能量分散型X光分光(EDX)來作測定。可根據各元素之含量(at%),來求取出上述之原子比。
(半導體記憶裝置之製造方法) 針對半導體記憶裝置1之製造方法作說明。第6圖,係對於記憶體胞MC之製造工程之其中一例作展示,並身為用以形成字元線WL以及柱31之層積體的剖面圖。第6圖~第15圖之各圖中之上部,係身為在沿著X方向來作了觀察時的於各製造工程中之構成零件之剖面圖。第6圖~第15圖之各圖中之下部,係身為在沿著Y方向來作了觀察時的於各製造工程中之構成零件之剖面圖。
如同第6圖中所示一般,在Z方向上,層積「於X方向以及Y方向上延伸之層間絕緣層12」、「第2配線用膜WL1」、「第3導電膜61」、「選擇器層形成膜51」、「第2導電膜41」、「記憶層形成膜31」、「第1導電膜21」。第2配線用膜WL1,例如係為鎢(W)。層間絕緣層12,例如,係藉由SiO 2而被形成。在此,雖並未圖示,但是,層間絕緣層12,係被形成於矽基板11處。
第7圖,係對於記憶體胞MC之製造工程之其中一例作展示,並身為對於溝形成工程作展示之剖面圖。例如,藉由圖案化,如同第7圖中所示一般,在Y方向上空出特定之間隔地而將溝Gr作複數之形成。複數之溝Gr,係在X方向上延伸,並在Z方向上,貫通第2配線用膜WL1、第3導電膜61、選擇器層形成膜51、第2導電膜41、記憶層形成膜31以及第1導電膜21。字元線WL、第3導電膜61、選擇器層形成膜51、第2導電膜41、記憶層形成膜31以及第1導電膜21,係在Y方向上空出有間隔地而被分斷為複數。
第8圖,係對於記憶體胞MC之製造工程之其中一例作展示,並身為對於SiO膜形成工程作展示之剖面圖。例如使用援用有電漿之ALD(Plasma-Enhanced Atomic Layer Deposition)法、或者是藉由CVD(Chemical Vapor Deposition)法,來如同第8圖中所示一般,在當從Z方向作觀察時為有所露出的第1導電膜21、記憶層形成膜31、第2導電膜41、選擇器層形成膜51、第3導電膜61、字元線WL處,而以特定之厚度來形成矽氧化膜(SiO膜)75。
第9圖,係對於記憶體胞MC之製造工程之其中一例作展示,並身為對於氮化處理工程作展示之剖面圖。例如藉由電漿氮化處理,如同第9圖中所示一般,藉由使矽氧化膜(SiO膜)75之一部分氮化,而形成N區域72。具體而言,當在SiO膜75處,將「覆蓋字元線WL之一部分之側面」的部分設為第1部分,並將「覆蓋記憶層30之側面」的部分設為第2部分時,係以會相較於第1部分而在第2部分中包含有更多之氮的方式,來對於第2部分供給氮。在形成氮化處理工程中,藉由對於壓力、偏壓條件、處理時間作調整,係能夠將與第1導電層20以及記憶層30相接之SiO膜選擇性地氮化。
第10圖,係對於記憶體胞MC之製造工程之其中一例作展示,並身為對於層間絕緣膜形成工程作展示之剖面圖。例如藉由ALD法或CVD法,來如同第10圖中所示一般,以將柱92之全體作埋入的方式,來層積層間絕緣膜38。層間絕緣膜38,例如係藉由SiO 2而被形成。此時,層間絕緣膜38之在Z方向上之大小,係較柱92之在Z方向上之大小而更大。
第11圖,係對於記憶體胞MC之製造工程之其中一例作展示,並身為對於層間絕緣膜部分去除工程作展示之剖面圖。例如藉由CMP(Chemical Mechanical Polishing),來如同第11圖中所示一般地,一面對於層間絕緣膜38而在Z方向上朝向層間絕緣層12進行研磨一面將其去除,直到第1導電膜21開始露出為止。藉由此種層間絕緣層膜部分去除工程,複數之柱31係於在Y方向上而與字元線WL相重疊之位置處空出有間隔地而被形成,層間絕緣膜38係中介存在於在Y方向上而相鄰之字元線WL以及柱31之間。在Z方向上而成為與字元線WL相反側之層間絕緣膜38以及第1導電膜21之端面,係相互對齊於同一平面上,並且相互為平滑。
第12圖,係對於記憶體胞MC之製造工程之其中一例作展示,並身為對於用以形成位元線BL之第1配線用膜形成工程作展示之剖面圖。例如藉由PVD(Physical Vapor Deposition)法或CVD法,來如同第12圖中所示一般,於從Z方向作觀察時為有所露出的層間絕緣膜38、第1導電膜21之端面處,層積第1配線用膜BL1。第1配線用膜BL1,例如係為鎢(W)。
第13圖,係對於記憶體胞MC之製造工程之其中一例作展示,並身為對於位元線形成工程作展示之剖面圖。例如藉由圖案化,來如同第13圖中所示一般,在X方向上空出有特定之間隔地,而將於Z方向上貫通第3導電膜61、選擇器層形成膜51、第2導電膜41、記憶層形成膜31、第1導電膜21以及第1配線用膜BL1之溝Gr2作複數之形成。藉由此,第1導電層20、記憶層30、第2導電層40、選擇器層50、第3導電層60係被形成。藉由此種位元線形成工程,位元線BL係在X方向上空出有特定之間隔地而被作複數形成。
第14圖,係對於記憶體胞MC之製造工程之其中一例作展示,並身為對於第2SiO膜形成工程作展示之剖面圖。例如使用援用有電漿之ALD(Plasma-Enhanced Atomic Layer Deposition)法、或者是藉由CVD(Chemical Vapor Deposition)法,來如同第14圖中所示一般,在當從Z方向作觀察時為有所露出的位元線BL、第1導電層20、記憶層30、第2導電層40、選擇器層50、第3導電層60、字元線WL處,而以特定之厚度來形成SiO膜75。
第15圖,係對於記憶體胞MC之製造工程之其中一例作展示,並身為對於第2氮化處理工程作展示之剖面圖。例如藉由電漿氮化處理,如同第15圖中所示一般,藉由使SiO膜75之一部分氮化,而形成N區域72。藉由此,係能夠得到內襯膜70。
藉由進行上述之工程,係能夠製造出第3圖以及第4圖中所示之記憶體胞MC。藉由在上述之工程前進行周知之前置處理,並在上述之工程後進行周知之後續處理,半導體記憶裝置1係被形成。但是,半導體記憶裝置1之製造方法,係並不被限定於上述之方法。
接著,針對以上所說明了的第1實施形態之半導體記憶裝置1的作用、效果作說明。若依據半導體記憶裝置1,則由於在第1位置G1處,內襯膜70之N與O之間的原子比(N/O)係為1.0以上,因此,係能夠抑制對於記憶層30的H 2O以及O之侵入。故而,係能夠對從層間絕緣膜38而來的H 2O以及O之對於記憶層之影響作抑制。又,由於在第2位置G2處,內襯膜70之N與O之間的原子比(N/O)係為未滿1.0,因此,係能夠得到優良的耐壓性,並且能夠抑制RC延遲。
以上,係針對第1實施形態作了說明。在上述之第1實施形態中,雖係具備有第1導電層20、第2導電層40、第3導電層60,但是,係亦可並不具備有第1導電層20、第2導電層40、第3導電層60。另外,在並不存在有第1導電層20的情況時,第3位置G3,係成為位元線BL與記憶層30之間之界面。在並不存在有第2導電層40的情況時,第1位置G1,係成為記憶層30與選擇器層50之間之界面。
又,在第1實施形態中,係亦可在第1導電層20與記憶層30之間具備有未圖示之第4導電層。第4導電層,例如係亦可藉由鎢來構成。
在第1實施形態中,與第1導電層20相接之內襯膜70之N與O之間的原子比(N/O),例如係亦可為1.0以上。
在第1實施形態之半導體記憶裝置之製造方法中,SiO膜形成工程以及氮化處理工程,係亦可藉由1個的裝置來連續性地進行。
(第2實施形態) 接著,針對第2實施形態作說明。雖並未圖示,但是,第2實施形態之半導體記憶裝置,係與第1實施形態之半導體記憶裝置1相同地,身為使用有PCM之所謂的交叉點型之半導體記憶裝置。第2實施形態之半導體記憶裝置,例如,係具備有矽基板11、和層間絕緣層12、和複數之字元線WL、和複數之位元線BL、以及複數之記憶體胞MC。以下,針對第2實施形態之半導體記憶裝置之構成零件,係僅針對與半導體記憶裝置1之構成零件相異的內容進行說明,而將與半導體記憶裝置1之構成零件共通的內容之詳細說明省略。
第16圖,係為第2實施形態之記憶體胞MC2之立體圖,第17圖,係為沿著第16圖中所示之記憶體胞MC2之A-A'線的剖面圖。又,第18圖,係為沿著第16圖中所示之B-B'線的剖面圖。另外,係將1個的記憶體胞設為記憶體胞MC2,並將在Y方向上中介存在有層間絕緣膜38地而相鄰接之記憶體胞設為記憶體胞MC2y,並且將在X方向上中介存在有層間絕緣膜38地而相鄰接之記憶體胞設為記憶體胞MC2x。
內襯膜70a(第1絕緣膜),係身為將記憶體胞MC2、字元線WL之一部分以及位元線BL之一部分作被覆的絕緣膜。內襯膜70a,係如同第17圖以及第18圖中所示一般,將第1導電層20、記憶層30、第2導電層40、選擇器層50以及第3導電層60之周圍作覆蓋。亦即是,內襯膜70a,係覆蓋記憶體胞MC2之周圍。內襯膜70a,係將字元線WL之一部分、位元線BL之一部分作被覆。具體而言,在第17圖以及第18圖中,於第3方向上,當將朝向位元線BL接近之方向設為上,並將朝向層間絕緣層12接近之方向設為下時,內襯膜70a,例如,係將字元線WL以及位元線BL之上面以及側面之中的並未被形成有記憶體胞MC之區域作被覆。如同第18圖中所示一般,在Y方向上的內襯膜70a之厚度(例如最大厚度),例如係為3nm~5nm。
在覆蓋記憶體胞MC2之內襯膜70a與覆蓋記憶體胞MC2y之內襯膜70a之間,係被設置有層間絕緣層38。在Y方向上之與記憶體胞MC2相接之內襯膜70a之厚度,係較在Y方向上之層間絕緣膜38之厚度而更薄。又,在X方向上之與記憶體胞MC2相接之內襯膜70a之厚度,係較在X方向上之層間絕緣膜38之厚度而更薄。內襯膜70a之厚度,係為一定,並沿著記憶體胞MC2而在Z方向上延伸。內襯膜70a之一部分,係沿著「在記憶體胞MC2與記憶體胞MC2y之間而露出的層間絕緣層12」之表面,而被作設置。
內襯膜70a,係身為由Si、O以及N所構成的SiON膜。內襯膜70a,係在第3方向上,具有N區域72和O區域73以及邊界74(N之含量與O之含量為相等之邊界)。在N區域72處,N與O之間的原子比(N/O),係為1.0以上。亦即是,邊界74,係被包含於N區域72中。在O區域73處,N與O之間的原子比(N/O),係為未滿1.0。
在第2實施形態中,在Z方向(第3方向)上,當將記憶層30之字元線WL側(第2配線側)之端面處之位置設為第1位置G1時,在第1位置G1處之內襯膜70a之N與O之間之原子比(N/O),係為1.0以上。在第1位置G1處之內襯膜70a之N與O之間的原子比(N/O),係亦可為1.5以上。在第1位置處之內襯膜70之N與O之間的原子比(N/O),係亦可為7/3以上。另外,第1位置G1,在第2實施形態中,係成為記憶層30與第2導電層40之間之界面之位置。
在Z方向上,當將選擇器層50之字元線(第2配線)WL側之端面(下側之端面)處的位置設為第5位置G5時,在Z方向上,於從第3位置G3起直到第5位置G5為止的範圍中,內襯膜70a之N與O之間之原子比(N/O),例如係為1.0以上。另外,第5位置G5,在第2實施形態中,係成為選擇器層50與第3導電層60之間之界面之位置。
在Z方向上,於從字元線WL之記憶層30側之端面之位置起直到第2位置G2為止的範圍中,內襯膜70之N與O之間之原子比(N/O),係為未滿1.0。在此,字元線WL之記憶層30側之端面之位置,係成為第3導電層60與字元線WL之間之界面之位置。
在Y方向上,於從字元線WL之表面起而離開了第2距離以上之距離的範圍中,內襯膜70a之N與O之間之原子比(N/O),係為1.0以上。在此,第2距離,係身為在Y方向上的內襯膜70之最小厚度。
在第2實施形態中,在Z方向上,當將字元線(第2配線)WL之與選擇器層50相反側之端面之位置設為第2位置G2時,在Y方向上從字元線WL之表面而分離了第1距離以內之範圍內並且在第2位置G2處之內襯膜70a之N與O之間之原子比(N/O),係為未滿1.0。在第2位置G2處之內襯膜70a之N與O之間的原子比(N/O),係亦可為0.5以下。另外,第2位置G2,在第2實施形態中,係成為層間絕緣層12與字元線WL之間之界面之位置。
內襯膜70a中之Si、N以及O之各原子之含量(at%),係與上述相同的,可藉由附屬於透射型電子顯微鏡(TEM)之能量分散型X光分光(EDX)來作測定。可根據各元素之含量(at%),來求取出上述之原子比。
針對第2實施形態之半導體記憶裝置的記憶體胞MC2之製造方法作說明。第2實施形態之半導體記憶裝置的記憶體胞MC2,除了氮化處理工程以外,係可藉由與半導體記憶裝置1之製造方法相同的工程來製造之。
在第2實施形態之半導體記憶裝置之製造方法中,氮化處理工程,例如係藉由電漿氮化處理,來將SiO膜75之一部分氮化。在此氮化處理工程中,藉由對於壓力、偏壓條件、處理時間作調整,係能夠將與第1導電層20、記憶層30、第2導電層40以及選擇器層50相接之SiO膜選擇性地氮化。又,藉由對於氮化處理之向異性作控制,係能夠如同第17圖一般地,將與層間絕緣層12相接之內襯膜70a之範圍氮化。
針對以上所說明了的第2實施形態之半導體記憶裝置的作用、效果作說明。若依據第2實施形態之半導體記憶裝置,則由於在從第3位置G3起直到第5位置G5為止的範圍中,內襯膜70之N與O之間的原子比(N/O)係為1.0以上,因此,係能夠抑制對於記憶層30以及選擇器層50的H 2O以及O之侵入。故而,係能夠對從層間絕緣膜38而來的H 2O以及O之對於記憶層之影響更進一步作抑制。又,在Z方向上,於從字元線WL之記憶層30側之端面之位置起直到第2位置G2為止的範圍中,內襯膜70之N與O之間之原子比(N/O),由於係為未滿1.0,因此,係能夠得到優良之耐壓性,並且能夠對於RC延遲作抑制。
(第3實施形態) 接著,針對第3實施形態作說明。雖並未圖示,但是,第3實施形態之半導體記憶裝置,係與第1實施形態之半導體記憶裝置1相同地,身為使用有PCM之所謂的交叉點型之半導體記憶裝置。第3實施形態之半導體記憶裝置,例如,係具備有矽基板11、和層間絕緣層12、和複數之字元線WL、和複數之位元線BL、以及複數之記憶體胞MC。以下,針對第3實施形態之半導體記憶裝置之構成零件,係僅針對與半導體記憶裝置1之構成零件相異的內容進行說明,而將與半導體記憶裝置1之構成零件共通的內容之詳細說明省略。
第19圖,係為第3實施形態之記憶體胞MC3之立體圖,第20圖,係為沿著第19圖中所示之記憶體胞MC3之A-A'線的剖面圖。第21圖,係為沿著第19圖中所示之記憶體胞MC3之B-B'線的剖面圖。另外,係將1個的記憶體胞設為記憶體胞MC3,並將在Y方向上中介存在有層間絕緣膜38地而相鄰接之記憶體胞設為記憶體胞MC3y,並且將在X方向上中介存在有層間絕緣膜38地而相鄰接之記憶體胞設為記憶體胞MC3x。
內襯膜70b(第1絕緣膜),係身為將字元線WL之一部分、位元線BL之一部分以及記憶體胞MC3作被覆的絕緣膜。內襯膜70b,係如同第20圖以及第21圖中所示一般,將第1導電層20、記憶層30、第2導電層40、選擇器層50以及第3導電層60之周圍作覆蓋。亦即是,內襯膜70b,係覆蓋記憶體胞MC3之周圍。內襯膜70b,係將字元線WL之一部分、位元線BL之一部分作被覆。具體而言,在第20圖以及第21圖中,於第3方向上,當將朝向位元線BL接近之方向設為上,並將朝向層間絕緣層12接近之方向設為下時,內襯膜70b,例如,係將字元線WL以及位元線BL之上面以及側面之中的並未被形成有記憶體胞MC之區域作被覆。如同第20圖中所示一般,在Y方向上的內襯膜70b之厚度(例如最大厚度),例如係為3nm~5nm。
內襯膜70b,係由Si、O以及N所構成。內襯膜70b,係在第3方向上,具有N區域72和O區域73以及邊界74(N之含量與O之含量為相等之邊界)。在N區域72處,N與O之間的原子比(N/O),係為1.0以上。亦即是,邊界74,係被包含於N區域72中。在O區域73處,N與O之間的原子比(N/O),係為未滿1.0。
在覆蓋記憶體胞MC3之內襯膜70b與覆蓋記憶體胞MC3y之內襯膜70b之間,係被設置有層間絕緣層38。在Y方向上之與記憶體胞MC3相接之內襯膜70b之厚度,係較在Y方向上之層間絕緣膜38之厚度而更薄。又,在X方向上之與記憶體胞MC3相接之內襯膜70b之厚度,係較在X方向上之層間絕緣膜38之厚度而更薄。內襯膜70b之厚度,係為一定,並沿著記憶體胞MC3而在Z方向上延伸。內襯膜70b之一部分,係沿著「在記憶體胞MC3與記憶體胞MC3y之間而露出的層間絕緣層12」之表面,而被作設置。
在第3實施形態中,在Z方向(第3方向)上,當將記憶層30之字元線WL側(第2配線側)之端面處之位置設為第1位置G1時,在第1位置G1處之內襯膜70b之N與O之間之原子比(N/O),係為1.0以上。在第1位置G1處之內襯膜70b之N與O之間的原子比(N/O),係亦可為1.5以上。在第1位置處之內襯膜70b之N與O之間的原子比(N/O),係亦可為7/3以上。另外,第1位置G1,在第3實施形態中,係成為記憶層30與第2導電層40之間之界面之位置。
在第3實施形態中,在第2位置G2處之內襯膜70b之N與O之間的原子比(N/O),係為未滿1.0。在第2位置G2處之內襯膜70b之N與O之間的原子比(N/O),係亦可為0.5以下。另外,第2位置G2,在第3實施形態中,係成為層間絕緣層12與字元線WL之間之界面之位置。
在Z方向上,於從第2位置G2起直到第4位置G4為止的範圍中,內襯膜70b之N與O之間之原子比(N/O),例如係為未滿1.0。
在Z方向上,於從第3位置G3起直到第4位置G4為止之除了第4位置G4以外之範圍中,內襯膜70b之N與O之間之原子比(N/O),例如係為1.0以上。
內襯膜70b中之Si、N以及O之各原子之含量(at%),係與上述相同地,可藉由附屬於透射型電子顯微鏡(TEM)之能量分散型X光分光(EDX)來作測定。可根據各元素之含量(at%),來求取出上述之原子比。
針對第3實施形態之半導體記憶裝置的記憶體胞MC3之製造方法作說明。第3實施形態之半導體記憶裝置的記憶體胞MC3,除了氮化處理工程以外,係可藉由與半導體記憶裝置1之製造方法相同的工程來製造之。
在第3實施形態之半導體記憶裝置之製造方法中,氮化處理工程,例如係藉由電漿氮化處理,來將SiO膜75之一部分氮化。在此氮化處理工程中,藉由對於壓力、偏壓條件、處理時間作調整,係能夠將與第1導電層20、記憶層30、第2導電層40、選擇器層50以及字元線WL之一部分相接之SiO膜選擇性地氮化。
針對以上所說明了的第3實施形態之半導體記憶裝置的作用、效果作說明。若依據第3實施形態之半導體記憶裝置,則由於與第1導電層20、第2導電層40、選擇器層50、第3導電層60以及字元線WL之一部分相接之內襯膜70之N與O之間的原子比(N/O)係為1.0以上,因此,係能夠抑制對於記憶層30、選擇器層50以及字元線WL的H 2O以及O之侵入。故而,係能夠對從層間絕緣膜38而來的H 2O以及O之影響更進一步作抑制。又,在Z方向上,於從第2位置G2起直到第4位置G4為止的範圍中,內襯膜70之N與O之間之原子比(N/O),由於係為未滿1.0,因此,係能夠得到優良之耐壓性,並且能夠對於RC延遲作抑制。
(第4實施形態) 接著,針對第4實施形態作說明。雖並未圖示,但是,第4實施形態之半導體記憶裝置,係與第1實施形態之半導體記憶裝置1相同地,身為使用有PCM之所謂的交叉點型之半導體記憶裝置。第4實施形態之半導體記憶裝置,例如,係具備有矽基板11、和層間絕緣層12、和複數之字元線WL、和複數之位元線BL、以及複數之記憶體胞MC。以下,針對第4實施形態之半導體記憶裝置之構成零件,係僅針對與半導體記憶裝置1之構成零件相異的內容進行說明,而將與半導體記憶裝置1之構成零件共通的內容之詳細說明省略。
第22圖,係為針對第4實施形態的半導體記憶裝置中之於Y方向上而作了複數並排的記憶體胞MC作展示之圖。如同第22圖中所示一般,將1個的記憶體胞設為記憶體胞MCA。將包夾著層間絕緣膜38地而與記憶體胞MCA相鄰之記憶體胞,設為記憶體胞MCB。將在Y方向上包夾著層間絕緣膜38地而與記憶體胞MCB相鄰之記憶體胞中的於Y方向上而位置在與記憶體胞MCA相反側處之記憶體胞,設為記憶體胞MCC。將在Y方向上包夾著層間絕緣膜38地而與記憶體胞MCC相鄰之記憶體胞中的於Y方向上而位置在與記憶體胞MCB相反之方向處之記憶體胞,設為記憶體胞MCD。以下,對於記憶體胞MCA之構成零件,係於該構成零件之元件符號的末端附加「A」。對於記憶體胞MCB之構成零件,係於該構成零件之元件符號的末端附加「B」。對於記憶體胞MCC之構成零件,係於該構成零件之元件符號的末端附加「C」。對於記憶體胞MCD之構成零件,係於該構成零件之元件符號的末端附加「D」。字元線WLB,係為「第4配線」之其中一例。字元線WLC,係為「第5配線」之其中一例。記憶層30B,係為「第2記憶層」之其中一例。將與記憶體胞MCA之其中一方之側面相接的內襯膜70,設為內襯膜70c。將位置在記憶體胞MCA與記憶體胞MCB之間之內襯膜,設為內襯膜70d。將位置在記憶體胞MCB與記憶體胞MCC之間之內襯膜,設為內襯膜70e。將位置在記憶體胞MCC與記憶體胞MCD之間之內襯膜,設為內襯膜70f。將與記憶體胞MCD相接並且在Y方向上而位於與內襯膜70f相反側處的內襯膜,設為內襯膜70g。內襯膜70e,係為「第2絕緣膜」之其中一例。
第4實施形態之半導體記憶裝置,係存在有字元線WL之配線間距離為窄的配線圖案A、和配線間距離為廣的配線圖案B。在配線圖案A處,例如字元線WL之配線間距離d1係為30nm以下。在配線圖案B處,例如字元線WL之配線間距離d2係為超過30nm。
在配線圖案B處,在第1位置G1處之內襯膜70e之N與O之間的原子比(N/O),係為1.0以上。
在配線圖案B處,在第2位置G2處之內襯膜70e之N與O之間的原子比(N/O),係為1.0以上。
在配線圖案B處,於Y方向(第1方向)上,存在於字元線WL間之內襯膜70e之N與O之間的原子比(N/O),係為1.0以上。在此,所謂「在Y方向上而存在於字元線WL之間」,係指「於隔著層間絕緣膜38而在Y方向上相鄰之字元線(在第22圖中,係為WLB以及WLC)的相對向之面處,將其中一方之面(在此,係為WLBa)之在Y方向上之位置設為D1,並將另外一方之面(在此,係為WLCa)之在Y方向上之位置設為D2」時,在Y方向上從D1起而至D2之範圍。
在配線圖案A處,內襯膜70d之Si、N以及O之原子比率之分布,例如,係身為與第1實施形態之內襯膜70相同之分布。
針對第4實施形態之半導體記憶裝置之製造方法作說明。第4實施形態之半導體記憶裝置的記憶體胞MC3,除了溝形成工程以及氮化處理工程以外,係可藉由與半導體記憶裝置1之製造方法相同的工程來製造之。
當在溝形成工程中而形成複數之溝Gr時,藉由形成寬幅為窄之溝和寬幅為廣之溝,係能夠形成如同第4實施形態之半導體記憶裝置一般之2種的配線圖案。
在第4實施形態之半導體記憶裝置之製造方法中,氮化處理工程,例如係藉由電漿氮化處理,來將SiO膜75之一部分氮化。在此氮化處理工程中,藉由對於壓力、偏壓條件、處理時間作調整,係能夠在寬幅為廣之配線圖案B中,進行在Y方向上而存在於字元線WL之間的內襯膜之氮化。
針對以上所說明了的第4實施形態之半導體記憶裝置的作用、效果作說明。若依據第4實施形態之半導體記憶裝置,則在配線間距離為窄而對於耐壓性有所要求之配線圖案A之區域中,係能夠同時達成記憶層30之保護與耐壓性。在配線間距離為廣而並不要求耐壓性的配線圖案B之區域中,由於內襯膜70e係全部被氮化,因此,配線之氧化係被抑制,安定性係更為提升。
以上,係針對第4實施形態之半導體記憶裝置而作了說明。在上述之第4實施形態中,雖係針對於第2配線間而配線間距離為相異的情況來作了說明,但是,就算是當在第1配線間而配線間距離為相異的情況時,亦可設為相同之構成。於此情況,係將上述之第4實施形態之記載中的第2配線(字元線)WL置換為第1配線(位元線)BL,並將第1方向(Y方向)置換為第2方向(X方向)。
在第4實施形態之半導體記憶裝置中,作為在配線圖案A中的內襯膜70d之組成分布之例,雖係列舉出了第1實施形態之組成分布,但是,係亦可設為第2實施形態或第3實施形態之組成分布。
若依據以上所說明了的至少1個的實施形態,則係具有第1配線、和第2配線、和第1記憶層、以及第1絕緣膜。前述第1配線,係在第1方向上延伸。前述第2配線,係在與前述第1方向相交叉之第2方向上延伸,並在與前述第1方向以及前述第2方向相交叉之第3方向上而被設置於與前述第1配線相異之位置處。前述第1記憶層,係在前述第3方向上,被設置於前述第1配線與前述第2配線之間。前述第1絕緣膜,係沿著前述第2配線之一部分之表面以及前述第1記憶層之表面而被作設置。前述第1絕緣膜,係由Si、N以及O所成。在前述第3方向上,將前述第1記憶層之前述第2配線側之端面之位置設為第1位置。將前述第2配線之與前述第1記憶層相反側之端面之位置設為第2位置。在前述第1位置處之前述第1絕緣膜之N與O之間的原子比(N/O),係為1.0以上。在前述第2位置處之前述第1絕緣膜之N與O之間的原子比(N/O),係為未滿1.0。若依據此種構成,則係能夠謀求電性特性之提升。
雖係針對本發明之數種實施形態作了說明,但是,該些實施形態,係僅為作為例子所提示者,而並非為對於發明之範圍作限定者。此些之實施形態,係可藉由其他之各種形態來實施,在不脫離發明之要旨的範圍內,係可進行各種之省略、置換、變更。此些之實施形態及其變形,係被包含於發明之範圍以及要旨內,並且亦被包含於申請專利範圍中所記載之發明及其均等範圍內。
例如,本發明之半導體記憶裝置,除了PCM以外,係亦可使用在MRAM(Magnetoresistive Random Access Memory)、ReRAM(Resistive Random Access Memory)、FeRAM(Ferroelectric Random Access Memory)等之具有使胞被作了堆疊的構造之半導體記憶裝置中。
1:半導體記憶裝置
11:矽基板
12:層間絕緣層
20:第1導電層
30:記憶層
40:第2導電層
50:選擇器層
60:第3導電層
70,70a~70g:內襯膜
72:N區域
73:O區域
74:邊界
WL,WLA,WLB,WLC,WLD,WLBa,WLBc,WLCa:字元線
BL:位元線
MC,MC2,MC2x,Mc2y,Mc3,MC3x,Mc3y,MCA,MCB,MCC,MCD:記憶體胞
G1:第1位置
G2:第2位置
G3:第3位置
G4:第4位置
[第1圖]係為對於第1實施形態之半導體記憶裝置作展示之概略立體圖。 [第2圖]係為對於第1實施形態之記憶體胞作展示之立體圖。 [第3圖]係為沿著第2圖中所示之記憶體胞之A-A'線的剖面圖。 [第4圖]係為沿著第2圖中所示之記憶體胞之B-B'線的剖面圖。 [第5圖]係為對於第1實施形態之記憶體胞內的位置與EDX之測定結果之間之關係作展示之圖。 [第6圖]係為對於第1實施形態之複數之記憶體胞之製造工程的其中一例作展示之剖面圖。 [第7圖]係為對於第1實施形態之複數之記憶體胞之製造工程的其中一例作展示之剖面圖。 [第8圖]係為對於第1實施形態之複數之記憶體胞之製造工程的其中一例作展示之剖面圖。 [第9圖]係為對於第1實施形態之複數之記憶體胞之製造工程的其中一例作展示之剖面圖。 [第10圖]係為對於第1實施形態之複數之記憶體胞之製造工程的其中一例作展示之剖面圖。 [第11圖]係為對於第1實施形態之複數之記憶體胞之製造工程的其中一例作展示之剖面圖。 [第12圖]係為對於第1實施形態之複數之記憶體胞之製造工程的其中一例作展示之剖面圖。 [第13圖]係為對於第1實施形態之複數之記憶體胞之製造工程的其中一例作展示之剖面圖。 [第14圖]係為對於第1實施形態之複數之記憶體胞之製造工程的其中一例作展示之剖面圖。 [第15圖]係為對於第1實施形態之複數之記憶體胞之製造工程的其中一例作展示之剖面圖。 [第16圖]係為對於第2實施形態之記憶體胞作展示之立體圖。 [第17圖]係為沿著第16圖中所示之記憶體胞之A-A'線的剖面圖。 [第18圖]係為沿著第16圖中所示之記憶體胞之B-B'線的剖面圖。 [第19圖]係為對於第3實施形態之記憶體胞作展示之立體圖。 [第20圖]係為沿著第19圖中所示之記憶體胞之A-A'線的剖面圖。 [第21圖]係為沿著第19圖中所示之記憶體胞之B-B'線的剖面圖。 [第22圖]係為對於第4實施形態之複數之記憶體胞作展示之剖面圖。
12:層間絕緣層
20:第1導電層
30:記憶層
38:層間絕緣膜
40:第2導電層
50:選擇器層
60:第3導電層
70:內襯膜
72:N區域
73:O區域
74:邊界
WL:字元線
BL:位元線
MC:第1記憶體胞
MCy:第2記憶體胞
G1:第1位置
G2:第2位置
G3:第3位置
G4:第4位置

Claims (9)

  1. 一種半導體記憶裝置,係具備有: 第1配線,係在第1方向上延伸;和 第2配線,係在與前述第1方向相交叉之第2方向上延伸,並在與前述第1方向以及前述第2方向相交叉之第3方向上而被設置於與前述第1配線相異之位置處;和 第1記憶層,係在前述第3方向上,被設置於前述第1配線與前述第2配線之間;和 第1絕緣膜,係沿著前述第2配線之一部分之表面以及前述第1記憶層之表面而被作設置, 前述第1絕緣膜,係由Si、N以及O所成, 當在前述第3方向上,將前述第1記憶層之前述第2配線側之端面之位置設為第1位置, 並將前述第2配線之與前述第1記憶層相反側之端面之位置設為第2位置時, 在前述第1位置處之前述第1絕緣膜之N與O之間的原子比(N/O),係為1.0以上, 在前述第2位置處之前述第1絕緣膜之N與O之間的原子比(N/O),係為未滿1.0。
  2. 如請求項1所記載之半導體記憶裝置,其中, 當在前述第3方向上,將前述記憶層之在前述第1配線側之端面處的位置設為第3位置時, 在前述第3方向上之從前述第1位置起而至前述第3位置為止的範圍中, 前述第1絕緣膜之N與O之間的原子比(N/O),係為1.0以上。
  3. 如請求項2所記載之半導體記憶裝置,其中, 在前述第1位置處之前述第1絕緣膜之N與O之間的原子比(N/O),係為7/3以上。
  4. 如請求項3所記載之半導體記憶裝置,其中, 當將在前述第1方向上之前述第1絕緣膜之最小厚度設為第1距離, 並在前述第3方向上,將從前述第2位置起朝向前述第1配線而作了前述第1距離之分離的位置設為第4位置時, 在前述第3方向上之從前述第2位置起而至前述第4位置的範圍中, 前述第1絕緣膜之N與O之間的原子比(N/O),係為未滿1.0。
  5. 如請求項1~4中之任一項所記載之半導體記憶裝置,其中,係更進而具備有: 選擇器層,係在前述第3方向上,被設置於前述第1配線與前述記憶層之間、或者是在前述第3方向上,被設置於前述記憶層與前述第2配線之間, 當在前述第3方向上,將前述選擇器層之在前述第2配線側之端面處的位置設為第5位置時, 在前述第5位置處之前述第1絕緣膜之N與O之間的原子比(N/O),係為1.0以上。
  6. 如請求項1~4中之任一項所記載之半導體記憶裝置,其中,係更進而具備有: 第3配線,係在前述第1方向上,被設置於與前述第2配線相異之位置處,並在前述第2方向上延伸;和 第3記憶層,係在前述第3方向上,被設置於前述第1配線與前述第3配線之間, 前述第1絕緣膜,係在前述第2方向上,位置於前述第2配線與前述第3配線之間。
  7. 如請求項1~4中之任一項所記載之半導體記憶裝置,其中, 在前述第3方向上,於從前述第2配線之前述第1記憶層側之端面之位置起而至前述第2位置為止的範圍中, 前述第1絕緣膜之N與O之間的原子比(N/O),係為未滿1.0, 將在前述第1方向上之前述第1絕緣膜之最小厚度設為第2距離, 在前述第1方向上,於從前述第2配線之表面起而作了前述第2距離以上之分離的範圍中, 前述第1絕緣膜之N與O之間的原子比(N/O),係為1.0以上。
  8. 如請求項1~4中之任一項所記載之半導體記憶裝置,其中,係具備有: 第4配線,係在前述第1方向上,被設置於與前述第2配線以及前述第3配線相異之位置處,並在前述第2方向上延伸;和 第2記憶層,係被設置於前述第1配線與前述第4配線之間;和 第5配線,係在前述第1方向上,被設置於與前述第2配線、前述第3配線以及前述第4配線相異之位置處,並在前述第2方向上延伸;和 第2絕緣膜,係在前述第2方向上而位置於前述第4配線與前述第5配線之間,並沿著前述第4配線之表面以及前述第2記憶層之表面而被作設置, 在前述第1位置處之前述第2絕緣膜之N與O之間的原子比(N/O),係為1.0以上, 在前述第2位置處之前述第2絕緣膜之N與O之間的原子比(N/O),係為1.0以上。
  9. 一種半導體記憶裝置之製造方法,係 在矽基板上形成層間絕緣層, 在前述層間絕緣層上形成配線, 在前述配線上形成記憶層, 形成包含有覆蓋前述配線之一部分之側面的第1部分和覆蓋前述記憶層之側面的第2部分之矽氧化膜, 以相較於前述矽氧化膜之前述第1部分而在前述矽氧化膜之前述第2部分中含有更多之氮的方式,來對於前述矽氧化膜之第2部分供給氮。
TW110115979A 2021-03-18 2021-05-04 半導體記憶裝置及半導體記憶裝置之製造方法 TWI807314B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-044482 2021-03-18
JP2021044482A JP2022143783A (ja) 2021-03-18 2021-03-18 半導体記憶装置および半導体記憶装置の製造方法

Publications (2)

Publication Number Publication Date
TW202239032A TW202239032A (zh) 2022-10-01
TWI807314B true TWI807314B (zh) 2023-07-01

Family

ID=83285120

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110115979A TWI807314B (zh) 2021-03-18 2021-05-04 半導體記憶裝置及半導體記憶裝置之製造方法

Country Status (4)

Country Link
US (1) US11581485B2 (zh)
JP (1) JP2022143783A (zh)
CN (1) CN115117110A (zh)
TW (1) TWI807314B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037046A1 (en) * 2009-08-11 2011-02-17 Mitsuru Sato Resistance-change memory and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037046A1 (en) * 2009-08-11 2011-02-17 Mitsuru Sato Resistance-change memory and method of manufacturing the same
JP2011040579A (ja) * 2009-08-11 2011-02-24 Toshiba Corp 抵抗変化メモリ

Also Published As

Publication number Publication date
JP2022143783A (ja) 2022-10-03
US11581485B2 (en) 2023-02-14
CN115117110A (zh) 2022-09-27
TW202239032A (zh) 2022-10-01
US20220302378A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
US10734450B2 (en) Memory device and electronic apparatus including the same
US11349074B2 (en) Memory cell and memory device comprising selection device layer, middle electrode layer and variable resistance layer
US10403681B2 (en) Memory device including a variable resistance material layer
TWI726022B (zh) 記憶體元件
US8426840B2 (en) Nonvolatile memory cells having phase changeable patterns therein for data storage
TW201735270A (zh) 半導體記憶體裝置及其製造方法
KR20180015402A (ko) 비휘발성 메모리 장치
US9058978B2 (en) Memory device and method of manufacturing the same
US11037992B2 (en) Variable resistance memory device
US11950517B2 (en) Three-dimensional semiconductor memory devices
US11594677B2 (en) Semiconductor storage device with insulating films adjacent resistance changing films
KR20210124611A (ko) 3차원 반도체 메모리 장치
TWI807314B (zh) 半導體記憶裝置及半導體記憶裝置之製造方法
CN112086475A (zh) 三维半导体存储器装置
TWI752544B (zh) 半導體儲存裝置
JP2022085888A (ja) 半導体装置
WO2020166073A1 (ja) 不揮発性半導体記憶装置及びその製造方法
US11145590B2 (en) Semiconductor memory device and method of manufacturing the same
US20220216402A1 (en) Semiconductor memory devices and methods for fabricating the same
KR20220074664A (ko) 반도체 장치
CN112655094A (zh) 用于3d x点存储器的具有减小的编程电流和热串扰的新颖的凹陷衬垫限制单元结构和制造方法