TWI807100B - 透過生成對抗網路之超解析度缺陷視察影像生成 - Google Patents
透過生成對抗網路之超解析度缺陷視察影像生成 Download PDFInfo
- Publication number
- TWI807100B TWI807100B TW108133925A TW108133925A TWI807100B TW I807100 B TWI807100 B TW I807100B TW 108133925 A TW108133925 A TW 108133925A TW 108133925 A TW108133925 A TW 108133925A TW I807100 B TWI807100 B TW I807100B
- Authority
- TW
- Taiwan
- Prior art keywords
- image resolution
- images
- sample
- image
- neural network
- Prior art date
Links
- 230000007547 defect Effects 0.000 title claims abstract description 95
- 238000012552 review Methods 0.000 title description 5
- 238000013528 artificial neural network Methods 0.000 claims abstract description 76
- 238000007689 inspection Methods 0.000 claims abstract description 49
- 238000000034 method Methods 0.000 claims description 42
- 238000001514 detection method Methods 0.000 claims description 41
- 238000012549 training Methods 0.000 claims description 15
- 230000003287 optical effect Effects 0.000 description 24
- 238000005286 illumination Methods 0.000 description 18
- 238000012545 processing Methods 0.000 description 17
- 238000010894 electron beam technology Methods 0.000 description 9
- 230000001537 neural effect Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 210000002569 neuron Anatomy 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000000231 atomic layer deposition Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000004151 rapid thermal annealing Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/047—Probabilistic or stochastic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4046—Scaling of whole images or parts thereof, e.g. expanding or contracting using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4053—Scaling of whole images or parts thereof, e.g. expanding or contracting based on super-resolution, i.e. the output image resolution being higher than the sensor resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/60—Image enhancement or restoration using machine learning, e.g. neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/73—Deblurring; Sharpening
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
- G01N2021/8858—Flaw counting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
- G01N2021/8861—Determining coordinates of flaws
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8854—Grading and classifying of flaws
- G01N2021/8861—Determining coordinates of flaws
- G01N2021/8864—Mapping zones of defects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
- G01N2021/8887—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/126—Microprocessor processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30148—Semiconductor; IC; Wafer
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Biomedical Technology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Quality & Reliability (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Probability & Statistics with Applications (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本發明揭示一種用於分析一樣本之系統,其包含一檢測子系統及至少一控制器。該檢測子系統經組態以掃描一樣本以收集具有一第一影像解析度之複數個第一樣本影像。該控制器經組態以基於該複數個第一樣本影像來生成一缺陷列表。該控制器經進一步組態以將對應於該缺陷列表之影像輸入至使用源資料來訓練之一類神經網路中,該源資料包含具有該第一影像解析度之樣本影像及具有高於該第一影像解析度之一第二影像解析度之樣本影像。該控制器經進一步組態以由該類神經網路基於對應於該缺陷列表之該等影像來生成複數個第二樣本影像,其中該複數個第二樣本影像具有該第二影像解析度且對應於該缺陷列表。
Description
本發明大體上係關於用於樣本分析之系統及方法,且更特定言之,本發明係關於用於缺陷檢測及視察之系統及方法。
樣本分析系統(例如檢測系統)經設計以依較快速率執行缺陷檢測。關於一典型圖案化晶圓,一工作運行可包含以下步驟:(1)將晶圓裝載於預對準器上;(2)切口對準;(3)將晶圓裝載於卡盤上;(4)晶圓對準;(5)缺陷掃描;(6)缺陷過濾;(7)自動/自動化缺陷視察(ADR);及(8)卸載晶圓,接著保存缺陷影像(及參考影像(若存在))。在此程序中,處理量主要受缺陷掃描及ADR步驟影響。
在既有ADR方案中,在檢測掃描之後,一檢測系統/工具切換至視察物鏡且接著轉至各缺陷位置、獲得焦點及抓取一影像。有時,當晶圓Z輪廓不平坦時,視察甚至會經歷散焦。當前ADR程序之一些缺點係:ADR需要較長時間(用於收集各缺陷位置處之較高解析度影像),可歸因於不規則晶圓平坦度輪廓而發生散焦問題,且存在視察物鏡與晶圓實體接觸之風險。因此,需要具有改良ADR方案之樣本分析系統及方法。
根據本發明之一或多個說明性實施例,揭示一種用於分析一樣本之系統。在一說明性實施例中,該系統包含一檢測子系統及一控制器。在實施例中,該檢測子系統經組態以掃描一樣本以收集具有一第一影像解析度之複數個第一樣本影像。在實施例中,該控制器經組態以基於該複數個第一樣本影像來生成一缺陷列表。在實施例中,該控制器經進一步組態以將對應於該缺陷列表之影像輸入至使用源資料來訓練之一類神經網路中,該源資料包含具有該第一影像解析度之樣本影像及具有高於該第一影像解析度之一第二影像解析度之樣本影像。在實施例中,該控制器經進一步組態以由該類神經網路基於對應於該缺陷列表之該等影像來生成複數個第二樣本影像,其中該複數個第二樣本影像具有該第二影像解析度且對應於該缺陷列表。
根據本發明之一或多個說明性實施方案,亦揭示一種用於分析一樣本之方法。在該方法之一說明性實施方案中,掃描該樣本以收集具有一第一影像解析度之複數個第一樣本影像。在實施方案中,基於該複數個第一樣本影像來生成一缺陷列表。在實施方案中,將對應於該缺陷列表之影像饋送至已使用源資料來訓練之一類神經網路中,該源資料包含具有該第一影像解析度之樣本影像及具有高於該第一影像解析度之一第二影像解析度之樣本影像。在實施方案中,由該類神經網路基於對應於該缺陷列表之該等影像來生成複數個第二樣本影像,其中該複數個第二樣本影像具有該第二影像解析度且對應於該缺陷列表。
根據本發明之一或多個說明性實施例,亦揭示一種用於一樣本分析系統之控制器。在一說明性實施例中,該控制器包含至少一處理器及通信耦合至該處理器之至少一記憶體媒體。在實施例中,該記憶體媒
體包含程式指令,其可由該至少一處理器執行且經組態以引起該處理器:基於具有一第一影像解析度之複數個第一樣本影像來生成一缺陷列表;將對應於該缺陷列表之影像輸入至一類神經網路中,該類神經網路使用源資料來訓練,該源資料包含具有該第一影像解析度之樣本影像及具有高於該第一影像解析度之一第二影像解析度之樣本影像;及由該類神經網路基於對應於該缺陷列表之該等影像來生成複數個第二樣本影像,該複數個第二樣本影像具有該第二影像解析度且對應於該缺陷列表。
應瞭解,以上一般描述及以下詳細描述兩者僅供例示及說明且未必限制本發明。併入本說明書中且構成本說明書之一部分之附圖繪示本發明之實施例且與[實施方式]一起用於解釋本發明之原理。
100:樣本分析系統
102:樣本
104:檢測子系統
106:光學檢測子系統
108:電子束檢測子系統
110:支撐部件/光學度量系統/載台總成
112:控制器
114:處理器
116:記憶體/記憶體媒體
118:處理工具
120:照明源
122:光學元件
123:照明分支
124:分束器
125:收集分支
126:物鏡
130:光學元件
134:偵測器總成
135:照明
136:感測器
200:類神經網路
200A:第一類神經網路/生成網路
200B:第二類神經網路/鑑別器網路
201:掃描影像/斑塊剪輯
202:輸入
203:自動/自動化缺陷視察(ADR)影像
204:層
204A:第一層
204B:第二層
204C:第三層
205:收集ADR影像
206:神經元/感知元
207:二元輸出
300:方法
302:步驟
304:步驟
306:步驟
308:步驟
310:步驟
312:步驟
熟習技術者可藉由參考附圖來較佳理解本發明之諸多優點,其中:圖1係繪示具有及不具有ADR之不同掃描解析度(物鏡放大率)處之一檢測系統之工具處理量之一實例的一圖表;圖2A係根據本發明之一或多個實施例之用於分析一樣本之一系統之一示意圖;圖2B係根據本發明之一或多個實施例之一光學檢測子系統之一示意圖;圖3A係根據本發明之一或多個實施例之一類神經網路之一示意圖;圖3B係根據本發明之一或多個實施例之以矩陣符號展示之圖3A中所繪示之類神經網路之一簡化示意圖;圖3C係根據本發明之一或多個實施例之呈一生成對抗網路(GAN)組
態之一類神經網路之一示意圖;及圖4係繪示根據本發明之一或多個實施方案之用於分析一樣本之一方法的一流程圖。
相關申請案之交叉參考
本申請案主張名叫Anuj Pandey、Brad Ries、Himanshu Vajaria、Yong Zhang及Rahul Lakhawat之發明者於2018年9月21申請之名稱為「SUPER-RESOLUTION DEFECT REVIEW IMAGE GENERATION THROUGH GENERATIVE ADVERSARIAL NETWORKS」之印度臨時專利申請案第201841035629號之優先權,該案之全文以引用的方式併入本文中。本申請案亦主張名叫Anuj Pandey、Brad Ries、Himanshu Vajaria、Yong Zhang及Rahul Lakhawat之發明者於2018年11月2日申請之名稱為「SUPER RESOLUTION DEFECT REVIEW IMAGE GENERATION THROUGH GENERATIVE ADVERSARIAL NETWORKS」之美國臨時專利申請案第62/755,224號之優先權,該案之全文以引用的方式併入本文中。
現將詳細參考附圖中所繪示之揭示標的。已相對於特定實施例及其具體特徵來特別展示及描述本發明。本文中所闡述之實施例應被視為說明而非限制。一般技術者應易於明白,可在不背離本發明之精神及範疇之情況下對形式及細節作出各種改變及修改。
在一典型生產案例中,一顧客可根據晶圓缺陷率及檢測損害率來在某處視察100個至1500個之間的缺陷。因此,檢測工具/系統需要
在ADR上花費大量時間來抓取視察影像。處理量與被視察之影像數目成反比。即,ADR視察影像之數目越高,處理量越低。圖1展示不同物鏡之處理量數目之一實例之一圖表,其中ADR影像擷取數目指示於括號中。如自圖1中之圖表可見,ADR顯著影響處理量。
關於一圖案化晶圓,一工作運行可包含以下步驟:(1)將晶圓裝載於預對準器上;(2)切口對準;(3)將晶圓裝載於卡盤上;(4)晶圓對準;(5)缺陷掃描;(6)缺陷過濾;(7)自動/自動化缺陷視察(ADR);及(8)卸載晶圓,接著保存缺陷影像(及參考影像(若存在))。在此程序中,處理量主要受缺陷掃描及ADR步驟影響。
在既有ADR方案中,在檢測掃描之後,一檢測系統/工具切換至視察物鏡且接著轉至各缺陷位置、獲得焦點及抓取一影像。有時,當晶圓Z輪廓不平坦時,視察甚至會經歷散焦。當前ADR程序之一些缺點係:ADR需要較長時間(用於收集各缺陷位置處之較高解析度影像),可歸因於不規則晶圓平坦度輪廓而發生散焦問題,且存在視察物鏡與晶圓實體接觸之風險。
為減少ADR對處理量之影響,揭示一系統及方法,其採用基於較低解析度掃描影像(例如斑塊剪輯)來生成高/超解析度影像之一類神經網路。例如,本文中所揭示之系統及方法可用於藉由將灰階缺陷斑塊影像饋送至由深度學習方法訓練之一生成網路來生成彩色高解析度缺陷視察影像。在實施例中,在方案設置期間使用掃描影像及ADR影像來訓練一生成深度學習類神經網路。接著,在一工作運行期間,收集掃描影像且將其饋送至類神經網路中以生成高解析ADR影像。藉由在一工作運行期間使用經訓練類神經網路來生成ADR影像而非必須收集高解析度ADR影
像:(1)減少ADR時間(藉此提高處理量);(2)消除ADR散焦問題;及(3)不存視察物鏡在工作運行期間損壞晶圓之風險。
圖2A繪示一樣本分析系統100之一實例性實施例,樣本分析系統100採用基於較低解析度掃描影像(例如斑塊剪輯)來生成高/超解析度影像之一類神經網路。系統100可用於分析一樣本102(例如一晶圓、板、面板、標線片或任何其他基板)之至少一表面。在實施例中,系統包含一檢測子系統104,例如一光學檢測子系統106(例如寬頻電漿檢測子系統、雷射持續電漿檢測子系統、KLA-Tencor公司之89xx系列(例如8900)系列檢測子系統或其類似者)及/或一電子束(e束)檢測子系統108(例如KLA-Tencor公司之eSLxx系列電子束晶圓缺陷檢測平台或其類似者)。
樣本102由一或多個支撐部件110支撐。例如,一或多個支撐部件110可包含一或多個樣本台、卡盤或其類似者。在一些實施例中,一或多個支撐部件110可致動(例如用於調整樣本102之x、y或z座標)。一或多個支撐部件110可經組態以在分析(例如檢測)期間依一選定位置及/或定向支撐樣本102。
在實施例中,系統100進一步包含通信耦合至檢測子系統104之一控制器112。例如,控制器112(或複數個控制器112)可通信耦合至一光學檢測子系統106及/或一電子束檢測子系統108。在一些實施例中,控制器112包含經組態以執行保存於一記憶體媒體116上之程式指令之一或多個處理器114。就此而言,控制器112之一或多個處理器114可執行本發明中所描述之各種程序步驟或操作之任何者。
一控制器112之一或多個處理器114可包含此項技術中已知之任何處理元件。就此而言,一或多個處理器114可包含經組態以執行演
算法及/或指令之任何微處理器型裝置。在一實施例中,一或多個處理器114可包括一桌上型電腦、主機電腦系統、工作站、影像電腦、並行處理器或經組態以執行一程式(其經組態以操作系統100/檢測子系統104)之任何其他電腦系統(例如網路電腦),如本發明中所描述。應進一步認識到,術語「處理器」可經廣義界定以涵蓋具有一或多個處理元件之任何裝置,該等處理元件執行來自一非暫時性記憶體媒體116之程式指令。
記憶體媒體116可包含適合於儲存可由相關聯之一或多個處理器114執行之程式指令之此項技術中已知之任何儲存媒體。例如,記憶體媒體116可包含一非暫時性記憶體媒體。另舉例而言,記憶體媒體116可包含(但不限於)一唯讀記憶體、一隨機存取記憶體、一磁性或光學記憶體裝置(例如磁碟)、一磁帶、一固態磁碟/硬碟或其類似者。應進一步注意,記憶體媒體116可與一或多個處理器114一起收容於一共同控制器外殼中。在一實施例中,記憶體媒體116可相對於一或多個處理器114及控制器112之實體位置來遠端定位。例如,控制器112之一或多個處理器114可存取可透過一網路(例如網際網路、內部網路及其類似者)所存取之一遠端記憶體(例如伺服器)。因此,以上描述不應被解譯為限制本發明,而是僅為一說明。
在實施例中,控制器112經組態以與檢測子系統104(例如光學檢測子系統106及/或電子束檢測子系統108)通信。例如,控制器112可經組態以自檢測子系統104(例如光學子系統106及/或電子束檢測子系統108)接收資料或發送資料至檢測子系統104。控制器112可經組態以接收原始資料、經處理資料及/或經部分處理資料之任何組合。例如,控制器112可經組態以接收諸如掃描影像、ADR影像及其類似者之檢測資料。
在實施例中,控制器112可經進一步組態以與一處理工具118通信。例如,控制器112可經組態以自處理工具118接收資料或發送資料至處理工具118。控制器112可經組態以接收原始資料、經處理資料及/或經部分處理資料之任何組合。例如,控制器112可經組態以接收處理工具參數/設定值、分批資訊、活動日誌、診斷資訊及其類似者。處理工具118可包括一微影工具、一蝕刻工具、一化學機械拋光(CMP)工具、一沈積工具(例如一化學汽相沈積(CVD)工具、一物理汽相沈積(PVD)工具、一原子層沈積工具等等)、一清潔工具、一電鍍工具、一離子植入工具、一熱工具(例如一快速熱退火工具)或其類似者。美國專利第8,284,394號中討論處理工具之一些其他實例(例如處理設備)。美國專利第8,284,394號中亦討論檢測/度量工具之額外實例。美國專利第8,284,394號之全文以引用的方式併入本文中,且應注意,在一些實施例中,檢測子系統104、光學度量系統110及/或處理工具118可包括美國專利第8,284,394號中所揭示之各自檢測系統、度量工具或處理設備之任何者。
控制器112可經進一步組態以發送資料及/或控制信號至檢測子系統104(例如光學檢測子系統106及/或電子束檢測子系統108)及/或處理工具118。在一些實施例中,控制器112可經組態以控制檢測子系統104(例如光學檢測子系統106及/或電子束檢測子系統108)及/或處理工具118之一或多個操作參數。例如,控制器112可經組態以控制一或多個照明參數(例如照明強度、波長、頻寬、頻率、光點大小等等)、掃描圖案、掃描速度、光學參數(例如焦點、相對透鏡位置、孔隙大小、濾波器配置、透鏡配置等等)、處理工具參數(例如空間、時序及/或材料沈積參數)等等。
此外,本發明中所描述之步驟可由一單一控制器112或替代地,多個控制器實施。另外,控制器112可包含收容於一共同外殼中或多個外殼內之一或多個控制器。依此方式,任何控制器或控制器組合可單獨封裝成適合於整合至系統100中之一模組。例如,控制器112可操作為檢測子系統104(例如光學檢測子系統106及/或電子束檢測子系統108)及/或處理工具118之一集中式處理平台,且可對接收資料(原始及/或經部分處理)實施一或多個分析(例如檢測)演算法以基於收集資料來偵測及/或視察樣本缺陷及/或生成控制參數(例如處理工具參數)。
在一些實施例中,檢測子系統104包括一光學檢測子系統106,諸如圖2B中所繪示之光學檢測子系統106。圖2B係根據本發明之一或多個實施例之一光學檢測子系統106之一簡化示意圖。在一實施例中,系統106包含一照明源120(例如一寬頻或窄頻照明源)、一照明分支123、一收集分支125及一偵測器總成134。
樣本102可安置於一載台總成110上以促進樣本102移動。載台總成110可包含此項技術中已知之任何載台總成110,其包含(但不限於)一X-Y台、一R-θ台及其類似者。在一些實施例中,載台總成110能夠在檢測或成像期間調整樣本102之高度以維持樣本102上之焦點。
照明分支123可經組態以自照明源120導引照明135至樣本102。照明分支123可包含任何數目個及類型之此項技術中已知之光學組件。在一些實施例中,照明分支123包含一或多個光學元件122、一分束器124及一物鏡126。就此而言,照明分支123可經組態以將來自照明源120之照明135聚焦至樣本102之表面上。一或多個光學元件122可包含此項技術中已知之任何光學元件或光學元件組合,其包含(但不限於)一或多
個反射鏡、一或多個透鏡、一或多個偏振器、一或多個光柵、一或多個濾波器、一或多個分束器及其類似者。
收集分支125可經組態以收集自樣本102反射、散射、繞射及/或發射之光。在一些實施例中,收集分支125可將來自樣本102之光導引及/或聚焦至一偵測器總成134之一感測器136。應注意,感測器136及偵測器總成134可包含此項技術中已知之任何感測器及偵測器總成。感測器136可包含(但不限於)一電荷耦合裝置(CCD)偵測器、一互補金屬氧化物半導體(CMOS)偵測器、一時間延遲積分(TDI)偵測器、一光倍增管(PMT)、一突崩光二極體(APD)及其類似者。此外,感測器136可包含(但不限於)一線感測器或一電子轟擊線感測器。
偵測器總成134可通信耦合至包含一或多個處理器114及記憶體116之控制器112。例如,一或多個處理器114可經組態以通信耦合至記憶體116,其中一或多個處理器114經組態以執行儲存於記憶體116上之一組程式指令。在實施例中,一或多個處理器114經組態以分析偵測器總成134之輸出。在一些實施例中,程式指令組經組態以引起一或多個處理器114分析樣本102之一或多個特性。在一些實施例中,程式指令組經組態以引起一或多個處理器114修改系統104之一或多個特性以維持樣本102及/或感測器136上之聚焦。例如,一或多個處理器114可經組態以調整物鏡126或一或多個光學元件122以將來自照明源120之照明135聚焦至樣本102之表面上。另舉例而言,一或多個處理器114可經組態以調整物鏡126及/或一或多個光學元件130以自樣本102之表面收集照明且將收集照明聚焦於感測器136上。
應注意,系統104可組態成此項技術中已知之任何光學組
態,其包含(但不限於)一暗場組態、一明場定向及其類似者。應進一步注意,系統100之一或多個組件可依此項技術中已知之任何方式通信耦合至系統100之各種其他組件。例如,照明源120、偵測器總成134、控制器112及一或多個處理器114可經由一有線(例如銅線、光纖電纜及其類似者)或無線連接(例如RF耦合、IR耦合、資料網路通信(例如WiFi、WiMax、Bluetooth及其類似者))來彼此通信耦合及通信耦合至其他組件。
在實施例中,檢測子系統104經組態以對樣本102執行一掃描以收集具有一第一影像解析度之複數個第一樣本影像(本文中有時指稱「掃描影像」或「斑塊剪輯」)。在一些實施例中,依1X至10X範圍內之一物鏡放大率擷取具有第一影像解析度之樣本影像。檢測子系統104可依遠快於ADR影像(其可具有掃描影像/斑塊剪輯之解析度之兩倍或更多倍解析度)之速率收集掃描影像/斑塊剪輯。例如,ADR影像可具有高於第一影像解析度(例如第一影像解析度之2倍至5倍或更高)之一第二影像解析度。在一些實施例中,掃描影像/斑塊剪輯係黑白(B&W)或灰階影像,而ADR影像係更高解析度彩色影像。
控制器112可經組態以基於由檢測子系統104偵測之掃描影像/斑塊剪輯來生成一缺陷列表。接著,不是引起檢測子系統104收集由缺陷列表指示之缺陷位置處之ADR影像,而是控制器112經組態以將對應於缺陷列表之掃描影像/斑塊剪輯輸入至一類神經網路(例如下文將描述之類神經網路200或其類似者)中。例如,控制器112可經組態以將缺陷列表及所有掃描影像/斑塊剪輯載入至類神經網路中,或替代地,經組態以將對應於缺陷列表之掃描影像/斑塊剪輯之一子集載入至類神經網路中。接著,控制器112經組態以由類神經網路基於對應於缺陷列表之掃描影像/斑
塊剪輯來生成ADR影像。
圖3A至圖3C繪示根據本發明之一或多個實施例之一類神經網路200。類神經網路200可由處理器114執行之軟體模組(例如來自記憶體116)實施。在其他實施例中,類神經網路200可由硬體模組(例如積體電路、可程式化邏輯裝置等等)或硬體及軟體模組之一組合實施。
在實施例中,類神經網路200可包含一或多個層。例如,圖3A及圖3B中繪示一多層類神經網路200。此類神經網路拓撲/架構可用於一多輸入及多輸出(MIMO)系統。類神經網路200包含一或多個輸入202及一或多個層204(例如一第一層204A、一第二層204B、一第三層204C等等)。在實施例中,類神經網路200可包含任何數目個輸入及層。各層204包含一或多個神經元/感知元206。一神經元/感知元206可具有以下屬性:(1)一標量權重,諸如;(2)一標量偏壓,諸如;(3)一求和運算,諸如Σ;(4)一轉移函數(或激活函數),諸如f 3;及一標量輸出,諸如。一神經元/感知元206之一標量輸入乘以神經元/感知元206之權重,且在與其偏壓加總之後由其轉移函數變換以變成其輸出。如圖3B中所展示,可以一矩陣格式表示類神經網路200之數學概念。
如圖3C中所展示,在實施例中,類神經網路200可為一生成對抗網路(GAN)。就此而言,類神經網路200可包含經組態以基於掃描影像/斑塊剪輯201來生成ADR影像203之一第一類神經網路(生成網路)200A及經組態以基於使用由檢測子系統104收集之ADR影像205訓練之影像真實性參數來生成二元輸出207(例如真/假、正確/不正確、1/0)之一第二類神經網路(鑑別器網路)200B。鑑別器網路200B可經組態以在一生成ADR影像203無法滿足訓練參數時生成二元輸出207處之一假/不正確/0狀
態。接著,生成網路200A可經組態以調整其權重及偏壓,使得生成ADR影像203滿足鑑別器網路200B之訓練參數以導致二元輸出207處之真/正確/1狀態。
在實施例中,藉由使用源資料多次執行此程序來訓練類神經網路200,源資料包含掃描影像/斑塊剪輯201(低解析度)及由檢測子系統104收集之ADR影像205(高解析度)。例如,可使用預定數目個掃描影像/斑塊剪輯201及預定數目個收集ADR影像205(例如500個至5000個掃描影像/斑塊剪輯及500個至5000個收集ADR影像)來訓練類神經網路200。在其他實施例中,類神經網路200可繼續訓練,直至鑑別器網路200B在二元輸出207處輸出臨限數目個連續真/正確/1狀態或真/正確/1狀態相對於假/不正確/0狀態之一臨限比。例如,可訓練類神經網路200,直至針對預定數目個輸入達成一臨限可信度(例如至少70%、80%、90%或更高)。此時,訓練生成網路200A以生成具有可接受品質之高解析度ADR影像203。應注意,用於訓練類神經網路200之掃描影像/斑塊剪輯201及/或收集ADR影像205之數目及臨限可信度可取決於系統要求而變動。因此,除非申請專利範圍中另有提供,否則上述數值應被理解為非限制性實例。
圖4係繪示根據本發明之一或多個實施例之一方法300的一流程圖,方法300採用一類神經網路(例如類神經網路200)來生成ADR影像(例如ADR影像203)用於樣本缺陷檢測及視察。上文在系統100之背景中所描述之實施例及啟用技術應被解譯為擴展至方法300。然而,應進一步注意,方法300不受限於系統100之架構。
在步驟302中,方法300包含掃描一樣本102以收集具有一第一影像解析度之複數個第一樣本影像。例如,檢測子系統104可經組態
以依第一解析度掃描樣本(例如晶圓刈幅掃描)以收集具有第一影像解析度之掃描影像/斑塊剪輯201。在一些實施例中,依1X至10X之範圍內之一物鏡放大率擷取具有第一影像解析度之樣本影像。在一些實施例中,掃描影像/斑塊剪輯201係B&W或灰階影像。
在步驟304中,方法300包含基於複數個第一樣本影像(例如掃描影像/斑塊剪輯201)來生成一缺陷列表。例如,控制器112可經組態以藉由應用影像或圖案辨識演算法、光譜分析、明場/暗場成像或其類似者來基於掃描影像/斑塊剪輯201生成一缺陷列表。在實施方案中,缺陷列表可包含識別缺陷或關注區域(ROI)之座標。
在步驟310中,方法300包含將對應於缺陷列表之影像(例如掃描影像/斑塊剪輯201)輸入至一經訓練類神經網路(例如類神經網路200)中。例如,控制器112可經組態以將對應於缺陷列表之掃描影像/斑塊剪輯201輸入至經訓練類神經網路200中。在一些實施例中,缺陷列表本身亦係類神經網路200之一輸入。在其他實施例中,控制器112經組態以將對應於由缺陷列表識別之缺陷座標的掃描影像/斑塊剪輯201輸入至類神經網路200中。可使用源資料來訓練類神經網路200,源資料包含具有第一影像解析度之樣本影像(例如掃描影像/斑塊剪輯201)及具有高於第一影像解析度之一第二影像解析度之樣本影像(例如收集ADR影像205)。下文將參考步驟306及308來描述用於訓練類神經網路200之一程序之一實例性實施方案。
在步驟312中,方法包含由類神經網路(例如類神經網路200)基於對應於缺陷列表之影像(例如掃描影像/斑塊剪輯201)來生成複數個第二樣本影像(例如生成ADR影像203)。生成ADR影像203在某種意義
上類似於收集ADR影像205,因為生成ADR影像203可具有相同於由檢測子系統104收集之ADR影像205之範圍(例如第一影像解析度之2倍至5倍或更高)內之一影像解析度。然而,生成ADR影像203可更快獲得且不易出現可發生於使用檢測子系統104來收集ADR影像205時之機械誤差(例如晶圓損壞)。此係因為生成ADR影像203無需使用一物鏡來獲得20X至50X或更高放大率。相反地,由經訓練類神經網路(例如類神經網路200)基於可依一1X至10X物鏡放大率收集之掃描影像/斑塊剪輯201來生成高解析度ADR影像203。應注意,除非申請專利範圍中另有提供,否則解析度/放大率值或範圍僅供例示而不意在限制。一般而言,類神經網路200可經組態以輸出演色及/或解析度高於掃描影像/斑塊剪輯201之ADR影像203。
在實施方案中,方法300包含可在一工作運行期間於生成ADR影像(例如ADR影像203)之前執行之一訓練程序。例如,方法300可包含在一工作運行期間在執行步驟302、304、310及312之前執行步驟302至308一或多次。在一些實施方案中,方法300包含週期性、按需及/或在遇到錯誤時執行訓練程序。例如,可在一輸入(例如掃描影像/斑塊剪輯201)無法由生成網路200A解析或輸入導致鑑別器網路200B之一假/不正確/0狀態二元輸出207時執行訓練程序。在另一實例性實施方案中,可在數個樣本(例如每10個取樣、每100個取樣或其類似者)之後執行訓練程序。在另一實例性實施方案中,可回應於一使用者輸入(例如再訓練類神經網路200之一使用者命令)而執行訓練程序。
在方法300之實施方案中,訓練程序包含掃描一或多個樣本(例如晶圓刈幅掃描)以獲得掃描影像/斑塊剪輯201且基於掃描影像/斑塊剪輯201來生成一缺陷列表之步驟302及304。在步驟306中,訓練程序進
一步包含在一或多個樣本上之缺陷位置處執行ADR以收集具有第二影像解析度之樣本影像(例如收集ADR影像205)。在步驟308中,基於包含掃描影像/斑塊剪輯201及收集ADR影像205之源資料來訓練類神經網路200。在一些實施方案中,藉由使用包含掃描影像/斑塊剪輯201(低解析度)及由檢測子系統104收集之ADR影像205(高解析度)之源資料多次執行此程序來訓練類神經網路200。例如,可使用預定數目個掃描影像/斑塊剪輯201及預定數目個收集ADR影像205(例如500個至5000個掃描影像/斑塊剪輯及500個至5000個收集ADR影像)來訓練類神經網路200。在其他實施方案中,類神經網路200可繼續訓練,直至鑑別器網路200B在二元輸出207處輸出臨限數目個連續真/正確/1狀態或真/正確/1狀態相對於假/不正確/0狀態之一臨限比。例如,可訓練類神經網路200,直至針對預定數目個輸入達成一臨限可信度(例如至少70%、80%、90%或更高)。
如先前所提及,在一些實施方案中,可在一輸入(例如掃描影像/斑塊剪輯201)無法由生成網路200A解析或輸入導致鑑別器網路200B之一假/不正確/0狀態二元輸出207或否則無效時再訓練類神經網路200。例如,控制器112可經組態以在具有第一影像解析度且對應於樣本上之一識別缺陷位置之一第一樣本影像(例如掃描影像/斑塊剪輯201)係類神經網路200之一無效輸入時引起檢測子系統104在識別缺陷位置處執行ADR以收集具有第二影像解析度之一第二樣本影像(例如一ADR影像205)(例如步驟306中所執行)。當輸入至類神經網路200之掃描影像/斑塊剪輯被視為無效時,可使用收集ADR影像來代替一生成ADR影像。另外或替代地,方法300可包含基於被視為無效之掃描影像/斑塊剪輯及收集ADR影像來再訓練類神經網路200。依此方式,類神經網路200可繼續隨時間訓練,使得
更寬範圍之缺陷類型及影像解析度可由類神經網路200解析且用於生成可接受ADR影像。
本文中所描述之標的有時繪示含於其他組件內或與其他組件連接之不同組件。應瞭解,此等描繪架構僅供例示,且事實上,可實施達成相同功能之諸多其他架構。就概念而言,達成相同功能之組件之任何配置經有效「相關聯」以達成所要功能。因此,不管架構或中間組件如何,本文中經組合以達成一特定功能之任何兩個組件可被視為彼此「相關聯」以達成所要功能。同樣地,如此相關聯之任何兩個組件亦可被視為彼此「連接」或「耦合」以達成所要功能,且能夠如此相關聯之任何兩個組件亦可被視為彼此「可耦合」以達成所要功能。「可耦合」之具體實例包含(但不限於)可實體互動及/或實體互動組件及/或可無線互動及/或無線互動組件及/或可邏輯互動及/或邏輯互動組件。
一般認為,可藉由以上描述來理解本發明及其諸多伴隨優點,且應明白,可在不背離本發明或不犧牲其所有材料優點之情況下對組件之形式、構造及配置作出各種改變。所描述之形式僅供說明,且以下申請專利範圍意欲涵蓋及包含此等改變。此外,應瞭解,本發明由隨附申請專利範圍界定。
200:類神經網路
200A:第一類神經網路/生成網路
200B:第二類神經網路/鑑別器網路
201:掃描影像/斑塊剪輯
203:自動/自動化缺陷視察(ADR)影像
205:收集ADR影像
207:二元輸出
Claims (12)
- 一種用於分析一樣本之系統,其包括:一檢測子系統,其經組態以掃描一或多個樣本以收集具有一第一影像解析度之複數個第一(a first plurality of)樣本影像;及至少一控制器,其經組態以:基於該複數個第一樣本影像來生成一缺陷列表;將對應於該缺陷列表之影像輸入至一類神經網路中,該類神經網路使用源資料來訓練,該源資料包含具有該第一影像解析度之樣本影像及具有高於該第一影像解析度之一第二影像解析度之樣本影像;由該類神經網路基於對應於該缺陷列表之該等影像來生成複數個第二(a second plurality of)樣本影像,該複數個第二樣本影像具有該第二影像解析度且對應於該缺陷列表;引起該檢測子系統在該一或多個樣本上之缺陷位置處執行自動缺陷視察以收集具有該第二影像解析度之該等樣本影像,其中基於具有該第一影像解析度之該等樣本影像來識別該等缺陷位置;基於該源資料來訓練該類神經網路,該源資料包含具有該第一影像解析度之該等樣本影像及具有該第二影像解析度之該等樣本影像;在具有該第一影像解析度且對應於該樣本上之一識別缺陷位置之一第一樣本影像係該類神經網路之一無效輸入時,引起該檢測子系統在該識別缺陷位置處執行自動缺陷視察以收集具有該第二影像解 析度之一第二樣本影像;及基於具有該第一影像解析度之該第一樣本影像及具有該第二影像解析度之該第二樣本影像來再訓練該類神經網路。
- 如請求項1之系統,其中該第二影像解析度係該第一影像解析度之2倍至5倍。
- 如請求項1之系統,其中該複數個第一樣本影像係灰階影像,且該複數個第二影像係彩色影像。
- 如請求項1之系統,其中該類神經網路包括一生成對抗網路。
- 一種分析一樣本之方法,其包括:掃描一或多個樣本以收集具有一第一影像解析度之複數個第一樣本影像;基於該複數個第一樣本影像來生成一缺陷列表;將對應於該缺陷列表之影像輸入至一類神經網路中,該類神經網路使用源資料來訓練,該源資料包含具有該第一影像解析度之樣本影像及具有高於該第一影像解析度之一第二影像解析度之樣本影像;由該類神經網路基於對應於該缺陷列表之該等影像來生成複數個第二樣本影像,該複數個第二樣本影像具有該第二影像解析度且對應於該缺陷列表;引起一檢測子系統在該一或多個樣本上之缺陷位置處執行自動缺陷 視察以收集具有該第二影像解析度之該等樣本影像,其中基於具有該第一影像解析度之該等樣本影像來識別該等缺陷位置;基於該源資料來訓練該類神經網路,該源資料包含具有該第一影像解析度之該等樣本影像及具有該第二影像解析度之該等樣本影像;引起該檢測子系統在具有該第一影像解析度且對應於該樣本上之一識別缺陷位置之一第一樣本影像係該類神經網路之一無效輸入時,於該識別缺陷位置處執行自動缺陷視察以收集具有該第二影像解析度之一第二樣本影像;及基於具有該第一影像解析度之該第一樣本影像及具有該第二影像解析度之該第二樣本影像來再訓練該類神經網路。
- 如請求項5之方法,其中該第二影像解析度係該第一影像解析度之2倍至5倍。
- 如請求項5之方法,其中該複數個第一樣本影像係灰階影像,且該複數個第二影像係彩色影像。
- 如請求項5之方法,其中該類神經網路包括一生成對抗網路。
- 一種用於一樣本分析系統之控制器,其包括:至少一處理器;及至少一記憶體媒體,其通信耦合至該至少一處理器,該至少一記憶體媒體包含程式指令,該等程式指令可由該至少一處理器執行且經組態以 引起該處理器:基於具有一第一影像解析度之複數個第一樣本影像來生成一缺陷列表;將對應於該缺陷列表之影像輸入至一類神經網路中,該類神經網路使用源資料來訓練,該源資料包含具有該第一影像解析度之樣本影像及具有高於該第一影像解析度之一第二影像解析度之樣本影像;由該類神經網路基於對應於該缺陷列表之該等影像來生成複數個第二樣本影像,該複數個第二樣本影像具有該第二影像解析度且對應於該缺陷列表;引起一檢測子系統在該一或多個樣本上之缺陷位置處執行自動缺陷視察以收集具有該第二影像解析度之該等樣本影像,其中基於具有該第一影像解析度之該等樣本影像來識別該等缺陷位置;基於該源資料來訓練該類神經網路,該源資料包含具有該第一影像解析度之該等樣本影像及具有該第二影像解析度之該等樣本影像;引起該檢測子系統在具有該第一影像解析度且對應於該樣本上之一識別缺陷位置之一第一樣本影像係該類神經網路之一無效輸入時,於該識別缺陷位置處執行自動缺陷視察以收集具有該第二影像解析度之一第二樣本影像;及基於具有該第一影像解析度之該第一樣本影像及具有該第二影像解析度之該第二樣本影像來再訓練該類神經網路。
- 如請求項9之控制器,其中該第二影像解析度係該第一影像解析度之2倍至5倍。
- 如請求項9之控制器,其中該複數個第一樣本影像係灰階影像,且該複數個第二影像係彩色影像。
- 如請求項9之控制器,其中該類神經網路包括一生成對抗網路。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN201841035629 | 2018-09-21 | ||
IN201841035629 | 2018-09-21 | ||
US201862755224P | 2018-11-02 | 2018-11-02 | |
US62/755,224 | 2018-11-02 | ||
US16/180,957 | 2018-11-05 | ||
US16/180,957 US10949964B2 (en) | 2018-09-21 | 2018-11-05 | Super-resolution defect review image generation through generative adversarial networks |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202024612A TW202024612A (zh) | 2020-07-01 |
TWI807100B true TWI807100B (zh) | 2023-07-01 |
Family
ID=69883277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW108133925A TWI807100B (zh) | 2018-09-21 | 2019-09-20 | 透過生成對抗網路之超解析度缺陷視察影像生成 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10949964B2 (zh) |
EP (1) | EP3853592B1 (zh) |
KR (1) | KR102587159B1 (zh) |
CN (1) | CN112740021B (zh) |
TW (1) | TWI807100B (zh) |
WO (1) | WO2020061386A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10854486B2 (en) * | 2018-09-19 | 2020-12-01 | Kla Corporation | System and method for characterization of buried defects |
US10964015B2 (en) * | 2019-01-15 | 2021-03-30 | International Business Machines Corporation | Product defect detection |
US12051183B2 (en) * | 2020-04-30 | 2024-07-30 | KLA Corp. | Training a machine learning model to generate higher resolution images from inspection images |
CN111693534B (zh) | 2020-06-12 | 2023-09-15 | 北京百度网讯科技有限公司 | 表面缺陷的检测方法、模型训练方法、装置、设备和介质 |
TWI740565B (zh) * | 2020-07-03 | 2021-09-21 | 財團法人國家實驗研究院國家高速網路與計算中心 | 改善遙測影像品質的方法、電腦程式產品及系統 |
US11328410B2 (en) | 2020-08-03 | 2022-05-10 | KLA Corp. | Deep generative models for optical or other mode selection |
US11776108B2 (en) * | 2020-08-05 | 2023-10-03 | KLA Corp. | Deep learning based defect detection |
TWI800767B (zh) * | 2020-11-16 | 2023-05-01 | 財團法人工業技術研究院 | 具有生成對抗網路架構之異常偵測裝置和異常偵測方法 |
US20220270212A1 (en) * | 2021-02-25 | 2022-08-25 | Kla Corporation | Methods for improving optical inspection and metrology image quality using chip design data |
CN113032919B (zh) * | 2021-03-12 | 2022-03-04 | 奥特斯科技(重庆)有限公司 | 部件承载件制造方法、处理系统、计算机程序和系统架构 |
CN113281446B (zh) * | 2021-06-29 | 2022-09-20 | 天津国科医工科技发展有限公司 | 一种基于rbf网络的质谱仪分辨自动调节方法 |
KR20240135526A (ko) | 2023-03-03 | 2024-09-11 | 고려대학교 산학협력단 | 결함 이미지 합성 방법 및 장치 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080304056A1 (en) * | 2007-05-07 | 2008-12-11 | David Alles | Methods for detecting and classifying defects on a reticle |
US20170193680A1 (en) * | 2016-01-04 | 2017-07-06 | Kla-Tencor Corporation | Generating high resolution images from low resolution images for semiconductor applications |
US20170345140A1 (en) * | 2016-05-25 | 2017-11-30 | Kla-Tencor Corporation | Generating simulated images from input images for semiconductor applications |
TW201802726A (zh) * | 2016-06-01 | 2018-01-16 | 克萊譚克公司 | 針對半導體應用整合神經網路及前向物理模型之系統及方法 |
US20180240225A1 (en) * | 2017-02-20 | 2018-08-23 | Hitachi High-Technologies Corporation | Sample observation device and sample observation method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001156135A (ja) * | 1999-11-29 | 2001-06-08 | Hitachi Ltd | 欠陥画像の分類方法及びその装置並びにそれを用いた半導体デバイスの製造方法 |
EP1982160A4 (en) | 2006-02-09 | 2016-02-17 | Kla Tencor Tech Corp | METHOD AND SYSTEMS FOR DETERMINING A WAFER FEATURE |
US11205119B2 (en) | 2015-12-22 | 2021-12-21 | Applied Materials Israel Ltd. | Method of deep learning-based examination of a semiconductor specimen and system thereof |
KR101836096B1 (ko) | 2016-12-02 | 2018-03-12 | 주식회사 수아랩 | 이미지 데이터의 상태 판단 방법, 장치 및 컴퓨터-판독가능 저장 매체에 저장된 컴퓨터 프로그램 |
JP6719421B2 (ja) * | 2017-06-20 | 2020-07-08 | 富士フイルム株式会社 | 学習データ生成支援装置および学習データ生成支援方法並びに学習データ生成支援プログラム |
CN107767343B (zh) | 2017-11-09 | 2021-08-31 | 京东方科技集团股份有限公司 | 图像处理方法、处理装置和处理设备 |
KR20180063869A (ko) * | 2018-02-28 | 2018-06-12 | 주식회사 수아랩 | 이미지 데이터의 상태 판단 방법, 장치 및 컴퓨터-판독가능 저장 매체에 저장된 컴퓨터 프로그램 |
-
2018
- 2018-11-05 US US16/180,957 patent/US10949964B2/en active Active
-
2019
- 2019-09-20 WO PCT/US2019/052033 patent/WO2020061386A1/en unknown
- 2019-09-20 KR KR1020217011556A patent/KR102587159B1/ko active IP Right Grant
- 2019-09-20 TW TW108133925A patent/TWI807100B/zh active
- 2019-09-20 EP EP19862167.4A patent/EP3853592B1/en active Active
- 2019-09-20 CN CN201980061902.7A patent/CN112740021B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080304056A1 (en) * | 2007-05-07 | 2008-12-11 | David Alles | Methods for detecting and classifying defects on a reticle |
US20170193680A1 (en) * | 2016-01-04 | 2017-07-06 | Kla-Tencor Corporation | Generating high resolution images from low resolution images for semiconductor applications |
US20170345140A1 (en) * | 2016-05-25 | 2017-11-30 | Kla-Tencor Corporation | Generating simulated images from input images for semiconductor applications |
TW201802726A (zh) * | 2016-06-01 | 2018-01-16 | 克萊譚克公司 | 針對半導體應用整合神經網路及前向物理模型之系統及方法 |
US20180240225A1 (en) * | 2017-02-20 | 2018-08-23 | Hitachi High-Technologies Corporation | Sample observation device and sample observation method |
Also Published As
Publication number | Publication date |
---|---|
CN112740021A (zh) | 2021-04-30 |
EP3853592A4 (en) | 2022-07-13 |
WO2020061386A1 (en) | 2020-03-26 |
EP3853592B1 (en) | 2023-09-06 |
KR20210047959A (ko) | 2021-04-30 |
TW202024612A (zh) | 2020-07-01 |
EP3853592A1 (en) | 2021-07-28 |
KR102587159B1 (ko) | 2023-10-06 |
US20200098101A1 (en) | 2020-03-26 |
US10949964B2 (en) | 2021-03-16 |
CN112740021B (zh) | 2022-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI807100B (zh) | 透過生成對抗網路之超解析度缺陷視察影像生成 | |
TWI809243B (zh) | 利用自動產生缺陷特徵檢測半導體結構之方法及系統 | |
KR102514136B1 (ko) | 반도체 웨이퍼의 리피터 결함 포착 | |
TWI778264B (zh) | 設計為基礎之對準之效能監控 | |
CN111819596B (zh) | 组合模拟及光学显微术以确定检验模式的方法和系统 | |
JP7257511B2 (ja) | 画像フレームに基づくアルゴリズムセレクタ | |
JP7058324B2 (ja) | 検査装置、検査方法、学習方法、及びプログラム | |
CN112313786B (zh) | 集成式扫描电子显微镜及用于先进工艺控制的光学分析技术 | |
KR20230011375A (ko) | 모드 선택 및 결함 검출 트레이닝 | |
TW202013538A (zh) | 用於損害篩選之跨層共同─獨特分析 | |
CN114341630B (zh) | 等概率缺陷检测 | |
TWI844712B (zh) | 檢查半導體晶圓之方法及系統 | |
US20240221141A1 (en) | Pattern segmentation for nuisance suppression | |
TW202301191A (zh) | 用於導出及改善成像條件之影像對比度量 | |
TW202413926A (zh) | 具有先前步驟刪減之檢測 |