TWI805740B - 用於光譜射束組合的方法和系統 - Google Patents

用於光譜射束組合的方法和系統 Download PDF

Info

Publication number
TWI805740B
TWI805740B TW108113645A TW108113645A TWI805740B TW I805740 B TWI805740 B TW I805740B TW 108113645 A TW108113645 A TW 108113645A TW 108113645 A TW108113645 A TW 108113645A TW I805740 B TWI805740 B TW I805740B
Authority
TW
Taiwan
Prior art keywords
electromagnetic energy
optical
fiber
optical fibers
electromagnetic
Prior art date
Application number
TW108113645A
Other languages
English (en)
Other versions
TW202007029A (zh
Inventor
史帝芬 H 馬康貝爾
Original Assignee
美商日光解決方案股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商日光解決方案股份有限公司 filed Critical 美商日光解決方案股份有限公司
Publication of TW202007029A publication Critical patent/TW202007029A/zh
Application granted granted Critical
Publication of TWI805740B publication Critical patent/TWI805740B/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0905Dividing and/or superposing multiple light beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0944Diffractive optical elements, e.g. gratings, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06737Fibre having multiple non-coaxial cores, e.g. multiple active cores or separate cores for pump and gain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/0804Transverse or lateral modes
    • H01S3/08045Single-mode emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B2005/1804Transmission gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02423Liquid cooling, e.g. a liquid cools a mount of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Abstract

揭露一種光譜射束組合由光纖光件組成之陣列的方法。各光纖可耦合至高功率波長穩定化光纖耦合二極體-雷射模組,且有逐條光纖地預選的波長。可選擇該等波長致使可光譜組合該陣列於例如透射光柵上且重新聚集成一輸出光纖。此法可擴展例如至10千瓦特功率且有足夠用於金屬切割應用的射束品質。

Description

用於光譜射束組合的方法和系統
本發明係有關於製造及運作雷射的系統及方法,且更特別的是,有關於可涉及光纖耦合二極體雷射之光譜射束組合的可擴展直接二極體雷射系統。
高功率工業雷射可使用於多種應用,例如,金屬切割、燒結及焊接應用。這些應用可能需要用光功率約有一千瓦特或更多的射束聚焦於小光點。用於此類應用的技術常涉及利用二極體泵注式固態雷射或二極體泵注式光纖雷射。儘管這些技術可實現適當的功率及亮度,然而在把從二極體泵注式雷射收到的泵注二極體-雷射功率轉換成高亮度輸出功率的過程中,可能浪費大量的熱。用於此類應用的雷射系統通常有大尺寸且常常由於需要許多二極體泵注組件以得到充分的功率位準用於特定應用而很昂貴,例如金屬切割、燒結或焊接。
依據本發明之一實施例,係特地提出一種一種光譜射束組合器系統,其包含:橫穿該光譜射束組合器系統之一光軸地安置的一第一光學裝置,其經由複數條輸入光纖接收其中至少兩個有不同波長的複數個電磁能量輸入,且準直該等電磁能量輸入以及放射一準直電磁能量輸出;橫穿該光軸地安置且沿著一光路徑是在該第一光學裝置之後的一光柵,其繞射該第一光學裝置所放射的該準直電磁能量之至少一部份,且放射一繞射電磁能量輸出;橫穿該光軸地安置且沿著一光路徑是在該光柵之後的一第二光學裝置,其聚集該入射繞射電磁能量輸出且產生一聚集電磁能量輸出。
如在此所用的用語「光學的」係指在電磁光譜之任一部份中的電磁能量,包括但不限於:在下列各者之所有或一部份中的電磁能量:包括波長從400奈米到790奈米之電磁能量的人類可見光譜;包括波長小於400奈米之電磁能量的紫外線(UV)光譜;及/或包括波長大於790奈米之電磁能量的紅外線(IR)光譜。同樣,除非另有明示,被稱為「光學的」元件、設備及/或組件(例如,「光學元件」)應理解為它對於有在UV、可見光及/或IR光譜中之波長的電磁能量是半透明或透明的,例如玻璃鏡片或玻璃反射器或玻璃透射光柵。有些光學元件不透光,例如金屬反射鏡或金屬光柵或有高反射性塗層的玻璃光件。光學元件的另一實施例為可進行與鏡片一樣之成像功能的曲面反射鏡。
揭露於此的系統及方法係利用光纖來接收以複數個頻率聚焦、準直的電磁能量。如此可有益及有利地允許產生經由輸出光纖可傳輸的相對高功率電磁能量輸出。相對高功率電磁能量輸出適用於各種各樣不同的材料移除、材料製造及材料切割運作。
圖1A的平面圖根據本發明之一具體實施例圖示示意光纖光譜射束組合器系統100,其經由複數條光纖11A至11n(合稱「光纖11」)接收有複數個波長的電磁能量,複數條光纖11A至11n(合稱「光纖11」)可設置於基板構件27的表面中、上或其各處以經由輸出光纖25來提供準直的電磁能量輸出。圖1B的正視圖根據本發明之一具體實施例圖示描繪於圖1A的示意光譜射束組合器系統100。圖1C的透視圖根據本發明之一具體實施例圖示使用於圖1A及圖1B之示意雷射系統10的示意光纖11。在本發明的數個具體實施例中,光纖11中之一些或所有各自可傳輸波長相同或不同的電磁能量。光譜射束組合器系統100準直經由各個光纖11所傳輸的電磁能量以經由輸出光纖25來提供相對高功率電磁能量輸出。
如圖1A及圖1B所示,從包括在光纖束14中的光纖11收到的電磁能量可有多個波長或頻率。使用例如一或多個雷射二極體、光纖耦合模組(FCM)及/或類似電磁能量源的任意多個電磁能量源,可將收到的電磁能量引到光纖11。光譜射束組合器系統100準直收到的相對低功率電磁能量以提供聚焦於輸出裝置或系統例如在輸出光纖25之芯(s)上之小區或焦點26的單一相對高功率電磁能量輸出。在本發明之一具體實施例中,輸出光纖25可包括同時傳播有複數個透射模態或不同波長之電磁能量的至少一多模態輸出光纖。在本發明之一具體實施例中,在第一光學元件17(例如,準直鏡片)設置於光軸或路徑29中或沿著它及/或沿著入射電磁能量的光軸設置之前,可安置光纖11。儘管圖1圖示為膠合雙重鏡片(cemented doublet lens),然而在其他具體實施例中,可換為其他鏡片,例如氣室雙重、氣室三重或非球面鏡片,不過,由於氣室鏡片系統的反射損失較大(歸因於較多的鏡片表面數),相比膠合鏡片系統,此類鏡片可能有減少的效率。在本發明之一具體實施例中,電磁能量分光裝置或系統20(例如,光柵,例如透射光柵)可位在第一光學元件17與第二光學元件23(例如,鏡片,例如聚焦鏡片)之間,彼等係設置於光路徑中或沿著它及/或沿著離開分光裝置或系統20之電磁能量的光軸設置。在本發明之一具體實施例中,第一光學裝置17與第二光學元件23各自可橫穿光譜射束組合器系統100之光軸地安置。
圖2的示意圖根據本發明之一具體實施例圖示示意金屬切割系統200,其使用光譜射束組合器系統100提供能夠移除(亦即,切割)工件40之材料的相對高功率電磁能量輸出。在描繪於圖2的本發明具體實施例中,複數條光纖11A至11n各自接收來自各個電磁能量輸出裝置31A至31n(合稱「電磁能量輸出裝置31」)的電磁能量。電磁能量輸出裝置31中之一些或所有可提供有相同或不同波長的相對低功率電磁能量各自給包括在光纖束14裡的光纖11中之一者。在至少一些具體實施例中,電磁能量輸出裝置31中之至少一些包括能夠提供、產生或以其他方式放射有定義波長或在定義波長帶內之電磁能量的一或多個雷射源。在本發明之一具體實施例中,電磁能量輸出裝置31例如可為光纖耦合光源,例如光纖耦合模組(FCM)、光纖耦合雷射二極體模組、或單一光纖耦合雷射。在本發明之一具體實施例中,電磁能量輸出裝置31可為單一二極體雷射,或電磁能量輸出裝置31可為多二極體雷射(例如,包括例如組裝於單一封裝件或容器內部的多個二極體雷射的FCM)。在本發明之一具體實施例中,為單一二極體雷射的電磁輻射裝置31可耦合至單模態光纖(或多模態光纖)。在本發明之一具體實施例中,為多二極體雷射的電磁輻射裝置31係耦合至多模態光纖。在本發明之一具體實施例中,電磁能量輸出裝置31(例如,光纖耦合模組)包括一或多個雷射裝置(例如,雷射二極體裝置)。在本發明之一具體實施例中,系統200可包括例如FCM的複數個電磁能量輸出裝置31,彼等各自耦合且提供電磁能量輸出至包括在光纖束14中的光纖11。在本發明之一具體實施例中,各電磁能量輸出裝置31個別耦合至光纖束14中的各個或對應光纖11,致使各電磁能量輸出裝置31耦合至光纖束14的光纖11中之一不同者。在本發明之一具體實施例中,該等複數個FCM各自包含一或多個二極體雷射及/或二極體雷射晶片,且該等二極體雷射及/或二極體雷射晶片中之各者可各自有一安裝配件(sub-mount)。在本發明之一具體實施例中,各光纖11攜載各自由該等複數個電磁能量輸出裝置31中之一者產生、生成或以其他方式放射的電磁能量。在本發明之一具體實施例中,各光纖11攜載有一或多個波長的電磁能量,例如,在光譜之可見光帶中的電磁能量,或在電磁光譜之另一帶或數個帶中產生用於所欲系統或應用之適當能量(例如,光及/或熱)的電磁能量。
在本發明之一具體實施例中,包括在光纖束14中的光纖11A至11n提供電磁能量給準直鏡片17。在本發明之一具體實施例中,可劈裂(cleave)及/或研磨該等複數條光纖11中之各者的末端15。在本發明之一具體實施例中,光纖11的末端15可設置、安置或以其他方式放在基板構件27上,致使它們形成規則地隔開或不規則地隔開的光纖11陣列。在本發明之一具體實施例中,儘管在圖1看不到,基板構件27可包括複數個大體平行的凹部,且該等複數個凹部各自可收容該等複數條光纖11A至11n中之一者。例如,在本發明之一具體實施例中,該等複數條光纖11可設置於緊密間隔(例如,該等光纖可隔開約2微米)和定義的陣列中,亦即,例如,形成、耦合或安置於基板構件27上,例如平面基板構件。在本發明之一具體實施例中,電磁輻射裝置31可包括單一二極體雷射。在本發明之一具體實施例中,電磁輻射裝置31可為包括單一二極體雷射的FCM。
如圖1C所示,包括在光纖束14中的複數條光纖11各自可具有芯12,它至少部份被圍繞芯12之周圍設置的外包層(outer cladding)13包圍。光纖11也可包括圍繞外包層13之所有或一部份周圍設置的半透明或不透明護套(在圖1C中看不到)。在本發明之一具體實施例中,芯12及/或包層13至少部份可由玻璃形成(例如,二氧化矽,SiO2 )。在本發明之一具體實施例中,芯12及/或包層13至少部份可由包含一或多種聚合物及/或玻璃的混合物形成。在本發明之一具體實施例中,芯12及/或包層13可由一或多種聚合物形成。在本發明之一具體實施例中,包含在下列中之一或多者之所有或一部份中之成分或部分電磁能量的電磁能量局限於芯12:波長低於約400奈米的紫外線電磁光譜;波長約400奈米至約790奈米的可見電磁光譜;及/或波長高於約790奈米的紅外線電磁光譜。在此類具體實施例中,形成塗層或包層13之材料的折射率小於形成芯12之材料的折射率。在本發明之一具體實施例中,儘管未圖示,光纖11各自可為有外塗層或護套的市售光纖。在此類市售光纖含有外塗層或護套時,可從光纖剝除從光纖11末端15伸出一段距離的護套或外塗層。例如,光纖11可包括至少部份圍繞包層13之周圍沿著包括在光纖束14中之各光纖11之所有或部份長度延伸的聚合物外塗層。
包括在光纖束14中的光纖11可具有任何包層厚度且包層的厚度例如可約為比各個光纖11之芯徑厚的10微米。在第一非限定性實施例中,包括在光纖束14中的光纖11可具有50微米的芯徑與125微米的包層直徑。在本發明具體實施例的另一非限定性實施例中,包括在光纖束14中的光纖11可具有105微米的芯徑與125微米的包層直徑。本技藝一般技術人員應瞭解,可換為其他的芯徑及/或包層直徑。
在本發明之一具體實施例中,包括在光纖束14中之各個該等複數條光纖11A至11n的第一末端33A至33n可經由熔接(fusion splicing)或其他連接方法及/或裝置各自耦合至複數個電磁能量輸出裝置31A至31n(例如,光纖耦合光源,例如光纖耦合模組)中之一者。在本發明之一具體實施例中,包括在光纖束14中之各個該等複數條光纖11的第二末端15形成光纖陣列的一部份,且可設置於基板構件27的表面上以及可運送、傳輸或以其他方式輸送由各個電磁能量輸出裝置31提供或以其他方式產生之電磁能量的至少一部份至準直裝置17,例如準直鏡片。在本發明之一具體實施例中,從電磁能量輸出裝置31輸出的能量光學耦合至準直裝置17,例如準直鏡片。
根據本發明的系統200可包括複數個電磁能量輸出裝置31A至31n,例如複數個FCM,彼等各自光學耦合至該等複數個裝置輸出光纖30A至30n中之一者。在本發明之一具體實施例中,電磁能量輸出裝置31A至31n各自可包括、耦合至(例如,物理或光學耦合)或集成至裝置輸出光纖30A至30n。在本發明之一具體實施例中,裝置輸出光纖30可熔接或以其他方式耦合至光纖11。在本發明之一具體實施例中,裝置光纖30為光纖11(亦即,輸出裝置光纖30與光纖11可為同一個)。
在本發明之一具體實施例中,電磁能量輸出裝置31A至31n可包括在各個電磁能量輸出裝置31內的電磁能量源32,例如二極體雷射。
在本發明之一具體實施例中,當電磁輻射輸出裝置31(例如,FCM)包括多個電磁能量源32A至32n(例如,多個二極體雷射32A至32n)時,光纖11為多模態光纖。在本發明之一具體實施例中,當電磁輻射輸出裝置31為輸出有唯一模態之電磁能量的裝置時,光纖11為單模態光纖。
在本發明之一具體實施例中,來自電磁能量輸出裝置31中之各者的輸出光纖30例如經由熔接可各自光學耦合至光纖11A至11n中之一者。熔接涉及把兩個光纖末端熔合在一起,致使在光學訊號通過光纖之間的接合點時,電磁缺陷(electromagnetic discontinuity)最少或在理想情況下沒有。熔接有益地提供系統組裝者修復及/或更換無法運作或故障電磁能量輸出裝置31而不影響其餘電磁能量輸出裝置31之電磁輸出的能力。在本發明之一具體實施例中,離開複數條光纖11A至11n中之各者的電磁能量以某一角度分佈16發散。在本發明之一具體實施例中,光纖11可以芯12的直徑及其對應數值孔徑為特徵。光纖11的數值孔徑約等於以弧度單位表示之散度的半角。在本發明之一具體實施例中,光纖11例如可具有或約0.105毫米的芯徑與或約0.15的數值孔徑。芯12有例如像0.105毫米那麼大之直徑的實施例可支持複數個電磁透射模態。支持複數個電磁透射模態的光纖可稱為「多模態」光纖。多模態光纖應不同於可具有較小芯尺寸(例如,0.01毫米)且可能只支持單一光模態的「單一模態」光纖。在本發明之一具體實施例中,光譜射束組合器系統100可部份完全設置於圍封件或封裝件中。
在系統100、200的一具體實施例中,根據本發明,複數條光纖11為多模態光纖,且光學耦合至第一光學裝置17,以及第一光學裝置17經由複數條光纖11(在此實施例為多模態光纖)接收複數個電磁能量輸入。
在系統100、200的一具體實施例中,根據本發明,該等複數條光纖11中之第一者為多模態光纖,在此實施例中,其係經由裝置輸出光纖30耦合至第一電磁能量輸出裝置31,例如光纖耦合模組,且該等複數條光纖11中之第二者為多模態光纖,其係經由裝置輸出光纖30耦合至第二電磁輻射能量輸出裝置31,例如光纖耦合模組。在本發明之一具體實施例中,電磁輻射裝置31可包括電磁輻射裝置31與裝置輸出光纖30。在系統100、200的一具體實施例中,根據本發明,複數條光纖11為光學耦合至第一光學裝置17的複數條單模態光纖,且第一光學裝置經由為單模態光纖的該等複數條光纖11接收該等複數個電磁能量輸入。在系統100、200的一具體實施例中,根據本發明,該等複數條光纖11中之第一者(在此實施例中,為單模態光纖)耦合至為二極體雷射32A的電磁輻射能量輸出裝置31,且該等複數條光纖11中之第二者(在此實施例中,為單模態光纖)耦合至第二二極體雷射32B。
在本發明之一具體實施例中,複數條光纖11A至11n中之一些或所有的第二末端33A至33n各自可耦合至各個電磁能量輸出裝置31A至31n。在本發明之一具體實施例中,電磁能量輸出裝置31A至31n可為波長穩定化電磁能量輸出裝置。在本發明之一具體實施例中,使用第一光學元件17(例如,距離光纖末端有一個焦距的準直鏡片)可準直離開複數條光纖11A至11n中之各者的電磁能量。在本發明之一具體實施例中,分光裝置或系統20(例如,光柵)可用來繞射離開第一光學元件17的所有電磁能量或一部份。在本發明之一具體實施例中,分光裝置或系統20可使收到的電磁能量以某一角度方向繞射。例如,在描繪於圖1的具體實施例中,有使收到之電磁能量以一角度(例如,如圖所示的90度角)朝向第二光學裝置23(例如,聚焦鏡片)繞射的透射光柵20。在本發明之一具體實施例中,分光裝置或系統20產生、生成及/或輸出一或多個電磁能量準直射束。
在本發明之一具體實施例中,該一或多個電磁能量準直射束中之各者被繞射成有共同的角度方向22而可用第二光學元件23聚焦24至小區或區域,例如在輸出光纖25末端上的焦點26。在本發明之一具體實施例中,第二光學元件23可包括一或多個鏡片,例如一或多個組合鏡片及/或一或多個聚焦鏡片。在本發明之一具體實施例中,根據本發明,分光裝置或系統20可包括有第一表面19及第二表面21的光學元件,在本發明之一具體實施例中,繞射入射於第一表面19上的電磁能量之至少一部份的修飾面(finish)43(例如,在一表面上的次微米週期性皺紋(sub-micron periodic corrugation))可設置於分光裝置或系統20或分光裝置或系統20的至少一部份上、其各處或其周圍或集成於其中或與其整合。在本發明之一具體實施例中,第二表面21可塗上物質或修飾面44(例如,抗反射(AR)塗層)(未圖示),它可設置於分光裝置或系統20之全部或至少一部份上、其各處、其周圍或集成於其中。在本發明之一具體實施例中,分光裝置或系統20為繞射光柵、透射光柵或反射光柵中之至少一者。在本發明之一具體實施例中,該分光裝置或系統繞射、透射及/或反射收到的電磁能量。
在本發明之一具體實施例中,電磁能量可聚焦於一或多個焦點26,例如,在輸出光纖25上的一或多個焦點26。在本發明之一具體實施例中,輸出光纖25的電磁輸出與複數條光纖11A至11n中之各者的電磁輸出的比大於或大約大於包括在複數條光纖11A至11n中的光纖數。實質較大的電磁輸出有益地致能高功率(例如,千瓦特)應用,例如如圖2所示的金屬切割。輸出光纖25可包括例如有任何個數及/或組合的階變折射率光纖(step-index optical fiber)及/或漸變折射率光纖(graded-index optical fiber)。在本發明之一具體實施例中,輸出光纖25可包括多模態光纖或可為多模態光纖。
如圖2所示,在本發明之一具體實施例中,根據本發明,光譜射束組合器系統100可用來增加例如圖2金屬切割系統200之材料移除系統的能量或功率輸出。在本發明之一具體實施例中,例如經由輸出光纖30A至30n(與電磁能量輸出裝置31A至31n關聯)的熔接,複數個電磁能量輸出裝置31A至31n中之各者在連接點28(亦即,在裝置輸出光纖30之末端與光纖11連結、耦合或整合的定點)可各自光學耦合至光纖11A至11n中之一者。在本發明之一具體實施例中,輸出光纖30A至30n各自從電磁能量輸出裝置31A至31n中之一者伸出。在本發明之一具體實施例中,各電磁能量輸出光纖30A至30n可切成有定義或所欲長度,當有護套的市售光纖用作輸出光纖30A至30n時,可剝除護套的一部份,輸出光纖30A至30n的末端可劈裂至所欲長度,且可各自熔接至複數條光纖11A至11n中之一者或對應者的末端33A至33n。
如圖2所示,輸出光纖25可使光譜射束組合器系統100光學耦合至聚焦裝置38,例如聚焦鏡片。在本發明之一具體實施例中,藉由使來自聚焦鏡片的電磁輸出聚焦於在工件40表面上的小區或焦點39,來自聚焦鏡片38的電磁輸出可用來從工件40表面移除材料。
描繪於圖2之系統200的實施例包括總共10個電磁能量輸出裝置31。系統200的功率可與電磁能量輸出裝置31(例如,雷射裝置,例如光纖耦合模組FCM)的個數成正比地擴展。該系統可具有個數比圖2更多或更少的電磁能量輸出裝置31。例如,10個光纖光源(亦即,有200瓦特輸出功率的10個電磁能量輸出裝置31)各自會在工件40表面上的小區或焦點39上提供2000瓦特(2kW)。此能量輸出足以以實際的饋送速率切割厚度中等的金屬工件40。在本發明之一具體實施例中,系統200可包括一或多個電源供應器36。獨立於電磁輸出裝置31(例如,雷射輸出裝置,例如光纖耦合模組)的使用個數,光譜射束組合器100可使用於本發明的系統200。由於本發明可用光譜射束組合器系統100實施,相較於更複雜的光纖-雷射或固態雷射系統,根據本發明的系統200有益地最小化需要的組件個數。
在本發明之一具體實施例中,如圖2所示,複數條光纖11A至11n中之各者各自耦合至複數個電磁能量輸出裝置31(例如,波長穩定化二極體-雷射源)中之一者。使用第一光學元件17(例如,準直裝置或鏡片)準直18各個光纖11所傳輸的電磁能量(亦即,使射線平行),且離開各光纖11之電磁能量的能量(例如,光)的各個波長以稍微不同的角度準直。在本發明之一具體實施例中,可預選及/或預定光纖11A至11n中之各者所攜載的電磁波長,致使離開(亦即,放射自、傳輸自或輸出自)第一光學元件17的所有電磁能量在它們繞射離開分光裝置或系統20(例如,光柵)後都以單一角度22準直。第二光學元件23(例如,第二鏡片)聚集(且放射、傳輸或輸出)經準直的組合電磁能量至少於在光纖25末端的單一定點或光點26。
在本發明之一具體實施例中,電磁能量輸出裝置31中之一些或所有可設置成與冷卻板34熱接觸及/或熱耦合。冷卻板34移除及/或耗散由電磁能量輸出裝置31所產生或放射的熱。在本發明之一具體實施例中,一或多個冷媒、流體或氣體可在冷卻器35與冷卻板34之間循環。在本發明之一具體實施例中,輸出光纖25及/或聚焦鏡片38可包括經特別設計成可處理由電磁能量輸出裝置31所產生之高功率而不光學損害輸出光纖25芯的輸入耦合器37。在本發明之一具體實施例中,抗反射塗層可設置於輸出光纖25中之一或兩端之表面的全部或一部份上、其周圍、或其各處。
在本發明之一具體實施例中,複數個電磁能量輸出裝置31中之至少一部份可包括一或多個光纖耦合模組(FCM)。例如,用作電磁能量輸出裝置31很有用的光纖耦合模組係由諸如Lumentum、nLight及II-VI之類的公司生產。能夠產生電磁能量輸出的複數個個別電磁源至少部份可設置於各個電磁能量輸出裝置31內。在本發明之一具體實施例中,電磁能量輸出裝置31可包括但不限於:各自能夠產生有一或多個定義波長或在定義波長帶內之電磁能量輸出的複數個二極體雷射。可規定電磁能量輸出裝置31中之各者,例如FCM,以提供或產生有預選波長的電磁能量輸出。在例如FCM之電磁能量輸出裝置31中的二極體雷射的標稱波長可取決於量子井層在磊晶成長半導體晶體期間的組合物,例如銦在Inx Ga1-x As量子井中的分數。此外,有用於鎖定及窄化二極體雷射之輸出光譜的習知光學技術,包括使用嵌在二極體(稱為DFB雷射)內的蝕刻光柵,或使用在FCM之內部耦合光件內的體積布拉格光柵(volume-Bragg grating)。在至少一實施例中,各自提供電磁能量輸出的複數個二極體可光學耦合至單一被動光纖11。作為實施例,根據本發明的光纖11可具有105微米的芯徑與0.15的數值孔徑(NA)或200微米的芯與0.22的NA。在本發明之一具體實施例中,電磁輻射輸出裝置31可為FCM,其包含至少兩個裝置32A、32B(例如,二極體雷射)。例如,在本發明之一具體實施例中,電磁輻射輸出裝置31可為包含例如8個裝置32A至32H的FCM,例如8個高功率二極體,彼等包裝或位在FCM內部且產生耦合入或光學耦合至單一光纖11、30的電磁能量。在本發明之一具體實施例中,當電磁輻射輸出裝置31(例如,FCM)包括多個電磁能量輻射裝置32A至32n(例如,多個二極體雷射)時,光纖11、30為多模態光纖。以例如FCM之電磁能量輸出裝置31的所欲功率輸出而言,裝置32A至32n(例如,二極體雷射)在例如FCM的電磁能量輸出裝置31內的個數可取決於光纖11、30的射束參數乘積(BPP)與例如FCM中之高功率二極體的個別電磁能量輸出裝置31的輸出射束特性。在本發明之一具體實施例中,在此實施例中,在用於總共16個二極體的電磁能量輸出裝置31內,利用在二極體雷射中的高度偏振以及使兩條射束在偏振立體分束鏡(polarizing-cube beam splitter)結合,可額外得到兩倍。在本發明之一具體實施例中,可結合多達18個二極體或二極體雷射以提供200瓦特左右的總輸出功率。根據本發明,例如FCM的電磁能量輸出裝置31可使用毫米級鏡片及反射鏡來組裝。如本文所揭露的,電磁能量輸出裝置31例如可能重約1至2英磅且一邊長約4英吋。根據本發明,例如FCM的電磁輸出裝置31可產生例如有約6毫米-毫弧度之BPP的200瓦功率。
在本發明之一具體實施例中,例如FCM的電磁能量輸出裝置31可包括在內部光件中的體積布拉格光柵(VBG),它可鎖定在電磁能量輸出裝置31內的雷射至單一波長。體積布拉格光柵至少部份透明,且繞射少量的光線回到在窄光譜帶內的雷射中。此反饋使得二極體雷射有跟0.3奈米半高寬(FWHM)一樣窄的輸出光譜。例如參考國際光學工程學會會議論文集2009年第7194卷、作者C. Moser, F. Havermeyer的「Compact self-aligned external cavity lasers using volume gratings」,根據本發明,體積布拉格光柵可從玻璃製成,且對溫度變化不敏感。
在本發明之一具體實施例中,替換地,例如,作為晶圓級製程的一部份,藉由把光柵或類似波長穩定化裝置或系統42埋在構成電磁能量輸出裝置31的半導體內,可波長穩定化電磁能量輸出裝置31中之一些或所有。此類波長穩定化電磁能量輸出裝置31可稱為有「埋藏光柵」或以其為特徵。
圖3的示意圖根據描述於本文之一具體實施例圖示示意系統300,其中,入射電磁能量56包括入射於分光裝置或系統20上的複數個電磁能量波長。在數個具體實施例中,分光裝置或系統20可包括透射光柵,例如描繪於圖3者。在本發明之一具體實施例中,描繪於圖3的分光裝置或系統20可繞射至少一部份55的入射電磁能量56。入射電磁能量56的繞射角度取決於分光裝置或系統20的物理參數,例如光柵凹槽57之間的節距或間距,入射電磁能量56的波長(s),以及入射電磁能量56的入射角度。在本發明之一具體實施例中,入射電磁能量被繞射光柵反射、透射及/或繞射的數量可為入射電磁能量56之波長及/或偏振的函數。例如,分光裝置或系統20的物理結構及/或組合物可優先繞射一部份的入射電磁能量56同時反射其餘部份的入射電磁能量56。在一具體實施例中,描繪於圖3的繞射光柵20可優先繞射有下列波長中之至少一者的入射電磁能量56:從300奈米延伸到790奈米的可見光電磁光譜及/或從790奈米延伸到約1200奈米的近紅外線電磁光譜。在數個具體實施例中,在一定義電磁光譜內,繞射光柵20可繞射,例如:約90+%的入射電磁能量56;約93+%的入射電磁能量56;約95+%的入射電磁能量56;約97+%的入射電磁能量56;約99+%的入射電磁能量56;約99.5%的入射電磁能量56;或,約99.9+%的入射電磁能量56。
在本發明之一具體實施例中,分光裝置或系統20可只有一個繞射階數(diffraction order)。在本發明之一具體實施例中,分光裝置或系統20可包括一或多個市售透射光柵,例如由LightSmyth® Technologies公司製造的透射光柵。在本發明之一具體實施例中,分光裝置或系統20可定位成與光軸29有等於或接近45度的入射角度,且繞射例如約95%的入射電磁能量,包括有混合偏振的電磁能量。在本發明之一具體實施例中,入射電磁能量的入射角度可有所不同,例如,大於或小於45度。對偏振有近乎獨立的效率是很重要的,因為光在光纖中的偏振在光纖中向下傳播一段短距離後變亂。來自LightSmyth®公司的光柵例如在約100奈米的有用光譜範圍是有效的。在本發明之一具體實施例中,分光裝置或系統20可從例如純熔融矽石或玻璃(亦即,有極高光致損壞閥值的材料)製成或在適用於特殊應用時由塑膠製成。
如圖3所示,分光裝置或系統20可包括透射光柵,其包括至少部份對電磁能量輸出裝置31所產生之電磁能量呈透明的一或多個材料。分光裝置或系統/透射光柵20繞射入射電磁能量56A、56B及56C在不同角度的每一個波長分量。儘管入射電磁波56A、56B及56C各自以從分光裝置或系統/透射光柵20表面測量的不同角度入射且分光裝置或系統/透射光柵20的光學參數產生電磁波55在其中實質平行的準直電磁輸出。從光學原理可知,如果圖3的傳播方向55、56反過來,則射線角度仍然不變。在本發明之一具體實施例中,如圖1所示,可預選在分光裝置或系統/透射光柵20上有不同入射角度18之定義波長集合的電磁能量,致使它們全部繞射到相同的方向22。換言之,分光裝置或系統/透射光柵20可用來接收包括各有不同入射角度之不同波長的入射電磁能量,以產生有不同波長的準直電磁能量輸出。
圖4A的示意圖根據本發明之一具體實施例圖示示意系統或裝置400A,其中,電磁能量源60與第一光學元件17(例如,複合鏡片)之中心軸線59共線地定位或傳輸。如圖4A所示,該入射電磁能量在第一光學元件17距離源60有一個焦距時被準直61。
圖4B的示意圖根據本發明之一具體實施例圖示另一示意系統400B,其中,電磁源62與第一光學元件17(例如,複合鏡片)之中心軸線59偏離地定位。當電磁源62與第一光學元件的中心軸線59偏離地定位時,來自第一光學元件17的電磁輸出仍然準直63,但是與中心軸線59有一角度。
同樣,取決於各個光纖11之末端15相對於第一光學裝置17的位置及/或定點,從並排光纖11集合之末端15射出的電磁能量會在不同方向繞射。在本發明之一具體實施例中,可選定及/或預定(或預定義)從各光纖11之末端15射出之電磁能量的波長,致使電磁能量在定義或所欲方向或以定義或所欲角度繞射。在本發明之一具體實施例中,可使電磁能量可繞射到相同的方向而離開分光裝置或系統20,如圖1A所示。因此,本發明的效益是預選或預定從各光纖11之末端15射出之電磁能量輸出的波長(s),致使描繪於圖1A及圖1B的光學組態產生例如單一聚焦光點26,其電磁能量包括在輸出光纖25末端上之焦點26的複數個波長。在本發明之一具體實施例中,第一光學元件17可包括膠合雙重鏡片。不過,本技藝一般技術人員應瞭解,另一類型的第一光學元件17可用來實現從光纖11之末端15射出之入射電磁能量的相同準直。例如,在本發明之一具體實施例中,第一光學元件17可包括氣室雙重、氣室三重、或非球面鏡片。
本發明的具體實施例有許多變體,其包括描述於本文的特徵中之一或多個。例如,在本發明之一具體實施例中,分光裝置或系統20可包括反射光柵。不過,反射光柵傾向在一偏振中有不良的效率。在本發明之一具體實施例中,分光裝置或系統20可包括透射光柵。在本發明之一具體實施例中,例如,透射光柵定位成與光軸29有等於或接近45度的入射角度,且用來給出或傳輸與分光裝置或系統20之輸入射束有相同直徑的繞射射束。在本發明之一具體實施例中,稜鏡可用來取代用於分光裝置或系統20的光柵。
在本發明之一具體實施例中,如下文所述的光學模型可用來判定光譜射束組合器系統100的近似規格/參數。例如,在如以下所述的光學模型中,分光裝置或系統20可經定向成與光軸29正好有45度。不過,在本發明的實際光譜射束組合器系統100中,例如光柵的分光裝置或系統20在以稍微高於或低於45度定向時可提供最優效率(例如,偏離正負約1.5度)。再者,在下述光學模型中,第一光學元件17與第二光學元件23兩者可看作理想鏡片。不過,例如鏡片的實際光學元件可能對波長特性有非恆定焦距,且由於光學元件的固有像差而可能無法形成完美的影像,例如將由電腦生成光學模型形成者。在本發明之一具體實施例中,分光裝置或系統20可為以接近90度之角度繞射入射準直電磁能量之至少一部份的光柵,且可使繞射有約45度至135度(含)的最大範圍。
根據本發明,多個光學模型可用來設計或模仿光譜射束組合器系統100。第一近似光學模型可用來圖解說明本發明系統的設計。在分光裝置或系統20(例如,繞射光柵)20經定位成與光軸29有45度角下,在給出圖1之90度偏轉的光柵節距Λ(亦即,光柵皺紋之間的間距)在滿足以下條件時出現:
Figure 02_image001
(1)
在此
Figure 02_image003
為中心(軸上)光纖的波長。
使用理想化的光學近似,吾等可導出簡單的公式用於對應至光纖之橫向移位Δx的波長偏移Δλ,致使影像保持在位於輸出光纖25芯上之焦點26的中心上:
Figure 02_image005
(2)
在此F為第一光學元件17的焦距,而
Figure 02_image003
為用於位在第一光學元件17之中心軸線59上之光纖(亦即,中心光纖)的波長。給定光纖數N,以下公式給出在適合光柵B之可使用光譜範圍(標稱為100奈米)的光纖之間的波長間距Δλ:
Figure 02_image007
(3)
讓D為光纖中心之間的間距。以下公式給出適合所有光纖在光柵B光譜範圍內之光譜輸出的鏡片焦距F:
Figure 02_image009
(4)
上述公式(1)至(4)可用來判定本發明之光譜射束組合器系統100的近似參數,且分派波長給包括在光纖束14中之複數條光纖11之至少一部份的每一個。
圖5的高階流程圖根據本發明之一具體實施例圖示用於近似光譜射束組合器系統100之系統參數的示意方法500。在步驟520,該方法可接收所欲總輸出功率
Figure 02_image011
,所欲中心波長
Figure 02_image003
,來自光纖耦合模組之每條光纖的可利用功率
Figure 02_image013
,光纖之間的所欲間距D,及/或光柵在其中有效的光譜範圍B。
在步驟540,可用以下公式算出或判定光纖數:
Figure 02_image015
(5) 可用以下公式算出或判定光譜區間:
Figure 02_image017
(6) 及/或,可用以下公式算出或判定第一光學元件(亦即,鏡片)17焦距:
Figure 02_image019
) (7)
在步驟560,可用以下公式判定或算出分派給光纖11、30的波長,光纖11、30有折射率「m」且包括在光纖束14之複數個「N」光纖11中:
Figure 02_image021
(8)
圖6A根據本發明之一具體實施例圖示表格600A,其包括用於示範光譜射束組合器系統100的複數個系統參數。圖6B根據描述於本文之至少一具體實施例圖示表格600B,其包括包含複數個波長的集合,如在說明圖6A時所述,該等複數個波長各自分派給光纖11、30。圖6A及圖6B根據本發明一起提供判定光譜射束組合器系統100之波長分派的示意實施例,光譜射束組合器系統100包括總共10個電磁能量輸出裝置31A至31J,各自以圖6B的每個波長提供電磁輸出給各個光纖11A至11J。包括在圖6A及6B中的波長分派係基於在說明圖5時提及的所欲輸入及運算中之一或多個。根據本發明,用於光譜射束組合器系統100實施例的示範參數值表列於圖6A,且示意波長集合表列於圖6B。
圖7A至圖7D圖示使用示範個別光纖耦合模組(亦即,單一光纖而非光纖陣列)讓窄光譜帶寬輸入至根據本發明之光譜射束組合器系統100的優點。圖7A及圖7B為從本發明系統100之電腦模型模擬產生的影像,且圖7C及7D圖示在實驗室中從本發明光譜射束組合器系統100之實際運作產生的影像。如圖7A及7C所示,當使用寬帶源時,例如光的電磁能量未充分地耦合至輸出,例如,輸出光纖26。圖7B及圖7D圖示在輸入源由於更多例如光的電磁能量耦合至例如輸出光纖25的示範輸出(亦即,輸出顯著鏡像輸入)而被光譜穩定化時產生的影像。圖8A、8B及8C圖示各種方法及裝置用於配置包括在光纖束14中的光纖11A至11n以提供光纖陣列以提供電磁能量輸入給光譜射束組合器系統100。圖8A的垂直橫截面圖根據本發明之一具體實施例圖示示範系統800A,其中,複數條光纖11A至11n彼此相鄰地設置且緊鄰平坦或平面基板27(例如,經研磨之矽基板)的表面之至少一部份。在例如描繪於圖8A之系統800A的本發明具體實施例中,用包層13的外徑至少部份地判定光纖11的中心至中心間距72。描繪於圖8A的緊縮陣列法最大化地使用分光裝置或系統20的可利用光譜範圍。
圖8B的垂直橫截面圖圖示另一示範系統800B,其中,複數條光纖11中之至少一些被隔開以允許小幅調整位置及/或定點以補償由一或多個電磁能量輸出裝置31產生之電磁能量的波長誤差。在本發明之一具體實施例中,在各光纖11之間的中心至中心距離或間距72可相同或不同。
圖8C的垂直橫截面圖圖示又一示範系統800C,其中,已形成或以其他方式設置於基底或基板27之表面中的複數個棘爪、槽路或類似凹槽57A至57n(合稱「凹槽57」),致使複數條光纖11中之至少一些中之各者至少部份各自設置於凹槽57內。根據本發明之一具體實施例,複數條光纖11A至11n各自放入形成於基板27的各個凹槽57可有效地固定及維持光纖1的中心至中心間距,從而形成對準的陣列。在本發明之一具體實施例中,基板27可為以光微技術影定義的基板,例如,經微機械加工的矽,其能夠使複數條光纖11中之一些或所有的定位有例如小於或等於約2微米的定位誤差。在本發明之一具體實施例中,該等凹槽的大小及/或形狀可有所不同或可與其他凹槽不同。
圖9A的平面圖根據描述於本文之一具體實施例圖示示意光譜射束組合器系統900,其包括第三光學元件75以提供射束整形能力以補償由分光裝置或系統20引進或產生之電磁能量22的光譜展寬。圖9B的正視圖根據本發明之一具體實施例圖示描繪於圖9A的示意光譜射束組合器系統900。如圖9A與圖9B所示,第三光學元件75(例如,柱面鏡片)可設置、安置或以其他方式放在分光裝置或系統20與第二光學元件23之間以聚集來自分光裝置或系統20的電磁能量,致使所有或重要部份的電磁能量耦合至輸出光纖25,而不是例如在輸出光纖25的邊緣被剪掉。在聚集作用增加下,注入輸出纖芯25的角度分量可增加。
圖10的平面圖圖示示意系統1000,其包括有複數條光纖11A至11n的光纖束14,在基板27表面之至少一部份中、上、其各處或其周圍可設置複數條光纖11A至11n,其中,複數條光纖11的一些或所有中之各者使用一或多個接合材料78耦合至光學元件76。在本發明之一具體實施例中,複數條光纖11所攜載的電磁能量可傳播。在至少一些具體實施例中,光學元件76可包括光學平板(optical flat),如圖示。光學元件76對於離開複數條光纖11中之一些或所有之所有或部份電磁能量的波長(s)至少是部份透明的。在本發明之一具體實施例中,例如抗反射膜或塗層77的表面處理可設置於光學元件76在複數條光纖11對面的表面上。在本發明之一具體實施例中,一或多個接合材料78可包括但不限於:光學透明膠,例如由Norland Products(美國新澤西州,克蘭伯里)製造的Norland Optical Adhesive 61(「NOA 61」)。在本發明之一具體實施例中,該膠可具有與熔融矽石匹配的折射率以有益地最小化或甚至排除在光纖尖端與玻璃背面之介面的反射。
圖11的平面圖根據本發明之一具體實施例圖示示意系統1100,其包括有複數條光纖11A至11n的光纖束14,在基板27表面之至少一部份中、上或其周圍設置複數條光纖11A至11n。如圖11所示,複數條光纖30之一些或所有使用被複數條光纖11、30攜載之電磁能量可傳播通過的一或多個接合材料78各自可耦合至凹面元件80(亦即,鏡片)。在本發明之一具體實施例中,光學元件80可具有面向光纖末端的平面表面與在反面的凹面、凸面或柱形表面。該曲面的預期目的是要修正第一光學元件17的場曲率(curvature-of-field)像差,不然可能造成有些光纖11失焦。凹面光學元件80對於離開複數條光纖11、30之一些或所有之所有或部份電磁能量的波長(s)至少是部份透明的。在本發明之一具體實施例中,例如抗反射膜或塗層77的表面處理可設置於鏡片76在複數條光纖11對面的表面上。
10‧‧‧示意雷射系統 11‧‧‧示意光纖 11A至11n‧‧‧光纖 12‧‧‧芯 13‧‧‧外包層 14‧‧‧光纖束 15‧‧‧末端 16‧‧‧角度分佈 17‧‧‧第一光學元件 18‧‧‧準直 19‧‧‧第一表面 20‧‧‧電磁能量分光裝置或系統 21‧‧‧第二表面 22‧‧‧共同的角度方向 23‧‧‧第二光學元件 24‧‧‧聚集 25‧‧‧輸出光纖 26‧‧‧小區或焦點 27‧‧‧基板構件 28‧‧‧連接點 29‧‧‧光軸或路徑 30‧‧‧裝置輸出光纖 30A至30n‧‧‧裝置輸出光纖 31‧‧‧電磁能量輸出裝置 31A至31n‧‧‧電磁能量輸出裝置 32‧‧‧電磁能量源 32A至32n‧‧‧電磁能量源 33A至33n‧‧‧第一末端 34‧‧‧冷卻板 35‧‧‧冷卻器 36‧‧‧電源供應器 37‧‧‧輸入耦合器 38‧‧‧聚焦鏡片 39‧‧‧小區或焦點 40‧‧‧工件 42‧‧‧光柵或類似波長穩定化裝置或系統 43‧‧‧修飾面 44‧‧‧物質或修飾面 55‧‧‧入射電磁能量之一部份 55A至55C‧‧‧入射電磁能量 56‧‧‧入射電磁能量 57‧‧‧光柵凹槽 57A至57n‧‧‧棘爪、槽路或類似凹槽 59‧‧‧中心軸線 60‧‧‧電磁能量源 61‧‧‧準直 62‧‧‧電磁源 63‧‧‧準直 72‧‧‧中心至中心間距 75‧‧‧第三光學元件 76‧‧‧光學元件 77‧‧‧抗反射膜或塗層 78‧‧‧接合材料 80‧‧‧凹面元件 100‧‧‧光譜射束組合器系統 200‧‧‧示意金屬切割系統 300‧‧‧示意系統 400A‧‧‧示意系統或裝置 400B‧‧‧系統 500‧‧‧示意方法 520至560‧‧‧區塊 600A、600B‧‧‧表格 800A至800C‧‧‧示範系統 900‧‧‧示意光譜射束組合器系統 1000、1100‧‧‧示意系統
加入供讀者進一步了解本發明且併入及構成本專利說明書之一部份的附圖圖示本發明的一具體實施例且與說明一起用來解釋法本發明的原理。
附圖中:
圖1A的平面圖根據本發明之一具體實施例圖示一示意光譜射束組合器系統,其經由設置在基板構件之表面中、上或其各處的複數條光纖接收有複數個波長的電磁能量以經由輸出光纖來提供準直的電磁能量輸出;
圖1B的正視圖根據本發明之一具體實施例圖示描繪於圖1A的示意光譜射束組合器系統;
圖1C的透視圖根據本發明之一具體實施例圖示包含在描繪於圖1A及圖1B之示意雷射系統中以用於其中的示意光纖;
圖2根據本發明之一具體實施例圖示一示意系統,其使用光譜射束組合器系統100以提供能夠移除工件之材料(亦即,切割)的相對高功率電磁能量輸出;
圖3的示意圖根據本發明之一具體實施例圖示一示意系統,其中,入射電磁能量包括入射於例如透射光柵之分光裝置或系統上的複數個電磁能量波長;
圖4A的示意圖根據本發明之一具體實施例圖示一示意系統,其中,安置與第一光學元件(例如,複合鏡片)之中心軸線共線的電磁能量源;
圖4B的示意圖根據本發明之一具體實施例圖示另一示意系統,其中,安置與第一光學元件(例如,複合鏡片)之中心軸線偏離一段小距離的電磁源;
圖5的高階流程圖根據本發明之一具體實施例圖示用於判定一或多個光譜射束組合器系統參數的一示意方法;
圖6A根據本發明之一具體實施例圖示包含複數個系統參數的表格;
圖6B根據本發明之一具體實施例圖示包括含有複數個波長之集合的表格;
圖7A根據本發明之一具體實施例圖示一假設模型系統的影像,其包括有4奈米FWHM寬高斯光譜的105微米芯徑光纖光源,且疊加105微米直徑白色圓圈(表示成像完美的光纖)於其中;
圖7B根據本發明之一具體實施例圖示一假設模型系統的影像,其包括有0.3奈米FWHM寬高斯光譜的105微米芯徑光纖光源,且疊加105微米直徑白色圓圈(表示成像完美的光纖)於其中;
圖7C根據本發明之一具體實施例圖示一實驗室系統的影像,其包括有4奈米FWHM寬高斯光譜的105微米芯徑光纖光源;
圖7D根據本發明之一具體實施例圖示一實驗室系統的影像,其包括有0.3奈米FWHM寬高斯光譜的105微米芯徑光纖光源;
圖8A的垂直橫截面圖根據本發明之一具體實施例圖示一示範系統,其中,該等複數條光纖彼此鄰接地設置且緊鄰平坦或平面基板(例如,機械或經機械加工之基板)之表面的至少一部份;
圖8B的垂直橫截面圖根據本發明之一具體實施例圖示另一示範系統,其中,使該等複數條光纖中之至少一些隔開以允許微調位置及/或定點以補償由一或多個電磁能量輸出裝置產生之電磁能量的波長誤差;
圖8C的垂直橫截面圖根據本發明之一具體實施例圖示又一示範系統,其中,已形成或用其他方式設置複數個棘爪、槽路或類似凹槽於基底或基板的表面中,致使該等複數條光纖中之至少一些各自至少部份各自設置在凹槽內以形成對準的陣列;
圖9A的平面圖根據本發明之一具體實施例圖示一示意光譜射束組合器系統,其包括第三光學元件以提供射束整形能力以補償電磁能量由分光裝置或系統引進或造成的光譜展寬(spectral broadening);
圖9B的正視圖根據本發明之一具體實施例圖示描繪於圖9A的示意光譜射束組合器系統;
圖10的平面圖根據本發明之一具體實施例圖示一示意系統,其包括有複數條光纖設置於基板表面之至少一部份中、上或附近的光纖束,其中,使用由該等複數條光纖攜載之電磁能量可傳播通過的一或多個接合材料,該等複數條光纖中之一些或所有各自耦合至有抗反射塗層的光學元件;
圖11的平面圖根據本發明之一具體實施例圖示一示意系統,其包括有複數條光纖設置於基板表面之至少一部份中、上或附近的光纖束,且其中,使用由該等複數條光纖攜載之電磁能量可傳播通過的一或多個接合材料,該等複數條光纖中之一些或所有各自耦合至凹面光學元件(亦即,鏡片)。
11A、11n‧‧‧光纖
14‧‧‧光纖束
15‧‧‧末端
16‧‧‧角度分佈
17‧‧‧第一光學元件
18‧‧‧準直
19‧‧‧第一表面
20‧‧‧電磁能量分光裝置或系統
21‧‧‧第二表面
22‧‧‧共同的角度方向
23‧‧‧第二光學元件
24‧‧‧聚集
25‧‧‧輸出光纖
26‧‧‧小區或焦點
27‧‧‧基板構件
28‧‧‧連接點
29‧‧‧光軸或路徑
43‧‧‧修飾面
44‧‧‧物質或修飾面

Claims (20)

  1. 一種光譜射束組合器系統,其包含:一第一電磁能量輸出裝置,其包括位於該第一電磁能量輸出裝置內部之一第一波長穩定化裝置;一第二電磁能量輸出裝置,其包括位於該第二電磁能量輸出裝置內部之一第二波長穩定化裝置;設置成橫向於該光譜射束組合器系統之一光軸的一第一光學裝置,其經由複數條輸入光纖從該第一電磁能量輸出裝置及該第二電磁能量輸出裝置接收複數個電磁能量輸入,其中該等複數個電磁能量輸入中之至少兩者有不同波長,並且其準直該等複數個電磁能量輸入以及放射一準直之電磁能量輸出;設置成橫向於該光軸且沿著一光路徑是在該第一光學裝置之後的一光柵,其使由該第一光學裝置所放射的該準直之電磁能量輸出之至少一部份繞射,並且放射一繞射之電磁能量輸出;以及設置成橫向於該光軸且沿著一光路徑是在該光柵之後的一第二光學裝置,其聚集入射的該繞射之電磁能量輸出並且產生一聚集之電磁能量輸出。
  2. 如請求項1之系統,其進一步包含光學地耦合至該第一光學裝置的複數條多模態光纖,其中,該第一光學裝置經由該等複數條多模態光纖接收該等複數個電磁能量輸入。
  3. 如請求項2之系統,其中,該等複數條 多模態光纖中之一第一條多模態光纖耦合至一第一光纖耦合模組,且該等複數條多模態光纖中之一第二條多模態光纖耦合至一第二光纖耦合模組。
  4. 如請求項1之系統,其進一步包含光學地耦合至該第一光學裝置的複數條單模態光纖,其中,該第一光學裝置經由該等複數條單模態光纖接收該等複數個電磁能量輸入。
  5. 如請求項4之系統,其中,該等複數條單模態光纖中之一第一條單模態光纖耦合至一第一二極體雷射,且該等複數條單模態光纖中之一第二條單模態光纖耦合至一第二二極體雷射。
  6. 如請求項1之系統,其進一步包含:沿著一光路徑設置在該第二光學裝置之後的一輸出光纖,其接收該聚集之電磁能量輸出,並且其中,該輸出光纖為一多模態光纖。
  7. 如請求項2之系統,其進一步包含:一基板,其中,該等複數條多模態光纖中之各者設置在該基板上,使得該等複數條多模態光纖中之至少兩者間維持一預定的中心至中心之距離。
  8. 如請求項1之系統,其進一步包含:複數條光纖,其中,該等複數個電磁能量輸入係經由該等複數條光纖來接收。
  9. 如請求項8之系統,其進一步包含一基板,其中,該等複數條光纖設置在該基板上。
  10. 如請求項9之系統,其中,在該基板的一第一表面中形成複數個凹部。
  11. 如請求項9之系統,其中,該等複數條光纖中之各者所放射的該等複數個電磁能量輸入係包含具有一波長的電磁能量,該波長選自在400奈米至1000奈米之間且含400奈米及1000奈米的波長範圍。
  12. 如請求項1之系統,其中,該光柵包含:一繞射光柵,其使入射的準直之電磁能量之至少一部份以一角度繞射,該角度選自在45度至135度之間且含45度及135度的角度範圍。
  13. 如請求項1之系統,其中,該光柵相對於該光軸以45度的角度設置。
  14. 如請求項1之系統,其進一步包含:設置成橫向於該光軸且設置在該光柵與該第二光學裝置之間的一第三光學元件,其中,該第三光學元件形塑該繞射之電磁能量輸出之至少一部份。
  15. 如請求項1之系統,其中,該第一電磁能量輸出裝置包含一第一電磁能量源,其光學耦合至該等複數條輸入光纖中之一第一條輸入光纖,且該第二電磁能量輸出裝置包含一第二電磁能量源,其光學耦合至該等複數條輸入光纖中之一第二條輸入光纖。
  16. 如請求項1之系統,其中,該第一電磁能量輸出裝置係為包括一波長穩定化電磁輻射源的一光纖耦合模組,而該第一波長穩定化裝置係為位在該光纖耦合 模組內的一體積布拉格光柵。
  17. 如請求項1之系統,其中,該第一電磁能量輸出裝置係為一波長穩定化二極體雷射,而該第一波長穩定化裝置係為一埋藏光柵。
  18. 如請求項15之系統,其進一步包含:一電源供應器,其耦合至該第一電磁能量源及該第二電磁能量源。
  19. 如請求項15之系統,其進一步包含:一熱交換表面,其熱耦合至該第一電磁能量源及該第二電磁能量源,其中,該熱交換表面移除由該第一電磁能量源及該第二電磁能量源所產生的熱能之至少一部份。
  20. 如請求項12之系統,其中,藉由包括在該等複數條輸入光纖中之該等輸入光纖之各者所放射的該等複數個電磁能量輸入係包含具有數個波長的電磁能量,該等波長選自在800奈米至1000奈米之間且含800奈米及1000奈米的波長範圍。
TW108113645A 2018-07-14 2019-04-18 用於光譜射束組合的方法和系統 TWI805740B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862698020P 2018-07-14 2018-07-14
US62/698,020 2018-07-14

Publications (2)

Publication Number Publication Date
TW202007029A TW202007029A (zh) 2020-02-01
TWI805740B true TWI805740B (zh) 2023-06-21

Family

ID=66323960

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108113645A TWI805740B (zh) 2018-07-14 2019-04-18 用於光譜射束組合的方法和系統

Country Status (6)

Country Link
US (1) US20210135423A1 (zh)
CA (1) CA3104479A1 (zh)
DE (1) DE112019003590T5 (zh)
GB (1) GB2589779B (zh)
TW (1) TWI805740B (zh)
WO (1) WO2020018160A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4088449A4 (en) 2020-04-20 2023-07-05 Lumus Ltd. NEAR-EYE DISPLAY WITH IMPROVED LASER EFFICIENCY AND EYE SAFETY
US20220123527A1 (en) * 2020-10-19 2022-04-21 Osram Opto Semiconductors Gmbh Laser package and method for operating a laser package

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160285227A1 (en) * 2015-03-26 2016-09-29 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
US20170304940A1 (en) * 2014-10-14 2017-10-26 Amada Holdings Co., Ltd. Direct diode laser oscillator, direct diode laser processing apparatus, and reflected light detecting method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6952510B1 (en) * 2001-08-31 2005-10-04 Nlight Photonics Corporation Optically corrected intracavity fiber coupled multigain element laser
US7916386B2 (en) * 2007-01-26 2011-03-29 Ofs Fitel, Llc High power optical apparatus employing large-mode-area, multimode, gain-producing optical fibers
US20100302644A1 (en) * 2007-09-18 2010-12-02 Mirage Innovations Ltd Slanted optical device
US8526110B1 (en) * 2009-02-17 2013-09-03 Lockheed Martin Corporation Spectral-beam combining for high-power fiber-ring-laser systems
US9134538B1 (en) * 2013-02-06 2015-09-15 Massachusetts Institute Of Technology Methods, systems, and apparatus for coherent beam combining
US9042423B2 (en) * 2013-06-27 2015-05-26 Jds Uniphase Corporation Brightness multi-emitter laser diode module and method
US9417366B2 (en) * 2013-07-30 2016-08-16 Northrop Grumman Systems Corporation Hybrid diffractive optical element and spectral beam combination grating
CN106415951B (zh) * 2014-02-26 2019-11-19 陈斌 用于具有可变光束参数积的多光束激光装置的系统和方法
US9778429B2 (en) * 2014-05-06 2017-10-03 Prophotonix (Irl) Ltd Heat sink for optical module array assembly
JP2016181643A (ja) * 2015-03-25 2016-10-13 株式会社アマダホールディングス 半導体レーザ発振器
GB2541903B (en) * 2015-09-02 2020-06-03 Thermo Fisher Scient Bremen Gmbh Optimisation of the laser operating point in a laser absorption spectrometer
US20180249642A1 (en) * 2017-03-06 2018-09-06 Lun Huang Method and apparatus based on laser for providing high growth, high density plantation system
US10177526B1 (en) * 2017-11-30 2019-01-08 The United States Of America As Represented By The Secretary Of The Air Force Efficient wavelength combining of multiple laser arrays

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170304940A1 (en) * 2014-10-14 2017-10-26 Amada Holdings Co., Ltd. Direct diode laser oscillator, direct diode laser processing apparatus, and reflected light detecting method
US20160285227A1 (en) * 2015-03-26 2016-09-29 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss

Also Published As

Publication number Publication date
US20210135423A1 (en) 2021-05-06
CA3104479A1 (en) 2020-01-23
WO2020018160A1 (en) 2020-01-23
TW202007029A (zh) 2020-02-01
DE112019003590T5 (de) 2021-06-24
GB202100082D0 (en) 2021-02-17
GB2589779B (en) 2023-02-01
GB2589779A (en) 2021-06-09

Similar Documents

Publication Publication Date Title
US9596034B2 (en) High brightness dense wavelength multiplexing laser
EP2003484B1 (en) A Light Source
US7515346B2 (en) High power and high brightness diode-laser array for material processing applications
US9166365B2 (en) Homogenization of far field fiber coupled radiation
JP2008501144A (ja) 光ファイバへの2次元のレーザアレイスタックの出力の最適な整合
US20070291373A1 (en) Coupling devices and methods for laser emitters
US10630041B2 (en) Beam offset plate for optically offsetting one or more laser beams
JP2014216361A (ja) レーザ装置および光ビームの波長結合方法
US9223123B2 (en) Method and device for coupling laser light derived from at least two laser sources into one optical fiber
US7424044B2 (en) Semiconductor laser device
US20210135423A1 (en) Methods and systems for spectral beam-combining
JP2015072955A (ja) スペクトルビーム結合ファイバレーザ装置
CN111610604A (zh) 光源装置、直接二极管激光装置以及光耦合器
US20060203873A1 (en) Semiconductor laser diode
JP6227212B1 (ja) レーザ発振装置
WO2018051450A1 (ja) レーザ装置
CN112103768B (zh) 一种半导体激光器
JP7212274B2 (ja) 光源装置、ダイレクトダイオードレーザ装置
Kotova et al. Development of a fiber laser diode module in the spectral range of 445–450 nm with an output optical power of more than 100 W
US20230411933A1 (en) Fast axis wavelength beam combining for broad area laser diodes
WO2014016939A1 (ja) 発光素子・光ファイバ結合モジュール及びその部品
Possner et al. Assembly of fast-axis collimating lenses with high-power laser diode bars