TWI805670B - 三角碳量子點及其組合物和用途 - Google Patents

三角碳量子點及其組合物和用途 Download PDF

Info

Publication number
TWI805670B
TWI805670B TW108100040A TW108100040A TWI805670B TW I805670 B TWI805670 B TW I805670B TW 108100040 A TW108100040 A TW 108100040A TW 108100040 A TW108100040 A TW 108100040A TW I805670 B TWI805670 B TW I805670B
Authority
TW
Taiwan
Prior art keywords
triangular
carbon quantum
cqds
quantum dot
conjugated
Prior art date
Application number
TW108100040A
Other languages
English (en)
Other versions
TW201936491A (zh
Inventor
范樓珍
袁方龍
楊世和
郗梓帆
Original Assignee
中國北京師範大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中國北京師範大學 filed Critical 中國北京師範大學
Publication of TW201936491A publication Critical patent/TW201936491A/zh
Application granted granted Critical
Publication of TWI805670B publication Critical patent/TWI805670B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/588Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with semiconductor nanocrystal label, e.g. quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)
  • Semiconductor Lasers (AREA)

Abstract

本發明提供具有窄帶寬發射之三角形碳量子點,其製備方法以及此三角形碳量子點之用途,例如應用於彩色LED顯示器上。

Description

三角碳量子點及其組合物和用途
本發明提供具有窄帶寬發射的三角形碳量子點(T-CQDs),其製備方法以及此三角形碳量子點之用途,例如應用於彩色LED顯示器上。
長期以來,自碳上獲取光一直是科學界之夢想。基於碳的高穩定性、低成本、高豐度及環境友好性1-7,碳基高效發光材料不僅提昇下一代碳光子與光電子學技術應用前景,在發光應用中亦可作為傳統半導體無機量子點(QDs)如含有Cd2+/Pb2+之QDs的替代品。在2006年發現量子尺寸之碳(<10nm)可室溫發光8,引發對發光碳量子點(CQDs)的深入研究,以實現其廣泛的潛在應用9-14。過去幾年裏,在設計及合成高效可調帶邊螢光CQDs上取得極大進步。藉由各種策略諸如雜原子摻雜、表面工程或鈍化處理,及產品分離及純化15-18,量子產率(QY)可高達75%,甚至與最佳的基於Cd2+/Pb2+之QDs相比擬。與此同時,CQDs在光電器件中的潛在應用亦得到驗證17-23。例如,最近報導基於帶邊螢光CQDs之自藍色至紅色的發光二極體(LEDs)18,為基於CQDs的新顯示技術的發展奠定堅實基礎。然而,眾所周知,CQDs發光色純度低且帶寬較寬(半峰全寬 (FWHM)>80nm)15-19,23,遠遠遜色於基於Cd2+/Pb2+的QDs(FWHM<40nm)的窄帶寬發射,此嚴重阻礙基於CQDs的LEDs在高色純度顯示技術中之應用24,25
CQDs的寬帶寬螢光光譜的確切機理是一個長期懸而未決的問題。人們普遍認為,CQDs的寬帶寬螢光光譜源於寬範圍的粒徑分佈。然而,即使是藉由精細的分離及純化來縮小粒徑分佈,其螢光光譜仍是寬的(FWHM>80nm)15-19,26。此表明,寬帶寬螢光光譜不能簡單地歸因於CQDs尺寸的多分散性,而可能是CQDs的固有特性。例如,由特定的結構引起的複雜的非輻射激發態弛豫過程的現象,如在傳統無機QDs中經常觀察到的自身局域電荷及表面缺陷捕獲載流子,可能是CQDs寬帶寬螢光光譜的主要起因1-3。前者可認為是在激發態時形成的瞬態缺陷,該情況下光生電荷載流子藉由強電子-聲子耦合作用導致的大幅度振動及扭曲而得到穩定27-29,而後者通常是由CQDs的邊緣或底平面位置的眾多吸電子含氧官能基(例如羧基,羰基及環氧基)所誘導產生的26,30-33。因此,藉由結構工程來減弱電子-聲子耦合作用,減少表面缺陷,可能是實現CQDs高色純度窄帶寬發射的可行方法。
在一些態樣中,本發明提供一種三角形碳量子點,其具有包含至少四個芳環的共軛三角形結構。在一些實施例中,該共軛三角形結構包含側官能基。在一些實施例中,該三角形碳量子點中碳原子的質量分數是50%或更多。
在本文所述三角形碳量子點的一些實施例中,該共軛三角形結構包含稠合至少三個芳環的6員芳核環,核環的6個環原子存有各該至 少三個芳環的2個環原子。在本發明任一該三角形碳量子點的一些實施例中,該共軛三角形結構包含單個稠合該至少三個芳環的6員芳核環。在本發明任一該三角形碳量子點的一些實施例中,該共軛三角形結構包含多個稠合該至少三個芳環的6員芳核環。在本發明任一該三角形碳量子點的一些實施例中,該共軛三角形結構包含至少4個、10個、19個或34個或更多個稠合該至少三個芳環的6員芳核環。在本發明任一該三角形碳量子點的一些實施例中,稠合至核環上的該至少三個芳環中的每一個均為6員芳環。
在本發明任一該三角形碳量子點的一些實施例中,該核環是由至少三個芳環前驅體共軛形成的。在一些實施例中,至少有一個該芳環前驅體是經取代之苯。在其他實施例中,該至少三個芳環前驅體中的每一個均為經取代之苯。
在本發明任一該三角形碳量子點的一些實施例中,該三個芳環前驅體中的至少一個選自由苯-1,3,5-三醇(間苯三酚)、間苯二酚、5-胺基苯-1,3-二醇、5-(二甲胺基)苯-1,3-二醇、5-(二乙胺基)苯-1,3-二醇、5-(二丙胺基)苯-1,3-二醇、5-(甲硫基)苯-1,3-二醇、5-甲氧基苯-1,3-二醇、3,5-二羥基苯硼酸、吡啶-3,5-二醇、磷雜苯-3,5-二醇及硼雜苯-3,5-二醇組成之群。
在本發明任一該三角形碳量子點的一些實施例中,至少有一個該芳環前驅體含有雜芳環。在一些實施例中,該雜芳環包含一或多個選自由N、P及B組成之群。
在本發明任一該三角形碳量子點的一些實施例中,該至少三個芳環包含相同的芳環。在其他實施例中,該至少三個芳環包含不同的 芳環。
在一些實施例中,本發明所述三角形碳量子點是由熱溶劑合成法所製備,使用至少三個前驅體分子,每個前驅體分子包含芳環。在一些實施例中,每一個前驅體分子均包含6員芳環。
在本發明任一該三角形碳量子點的一些實施例中,每一個前驅體分子均為具有化學式A所示結構的化合物:
Figure 108100040-A0305-02-0005-1
其中X選自由C、N、P及B組成之群;每一個R均為獨立選自由-ORa、-NRbRc、-SRd、-COORe,及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基,或可不存在R。在一些實施例中,每個R獨立選自由羥基、胺基、二甲胺基、二乙胺基、二丙胺基、甲硫基、甲氧基及-B(OH)2組成之群,或可不存在R。在一些實施例中,每個前驅體分子選自由
Figure 108100040-A0305-02-0005-2
Figure 108100040-A0305-02-0005-3
Figure 108100040-A0305-02-0005-4
組成之群。在一些實施例中,每個前驅體分子 均為
Figure 108100040-A0305-02-0005-5
在本發明任一該三角形碳量子點的一些實施例中,該前驅體分子用於形成包含化學式I所示結構的共軛三角形結構:
Figure 108100040-A0305-02-0006-6
其中每一個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基;及/或該化學式I的結構作為核結構可進一步與該前驅體分子共軛形成更大的共軛三角形結構。
在本發明任一該三角形碳量子點的一些實施例中,該前驅體分子用於形成包含化學式I-A所示結構的共軛三角形結構:
Figure 108100040-A0305-02-0006-7
其中每一個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為 H或C1-6烷基;及/或該化學式I-A的結構作為核結構可進一步與該前驅體分子共軛形成更大的共軛三角形結構。
在本發明任一該三角形碳量子點的一些實施例中,該前驅體分子用於形成包含化學式I-B所示結構的共軛三角形結構:
Figure 108100040-A0305-02-0007-8
其中每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基;及/或該化學式I-B的結構作為核結構可進一步與該前驅體分子共軛形成更大的共軛三角形結構。
在本發明任一該三角形碳量子點的一些實施例中,該前驅體分子用於形成包含化學式II所示結構的共軛三角形結構:
Figure 108100040-A0305-02-0008-9
其中每個X獨立選自由C、N、P及B組成之群;每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基,或不存在R;及/或該化學式II的結構作為核結構可進一步與該前驅體分子共軛形成更大的共軛三角形結構。
在本發明任一該三角形碳量子點的一些實施例中,該前驅體分子用於形成包含化學式II-A所示結構的共軛三角形結構:
Figure 108100040-A0305-02-0008-10
其中每個X獨立選自由C、N、P及B組成之群;每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷 基,或不存在R;及/或該化學式II-A的結構作為核結構可進一步與該前驅體分子共軛形成更大的共軛三角形結構。
在本發明任一該三角形碳量子點的一些實施例中,該前驅體分子用於形成包含化學式II-B所示結構的共軛三角形結構:
Figure 108100040-A0305-02-0009-11
其中每個X獨立選自由C、N、P及B組成之群;每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均為分別獨立的H或C1-6烷基,或不存在R;及/或該化學式II-B的結構作為核結構可進一步與該前驅體分子共軛形成更大的共軛三角形結構。
在本發明任一該三角形碳量子點的一些實施例中,在化學式I、化學式I-A、化學式I-B、化學式II、化學式II-A或化學式II-B結構中的每個相鄰R基團對配置成用於形成額外的六員環,從而生成更大的共軛三角形結構。在一些實施例中,該三角形碳量子點摻雜有N、S、P、B或 O。
在本發明任一該三角形碳量子點的一些實施例中,三角形碳量子點的發射峰為約400nm至約700nm。在一些實施例中,該三角形碳量子點的半峰全寬(FWHM)為約20nm至約70nm。
在本發明任一該三角形碳量子點的一些實施例中,該三角形碳量子點的尺寸或直徑為約1nm至約6nm。在一些實施例中,該三角形碳量子點的量子產率(QY)為約50%至約75%。
在本發明任一該三角形碳量子點的一些實施例中,該三角形碳量子點的發射峰為約460nm至約480nm,尺寸或直徑為約1.8nm至約2.0nm。在一些實施例中,該三角形碳量子點的發射峰為約500nm至約520nm,尺寸或直徑為約2.2nm至約2.5nm。在一些實施例中,該三角形碳量子點的發射峰為約530nm至約550nm,尺寸或直徑為約2.9nm至約3.1nm。在一些實施例中,該三角形碳量子點的發射峰為約590nm至約610nm,尺寸或直徑為約3.8nm至約4.1nm。
在本發明的一些態樣中,提供用於製備本發明任一實施例所述的三角形碳量子點的方法。在一些實施例中,本發明所述的三角形碳量子點的製備方法包括使用至少三個前驅體分子來形成三角形碳量子點的熱溶劑合成法,該至少三個前驅體分子中的每一個均包含芳環,例如,6員芳環。
在本發明任一該方法的一些實施例中,該方法包括:使用化學式A-1所示的前驅體分子:
Figure 108100040-A0305-02-0010-12
藉由熱溶劑合成形成化學式I所示的共軛三角形結構
Figure 108100040-A0305-02-0011-13
其中每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基。
在本發明任一該方法的一些實施例中,該方法包括:使用化學式A-1所示的前驅體分子:
Figure 108100040-A0305-02-0011-14
藉由熱溶劑合成形成化學式I-A所示的共軛三角形結構
Figure 108100040-A0305-02-0011-15
其中每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基。
在本發明任一該方法的一些實施例中,該方法包括:使用化學式A-1所示的前驅體分子:
Figure 108100040-A0305-02-0012-16
藉由熱溶劑合成形成化學式I-B所示的共軛三角形結構
Figure 108100040-A0305-02-0012-17
其中每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基。
在本發明任一該方法的一些實施例中,該方法復包括將化學式I、化學式I-A或化學式I-B的結構作為核結構與化學式A所示的前驅體分子共軛,而形成更大的共軛三角形結構。在本發明任一該方法的一些實施例中,在化學式I、化學式I-A或化學式I-B的結構中,每個相鄰R基團對均與化學式A所示的前驅體分子共軛,形成額外的6員環,從而生成更大的共軛三角形結構。
在本發明任一該方法的一些實施例中,該方法包括:使用化學式A所示的前驅體分子:
Figure 108100040-A0305-02-0012-18
藉由熱溶劑合成形成化學式II所示的共軛三角形結構
Figure 108100040-A0305-02-0013-19
其中每個X獨立選自由C、N、P及B組成之群;且每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基,或可不存在R。
在本發明任一該方法的一些實施例中,該方法包括:使用化學式A所示的前驅體分子:
Figure 108100040-A0305-02-0013-20
藉由熱溶劑合成形成化學式II-A所示的共軛三角形結構
Figure 108100040-A0305-02-0013-21
其中每個X獨立選自由C、NP及B組成之群;且每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg) 組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基,或可不存在R。
在本發明任一該方法的一些實施例中,該方法包括:使用化學式A所示的前驅體分子:
Figure 108100040-A0305-02-0014-22
藉由熱溶劑合成形成化學式II-B所示的共軛三角形結構
Figure 108100040-A0305-02-0014-23
其中每個X獨立選自由C、N、P及B組成之群;且每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基,或可不存在R。
在本發明任一該方法的一些實施例中,該方法亦包括將化學式II、化學式II-A或化學式II-B的結構作為核結構與化學式A或化學式A-1所示的前驅體分子共軛,而形成更大的共軛三角形結構。在本發明任一該方法的一些實施例中,在化學式II、化學式II-A或化學式II-B的結構 中,每個相鄰R基團對均與化學式A或化學式A-1所示的前驅體分子共軛,形成額外的6員環,從而生成更大的共軛三角形結構。
在本發明任一該方法的一些實施例中,該方法涉及化學式A所示的前驅體分子,其中每一個前驅體分子選自由
Figure 108100040-A0305-02-0015-24
Figure 108100040-A0305-02-0015-25
Figure 108100040-A0305-02-0015-26
組成之群。在一些實施例中,該化學式A所示的 前驅體分子是
Figure 108100040-A0305-02-0015-27
在本發明任一該方法的一些實施例中,該方法包括在溶劑中溶解或分散該化學式A所示的前驅體分子,形成溶液或混合物,在約100℃至約300℃的溫度下加熱該溶液或混合物約10分鐘至約72小時。在一些實施例中,該溶劑是水,C1-10醇,諸如乙醇;醯胺,諸如甲醯胺或N,N-二甲基甲醯胺;酮,諸如丙酮;或亞碸,諸如二甲基亞碸。在一些實施例中,在共軛催化劑的存在下使該前驅體分子共軛形成共軛三角形結構。在一些實施例中,該共軛催化劑是酸,諸如硫酸、磷酸或鹽酸。在本發明任一該方法的一些實施例中,該方法包括使用中和劑來中和該共軛催化劑。在一些實施例中,該中和劑是鹼,例如氫氧化鈉、氫氧化鉀、碳酸鈉或碳酸鉀。
在本發明任一該方法的一些實施例中,該方法復包括分離或純化三角形碳量子點。在一些實施例中,該三角形碳量子點藉由過濾、離心、諸如管柱層析法之層析法、凝膠電泳或滲析而分離或純化。
在一些實施例中提供的三角形碳量子點的製備方法包括:1)在乙醇中溶解間苯三酚,形成溶液;2)在約140℃加熱該溶液約9小時;3)將溶液冷卻至較低的溫度,例如室溫;及4)自溶液中分離或純化三角形碳量子點,例如,藉由層析法或管柱層析法。
在一些實施例中提供的三角形碳量子點的製備方法包括:1)在乙醇中溶解間苯三酚,形成溶液;2)在約200℃加熱該溶液約24小時;3)將溶液冷卻至較低的溫度,例如室溫;及4)自溶液中分離或純化三角形碳量子點,例如,藉由層析法或管柱層析法。
在一些實施例中提供的三角形碳量子點的製備方法包括:1)在乙醇中溶解間苯三酚,形成溶液;2)在該溶液中加入共軛催化劑,諸如硫酸;3)在約200℃加熱該溶液約2小時;4)將溶液冷卻至較低的溫度,例如室溫,且用中和劑,諸如鹼,中和該共軛催化劑;及5)自溶液中分離或純化三角形碳量子點,例如,藉由層析法或管柱層析法。
亦在其他實施例中,本發明提供的三角形碳量子點的製備方法包括:1)在乙醇中溶解間苯三酚,形成溶液;2)在該溶液中加入共軛催化劑,諸如硫酸;3)在約200℃加熱該溶液約5小時;4)將溶液冷卻至較低的溫度,例如室溫,且用中和劑,諸如鹼,中和該共軛催化劑;及5)自溶液中分離或純化三角形碳量子點,例如,藉由層析法或管柱層析法。
在某些態樣中,本發明提供藉由本發明任一實施例所述的方法製備的三角形碳量子點。
本發明亦提供工業製品,包含本發明任一實施例所述的三角形碳量子點。在一些實施例中,該工業製品配置成用於成像、傳感、催化、傳遞、顯示、光導、發光、照明或計算應用。在一些實施例中,成像應用是生物或化學成像應用。在一些實施例中,傳感應用是生物或化學傳感應用。在一些實施例中,催化應用是生物、化學、光或電催化應用。在一些實施例中,傳遞應用是生物或化學傳遞應用,例如,藥物傳遞應用。
在本發明任一該工業製品的一些實施例中,該工業製品是聚合物。在一些實施例中,該工業製品包含在成像、傳感、催化、傳遞、顯示、光導、發光、照明或計算介質或器件中。在一些實施例中,該工業製品包含在光電器件、電晶體、太陽能電池、發光器件、發光二極體(LED)、二極體雷射器、量子計算中的量子位、顯示器(例如,電視或電話)、抬頭顯示器(例如,透明的抬頭顯示器)或塗料(例如,螢光塗料或發光塗料)中。
在其他態樣中提供包含本發明任一該三角形碳量子點的發光二極體(LEDs)。在一些實施例中,該LED包含活性發射層,該活性發射層包含本發明任一實施例所述的三角形碳量子點。在一些實施例中,該LED包含陽極、電洞注入層、活性發射層、電子傳輸層及陰極。在一些實施例中,該電洞注入層、活性發射層及電子傳輸層設置在陽極及陰極之間。
在本發明任一該LEDs的一些實施例中,該LED自一邊至對邊,例如,自下往上,包含陽極、電洞注入層、活性發射層、電子傳輸層及陰極。在一些實施例中,該LED包含用於支持或保持陽極、電洞注入層、活性發射層、電子傳輸層及陰極的基板。在一些實施例中,該基板包 含玻璃或熱塑性聚合物,諸如聚酯或聚對苯二甲酸乙二酯(PET)。在一些實施例中,該陽極包含銦錫氧化物(ITO)或石墨烯。在一些實施例中,該基板保持陽極來形成基板陽極。在一些實施例中,該電洞注入層包含聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS);鉬氧化物,例如,MoOx,X是1-3;鎳氧化物,例如,NiOx,X是1-3;或者釩(V)氧化物,例如,VOx,X是1-3。在一些實施例中,該活性發射層包含三角形碳量子點:Y混合發射層,Y為聚(N-乙烯基咔唑)(PVK)、聚(N,N'-雙(4-丁苯基)-N,N'-雙(苯基)聯苯胺)(聚TPD)、或聚(9,9'-二辛基茀)(PFO)。
在一些實施例中,該電子傳輸層包含1,3,5-三(N-苯基苯并咪唑-2-基)苯(TPBI);氧化鋅(ZnO);鈦氧化物,例如,TiOx,X為1-2;或三(8-羥基喹啉)鋁(Alq3)。在一些實施例中,該陰極包含Ca/Al、LiF/Al或Ag。
在本發明任一該LEDs的一些實施例中,該LED自一邊至對邊,例如,自下往上,包含ITO玻璃基板陽極、聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)電洞注入層(HIL)、活性三角形碳量子點:PVK混合發射層、1,3,5-三(N-苯基苯并咪唑-2-基)苯(TPBI)電子傳輸層(ETL)及Ca/Al雙層陰極。
在一些實施例中,本發明任一實施例所述的LED的最大亮度為約500cd/m2至約10000cd/m2。在一些實施例中,本發明任一實施例所述的LED的電流效率為約1cd/A至約10cd/A。在一些實施例中,本發明任一實施例所述的LED的開啟電壓為約2V至約5V。在一些實施例中,本發明任一實施例所述的LED的發射範圍為約460nm至約610nm。在一些實施例中,本發明任一實施例所述的LED的發射範圍為約460nm至約 480nm。在本發明任一該LEDs的一些實施例中,該LED是綠色LED,其發射範圍為約500nm至約520nm。在本發明任一該LEDs的一些實施例中,該LED是黃色LED,其發射範圍為約530nm至約550nm。在本發明任一該LEDs的一些實施例中,該LED是紅色LED,其發射範圍為約590nm至約610nm。在一些實施例中,本發明任一實施例所述的LED的使用壽命至少為10,000小時。
本發明亦提供顯示顏色之方法,其中包括本發明任一實施例所述的三角形碳量子點的顏色顯示,本發明任一實施例所述的工業製品的顏色顯示,或本發明任一實施例所述的LED的顏色顯示。
圖1描述設計及合成窄帶寬發射三角形CQDs。圖1a顯示藉由溶劑熱處理PG三角前驅體得到窄帶寬發射三角形碳量子點(NBE-T-CQDs)的合成路線。圖1b-e分別顯示藍色(B-)(圖1b)、綠色(G-)(圖1c)、黃色(Y-)(圖1d)及紅色(R-)(圖1e)NBE-T-CQDs典型的球差校正的HAADF-STEM圖像。比例尺,2nm。圖1f顯示在日光下的NBE-T-CQDs乙醇溶液的照片,以及圖1g顯示在紫外線照射下的NBE-T-CQDs乙醇溶液的螢光圖像(365nm雷射激發)。圖1h及圖1i分別顯示藍色、綠色、黃色及紅色NBE-T-CQDs的歸一化的UV-vis吸收(圖1h)及PL(圖1i)光譜。
圖2顯示窄帶寬發射三角形碳量子點(NBE-T-CQDs)的光激發態的超快動力學以及隨溫度變化的PL光譜。圖2a顯示NBE-T-CQDs的時間分辨PL光譜。圖2b顯示用△OD(激發後樣品吸收強度的變化)隨延遲時間及探測波長的變化關係表示的在400nm雷射激發下的B-NBE-T-CQDs的TA光譜的二維偽彩色圖。圖2c顯示0.5ps至1ns中指定延遲時間點的B- NBE-T-CQDs的TA光譜。圖2d顯示全局擬合得到的4個指數衰減函數。圖2e顯示B-NBE-T-CQDs的歸一化的溫度依賴的PL光譜。圖2f顯示在85K時獲得的NBE-T-CQDs的歸一化的PL光譜。圖2g顯示B-NBE-T-CQDs的發射峰值能量及FWHM隨溫度變化(85-295K)的散點圖。圖2h顯示NBE-T-CQDs的PL發光積分強度隨溫度變化(175-295K)的散點圖。
圖3顯示NBE-T-CQDs的結構特徵。圖3a顯示R-NBE-T-CQDs典型的球差校正的HAADF-STEM圖像(插圖是相應的高分辨TEM圖像)。圖3b顯示G-NBE-T-CQDs的大範圍TEM圖像。比例尺,2nm。(三角形的投影用白色的輪廓線突出顯示)。圖3c及3f顯示NBE-T-CQDs的XRD圖譜(圖3c)及FT-IR光譜(圖3f)。圖3d,3e及3g顯示B-NBE-T-CQDs的1H-NMR(圖3d)、13C-NMR(圖3e)及C1s(圖3g)光譜。
圖4顯示時間相關的DFT計算結果。圖4a-41顯示包含4個、10個及19個稠合苯環的三角形結構模型CQDs:(1)用純給電子的羥基基團功能化的(T-CQDs-OH-1(圖4a)、T-CQDs-OH-2(圖4e)、T-CQDs-OH-3(圖4i)),(2)沒有功能化的(T-CQDs-1(圖4b)、T-CQDs-2(圖4f)、T-CQDs-3(圖4j))、(3)用純吸電子的羧基基團功能化的(T-CQDs-COOH-1(圖4c)、T-CQDs-COOH-2(圖4g)、T-CQDs-COOH-3(圖4k))。不存在功能化的方形結構模型CQDs,包括4個(S-CQDs-1(圖4d))、10個(S-CQDs-2(圖4h))及20個(S-CQDs-3(圖4l))稠合苯環。圖4m-4x分別顯示計算的T-CQDs-OH-3、T-CQDs-3、T-CQDs-COOH-3及S-CQDs-3的HOMO(圖4m,圖4p,圖4s,圖4v),LUMO(圖4n,圖4q,圖4t,圖4w)及PL光譜(圖4o,圖4r,圖4u,圖4x)。
圖5描繪基於NBE-T-CQDs的LEDs的結構、能級圖及性能 表徵。圖5a顯示器件結構,圖5b顯示基於NBE-T-CQDs的LEDs的器件能級圖。圖5c-f分別顯示在不同的偏壓下B-LEDs(圖5c),G-LEDs(圖5d),Y-LEDs(圖5e)及R-LEDs(圖5f)的EL光譜。(插圖是帶有BNU標誌的B-LEDs、G-LEDs、Y-LEDs及R-LEDs的工作照片)。圖5g-j分別顯示B-LEDs(圖5g),G-LEDs(圖5h),Y-LEDs(圖5i)及R-LEDs(圖5j)最大亮度-電流-電壓(L-I-V)特性。圖5k及5l顯示電流效率對電流密度(圖5k)及B-、G-、Y-及R-LEDs的穩定性散點圖(圖5l)。
圖6顯示B-、G-、Y-及R-NBE-T-CQDs的歸一化的UV-vis吸收(圖6a)及PL(圖6b)光譜。
圖7顯示B-(a)、G-(b)、Y-(c)及R-NBE-T-CQDs(d)的歸一化的UV-vis吸收及PL光譜。
圖8顯示B-(a)、G-(b)、Y-(c)及R-NBE-T-CQDs(d)在不同波長激發下的PL光譜。
圖9顯示PL發光的最大激發波長與相應的激子吸收峰之間的關係。
圖10顯示PL及第一激子吸收峰波長與NBE-T-CQDs尺寸的相關關係。
圖11顯示B-(a)、G-(b)、Y-(c)及R-NBE-T-CQDs(d)分別在460nm、490nm、520nm及580nm激發後的PL衰變軌跡,在472nm、507nm、538nm及598nm處具有相應的PL峰。
圖12顯示藉由大規模熱溶劑合成且經矽膠管柱層析法提純的G-NBE-T-CQDs粉末(約516mg)在日光下的光學照片。
圖13顯示稀釋的(a)及濃縮的(b)G-NBE-T-CQDs乙醇溶液 在800nm飛秒雷射激發下的雙光子螢光圖像。
圖14顯示B-(a)、G-(b)、Y-(c)及R-NBE-T-CQDs(d)在880nm的飛秒雷射激發下的歸一化的單光子螢光(OPF,實線)及雙光子螢光(TPF,短虛線)光譜。插圖是在880nm飛秒雷射激發下NBE-T-CQDs自藍色至紅色的TPF圖像。
圖15顯示在880nm飛秒雷射激發下的NBE-T-CQDs的歸一化TPF光譜(插圖是自藍色至紅色的TPF圖像)。
圖16顯示B-(a)、G-(b)、Y-(c)及R-NBE-T-CQDs(d)在不同雷射功率的880nm飛秒雷射激發下的TPF光譜。
圖17顯示B-(a)、G-(b)、Y-(c)及R-NBE-T-CQDs(d)在不同雷射功率的880nm飛秒雷射激發下的歸一化的TPF光譜。
圖18顯示B-(a)、G-(b)、Y-(c)及R-NBE-T-CQDs(d)在880nm飛秒雷射激發下的積分螢光強度與雷射功率的平方關係。
圖19顯示NBE-T-CQDs的帶隙能量與相應的激子發射峰波長之間的關係。
圖20顯示B-(a)、G-(b)、Y-(c)及R-NBE-T-CQDs(d)的紫外光電子能譜(UPS)資料。
圖21顯示HOMO及LUMO能級隨NBE-T-CQDs尺寸的變化。
圖22顯示HOMO及LUMO能級隨NBE-T-CQDs發射峰的變化。
圖23顯示不同探測波長下的動力學軌跡。
圖24顯示根據圖2d的DADS構建的在波長範圍內的總體動 力學中的四個衰變通道的百分比。
圖25顯示B-NBE-T-CQDs(85-295K)在400nm激發後隨溫度變化的PL光譜。
圖26顯示G-(a,b)、Y-(c,d)及R-NBE-T-CQDs(e,f)的隨溫度變化的PL光譜(85-295K)。
圖27顯示B-NBE-T-CQDs的PL發光積分強度隨溫度變化(175-295K)的散點圖(a)及相應的擬合參數(b)。
圖28顯示G-NBE-T-CQDs的PL發光積分強度隨溫度變化(175-295K)的散點圖(a)及相應的擬合參數(b)。
圖29顯示Y-NBE-T-CQDs的PL發光積分強度隨溫度變化(175-295K)的散點圖(a)及相應的擬合參數(b)。
圖30顯示R-NBE-T-CQDs的PL發光積分強度隨溫度變化(175-295K)的散點圖(a)及相應的擬合參數(b)。
圖31顯示NBE-T-CQDs及傳統的核殼半導體QDs,諸如CdZnS@ZnS及有機染料(例如螢光素),在UV燈下連續輻射10h的光穩定性比較。
圖32顯示展示B-(a,b)、G-(c,d)、Y-(e,f)及R-NBE-T-CQDs(g,h)相應粒徑分佈的TEM圖像。比例尺,2nm。(三角形投影用白色的輪廓線突出顯示)。
圖33顯示B-(a,e)、G-(b,f)、Y-(c,g)及R-NBE-T-CQDs(d,h)的HRTEM圖像及相應的快速傅里葉變換(FFT)圖像。比例尺,2nm。
圖34顯示B-、G-、Y-及R-NBE-T-CQDs在633nm激發下的 拉曼光譜。
圖35顯示G-NBE-T-CQDs在丙酮-d6中的1H-NMR譜。
圖36顯示Y-NBE-T-CQDs在丙酮-d6中的1H-NMR譜。
圖37顯示R-NBE-T-CQDs在丙酮-d6中的1H-NMR譜。
圖38顯示間苯三酚在丙酮-d6中的13C-NMR譜。
圖39顯示G-NBE-T-CQDs在甲醇-d4中的13C-NMR譜。
圖40顯示Y-NBE-T-CQDs在甲醇-d4中的13C-NMR譜。
圖41顯示R-NBE-T-CQDs在甲醇-d4中的13C-NMR譜。
圖42顯示間苯三酚的FT-IR光譜。
圖43顯示B-、G-、Y-及R-NBE-T-CQDs的XPS光譜(a),以及C及O原子相對百分含量的分析結果(b)。
圖44顯示B-(a)、G-(b)、Y-(c)及R-NBE-T-CQDs(d)的高分辨率C1s XPS光譜。
圖45顯示B-(a)、G-(b)、Y-(c)及R-NBE-T-CQDs(d)的高分辨率O1s XPS光譜。
圖46顯示方型結構的CQDs模型(命名為S-CQDs-1(a)、S-CQDs-2(b)及S-CQDs-3(c))及三角形結構的CQDs模型(命名為T-CQDs-1(d)、T-CQDs-2(e)及T-CQDs-3(f))。
圖47顯示方型結構的CQDs球棍模型(命名為S-CQDs-1(a)、S-CQDs-2(b)及S-CQDs-3(c))及三角形結構的CQDs球棍模型(命名為T-CQDs-1(d)、T-CQDs-2(e)及T-CQDs-3(f))。
圖48顯示三角形結構的CQDs模型,用-OH基團(命名為T-CQDs-OH-1(a)、T-CQDs-OH-2(b)及T-CQDs-OH-3(c))及-COOH基團 (命名為T-CQDs-COOH-1(d)、T-CQDs-COOH-2(e)及T-CQDs-COOH-3(f))在邊緣位點進行功能化。
圖49顯示三角形結構的CQDs球棍模型,用-OH(命名為T-CQDs-OH-1(a)、T-CQDs-OH-2(b)及T-CQDs-OH-3(c))及-COOH基團(命名為T-CQDs-COOH-1(d)、T-CQDs-COOH-2(e)及T-CQDs-COOH-3(f))在邊緣位點進行功能化。
圖50顯示T-CQDs-OH-1、T-CQDs-1、T-CQDs-COOH-1及S-CQDs-1的能級。
圖51顯示T-CQDs-OH-2、T-CQDs-2、T-CQDs-COOH-2及S-CQDs-2的電子軌道能級。
圖52顯示T-CQDs-OH-3、T-CQDs-3、T-CQDs-COOH-3及S-CQDs-3的電子軌道能級。
圖53顯示計算的S-CQDs的HOMO及LUMO能級(a)及帶隙能量(b)隨稠合苯環數量的變化。
圖54顯示計算的T-CQDs的HOMO及LUMO能級(a)及帶隙能量(b)隨稠合苯環數量的變化。
圖55顯示計算的T-CQDs-OH的HOMO及LUMO能級(a)及帶隙能量(b)隨稠合苯環數量的變化。
圖56顯示計算的T-CQDs-COOH的HOMO及LUMO能級(a)及帶隙能量(b)隨稠合苯環數量的變化。
圖57顯示計算的S-CQDs-1的HOMO(a)及LUMO(b)分子軌道及PL光譜(c)。計算的T-CQDs-1的HOMO(d)及LUMO(e)分子軌道及PL光譜(f)。
圖58顯示計算的T-CQDs-OH-1的HOMO(a)及LUMO(b)分子軌道及PL光譜(c)。計算的T-CQDs-COOH-1的HOMO(d)及LUMO(e)分子軌道及PL光譜(f)。
圖59顯示計算的S-CQDs-2的HOMO(a)及LUMO(b)分子軌道及PL光譜(c)。計算的T-CQDs-2的HOMO(d)及LUMO(e)分子軌道及PL光譜(f)。
圖60顯示計算的T-CQDs-OH-2的HOMO(a)及LUMO(b)分子軌道及PL光譜(c)。計算的T-CQDs-COOH-2的HOMO(d)及LUMO(e)分子軌道及PL光譜(f)。
圖61顯示B-(a,b)、G-(c,d)、Y-(e,f)及R-LEDs(g,h)活性發射層的AFM高度圖像。
圖62顯示基於ITO/PEDOT:PSS/PVK:NBE-T-CQDs/TPBi/Ca/Al結構的B-(a)、G-(b)、Y-(c)及R-LED(d)器件的橫截面TEM圖像。比例尺:50nm。
圖63顯示典型LED器件的橫截面TEM圖像(a)及相應的EDX光譜(b)。可根據其元素組成,諸如S(c)、C(d)、N(e)、Ca(f)及Al(g),來清楚地區分各層。
圖64顯示有北京師範大學(BNU)標誌的ITO的照片。
圖65顯示B-(a)、G-(b)、Y-(c)及R-LEDs(d)的歸一化的PL光譜及相應的輸出EL光譜。插圖是B-、G-、Y-及R-LEDs帶有BNU的標誌的工作照片。
圖66顯示NBE-T-CQDs摻雜PVK的濃度對B-(a)、G-(b)、Y-(c)及R-LEDs(d)的性能的影響。
圖67顯示B-(a)、G-(b)、Y-(c)及R-LEDs(d)的電流效率對電流密度曲線圖。
圖68顯示B-(a)、G-(b)、Y-(c)及R-LEDs(d)在6V運行下0h及40h的歸一化的EL光譜。
圖69顯示在25.83v的極高電壓下運行的G-LEDs的照片。
A.定義
除非另有規定,否則本文所使用的所有技術及科學術語的含義與本發明所屬領域的普通技術人員通常理解的含義相同。本發明引用的所有專利、專利申請、公開的專利申請及其他出版物,藉由全文引用併入本文。若本節中所述的定義與在此藉由引用併入本文的專利、專利申請或其他出版物中所規定的定義相反或不一致,本節所述的定義優先於藉由引用併入本文的定義。
本文中使用的「包括」、「包含」或「具有」及其變化形式意謂包括其後列出的項目及其等同物以及額外項目。除非另有說明,本文使用的任何及所有示例或示例性語言(例如「諸如」)旨在更好地說明實施例且不限制申請專利範圍的範圍。
本文及隨附申請專利範圍中所使用的單數形式「一」,「一個」及「該」包括複數指代,除非另有說明。類似地,當使用複數形式時,將解釋為在上下文允許的情況下覆蓋單數形式。例如,「一」或「一個」意謂「至少一個」或「一或多個」。因此,提到「一」個三角形碳量子點時,表示包括一或多個三角形碳量子點,而提到「該方法」時,表示包括本文揭示及/或熟習此項技術者已知的等同步驟及方法等。
如此處所使用,提到「約」一個數值或參數時,包括(且描述)針對該數值或參數本身的實施例。例如,「約X」的描述包括「X」的描述。
貫穿本發明,要求保護的主題的各個態樣以範圍形式呈現。應理解,範圍形式的描述僅為了方便及簡潔起見,且不應解釋為對所主張保護之主題的範圍的不靈活限制。因此,範圍的描述應認為具體揭示所有可能的子範圍以及在該範圍內的單個數值。例如,在提供一定範圍的值的情況下,應理解,該範圍的上限及下限之間的每個中間值以及該規定範圍中的任何其他規定值或中間值均包含在主張保護的主題內。此等較小範圍的上限及下限可獨立地包含在該較小範圍內,且亦包含在要求保護的主題內,受該規定範圍內的任何特別排除限制的制約。在該規定範圍包括一個或兩個限制的情況下,排除彼等包括限制中的任何一個或兩個的範圍亦包括在所主張保護的主題中。無論範圍的寬度如何,此均適用。
如本文所用,本文所用的術語「官能基」係指作為單元的原子或原子基團,其已置換化合物中之氫原子。
如本文所用,本文使用之術語「烷基」係指呈直鏈,分支鏈或環狀構型或其任何組合的飽和烴基,且特別考慮的烷基包括具有十個或更少碳原子的烷基,特別是具有1-6個碳原子的烷基及具有1-4個碳原子的低碳烷基。示例性的烷基是甲基,乙基,丙基,異丙基,丁基,第二丁基,第三丁基,戊基,異戊基,己基,環丙烷甲基等。
烷基可未經取代,或其可經取代至具有化學意義的取代程度。典型的取代基包括但不限於鹵素,=O,=N-CN,=N-ORa,=NRa,-ORa,-NRa 2,-SRa,-SO2Ra,-SO2NRa 2,-NRaSO2Ra,-NRaCONRa 2,- NRaCOORa,-NRaCORa,-CN,-COORa,-CONRa 2,-OOCRa,-CORa及-NO2,其中每個Ra獨立地為H,C1-C8烷基,C2-C8雜烷基,C3-C8雜環基,C4-C10雜環烷基,C1-C8醯基,C2-C8雜醯基,C2-C8烯基,C2-C8雜烯基,C2-C8炔基,C2-C8雜炔基,C6-C10芳基或C5-C10雜芳基,且每個Ra視情況經鹵素,=O,=N-CN,=N-ORb,=NRb,ORb,NRb 2,SRb,SO2Rb,SO2NRb 2,NRbSO2Rb,NRbCONRb 2,NRbCOORb,NRbCORb,CN,COORb,CONRb 2,OOCRb,CORb及NO2取代,其中每個Rb獨立地為H,C1-C8烷基,C2-C8雜烷基,C3-C8雜環基,C4-C10雜環烷基,C1-C8醯基,C2-C8雜醯基,C6-C10芳基或C5-C10雜芳基。烷基,烯基及炔基基團亦可經C1-C8醯基,C2-C8雜醯基,C6-C10芳基或C5-C10雜芳基取代,其中的每一個可經適合於該特定基團的取代基取代。當取代基在相同或相鄰原子上含有兩個Ra或Rb基團時(例如-NRb2或-NRb-C(O)Rb),該兩個Ra或Rb基團可視情況與取代基中的原子一起連接形成5-8員環,如Ra或Rb本身所允許的,其可經取代,且可含有另外的雜原子(N,O或S)作為成環原子。
本文所用的術語「芳基」或「芳環」係指含有非定域π鍵的環。此等通常是5-6員孤立環或8-10員雙環基團,且可經取代。因此,考慮的芳基基團包括(例如苯基,萘基等)及吡啶基。進一步考慮之芳基可與一個或兩個5員或6員芳基或雜環基稠合(即與第一芳環上的2個原子共價結合),且此稱為「稠合芳基」或「稠合芳族」。
含有一或多個雜原子(通常為N,O或S)作為成環原子的芳族基團可稱為雜芳基或芳雜環基。典型的芳雜環基包括單環C5-C6芳香基諸如吡啶基,嘧啶基,吡嗪基,噻吩基,呋喃基,吡咯基,吡唑基,噻唑 基,噁唑基,異噻唑基,異噁唑基及咪唑基以及稠合二環基團,此等二環基團由上述單環基團之一及苯環或任意雜原子單環基團稠合形成C8-C10雙環基團,例如吲哚基、苯并咪唑基、吲唑基、苯并三唑基、異喹啉基、喹啉基、苯并噻唑基,苯并呋喃基,吡唑并吡啶基,吡唑并嘧啶基,喹唑啉基,喹喔啉基,噌啉基等。在整個環體系的電子分佈方面具有芳香性特徵的任何單環或稠環二環體系均包括在該定義中。其亦包括雙環基團,其中至少直接連接至分子其餘部分的環具有芳香性特徵。通常,環體系含有5-12個環原子。
如本文中亦使用,術語「雜環」、「雜環烷基」及「雜環基團」在本文中可互換使用,且係指多個原子藉由多個共價鍵形成環的任何化合物,其中環包含至少一個除碳原子以外的原子作為成環原子。特別考慮的雜環包括具有氮、硫或氧作為非碳原子(例如咪唑,吡咯,三唑,二氫嘧啶,吲哚,吡啶,噻唑,四唑等)的5員及6員環。通常此等環包含0-1個氧或硫原子,至少一個且通常2-3個碳原子及至多四個氮原子作為成環原子。進一步考慮的雜環可與一個或兩個碳環或雜環稠合(即與第一雜環上的兩個原子共價結合),因此稱為「稠雜環」或「稠合雜環」或「稠合雜環基團」,如本文所使用。在環是芳香性的情況下,此等在此處可稱為「雜芳基」或芳雜環基。
不含芳香性之雜環基團可用如上所述的適合烷基取代的基團取代。
在允許的位置,芳基及雜芳基可經取代。合適的取代基包括但不限於鹵素,-ORa,-NRa 2,-SRa,-SO2Ra,-SO2NRa 2,-NRaSO2Ra,-NRaCONRa 2,-NRaCOORa,-NRaCORa,-CN,-COORa,- CONRa 2,-OOCRa,-CORa及-NO2,其中每個Ra獨立地為H,C1-C8烷基,C2-C8雜烷基,C3-C8雜環基,C4-C10雜環烷基,C1-C8醯基,C2-C8雜醯基,C2-C8烯基,C2-C8雜烯基,C2-C8炔基,C2-C8雜炔基,C6-C10芳基或C5-C10雜芳基,且每個Ra視情況經鹵素,=O,=N-CN,=N-ORb,=NRb,ORb,NRb 2,SRb,SO2Rb,SO2NRb 2,NRbSO2Rb,NRbCONRb 2,NRbCOORb,NRbCORb,CN,COORb,CONRb 2,OOCRb,CORb及NO2取代,其中每個Rb獨立地為H,C1-C8烷基,C2-C8雜烷基,C3-C8雜環基,C4-C10雜環烷基,C1-C8醯基,C2-C8雜醯基,C6-C10芳基或C5-C10雜芳基。烷基,烯基及炔基基團亦可經C1-C8醯基,C2-C8雜醯基,C6-C10芳基或C5-C10雜芳基取代,其中之每一個可經適合於該特定基團的取代基取代。當取代基團在相同或相鄰原子上含有兩個Ra或Rb基團時(例如-NRb2或-NRb-C(O)Rb),兩個Ra或Rb基團可視情況與取代基中的原子一起連接形成具有5-8個環原子的環,如Ra或Rb本身所允許的,其可經取代,且可含有另外的雜原子(N,O或S)作為環原子。
本文所用的術語「胺基」係指基團-NH2。術語「烷胺基」係指胺基的一個或兩個氫原子經如上所述的烴基Hc取代,其中胺基氮「N」可經一個或兩個如上所述的用於烷氧基的Hc取代。示例性的烷胺基包括甲胺基,二甲基胺基,乙基胺基,二乙胺基等。另外,術語「經取代的胺基」係指胺基的一個或兩個氫原子經如上所述的烴基Hc取代,其中胺基氮「N」可經一個或兩個如上所述的用於烷氧基的Hc基團取代。
本文所用的術語「醯基」係指化學式-C(=O)-D所示的基團,其中D表示如上所述的烷基,烯基,炔基,環烷基,芳基,雜芳基或雜環。典型的例子是其中D是C1-C10烷基,C2-C10烯基或炔基,或苯基, 各自視情況經取代。在一些實施例中,D可為H、Me、Et、異丙基、丙基、丁基、經-OH、-OMe或NH2取代之C1-C4烷基,苯基,鹵代苯基,烷基苯基等。
本文所用的術語「鹵代」或「鹵素」係指氟、氯、溴及碘。當作為取代基存在時,鹵素或鹵代通常係指F或Cl或Br,更典型地是F或Cl。
應進一步認識到,所有上述定義的基團可進一步被一或多個取代基取代,該取代基又可經羥基,胺基,氰基,C1-C4烷基,鹵素或C1-C4鹵代烷基所取代。例如,烷基或芳基中的氫原子可經胺基,鹵素或C1-C4鹵代烷基或烷基取代。
本文所用的術語「經取代」係指用官能基替代未經取代之基團上的氫原子,且特別考慮的官能基包括親核基團(例如,-NH2、-OH、-SH、-CN等),吸電子基團(例如C(O)OR、C(X)OH等),極性基團(例如-OH),非極性基團(例如雜環基、芳基、烷基、烯基、炔基等),離子基團(例如-NH3 +)及鹵素(例如-F、-Cl)及NHCOR、NHCONH2、OCH2COOH、OCH2CONH2、OCH2CONHR、NHCH2COOH、NHCH2CONH2、NHSO2R、OCH2-雜環、PO3H、SO3H、胺基酸,及其所有化學上合理的組合。此外,術語「經取代」亦包括多個程度的取代,且在揭示或主張保護多個取代基的情況下,取代的化合物可獨立地經一或多個揭示或主張保護的取代基基團取代。
通常,碳量子點是以碳作為主要組分的量子點。例如,在一些實施例中,碳量子點中的碳原子含量為重量的50%或更多,例如重量的60%或更多,例如重量的70%或更多,例如重量的80%或更多,例如重 量的90%或更多,例如重量的95%或更多及約重量的100%或更少。
通常,碳量子點可表徵為顆粒,其形狀可為球形、圓柱形、橢圓形或其他形狀。碳量子點的尺寸或平均尺寸可指其形狀的尺寸特徵或其形狀的近似值。例如,尺寸可指直徑、主軸、主要長度等。通常,碳量子點在奈米量級。另外,碳量子點可為碳的聚合物。該聚合物可共價或離子鍵合。在一些實施例中,該碳量子點(或聚合物)可具有約1nm或更大的尺寸,諸如約2nm或更大,及約1000nm或更小,諸如約500nm或更小,諸如約250nm或更小,諸如約150nm或更小,諸如約100nm或更小,諸如約50nm或更小,諸如約20nm或更小,諸如約15nm或更小,諸如約10nm或更小。
B.三角形碳量子點
在一些態樣中,本文提供具有窄帶寬發射的三角形碳量子點,其製備方法以及使用此三角形碳量子點的方法,例如應用在彩色LED顯示器中。
在一些態樣中,本發明揭示一種三角形碳量子點,其具有包含至少四個芳環的共軛三角形結構。在一些實施例中,該共軛三角形結構包含側官能基。在一些實施例中,該三角形碳量子點中的碳原子含量為約重量的50%或更多。例如,該三角形碳量子點中的碳原子含量可為約重量的60%或更多,約重量的70%或更多,約重量的80%或更多,約重量的90%或更多,約重量的95%或更多,約重量的96%或更多,約重量的97%或更多,約重量的98%或更多,或約重量的99%或更多。
在該三角形碳量子點的一些實施例中,該共軛三角形結構包含稠合至少三個芳環的6員芳核環,該核環的6個環原子存有各該至少三 個芳環的2個環原子。在本發明任一該三角形碳量子點的一些實施例中,該共軛三角形結構包含單個稠合該至少三個芳環的6員芳核環。在本發明任一該三角形碳量子點的一些實施例中,該共軛三角形結構包含多個稠合該至少三個芳環的6員芳核環。在本發明任一該三角形碳量子點的一些實施例中,該共軛三角形結構包含至少4個、10個、19個或34個或更多個稠合該至少三個芳環的6員芳核環。在本發明任一該三角形碳量子點的一些實施例中,稠合至核環上的該至少三個芳環中的每一個均為6員芳環。
在本發明任一該三角形碳量子點的一些實施例中,該核環是由至少三個芳環前驅體共軛形成的。在一些實施例中,至少有一個該芳環前驅體是經取代之苯。在其他的實施例中,該至少三個芳環前驅體中的每一個均為經取代之苯。
在本發明任一該三角形碳量子點的一些實施例中,該三個芳環前驅體中的至少一個選自由苯-1,3,5-三醇(間苯三酚)、間苯二酚、5-胺基苯-1,3-二醇、5-(二甲胺基)苯-1,3-二醇、5-(二乙胺基)苯-1,3-二醇、5-(二丙胺基)苯-1,3-二醇、5-(甲硫基)苯-1,3-二醇、5-甲氧基苯-1,3-二醇、3,5-二羥基苯硼酸、吡啶-3,5-二醇、磷雜苯-3,5-二醇及硼雜苯-35-二醇組成之群。
在本發明任一該三角形碳量子點的一些實施例中,至少有一個該芳環的前驅體含有雜芳環。在一些實施例中,該雜芳環包含一或多個選自由N、P及B組成之群。
在本發明任一該三角形碳量子點的一些實施例中,該至少三個芳環包含相同的芳環。在其他實施例中,該至少三個芳環包含不同的芳環。
在一些實施例中,本發明所述三角形碳量子點是藉由熱溶劑合成法製備的,使用至少三個前驅體分子,每個前驅體分子包含芳環。在一些實施例中,每一個前驅體分子均含有6員芳環。
在本發明任一該三角形碳量子點的一些實施例中,每一個前驅體分子均為具有化學式A所示結構的化合物:
Figure 108100040-A0305-02-0035-28
其中X選自由C、N、P及B組成之群;每一個R均為獨立選自由-ORa、-NRbRc、SRd、-COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基,或可不存在R。在一些實施例中,每個R獨立選自由羥基、胺基、二甲胺基、二乙胺基、二丙胺基、甲硫基、甲氧基及-B(OH)2組成之群,或可不存在R。在一些實施例中,每個前驅體分子選自由
Figure 108100040-A0305-02-0035-29
Figure 108100040-A0305-02-0035-30
Figure 108100040-A0305-02-0035-31
組成之群。在一些實施例中,每個前驅體分子 均為
Figure 108100040-A0305-02-0035-32
在本發明任一該三角形碳量子點的一些實施例中,該前驅 體分子用於形成包含化學式I所示結構的共軛三角形結構:
Figure 108100040-A0305-02-0036-33
其中每一個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基;及/或該化學式I的結構作為核結構可進一步與該前驅體分子共軛形成更大的共軛三角形結構。
在本發明任一該三角形碳量子點的一些實施例中,該前驅體分子用於形成包含化學式I-A所示結構的共軛三角形結構:
Figure 108100040-A0305-02-0036-34
其中每一個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基;及/或 該化學式I-A的結構作為核結構可進一步與該前驅體分子共軛形成更大的共軛三角形結構。
在本發明任一該三角形碳量子點的一些實施例中,該前驅體分子用於形成包含化學式I-B所示結構的共軛三角形結構:
Figure 108100040-A0305-02-0037-35
其中每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基;及/或該化學式I-B的結構作為核結構進一步與該前驅體分子共軛形成更大的共軛三角形結構。
在一些實施例中,化學式I、I-A或I-B所示的三角形碳量子點摻雜N,S,P,B或O或其任意組合。在一些實施例中,化學式I、I-A或I-B所示的三角形碳量子點摻雜N,S,P,B或O或其任何組合以形成化學式II、II-A或II-B所示的三角形碳量子點。
在本發明任一該三角形碳量子點的一些實施例中,該前驅體分子用於形成包含化學式II所示結構的共軛三角形結構:
Figure 108100040-A0305-02-0038-36
其中每個X獨立選自由C、N、P及B組成之群;每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基,或不存在R;及/或該化學式II的結構作為核結構進一步與該前驅體分子共軛形成更大的共軛三角形結構。
在本發明任一該三角形碳量子點的一些實施例中,該前驅體分子用於形成包含化學式II-A所示結構的共軛三角形結構:
Figure 108100040-A0305-02-0038-37
其中每個X獨立選自由C、N、P及B組成之群;每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基,或不存在R;及/或 該化學式II-A的結構作為核結構進一步與該前驅體分子共軛形成更大的共軛三角形結構。
在本發明任一該三角形碳量子點的一些實施例中,該前驅體分子用於形成包含化學式II-B所示結構的共軛三角形結構:
Figure 108100040-A0305-02-0039-38
其中每個X獨立選自由C、N、P及B組成之群;每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基,或不存在R;及/或該化學式II-B的結構作為核結構進一步與該前驅體分子共軛形成更大的共軛三角形結構。
在化學式II、化學式II-A或化學式II-B的一些實施例中,超過50%的X基團是C,諸如大於約60%,大於約70%,大於約80%,大於約90%,大於約95%,大於約96%,大於約97%,大於約98%或大於約99%或更大。
在本發明任一該三角形碳量子點的一些實施例中,在化學 式I、化學式I-A、化學式I-B、化學式II、化學式II-A或化學式II-B結構中的每個相鄰R基團對配置成用於形成額外的六員環,從而生成更大的共軛三角形結構。在一些實施例中,該三角形碳量子點摻雜N、S、P、B或O,或其任意結合。
在一些實施例中,該三角形碳量子點具有在約400nm至約700nm範圍內的發射峰。例如,在一些實施例中,該三角形碳量子點具有範圍自約400nm至約450nm,自約400nm至約500nm,自約450nm至約500nm,自約450nm至約550nm,自約500nm至約550nm,自約500nm至約600nm,自約550nm至約600nm,自約550nm至約650nm,自約600nm至約650nm,或自約600nm至約700nm的發射峰。
在一些實施例中,該三角形碳量子點具有自約20nm至約70nm範圍的半峰全寬(FWHM)。例如,在一些實施例中,該三角形碳量子點具有約20nm至約30nm,約20nm至約40nm,約20nm至約50nm,約20nm至約60nm,約30nm至約40nm,約30nm至約50nm,約30nm至約60nm,約30nm至約70nm,約40nm至約50nm,約40nm約60nm,約40nm至約70nm,約50nm至約60nm,約50nm至約70nm,或約60nm至約70nm的FWHM。
在本發明任一該三角形碳量子點的一些實施例中,該三角形碳量子點具有約1nm至約6nm的尺寸或直徑。例如,在一些實施例中,該三角形碳量子點具有約1nm至約2nm,約1nm至約3nm,約1nm至約4nm,約1nm至約5nm,約2nm至約3nm,約2nm至約4nm,約2nm至約5nm,約2nm至約6nm,約3nm至約4nm,約3nm至約5nm,約3nm至約 6nm,約4nm至約5nm,約4nm至約6nm,或約5nm至約6nm的尺寸或直徑。
在一些實施例中,該三角形碳量子點具有約50%至約75%的量子產率(QY)。例如,在一些實施例中,該三角形碳量子點的量子產率(QY)為約50%至約55%,約50%至約60%,約50%至約65%,約50%至約70%,約55%至約60%,約55%至約65%,約55%至約70%,約55%至約75%,約60%至約65%,約60%至約70%,約60%至約75%,約65%至約70%,約65%至約75%,或約70%至約75%。
在本發明任一該三角形碳量子點的一些實施例中,該三角形碳量子點的發射峰的範圍是自約460nm至約480nm,尺寸或直徑的範圍是自約1.8nm至約2.0nm。在一些實施例中,該三角形碳量子點的發射峰的範圍是自約500nm至約520nm,尺寸或直徑為約2.2nm至約2.5nm。在一些實施例中,該三角形碳量子點的發射峰的範圍是約530nm至約550nm,尺寸或直徑為約2.9nm至約3.1nm。在一些實施例中,該三角形碳量子點的發射峰的範圍是自約590nm至約610nm,尺寸或直徑的範圍是自約3.8nm至約4.1nm。
C.製備三角形碳量子點的方法
本發明亦提供用於製備本發明任一實施例所述的三角形碳量子點的方法。在一些實施例中,本發明所述的三角形碳量子點的製備方法包括熱溶劑合成法,使用至少三個前驅體分子,每個前驅體分子包含芳環,例如,6員芳環,形成三角形碳量子點。
在一些實施例中,該方法包括:使用化學式A-1所示的前驅體分子:
Figure 108100040-A0305-02-0042-39
藉由熱溶劑合成形成化學式I所示的共軛三角形結構
Figure 108100040-A0305-02-0042-40
其中每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基。
在一些實施例中,該方法包括:使用化學式A-1所示的前驅體分子:
Figure 108100040-A0305-02-0042-41
藉由熱溶劑合成形成化學式I-A所示的共軛三角形結構
Figure 108100040-A0305-02-0042-42
其中每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基。
在一些實施例中,該方法包括:使用化學式A-1所示的前驅體分子:
Figure 108100040-A0305-02-0043-43
藉由熱溶劑合成形成化學式I-B所示的共軛三角形結構
Figure 108100040-A0305-02-0043-44
其中每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基。
在一些實施例中,該方法亦包括將化學式I、化學式I-A或化學式I-B的結構作為核結構與化學式A所示的前驅體分子共軛,而形成更大的共軛三角形結構。在一些實施例中,在化學式I、化學式I-A或化學式I-B的結構中,每個相鄰R基團對均與化學式A所示的前驅體分子共軛,形成額外的6員環,從而生成更大的共軛三角形結構。
在一些實施例中,該方法包括:使用化學式A所示的前驅體分子:
Figure 108100040-A0305-02-0044-45
藉由熱溶劑合成形成化學式II所示的共軛三角形結構
Figure 108100040-A0305-02-0044-46
其中每個X獨立選自由C、N、P及B組成之群;且每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基,或不存在R。
在一些實施例中,該方法包括:使用化學式A所示的前驅體分子:
Figure 108100040-A0305-02-0044-47
藉由熱溶劑合成形成化學式II-A所示的共軛三角形結構
Figure 108100040-A0305-02-0044-48
其中 每個X獨立選自由C、N、P及B組成之群;且每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基,或不存在R。
在一些實施例中,該方法包括:使用化學式A所示的前驅體分子:
Figure 108100040-A0305-02-0045-49
藉由熱溶劑合成形成化學式II-B所示的共軛三角形結構
Figure 108100040-A0305-02-0045-50
其中每個X獨立選自由C、N、P及B組成之群;且每個R獨立選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg均分別獨立為H或C1-6烷基,或不存在R。
在一些實施例中,該方法亦包括將化學式II、化學式II-A或化學式II-B的結構作為核結構與化學式A或化學式A-1所示的前驅體分 子共軛,而形成更大的共軛三角形結構。在一些實施例中,在化學式II、化學式II-A或化學式II-B的結構中,每個相鄰R基團對均與化學式A或化學式A-1所示的前驅體分子共軛,形成額外的6員環,從而生成更大的共軛三角形結構。
在一些實施例中,化學式A所示的前驅體分子中的每一個選自由
Figure 108100040-A0305-02-0046-51
Figure 108100040-A0305-02-0046-52
Figure 108100040-A0305-02-0046-53
組成之群。在一些實施例中,該化學式A所示的 前驅體分子是
Figure 108100040-A0305-02-0046-54
在一些實施例中,該方法包括在溶劑中溶解或分散該化學式A前驅體分子,形成溶液或混合物,在約100℃至約300℃的溫度下加熱該溶液或混合物約10分鐘至約72小時。例如,在一些實施例中,該方法包括在約100℃至約150℃,約100℃至約200℃,約150℃至約200℃,約150℃至約250℃,約200℃至約250℃,約200℃至約300℃,或約250℃至約300℃的溫度下加熱包含該化學式A前驅體分子的溶液。在任何此類實施例中,該溶液可加熱約10分鐘至約30分鐘,約10分鐘至約60分鐘,約10分鐘至約2小時,約10分鐘至約3小時,約1小時至約2小時,約1小時 至約6小時,約1小時至約12小時,約1小時至約24小時,約6小時至約12小時,約6小時至約24小時,約6小時至約48小時,約12小時至約24小時,約12小時至約48小時,約12小時至約72小時,約24小時至約48小時,約24小時至約72小時,或約48小時至約72小時。
在一些實施例中,該溶劑是水或包含水。在一些實施例中,該溶劑是C1-10醇或包含C1-10醇。示例包括但不限於甲醇,乙醇,正丙醇,異丙醇,正丁醇,2-丁醇,異丁醇,第三丁醇,戊醇,己醇,庚醇,辛醇,第三戊醇,苄醇,1,4-丁二醇,1,2,4-丁三醇,乙二醇,2-乙基己醇,甘油,2-甲基-1-丁醇,2-甲基-1-戊醇,2-甲基-2-丁醇,新戊醇,2-戊醇,1,3-丙二醇,1,2-丙二醇及其任何組合。在一些實施例中,該溶劑包含乙醇。在其他實施例中,該溶劑是醯胺或包含醯胺。示例包括但不限於二甲基乙醯胺,二甲基甲醯胺,甲醯胺,N-甲基-2-吡咯啶酮,N-甲基甲醯胺,2-吡咯啶酮,四甲基脲,N-乙烯基乙醯胺,N-乙烯基吡咯啶酮或其任何組合。在一些實施例中,該溶劑是或包含甲醯胺或N,N-二甲基甲醯胺。在其他實施例中,該溶劑是酮或包含酮。示例包括但不限於丙酮,苯乙酮,丁酮,環戊酮,乙基異丙基酮,2-己酮,異佛爾酮,異亞丙基丙酮,甲基異丁基酮,甲基異丙基酮,3-甲基-2-戊酮,2-戊酮,3-戊酮或其任何組合。在一些實施例中,該溶劑是丙酮或包含丙酮。在其他實施例中,該溶劑是亞碸或包含亞碸。在一些實施例中,該溶劑是二甲基亞碸或包含二甲基亞碸。
在一些實施例中,該前驅體分子在共軛催化劑存在下共軛形成共軛三角形結構。在一些實施例中,該共軛催化劑是酸。在一些實施例中,該共軛催化劑是無機酸或包含無機酸。在一些實施例中,該共軛催 化劑選自硫酸,磷酸,鹽酸,硝酸,硼酸,氫氟酸,氫溴酸,高氯酸,氫碘酸或其任何組合。在一些實施例中,該共軛催化劑包含硫酸。在一些實施例中,該共軛催化劑包含磷酸。在一些實施例中,該共軛催化劑包含鹽酸。在一些實施例中,該方法進一步包括使用中和劑來中和共軛催化劑。在一些實施例中,該中和劑是鹼或包含鹼。在某些實施例中,該中和劑是或者包含氫氧化鈉,氫氧化鉀,碳酸鈉或碳酸鉀,或其組合。
在一些實施例中,該方法亦包括分離或純化三角形碳量子點。在一些實施例中,該三角形碳量子點藉由過濾、離心、層析等方法分離或純化,諸如管柱層析法、凝膠電泳或滲析。
在一些實施例中,該三角形碳量子點的製備方法包括:1)在乙醇中溶解間苯三酚,形成溶液;2)在約140℃加熱該溶液約9小時;3)將溶液冷卻至較低的溫度,例如室溫;及4)自溶液中分離或純化三角形碳量子點,例如,藉由層析法或管柱層析法。
在一些實施例中,該三角形碳量子點的製備方法包括:1)在乙醇中溶解間苯三酚,形成溶液;2)在約200℃加熱該溶液約24小時;3)將溶液冷卻至較低的溫度,例如室溫;及4)自溶液中分離或純化三角形碳量子點,例如,藉由層析法或管柱層析法。
在一些實施例中,該三角形碳量子點的製備方法包括:1)在乙醇中溶解間苯三酚,形成溶液;2)在該溶液中加入共軛催化劑,諸如硫酸;3)在約200℃加熱該溶液約2小時;4)將溶液冷卻至較低的溫度,例如室溫,且用中和劑,諸如鹼,中和該共軛催化劑;及5)自溶液中分離或純化三角形碳量子點,例如,藉由層析法或管柱層析法。
在其他實施例中,該三角形碳量子點的製備方法包括:1) 在乙醇中溶解間苯三酚,形成溶液;2)在該溶液中加入共軛催化劑,諸如硫酸;3)在約200℃加熱該溶液約5小時;4)將溶液冷卻至較低的溫度,例如室溫,且用中和劑,諸如鹼,中和該共軛催化劑;及5)自溶液中分離或純化三角形碳量子點,例如,藉由層析法或管柱層析法。
D.工業製品
在一些態樣中,本發明提供包含任一上述三角形碳量子點的工業製品。
本發明的工業製品可經配置用於任何合適的用途。例如,該工業製品可配置成用於成像、傳感、催化、傳遞、顯示、光導、發光、照明或計算應用。在一些實施例中,成像應用是生物或化學成像應用。在一些實施例中,傳感應用是生物或化學傳感應用。在一些實施例中,該催化應用是生物、化學、光或電催化應用。在一些實施例中,傳遞應用是生物或化學傳遞應用。在一些實施例中,該傳遞應用是藥物傳遞應用。
在一些實施例中,該工業製品是聚合物。在一些實施例中,該工業製品包含在成像、傳感、催化、傳遞、顯示、光導、發光、照明或計算介質或器件中。在一些實施例中,該工業製品包含在光電器件、電晶體、太陽能電池、發光器件、發光二極體(LED)、二極體雷射器、量子計算中的量子位、顯示器(例如,電視或電話)、抬頭顯示器(例如,透明的抬頭顯示器),或塗料(例如,螢光塗料或發光塗料)中。
E.發光二極體(LEDs)
在其他態樣中提供包含上述三角形碳量子點的發光二極體(LEDs)。在一些實施例中,該LED包含活性發射層,其包含本發明任一實施例所述的三角形碳量子點。在一些實施例中,該LED包含陽極、電洞 注入層、活性發射層、電子傳輸層及陰極。在一些實施例中,該電洞注入層、活性發射層及電子傳輸層設置在陽極與陰極之間。
在一些實施例中,該LED自一邊至對邊,例如,自下往上,包含陽極、電洞注入層、活性發射層、電子傳輸層及陰極。在一些實施例中,該LED包含保持或支持陽極、電洞注入層、活性發射層、電子傳輸層及陰極的基板。在一些實施例中,該基板含有玻璃或熱塑性聚合物,諸如聚酯或聚對苯二甲酸乙二酯(PET)。在一些實施例中,該陽極包含銦錫氧化物(ITO)或石墨烯。在一些實施例中,該基板保持陽極來形成基板陽極。在一些實施例中,該電洞注入層包含聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS),鉬氧化物,例如MoOx,X是1-3,鎳氧化物,例如,NiOx,X是1-3,或者釩(V)氧化物,例如,VOx,X是1-3。在一些實施例中,該活性發射層包含三角形的碳量子點:Y混合發射層,Y為聚(N-乙烯基咔唑)(PVK),聚(N,N'-雙(4-丁苯基)-N,N'-雙(苯基)聯苯胺)(聚TPD),或聚(9,9'-二辛基茀)(PFO)。
在一些實施例中,該電子傳輸層包含1,3,5-三(N-苯基苯并咪唑-2-基)苯(TPBI),氧化鋅(ZnO),鈦氧化物,例如,TiOx,X為1-2,或三(8-羥基喹啉)鋁(Alq3)。在一些實施例中,該陰極包含Ca/Al、LiF/Al或Ag。
在一些實施例中,該LED自一邊至對邊,例如,自下往上,包含ITO玻璃基板陽極,聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)電洞注入層(HIL),活性三角形碳量子點:PVK混合發射層,1,3,5-三(N-苯基苯并咪唑-2-基)苯(TPBI)電子傳輸層(ETL)及Ca/Al雙層陰極。
在一些實施例中,該LED的最大亮度為約500cd/m2至約10000cd/m2。例如,在一些實施例中,該LED具有自約500cd/m2至約1000cd/m2,自約500cd/m2至約2000cd/m2,自約500cd/m2至約3000cd/m2,自約500cd/m2至約4000cd/m2,自約500cd/m2至約6000cd/m2,自約500cd/m2至約8000cd/m2,自約1000cd/m2至約2000cd/m2,自約1000cd/m2至約3000cd/m2,自約1000cd/m2至約4000cd/m2,自約1000cd/m2至約6000cd/m2,自約1000cd/m2至約8000cd/m2,自約2000cd/m2至約3000cd/m2,自約2000cd/m2至約4000cd/m2,自約2000cd/m2至約6000cd/m2,自約2000cd/m2至約8000cd/m2,自約3000cd/m2至約4000cd/m2,自約3000cd/m2至約6000cd/m2,自約3000cd/m2至約8000cd/m2,自約4000cd/m2至約6000cd/m2,自約4000cd/m2至約8000cd/m2,自約4000cd/m2至約10,000cd/m2,自約6000cd/m2至約8000cd/m2,自約6000cd/m2至約10,000cd/m2,或自約8000cd/m2至約10,000cd/m2的最大亮度。
在一些實施例中,該LED具有自約1cd/A至約10cd/A的電流效率。例如,在一些實施例中,該LED具有自約1cd/A至約2cd/A,自約1cd/A至約4cd/A,自約1cd/A至約6cd/A,自約1cd/A至約8cd/A,約2cd/A至約4cd/A,約2cd/A至約6cd/A,約2cd/A至約8cd/A,自約2cd/A至約10cd/A,自約3cd/A至約4cd/A,自約3cd/A至約6cd/A,自約3cd/A約8cd/A,自約3cd/A至約10cd/A,自約4cd/A至約6cd/A,自約4cd/A至約8cd/A,自約4cd/A至約10cd/A,自約5cd/A至約6cd/A,自約5cd/A至約8cd/A,自約5cd/A至約10cd/A,自約6cd/A至約8cd/A,自約6cd/A至約10cd/A,自約7cd/A至約8cd/A,自約7cd/A至約10cd/A,自約8cd/A至 約10cd/A,或自約9cd/A至約10cd/A的電流效率。
在一些實施例中,本發明任一實施例所述的LED具有自約2V至約5V的開啟電壓。例如,在一些實施例中,該LED具有自約2V至約3V,自約2V至約4V,自約3V至約4V,自約3V至約5V,或自約4V至約5V的開啟電壓。
在一些實施例中,本發明任一實施例所述的LED具有約460nm至約610nm的發射範圍。例如,在一些實施例中,該LED具有自約460nm至約480nm,自約460nm至約500nm,自約460nm至約520nm,自約460nm至約540nm,自約460nm至約560nm,自約460nm至約580nm,自約460nm至約600nm,自約480nm至約500nm,自約480nm至約520nm,自約480nm至約540nm,自約480nm至約560nm,自約480nm至約580nm,自約480nm至約600nm,自約500nm至約520nm,自約500nm至約540nm,自約500nm至約560nm,自約500nm至約580nm,自約500nm至約600nm,約520nm至約540nm,約520nm至約560nm,自約520nm至約580nm,自約520nm至約600nm,自約540nm至約560nm,自約540nm至約580nm,約540nm至約600nm,自約560nm至約580nm,自約560nm至約600nm,或自約580nm至約610nm的發射範圍。
在一些實施例中,本發明任一實施例所述的LED,其發射範圍為約460nm至約480nm。在本發明任一該LEDs的一些實施例中,該LED是綠色LED,其發射範圍為約500nm至約520nm。在本發明任一該LEDs的一些實施例中,該LED是黃色LED,其發射範圍為約530nm至約550nm。在本發明任一該LEDs的一些實施例中,該LED是紅色LED,其發射範圍為約590nm至約610nm。在一些實施例中,該LED的使用壽命為 至少約10,000小時。例如,在一些實施例中,該LED具有至少約20,000小時,至少約30,000小時,至少約40,000小時,至少約50,000小時,至少約60,000小時,至少約70,000小時,至少約80,000小時,至少約90,000小時,或至少約100,000小時的使用壽命。
F.實施例
i.概述
由於碳的高穩定性,低成本,資源豐富及環境友好性的內在優點,碳量子點(CQDs)已成為具有應用前景的光電材料。然而,已廣泛接受的是,CQDs具有寬帶寬發射及較差的色純度,半峰全寬(FWHM)通常超過80nm,此從根本上限制其在以高色純度為先決條件的顯示技術中的應用。本文中,吾人首先證明來自專門設計的三角形CQDs(T-CQDs)的高色純度,窄帶寬(29nm的FWHM)及多色(自藍色至紅色)螢光發射,量子產率高達72%。詳細的結構及光學表徵以及詳細的理論計算表明,獨特的三角結構,分子純度及羥基鈍化的T-CQDs的結晶完整性是高色純度的關鍵。此外,基於窄帶寬發射T-CQDs(NBE-T-CQDs)的彩色電致發光二極體(LEDs)顯示出高色純度(30nm的FWHM)以及高性能,最高亮度為4762cd/m2,電流效率為5.11cd/A。此外,此LEDs顯示出卓越的穩定性。本發明所述的三角形碳量子點可用於開發適用於下一代顯示技術的高色純度及高性能的基於NBE-T-CQDs的LEDs。以下實施例用於說明但不限制本發明提供的組成、用途及方法。
本文中,吾人第一次報道合成的新型三角形CQDs(T-CQDs),其顯示出高色純度,窄帶寬(29nm的FWHM)及多色(自藍色至紅色)螢光發射,量子產率高達72%。藉由巧妙地選擇三重對稱的間苯三酚 (PG)作為反應物(三角前驅體)以及設計相鄰的活性-OH及-H基團用於六員環環化的三分子反應路線進行合成,得到目標高色純度窄帶寬發射T-CQDs(NBE-T-CQDs)(圖1a-e)。NBE-T-CQDs的三角形結構及窄帶寬發射之間的關係已得到嚴格的確定,其相關性表明三角形結構剛性顯著降低電子-聲子耦合作用,導致自由激子發射,其陷阱態可忽略不計。此藉由精細的理論計算得到證實,此等計算結果表明T-CQDs具有高度離域的電荷分佈及高度結構穩定性。基於NBE-T-CQDs的彩色LEDs具有高色純度(30nm FWHM)及高性能,最大亮度(Lmax)為4762cd/m2,電流效率(ηc)為5.11cd/A。此外,LEDs在放置及工作中均表現出卓越的穩定性。
實施例1:合成及光學性質
高色純度NBE-T-CQDs的合成:藉由溶劑熱處理溶解在乙醇溶液中的間苯三酚(PG)合成自藍色至紅色的高度可調且高色純度的NBE-T-CQDs。在用於合成藍色及綠色NBE-T-CQDs的典型製備工藝中:將PG(500mg)溶於乙醇(10mL)中。接著將超音波溶解10分鐘後的澄清前驅體溶液轉移至聚(四氟乙烯)(Teflon)內襯的高壓釜(25mL)中且在200℃加熱9及24小時。反應後,反應器藉由水或自然冷卻至室溫。使用二氯甲烷及甲醇的混合液作為溶離液,用矽膠管柱層析法純化後可獲得藍色及綠色NBE-T-CQDs。對於黃色及紅色NBE-T-CQDs:將PG(500mg)溶於乙醇(10mL)中,接著加入濃硫酸(2mL)作為催化劑。接著將澄清的前驅體溶液轉移至聚(四氟乙烯)(Teflon)內襯的高壓釜(25mL)中且在200℃下加熱2及5小時。反應後,反應器用水或自然冷卻至室溫,接著用乙醇稀釋溶液,用氫氧化鈉中和,離心收集上清液。最後,使用二氯甲烷及甲醇的混合液作為溶離液,用矽膠管柱層析法進行純化,可獲得該黃色及紅色NBE-T- CQDs。用於合成NBE-T-CQDs的溶劑乙醇亦可換成各種其他常見溶劑,例如甲醯胺,N,N-二甲基甲醯胺,水等。此外,在高沸點溶劑諸如甲醯胺,N,N-二甲基甲醯胺中高溫(150-220℃)回流PG,藉由優化反應條件亦可產生可調的螢光NBE-T-CQDs。
NBE-T-CQDs的合成,如圖1a所示,包括在200℃下對三重對稱的PG三角前驅體進行不同時間的溶劑熱處理,接著使用二氯甲烷及甲醇的混合液作為溶離劑,用矽膠管柱層析法進行純化。起始材料PG三角前驅體具有獨特的結構,單個分子中的三個間位具有被三個給電子羥基活化的三個高活性氫原子,這是合成NBE-T-CQDs的關鍵點。為了調節它們的發光顏色,在乙醇溶液中加入適量的濃硫酸作為催化劑以控制NBE-T-CQDs的大小(更多細節參見方法部分)。NBE-T-CQDs的典型的球差校正的高角環形暗場掃描透射電子顯微鏡(HAADF-STEM)圖像(圖1b-e)清楚地顯示其具有明顯的三角形形狀的幾乎無缺陷的石墨烯晶體結構。據吾人所知,此為第一次獲得碳材料的精細球差校正HAADF-STEM圖像。自NBE-T-CQDs溶液中觀察到藍色(B),綠色(G),黃色(Y)及紅色(R)的明亮多色發光,其尺寸自1.9nm逐漸增加,分別增加至2.4nm、3.0nm及3.9nm(圖1f),如量子限域效應7,16-18所預期的那樣。值得注意的是,即使在日光激發下,亦可觀察到自藍色至紅色的可調節發光顏色(圖1f),此為其強發射性質的明顯標誌。在UV光照射下(365nm雷射激發,圖1g),發光顏色更亮。
量子產量(QY)量測:絕對法,使用配備有120mm積分球的Varian FLR025光譜儀來確定NBE-T-CQDs的QY。吾人引導測試光自FLR025光譜儀射向球體。QY由NBE-T-CQDs發射及吸收的光子之間的比 率決定。將乙醇溶液置於具有10mm光程的紫外石英比色皿中以量測其QY,而將裝在石英比色皿中的溶劑乙醇用作參比量測的空白樣品。與單色器、探測器、球體塗層及光學元件對波長的靈敏度有關的光譜校正曲線由Edinburgh Instruments公司提供。
飛秒瞬態吸收裝置:再生放大鈦:藍寶石雷射系統(Coherent Libra,50fs,1kHz)提供基頻光源。藉由將一部分基頻光聚焦至BBO晶體中來產生泵浦脈衝(400nm)。為了避免旋轉弛豫效應對動力學的影響,泵浦脈衝的極化由去極化片隨機化。其他的基頻脈衝提供寬帶探測脈衝(白光連續譜),該寬帶探測脈衝是藉由將800nm基頻光聚焦至藍寶石片(3mm)上產生的。泵浦光束及探測光束在600μm及150μm的交叉區域重疊在樣品上。穿過樣品後,探頭脈衝聚焦至與光譜儀(AvaSpec-1650F)結合的光纖中。400nm激發脈衝的能量藉由中性密度濾光片調整至約1μJ/脈衝。泵浦脈衝在500Hz下斬波以獲得泵浦(信號)及未泵浦(參比)探測光譜,且可藉由處理其獲得△OD光譜。該溶液置於2mm光程的石英比色皿中。藉由量測溶劑的交叉調製來確定探測光中的儀器響應函數(100fs)及時間啁啾(chirp)。藉由自製啁啾程序校正群速色散效應。對於每次量測,重複三次泵浦探測延遲掃描以給出平均實驗資料。
紫外光電子能譜量測:使用hv=21.22eV,He I源(AXIS ULTRA DLD,Kratos)進行UPS量測。分析室真空度為3.0×10-8Torr,量測的偏壓為-9V。在ITO基板上旋塗製備NBE-T-CQDs薄膜,用於UPS量測。
該NBE-T-CQDs的最重要、最顯著的特徵是極窄的激子吸收及發射峰,此使得其與所有其他先前報道的CQDs不同。圖1h顯示NBE- T-CQDs的吸收光譜,具有以460nm(B-),498nm(G-),521nm(Y-)及582nm(R-NBE-T-CQDs)為中心的強而窄的激子吸收峰,此與之前報道的具有超寬吸收帶的CQDs有很大不同7-18,23,26。NBE-T-CQDs的螢光光譜(圖1i)亦顯示以472nm(B-),507nm(G-),538nm(Y-)及598nm(R-NBE-T-CQDs)為中心的尖銳的激子發射峰,分別具有僅30nm、29nm、30nm及30nm的極窄的FWHM值,遠遠優於先前報道的寬帶寬螢光光譜(FWHM>80nm)的CQDs,甚至優於最佳的基於Cd2+/Pb2+的QDs(FWHM<40nm)7-18,23,26。光致發光(PL)光譜中較長波處的弱的肩發射峰可能歸因於NBE-T-CQDs的激基締合物發射,此在高度離域的多環芳烴體系中經常出現34,35。此外,該NBE-T-CQDs亦分別顯示出12nm(B-)、9nm(G-)、17nm(Y-)及16nm(R-)NBE-T-CQDs的超小Stokes位移(圖6-7),遠小於那些常見的CQDs(Stokes位移>80nm)15-18,表明NBE-T-CQDs中光學躍遷來自於帶邊直接激子複合以及弱的電子-聲子耦合作用。NBE-T-CQDs非常窄的發射峰與大範圍內的激發波長無關(圖8),且最大激發波長與相應的吸收峰波長一致(圖9)。此等結果進一步證實NBE-T-CQDs的PL發光源於直接激子複合。此與傳統的CQDs極不同,後者的激發依賴性螢光主要受表面缺陷的影響15-18。逐漸紅移的激子發射峰以及第一激子吸收峰與NBE-T-CQDs增加的尺寸極一致(圖10),此為極明顯之NBE-T-CQDs的帶隙躍遷特徵。
為了更深入地瞭解激子複合動力學,量測時間分辨PL光譜,結果如圖2a所示,其證明B-,G-,Y-及R-NBE-T-CQDs分別具有約7.3ns、8.3ns、7.0ns及6.6ns的螢光壽命,呈單指數衰減(圖11)。單指數衰減特性表明激子高度穩定,輻射衰減極純淨,具有最小的非輻射貢獻 17,18,此有利於高效螢光發射,且與彼等報道之具有多指數衰減的CQDs再次有顯著不同10,30-33。對於B-,G-,Y-及R-NBE-T-CQDs,高色純度NBE-T-CQDs的絕對QY分別被確定為66%,72%,62%及54%,屬於迄今為止報導的CQD的最高值之一。更重要的是,該NBE-T-CQDs亦顯示罕見的自藍色至紅色(FWHM為29nm)的強烈的高色純度雙光子螢光(TPF)(圖12-18),此可能使其能夠用作高性能頻率上轉換可調節雷射器的優異光學增益介質36
使用公式Eg opt=1240/λedge進一步計算NBE-T-CQDs的帶隙能量,其中λedge是在長波方向上的第一激子吸收峰的起始值。所計算的帶隙能量自2.63eV逐漸下降至2.07eV,其中激子發射峰值自472nm紅移至598nm,且尺寸自1.9nm增加至3.9nm(圖19),進一步顯示明顯的帶隙能量的尺寸依賴性18。同時,藉由紫外光電子能譜(UPS)確定之NBE-T-CQDs自藍色至紅色的逐漸上移的最高佔據分子軌道(HOMO)位置(自-5.18eV至-4.92eV)及下移的最低未占分子軌道(LUMO)位置(自-2.55eV至-2.85eV)(圖20-22,表1),直接顯示量子限域效應支配NBE-T-CQDs的電子及光學性質。表1顯示NBE-T-CQDs的電子軌道能級的估值。表2顯示計算的不同類型的CQDs的發射波長(nm),FWHM(nm),HOMO(eV),LUMO(eV)及帶隙能量(eV)。
Figure 108100040-A0305-02-0058-55
Figure 108100040-A0305-02-0059-56
為了自光生電荷的轉移及複合動力學的角度進一步詳細研究NBE-T-CQDs的明亮且高色純度的激子發射,在400nm處激發進行飛秒瞬態吸收(fs-TA)光譜量測。圖2b中用偽3D描繪B-NBE-T-CQDs的TA光譜,探測位於430-710nm範圍內,掃描延遲時間自0.1ps至2ns。根據穩態吸收及PL光譜,自430至550nm的負(藍)特徵對應於基態漂白(GSB)及受激發射(SE),自600nm至710nm的相對較弱的正(紅)特徵對應於激發態吸收(ESA)。不同時間延遲的TA光譜如圖2c所示。中心在466nm及524nm的SE負峰在第一皮秒內逐漸增加。圖23顯示在不同波長下隨時間變化的動力學軌跡。為了揭示B-NBE-T-CQDs激發載流子的詳細弛豫通道,吾人對TA資料進行全局分析,且得到四種不同的衰減組分。載流子的四個擬合壽命分別為0.54±0.01ps,31.5±0.8ps,77±2ps及7.3±0.08ns。擬合得到的衰減相關差式光譜(DADS)顯示在圖2d中。可以看出,在第一個壽命期間,GSB衰減伴隨著SE的增加,接著SE的信號在第二個壽命內繼續增加,但是在第三及第四個壽命期間,SE信號衰減。ESA附近較弱的DADS被放大以便更清楚地顯示不同組分的變化。為了分析四個不同的載流子弛豫通道,不同波長的DADS被歸一化以評估衰減動力學的比例(圖24)。可 清楚地觀察到具有不同弛豫動力學的不同區域如下:(1)在~468nm處第一及第二組分的百分比均為零;(2)在~506及~605nm處第二組分的百分比為零;(3)在~598nm處第四組分的百分比為零;(4)在~590nm及632nm至700nm處第三組分的百分比為零。在不同區域及DADS的基礎上,吾人可將這四個組分歸入相應的弛豫通道。由於泵浦(400nm)的能量高於B-NBE-T-CQDs的帶隙,sp2簇中的激發載流子在激發後具有過剩能量,且在前幾十飛秒內將經歷庫侖誘導的熱化,比吾人的儀器響應時間(~100fs)短37。熱載流子將藉由光頻聲子散射(0.54ps)38及聲頻聲子散射(31.5ps)39將多餘的能量釋放至周圍環境中。部分冷卻的載流子,其動力學分佈在約598nm,將在77ps內經歷無輻射躍遷至基態。其餘部分將藉由電子及電洞複合發射螢光(7.3ns),此部分之ESA主要分佈在590nm及632-700nm處。有趣的是,NBE-T-CQDs的強發射在此處直接由發射組分的振幅遠高於非輻射衰變組分的振幅所論證,後者僅占約15-20%的小部分(圖2d,圖24)。此外,與通常造成PL峰加寬的複雜無輻射激發態弛豫過程相反,吾人自TA光譜獲得的非常簡單的激發態弛豫通道合理地解釋NBE-T-CQDs的高色純度激子發射40,41
為了獲得高色純度NBE-T-CQDs中的光生激子更多固有的特性,亦測試溫度依賴之PL光譜,且分析由此產生之發射變窄,此一直用於評估各種帶隙發射無機量子點的電子-聲子耦合作用的機理42,43。隨著溫度自295K降低至85K,NBE-T-CQDs的所有PL峰顯示出連續的變窄及藍移(圖2e,圖25-26)。值得注意的是,在85K獲得的PL光譜顯示出非常窄的FWHM,B-,G-,Y-及R-NBE-T-CQDs分別為16nm、11nm、16nm及9nm(圖2f),表明窄發射歸因於具有可忽略的陷阱態的最低態自由激子 發射。如圖2g所示,FWHM自164.7meV(30nm)降低至95.4meV(16nm),且隨著溫度自295K降低至85K,B-NBE-T-CQDs的發射峰值能量朝著更高的能量位移,自2.627eV移動至2.725eV。傳統的經驗Varshni模型很好地描述NBE-T-CQDs隨著溫度降低而變窄的FWHM及藍移的發射峰,在較低溫度下由於受限的結構振動及扭曲而導致的電子-聲子耦合作用減弱可解釋這一點42-44。已證明,由結構振動及扭曲引起的電子-聲子耦合作用在決定無機量子點PL光譜的FWHM中起主導作用42,43。因此,有理由得出結論,溫度依賴的PL光譜顯示的電子-聲子耦合作用顯著降低導致NBE-T-CQDs的高色純度及自由激子發射。
除了溫度依賴之PL峰值波長及FWHM以外,NBE-T-CQDs的PL積分強度隨著溫度的升高而略微降低(圖2h),此可歸因於熱激發激子解離及非輻射捕獲45。重要的是,隨著溫度自175K升高至295K,NBE-T-CQDs的PL積分強度的熱猝滅小於20%,表明高的熱穩定性及最小的非輻射複合中心或缺陷。為了提取激子結合能的重要物理參數,吾人在圖2h中繪製PL積分發射強度隨溫度變化(175-295K)的曲線。曲線可使用以下公式進行擬合:
Figure 108100040-A0305-02-0061-57
其中I0是0K處的強度,Eb是激子結合能,且kB是玻爾茲曼常數。根據擬合分析,NBE-T-CQDs具有相對較大的激子結合能,B-,G-,Y-及R-NBE-T-CQDs分別為139.2meV、128.2meV、110.8meV、100.6meV(圖27-30),此甚至比許多無機量子點更大,因此有助於NBE-T-CQDs的高色純度46。據吾人所知,此為第一次獲得CQDs激子結合能的重 要物理參數。此外,除了由溫度依賴的PL光譜得出的高熱穩定性之外,在連續10小時的紫外燈輻射下,NBE-T-CQDs亦表現出比保護最好的核殼無機量子點(如CdZnS @ ZnS)及有機染料(如螢光素)更強的光穩定性(圖31),使其在LED應用中具有更大的競爭優勢。
實施例2:結構表徵
表徵方法:使用JEOL JEM 2100透射電子顯微鏡(TEM)研究NBE-T-CQDs之形貌。使用Cu-Ka輻射獲得X射線繞射(XRD,PANalytical X'Pert Pro MPD)圖像。在UV-2450分光光度計上記錄吸收光譜。在狹縫寬度為2.5-2.5nm的PerkinElmer-LS55螢光光譜儀上量測NBE-T-CQDs的螢光光譜。用相機(Nikon,D7200)在365nm激發的紫外光下(UV光:SPECTROLINE,ENF-280C/FBE,8W)拍攝照片。FT-IR光譜使用Nicolet 380光譜儀量測。使用於自VG Scientific的ESCALab220i-XL電子光譜儀,使用300W Al Ka輻射進行X射線光電子能譜(XPS)。使用雷射共聚焦顯微拉曼光譜儀(Labram Aramis)量測拉曼光譜。使用液氮冷卻器在85-295K的溫度範圍內進行低溫依賴的PL光譜量測。在帶有用於激發的Ti:藍寶石飛秒雷射器(Spitfire,Spectra-Physics,100fs,80MHz,880nm)的光纖光譜儀(Ocean Optics USB2000 CCD)上記錄裝在1cm螢光比色皿中的NBE-T-CQDs乙醇溶液的TPF光譜。
STEM-HAADF圖像表徵:使用JEM-ARM200F透射電子顯微鏡(TEM)研究NBE-T-CQDs的STEM-HAADF圖像。使用由400目銅網格(產品號01824,購自北京新興布拉姆科技有限公司)蕾絲保持的超薄碳膜來分散NBE-T-CQDs。將純化的稀釋的NBE-T-CQDs乙醇溶液(5微升)滴在超薄碳膜的表面上,接著在室溫下乾燥。最後,NBE-T-CQDs樣 品的STEM-HAADF圖像在200KV下量測。
進行詳細的結構表徵以進一步闡明NBE-T-CQDs的高色純度且揭示其與結構的內在關係。應再次強調的是NBE-T-CQDs的球差校正HAADF-STEM圖像是首次獲得的,此清楚地顯示NBE-T-CQDs的高度結晶三角形結構(圖3a)。NBE-T-CQDs的廣域TEM圖像均顯示具有明顯的如白色輪廓線所突出的高結晶三角形結構的奈米顆粒的窄粒徑分佈(圖3b,圖32)。HRTEM圖像的六重對稱快速傅立葉變換(FFT)圖案以及與(100)晶面間距對應的0.21nm晶格條紋進一步證明NBE-T-CQDs的幾乎無缺陷的石墨烯晶體結構(圖33)3,7,10,18。三角形CQDs自1.9nm至3.9nm逐漸增加的平均尺寸與從藍色至紅色的紅移發光顏色極一致,表現出量子限域效應18。NBE-T-CQDs的X射線粉末繞射(XRD)圖顯示中心在24°左右的窄(002)峰(圖3c),與先前報道的CQDs的超寬(002)峰9-11,15-18形成對照,此證實具有高結晶度的NBE-T-CQDs的石墨烯結構。NBE-T-CQDs的高度石墨化反映在其拉曼光譜中(圖34),其中1615cm-1處的結晶G帶比1380cm-1處的無序D帶強得多,具有約為1.5-1.8的大的G比D強度比(IG/ID),表明NBE-T-CQDs高質量的石墨烯結構,與HAADF-STEM及HRTEM圖像所確定的高結晶度石墨烯結構極一致。就吾人所知,NBE-T-CQDs的IG/ID值屬於迄今為止報導過的CQDs18中的最大值之一。在1H-核磁共振(NMR)譜(丙酮-d6,ppm)(圖3d,圖35-37)中,除了在7-8ppm範圍內偵測到明顯的芳族氫信號之外,亦觀察到羥基的活性氫信號,具有圖3d中黑色箭頭所示之寬峰47。此外,NBE-T-CQDs的13C-NMR譜(甲醇-d4,ppm)(圖3e,圖38-41)進一步證實在邊緣位點鈍化有純給電子羥基。明顯觀察到的155-170ppm範圍內的共振信號表明在NBE-T-CQDs的邊緣位點與羥基鍵合的 sp2碳原子47。另外,在13C-NMR光譜中115-140ppm範圍內出現的許多信號,與PG相比(圖38),進一步表明在合成NBE-T-CQDs期間形成完整的sp2結構簇。注意,具有不同發光顏色的NBE-T-CQDs均顯示出類似的傅立葉變換紅外(FT-IR)光譜,證明其具有類似的化學組成。此外,在3435cm-1、1630cm-1及1100cm-1分別觀察到NBE-T-CQDs的特徵,O-H,C=C及C-O的強伸縮振動帶(圖42)。X射線光電子能譜(XPS)量測進一步證實FT-IR資料且證明NBE-T-CQDs均具有相同的元素組成(即C及O)(圖43)。C1s(圖3g,圖44)及O1s(圖45)的高分辨率XPS譜表明其含有相同的C=C及O-H化學鍵。相似的結構及化學成分表明,NBE-T-CQDs的光學性質受其量子尺寸的限制,此由於量子限域效應18
總而言之,顯然,藉由給定的反應條件與精細的分離及純化,製備出的NBE-T-CQDs為高度結晶的且邊緣位點鈍化有純給電子羥基官的獨特三角形結構。值得注意的是,NBE-T-CQDs幾乎未顯示出表面缺陷,此由於高度結晶的結構以及不存在吸電子的含氧基團,諸如羧基,羰基及環氧基團,其可作為傳統CQDs中經常觀察到的表面缺陷及陷阱位點。詳細的光學表徵所證明的急劇降低的電子-聲子耦合作用,加上NBE-T-CQDs獨特的三角形結構所導致的無表面缺陷,產生強烈的高色純度激子發射27-33
實施例3:理論研究
理論計算:使用Gaussian09軟件包中的時間密度泛函理論(TDDFT)方法來計算不同類型的模型CQDs的所有光學性質。在所有計算中選擇6-311G(d)基組與泛函B3LYP結合(B3LYP/6-311G(d))。在真空中優化第一激發態以計算發射能量(波長),即基態與第一激發態之間的能量 差。
器件的製備及表徵:在有機溶劑(丙酮及異丙醇)中用超音波清洗氧化銦錫(ITO)塗覆的玻璃基板,在去離子水中沖洗,接著在150℃的烘箱中乾燥10分鐘。用UV-臭氧處理清潔基板以使ITO表面富含氧從而增加ITO功函數。將聚(3,4-亞乙基二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)電洞注入層(HIL)以2000rpm的轉速在ITO上旋塗35秒,厚度約為30nm,接著在烤箱中150℃退火15分鐘。隨後,將NBE-T-CQDs混合聚(N-乙烯基咔唑)(PVK)的鄰二氯苯及乙醇混合液以3000rpm的速度在PEDOT:PSS膜的表面上旋塗45秒形成發射層,接著在80℃的熱板上烘烤30分鐘以形成基於NBE-T-CQDs的單色LEDs的活性區域。最後,將基板轉移至真空室中,且在3×10-4Pa的基準壓力下熱沈積30nm厚的1,3,5-三(N-苯基苯并咪唑-2-基)苯(TPBI)電子傳輸層(ETL)。之後,使用寬度為2mm的蔭罩沈積20nm厚的Ca及100nm厚的Al陰極。因此,器件的有效面積為4平方毫米。TPBI及Ca/Al的熱沈積速率分別為1、1及3Å s-1。PEDOT:PSS被用作陽極上的緩衝層,主要用於將陽極功函數自4.7(ITO)增加至5.0eV,且減小陽極的表面粗糙度以獲得器件上穩定且無針孔的電傳導。由於TPBI具有良好的電子傳輸能力及其與活性發射層的界面相容性,所以選擇TPBI作為ETL。使用Dektak XT(Bruker)表面光度儀及橢圓偏振光譜儀(Suntech)量測膜的厚度。使用計算機控制的Keithley 236 SMU及Keithley 200萬用錶加上校準的Si光電二極體量測亮度-電流-電壓(L-I-V)特性。電致發光(EL)光譜用Ocean Optics 2000光譜儀量測,其連接350至1100nm的線陣電荷耦合器(CCD)陣列探測器。
不受任何理論的束縛,在一些實施例中,吾人提出的在邊 緣位點用純電子給體羥基官能化的獨特的高度結晶的三角形結構是NBE-T-CQDs高色純度激子發射的原因,藉由DFT理論計算得到進一步證實。由4個、10個及19個稠合苯環組成的用給電子羥基(T-CQDs-OH)(圖4a,e,i)或吸電子羧基(T-CQDs-COOH)(圖4c,g,k)官能化的或無官能化(T-CQDs)(圖4b,f,j)的三角形結構的以及由4個、10個及20個稠合苯環組成的方形結構(S-CQDs)(圖4d,h,l)的不同種類的模型CQDs,均計算用於比較(圖46-49)。值得注意的是,與T-CQDs-COOH及S-CQDs相比,T-CQDs-OH及T-CQDs顯示出不同的電荷離域及光學性質。計算的分子軌道證明與T-CQDs-COOH及S-CQDs相比,NBE-T-CQDs-OH及T-CQDs的高離域電荷(圖4m-x,圖50-56)。對於不同類型的CQDs的光學性質,除了發射峰值及能級(如HOMO,LUMO及帶隙能量)的差異(圖4m-x,圖50-56)之外,T-CQDs-OH的PL光譜的FWHM略小於T-CQDs,但比T-CQDs-COOH及S-CQDs小得多。從基本層面上看,T-CQDs-OH及T-CQDs顯示出遠高於T-CQDs-COOH及S-CQDs的發光色純度是一種普遍規律,在所有此等不同類型的由不同數量的稠合苯環組成的模型CQDs中均觀察到(圖57-60)。舉例而言,由19個稠合苯環組成的T-CQDs-OH-3的PL光譜顯示出64nm的窄FWHM(圖4o),其略小於T-CQDs-3(FWHM:73nm)(圖4r),但更小於T-CQDs-COOH-3(FWHM:135nm)(圖4u)及S-CQDs-3(FWHM:149nm)(圖4x)的PL光譜的FWHM的一半。更重要的是,與T-CQDs及S-CQDs相比,T-CQDs-OH熱力學穩定性的增加亦藉由理論計算得到證實(表3),此直接顯示T-CQDs-OH突出的結構穩定性。
Figure 108100040-A0305-02-0067-58
此等精細的理論計算表明,三角形結構及給電子羥基在決定NBE-T-CQDs的高色純度方面起重要作用,可詳細解釋如下:(1)NBE-T-CQDs的獨特三角形結構的高度離域電荷及出色的結構穩定性能夠導致電子-聲子耦合作用的顯著降低,且因此導致NBE-T-CQDs激子發射的色純度增加。(2)此外,NBE-T-CQDs邊緣位點的純給電子羥基亦可大大增加π電子雲密度且促進受限電子及電洞的純輻射複合。相反,sp2-雜化碳上的吸電子羧基可引起顯著的局部扭曲且同時成為表面缺陷,此可捕獲載流子且最終導致CQDs的PL光譜的FWHM顯著增加(圖4s-u,圖58-60)。綜上所述,理論研究表明,在邊緣位點用純給電子羥基基團官能化的獨特的高度結晶的三角形結構顯示出高度離域的電荷,出色的結構穩定性,且因此顯著降低電子-聲子耦合作用,此為造成NBE-T-CQDs高色純度的激子發射的原因。
實施例4:LED性能
NBE-T-CQDs的明亮及高色純度激子發射促使吾人開發其在LEDs中的應用,用於發展下一代顯示技術。如圖5a所示,以NBE-T-CQDs混合聚(N-乙烯基咔唑)(PVK)作為活性發射層,使用常規簡單的結構製成自藍色至紅色的LEDs。PVK因其優異的電洞傳輸性能及良好的成 膜性能48,選為主體材料。原子力顯微鏡(AFM)量測顯示NBE-T-CQDs混合PVK膜具有光滑且均勻的表面覆蓋度,其具有1.31-1.80nm的粗糙度(圖61)。B-,G-,Y-及R-NBE-T-CQDs混合PVK薄膜的QY分別確定為約56%,62%,48%及42%。器件結構由下至上包含ITO玻璃基板陽極,聚(3,4-亞乙基二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)電洞注入層(HIL),活性NBE-T-CQD:PVK混合發射層,1,3,5-三(N-苯基苯并咪唑-2-基)苯(TPBI)電子傳輸層(ETL)及Ca/Al雙層陰極。如LED器件的橫截面TEM圖像及EDX圖所確定,LED器件中的PEDOT:PSS,PVK:NBE-T-CQDs及TPBI層的厚度分別為約24-28nm、19-22nm及30-32nm(圖62-63)。如在圖5b所示的基於NBE-T-CQDs的LEDs的能級圖中所觀察到的,NBE-T-CQDs的HOMO及LUMO能級位於PVK的HOMO及LUMO能級內,且自兩個電極向PVK主體注入電荷的能壘小48。然後,電子及電洞可有效地自PVK轉移至活性層中的NBE-T-CQDs發射層。轉移的電子及電洞可在NBE-T-CQDs中發生輻射複合,產生電致發光(EL)48
基於NBE-T-CQDs的LEDs的EL光譜在圖5c-f中給出。其分別在476nm、510nm、540nm及602nm處呈現峰值波長,且與溶液中量測的PL發射峰值很一致,表明NBE-T-CQDs在PVK主體材料中具有良好的分散性(圖64-65)。更重要的是,基於NBE-T-CQDs的LEDs顯示出高色純度的EL發光,其B-,G-,Y-及R-LEDs的FWHM分別為30nm、32nm、38nm及39nm,甚至可與高度發展的高色純度無機量子點LEDs相媲美49,50。帶有北京師範大學(BNU)標誌的工作照片(圖5c-f,圖65的插圖)顯示自藍色、綠色、黃色至紅色的基於NBE-T-CQDs的LEDs的明亮、均勻及無缺陷表面的高色純度EL發光的特寫視圖。明顯不依賴於電壓的 發光顏色(圖5c-f)表明LEDs高度的顏色穩定性,此對於顯示技術而言具有重要意義。據吾人所知,此為首次報道以NBE-T-CQDs混合PVK作為活性發射層,具有穩定的自藍色至紅色發光顏色的高色純度的基於CQDs的LEDs(FWHM<40nm)製備。
基於NBE-T-CQDs的LEDs的典型亮度及電流密度曲線隨外加電壓的變化在圖5g-j及圖66中示出。表4顯示自藍色至紅色的基於NBE-T-CQDs的高色純度LEDs的性能。
Figure 108100040-A0305-02-0069-59
Von被定義為施加至LEDs上產生1cd/m2亮度的偏壓,LEDs自藍色至紅色,Von自4.3V降低至3.1V,此比先前報導的基於CQDs的LEDs低得多(參見例如,Yuan等人,Adv.Mater.29,1604436(2017)及Kim等人,Sci.Rep.5,11032(2015)),原因在於相關材料的能級匹配(圖5b)。對於綠色LEDs(G-LEDs),Lmax及ηc分別達到約4762cd/m2及5.1cd/A(圖5h,k),此為至今所報導的基於CQDs的LEDs的最佳性能,比吾人先前報導的直接使用帶隙螢光CQDs作為活性發射層而不使用PVK主體的G-LEDs高50及110倍。採用相同器件結構製備的基於NBE-T-CQDs的其他彩色高色純度LEDs亦表現出高性能,對於B-,Y-及R-LEDs,Lmax分別達到1882cd/m2、2784cd/m2及2344cd/m2,相應的ηc分別為1.22 cd/A、2.31cd/A及1.73cd/A(圖5g,i-k,圖67),此在某種程度上與基於QDs的LEDs相當(表5)。
Figure 108100040-A0305-02-0070-60
除了NBE-T-CQDs固有的明亮螢光之外,吾人LEDs顯著性能亦可歸因於電洞傳輸主體材料PVK對發射層中的電荷的優化及平衡。NBE-T-CQDs螢光具有超穩定特徵,基於NBE-T-CQDs的高色純度LEDs顯示出卓越的穩定性。工作40小時後,器件保持超過85%的初始亮度(L0:500cd/m2)(圖51)而未降低高色純度(圖68)。此外,LEDs在極高電壓下亦表現出高穩定性,進一步證明基於NBE-T-CQDs的LEDs用於開發下一代顯示技術的巨大潛力(圖69)。
以下提供的實施例及製劑進一步說明及舉例說明本發明的化合物及製備此等化合物的方法。應理解,本發明的範圍不受以下實施例及製劑範圍的任何限制。在以下實施例中,除非另有說明,具有單一對掌性中心的分子以外消旋混合物的形式存在。除非另有說明,彼等具有兩個或更多個對掌性中心的分子以非對映異構體的外消旋混合物形式存在。單一對映異構體/非對映異構體可藉由熟習此項技術者已知的方法獲得。
本發明提供高色純度的自藍色至紅色,QY高達72%的NBE-T-CQDs(29nm的FWHM)的第一次顛覆性證明。藉由輕鬆地控制三重對稱的PG三角前驅體的稠合及碳化來製備NBE-T-CQDs,PG三角前驅體具有獨特的結構,在一個分子內由三個給電子羥基活化的三個間位上具有三個高反應性氫原子。詳細的結構及光學表徵以及精細的理論計算表明,獨特的剛性三角形結構,分子純度,晶體完整性以及最重要的由羥基鈍化的NBE-T-CQDs產生的弱電子-聲子耦合作用,是獲得高色純度的關鍵點。基於NBE-T-CQDs的彩色LED表現出高色純度(FWHM為30nm),Lmax為4762cd/m2,ηc為5.11cd/A,與充分發展的基於QDs的LEDs相媲美。而且,本發明的LEDs顯示出卓越的穩定性。此項工作將激發未來進一步研究,例如優化器件結構,電子電洞的注入及平衡,從而大大提高基於NBE-T-CQDs的高色純度LEDs性能,成就新一代顯示技術。
參考文獻:
1. Lim, S. Y. et al. Carbon quantum dots and their applications. Chem. Soc. Rev. 44, 362-381 (2015).
2. Ding, C. et al. Functional surface engineering of C-Dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 47, 20- 30 (2014).
3. Yuan, F. L. et al. Shining carbon dots: Synthesis and biomedical and optoelectronic applications. Nano Today 11, 565-586 (2016).
4. Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970-974 (2015).
5. Hola, K. et al. Carbon dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 9, 590-603 (2014).
6. Choi, H. et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices. Nat. Photonics 7, 732-738 (2013).
7. Wang, L. et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat. Commun. 5, 5357 (2014).
8. Sun, Y. -P. et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J. Am. Chem. Soc. 128, 7756-7757 (2006).
9. Zhang, M. et al. Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J. Mater. Chem. 22, 7461-7467 (2012).
10. Yuan, F. L. et al. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 7, 11727-11733 (2015).
11. Fan, Z. T. et al. pH-Responsive fluorescent graphene quantum dots for fluorescence-guided cancer surgery and diagnosis. Nanoscale 9, 4928-4933 (2017).
12. Hutton, G. A. M. et al. Carbon Dots as Versatile Photosensitizers for Solar-Driven Catalysis with Redox Enzymes. J. Am. Chem. Soc. 138, 16722-16730 (2016).
13. Jiang, K. et al. Triple-Mode Emission of Carbon Dots: Applications for Advanced Anti-Counterfeiting. Angew. Chem. Int. Ed. 55, 7231-7235 (2016).
14. Martindale, B. C. M. et al. Clean Donor Oxidation Enhances the H-2 Evolution Activity of a Carbon Quantum Dot-Molecular Catalyst Photosystem. Angew. Chem. Int. Ed. 55, 9402-9406 (2016).
15. Wang, Z. F. et al. 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes. Adv. Mater. 29, 1702910 (2017).
16. Jiang, K. et al. Red, Green, and Blue Luminescence by Carbon Dots: Full-Color Emission Tuning and Multicolor Cellular Imaging. Angew. Chem. Int. Ed. 54, 5360-5363 (2015).
17. Qu, S. N. et al. Toward Efficient Orange Emissive Carbon Nanodots through Conjugated sp2-Domain Controlling and Surface Charges Engineering. Adv. Mater. 28, 3516-3521 (2016).
18. Yuan, F. L. et al. Bright Multicolor Bandgap Fluorescent Carbon Quantum Dots for Electroluminescent Light-Emitting Diodes. Adv. Mater. 29, 1604436 (2017).
19. Zhu, Z. et al. Efficiency Enhancement of Perovskite Solar Cells through Fast Electron Extraction: The Role of Graphene Quantum Dots. J. Am. Chem. Soc. 136, 3760-3763 (2014).
20. Ye, K. -H. et al. Carbon quantum dots as a visible light sensitizer to significantly increase the solar water splitting performance of bismuth vanadate photoanodes. Energy Environ. Sci. 5, 772-779 (2017).
21. Tang, Q. W. et al. Rapid Conversion from Carbohydrates to Large-Scale Carbon Quantum Dots for All-Weather Solar Cells. ACS Nano 11, 1540-1547 (2017).
22. Li, H. et al. Carbon Quantum Dots/TiOx Electron Transport Layer Boosts Efficiency of Planar Heterojunction Perovskite Solar Cells to 19. Nano Lett. 17, 2328-2335 (2017).
23 Lu, S. Y. et al. Near-Infrared Photoluminescent Polymer-Carbon Nanodots with Two-Photon Fluorescence. Adv. Mater. 29, 1603443 (2017).
24. Dai, X. L. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Science 515, 96-99 (2014).
25. Li, G. G. et al. Recent progress in low-voltage cathodoluminescent materials: synthesis, improvement and emission properties. Chem. Soc. Rev. 43, 7099-7131 (2014).
26. Li, H. et al. Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano 10, 484-491 (2016).
27. Cortecchia, D. et al. Broadband Emission in Two-Dimensional Hybrid Perovskites: The Role of Structural Deformation. J. Am. Chem. Soc. 139, 39-42 (2017).
28. Emma, R. D. et al. Intrinsic White-Light Emission from Layered Hybrid Perovskites. J. Am. Chem. Soc. 136, 13154-13157 (2014).
29. Yuan, Z. et al. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nat. Commun. 8, 14051 (2017).
30. Khan, S. et al. Time-Resolved Emission Reveals Ensemble of Emissive States as the Origin of Multicolor Fluorescence in Carbon Dots. Nano Lett. 15, 8300-8305 (2015).
31. Bao, L. et al. Photoluminescence-Tunable Carbon Nanodots: Surface-State Energy-Gap Tuning. Adv. Mater. 27, 1663-1667 (2015).
32. Pan, L. L. et al. Truly Fluorescent Excitation-Dependent Carbon Dots and Their Applications in Multicolor Cellular Imaging and Multidimensional Sensing. Adv. Mater. 27, 7782-7787 (2015).
33. Hu, S. L. et al. Tunable Photoluminescence Across the Entire Visible Spectrum from Carbon Dots Excited by White Light. Angew. Chem. Int. Ed. 54, 2970-2974 (2015).
34. Povie, G. et al. Synthesis of a carbon nanobelt. Science 356, 172-175 (2017).
35. Fleetham, T. et al. Phosphorescent Pt(II) and Pd(II) Complexes for Efficient, High-Color-Quality, and Stable OLEDs. Adv. Mater. 29, 1601861 (2017).
36. Xu, Y. Q. et al. Two-Photon-Pumped Perovskite Semiconductor Nanocrystal Lasers. J. Am. Chem. Soc. 138, 3761-3768 (2016).
37. George, P. A. et al. Ultrafast Optical-Pump Terahertz-Probe Spectroscopy of the Carrier Relaxation and Recombination Dynamics in Epitaxial Graphene. Nano Lett. 8, 4248-4251 (2008).
38. Gao, B. et al. Studies of Intrinsic Hot Phonon Dynamics in Suspended Graphene by Transient Absorption Microscopy. Nano Lett. 11, 3184-3189 (2011).
39. Wen, X. M. et al. Intrinsic and Extrinsic Fluorescence in Carbon Nanodots: Ultrafast Time-Resolved Fluorescence and Carrier Dynamics. Adv. Opt. Mater. 1, 173-178 (2013).
40. Li, Q. et al. Silicon Nanoparticles with Surface Nitrogen: 90% Quantum Yield with Narrow Luminescence Bandwidth and the Ligand Structure Based Energy Law. ACS Nano 10, 8385-8393 (2016).
41. Sui, L. Z. et al. Ultrafast carrier dynamics of carbon nanodots in different pH environments. Phys. Chem. Chem. Phys. 18, 3838-3845 (2016).
42. Adam, D. W. et al. Electron-phonon coupling in hybrid lead halide perovskites. Nat. Commun. 7, 11755 (2016).
43. Balan, A. D. et al. Effect of Thermal Fluctuations on the Radiative Rate in Core/Shell Quantum Dots. Nano Lett. 17, 1629-1636 (2017).
44. Villegas, C. E. P. et al. Anomalous Temperature Dependence of the Band Gap in Black Phosphorus. Nano Lett. 16, 5095-5101 (2016).
45. Wang, Y. et al. Blue Liquid Lasers from Solution of CdZnS/ZnS Ternary Alloy Quantum Dots with Quasi-Continuous Pumping. Adv. Mater. 27, 169-175 (2015).
46. Manser, J. S et al. Intriguing Optoelectronic Properties of Metal Halide Perovskites. Chem. Rev. 116, 12956-13008 (2016).
47. Arcudi, F. et al. Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogen-Doped Carbon NanoDots. Angew. Chem. Int. Ed. 55, 2107-2112 (2016).
48. Kim, J. K. et al. Origin of White Electroluminescence in Graphene Quantum Dots Embedded Host/Guest Polymer Light Emitting Diodes. Sci. Rep. 5, 11032 (2015).
49. Dai, X. L. et al. Quantum-Dot Light-Emitting Diodes for Large-Area Displays: Towards the Dawn of Commercialization. Adv. Mater. 29, 1607022 (2017).
50. Sun, Q. J. et al. Bright, Multicolored Light-Emitting Diodes Based on Quantum Dots. Nat. Photonics, 1, 717-722 (2007).
51. Qian, L. et al. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures. Nat. Photonics 5, 543-548 (2011).
52. Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Mater.9, 687-692 (2014).
53. Song, J. Z. et al. Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Adv. Mater. 27, 7162-7167 (2015).
54. Pan, J. et al. Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering. Adv. Mater. 28, 8718-8725 (2016).
55. Byun, J. et al. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes. Adv. Mater. 28, 7515-7520 (2016).
56. Lim, J. et al. Highly Efficient Cadmium-Free Quantum Dot Light-Emitting Diodes Enabled by the Direct Formation of Excitons within InP@ZnSeS Quantum Dots. ACS Nano7, 9019-9026 (2013).

Claims (34)

  1. 一種三角形碳量子點,其具有包含至少四個芳環的共軛三角形結構;其中該共軛三角形結構包含側官能基,且在該三角形碳量子點中碳原子的含量為50重量%或更多,其中該側官能基係獨立地選自由-ORa、-NRbRc、-SRd、-COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg各獨立地為H或C1-6烷基。
  2. 如請求項1之三角形碳量子點,其中該共軛三角形結構包含複數個稠合至至少三個該等芳環的6員芳核環。
  3. 如請求項2之三角形碳量子點,其中該核環是由至少三個芳環前驅體共軛形成的。
  4. 如請求項3之三角形碳量子點,其中該等至少三個芳環前驅體中的至少一者選自由苯-1,3,5-三醇(間苯三酚)、間苯二酚、5-胺基苯-1,3-二醇、5-(二甲胺基)苯-1,3-二醇、5-(二乙胺基)苯-1,3-二醇、5-(二丙胺基)苯-1,3-二醇、5-(甲硫基)苯-1,3-二醇、5-甲氧基苯-1,3-二醇、3,5-二羥基苯硼酸、吡啶-3,5-二醇、磷雜苯-3,5-二醇、及硼雜苯-3,5-二醇組成之群。
  5. 如請求項1至4中任一項之三角形碳量子點,其中該三角形碳量子點藉由熱溶劑合成製備,該熱溶劑合成使用至少三個前驅體分子,各前驅體 分子包含芳環。
  6. 如請求項5之三角形碳量子點,其中該等前驅體分子之每一者包含6員芳環。
  7. 如請求項6之三角形碳量子點,其中該等前驅體分子之每一者係具有式A之結構之化合物:
    Figure 108100040-A0305-02-0080-61
    其中X選自由C、N、P及B組成之群;各R獨立地選自由-ORa、-NRbRc、-SRd、-COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg各獨立地為H或C1-6烷基,或不存在R。
  8. 如請求項7之三角形碳量子點,其中該等前驅體分子之每一者選自由
    Figure 108100040-A0305-02-0080-64
    Figure 108100040-A0305-02-0080-65
    Figure 108100040-A0305-02-0080-66
    組成之群。
  9. 如請求項8之三角形碳量子點,其中該等前驅體分子之每一者係
    Figure 108100040-A0305-02-0081-74
  10. 如請求項6之三角形碳量子點,其中該等前驅體分子係用於形成包含式I之結構之共軛三角形結構:
    Figure 108100040-A0305-02-0081-68
    其中各R獨立地選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg各獨立地為H或C1-6烷基;及/或式I之該結構作為核結構以進一步與該等前驅體分子共軛形成更大的共軛三角形結構。
  11. 如請求項6之三角形碳量子點,其中該等前驅體分子用於形成包含式I-A之結構的共軛三角形結構:
    Figure 108100040-A0305-02-0081-69
    其中各R獨立地選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg各獨立地為H或C1-6烷基;及/或式I-A之該結構作為核結構以進一步與該等前驅體分子共軛形成更大之共軛三角形結構。
  12. 如請求項6之三角形碳量子點,其中該等前驅體分子用於形成包含式I-B之結構之共軛三角形結構:
    Figure 108100040-A0305-02-0082-70
    其中各R獨立地選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg各獨立地為H或C1-6烷基;及/或式I-B之該結構作為核結構以進一步與該等前驅體分子共軛形成更大的共軛三角形結構。
  13. 如請求項6之三角形碳量子點,其中該等前驅體分子用於形成包含式 II之結構的共軛三角形結構:
    Figure 108100040-A0305-02-0083-71
    其中各X獨立地選自由C、N、P及B組成之群;各R獨立地選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg各獨立地為H或C1-6烷基,或不存在R;及/或式II之該結構作為核結構以進一步與該等前驅體分子共軛形成更大的共軛三角形結構。
  14. 如請求項6之三角形碳量子點,其中該等前驅體分子用於形成包含式II-A之結構的共軛三角形結構:
    Figure 108100040-A0305-02-0083-72
    其中各X獨立地選自由C、N、P及B組成之群;各R獨立地選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組 成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg各獨立地為H或C1-6烷基,或不存在R;及/或式II-A之該結構作為核結構以進一步與該等前驅體分子共軛形成更大的共軛三角形結構。
  15. 如請求項6之三角形碳量子點,其中該等前驅體分子用於形成包含式II-B之結構的共軛三角形結構:
    Figure 108100040-A0305-02-0084-73
    其中各X獨立地選自由C、N、P及B組成之群;各R獨立地選自由-ORa、-NRbRc、-SRd、COORe及-B(ORf)(ORg)組成之群,其中Ra、Rb、Rc、Rd、Re、Rf及Rg各獨立地為H或C1-6烷基,或不存在R;及/或式II-B之該結構作為核結構以進一步與該等前驅體分子共軛形成更大的共軛三角形結構。
  16. 如請求項1至4中任一項之三角形碳量子點,其發射峰為約400nm至 約700nm。
  17. 如請求項1至4中任一項之三角形碳量子點,其半峰全寬(FWHM)為約20nm至約70nm。
  18. 如請求項1至4中任一項之三角形碳量子點,其尺寸或直徑為約1nm至約6nm。
  19. 如請求項1至4中任一項之三角形碳量子點,其量子產率(QY)為約50%至約75%。
  20. 一種製備如請求項1至19中任一項之三角形碳量子點的方法,其中該方法包含熱溶劑合成法,該熱溶劑合成法使用至少三個前驅體分子,各前驅體分子包含芳環,以形成三角形碳量子點。
  21. 一種光電裝置,其包含如請求項1至19中任一項之三角形碳量子點。
  22. 如請求項21之光電裝置,其係太陽能電池、發光二極體(LED)、或二極體雷射器。
  23. 一種電晶體,其包含如請求項1至19中任一項之三角形碳量子點。
  24. 一種發光裝置,其包含如請求項1至19中任一項之三角形碳量子點。
  25. 一種量子計算中的量子位,其包含如請求項1至19中任一項之三角形碳量子點。
  26. 一種顯示器,其包含如請求項1至19中任一項之三角形碳量子點。
  27. 一種塗料,其包含如請求項1至19中任一項之三角形碳量子點。
  28. 一種發光二極體(LED),其包含如請求項1至19中任一項之三角形碳量子點。
  29. 如請求項28之發光二極體(LED),其中自一邊至對邊,包含ITO玻璃基板陽極、聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)電洞注入層(HIL)、活性三角形碳量子點:PVK混合發射層、1,3,5-三(N-苯基苯并咪唑-2-基)苯(TPBI)電子傳輸層(ETL)、及Ca/Al雙層陰極。
  30. 如請求項28或29之發光二極體(LED),其具有約500cd/m2至約10000cd/m2的最大亮度。
  31. 如請求項28或29之發光二極體(LED),其電流效率為約1cd/A至約10cd/A。
  32. 如請求項28或29之發光二極體(LED),其開啟電壓為約2V至約5 V。
  33. 如請求項28或29之發光二極體(LED),其發射範圍為約460nm至約610nm。
  34. 一種顯示顏色的方法,其包括顯示如請求項1至19中任一項之三角形碳量子點的顏色。
TW108100040A 2018-01-02 2019-01-02 三角碳量子點及其組合物和用途 TWI805670B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/070022 WO2019134068A1 (en) 2018-01-02 2018-01-02 Triangular carbon quantum dots and compositions and uses thereof
??PCT/CN2018/070022 2018-01-02
WOPCT/CN2018/070022 2018-01-02

Publications (2)

Publication Number Publication Date
TW201936491A TW201936491A (zh) 2019-09-16
TWI805670B true TWI805670B (zh) 2023-06-21

Family

ID=67143597

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108100040A TWI805670B (zh) 2018-01-02 2019-01-02 三角碳量子點及其組合物和用途

Country Status (4)

Country Link
US (1) US11111432B2 (zh)
CN (1) CN110337482B (zh)
TW (1) TWI805670B (zh)
WO (1) WO2019134068A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110511751B (zh) * 2019-08-28 2022-04-19 西南大学 一种可调谐双发射荧光碳点、制备方法及应用
CN111349324A (zh) * 2020-04-17 2020-06-30 广安长明高端产业技术研究院 荧光聚乳酸复合材料及其制备方法
KR20220015528A (ko) * 2020-07-31 2022-02-08 가천대학교 산학협력단 다색 형광 방출이 가능한 형상 특이적 탄소 양자점 및 이의 제조방법
CN113072934B (zh) * 2021-03-15 2022-08-05 三峡大学 活性红2制备蓝色荧光石墨烯量子点的方法及应用
CN113075178B (zh) * 2021-03-22 2022-02-08 江南大学 一种富含酚羟基碳点直接定量检测牛奶中葡萄糖的方法
CN114045171B (zh) * 2021-12-07 2023-08-11 桂林理工大学 一种手性碳量子点的制备方法
CN114958337B (zh) * 2022-04-18 2024-04-05 北京师范大学 制备光刻胶-还原碳量子点的发光复合体系的方法以及所得发光复合体系及其应用
CN114989820B (zh) * 2022-05-31 2024-03-26 哈尔滨工程大学 一种具有大斯托克斯位移咔唑基荧光碳点的构筑方法
CN115851269B (zh) * 2022-12-01 2024-03-29 南京工业大学 利用废弃pet制备荧光碳量子点的方法及其在led中的应用
CN117004388B (zh) * 2023-06-14 2024-03-01 西南科技大学 一种近紫外/白光碳量子点及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613130A1 (en) * 1993-02-26 1994-08-31 Nec Corporation Carbon material originating from graphite and method of producing same
TW201134918A (en) * 2009-11-19 2011-10-16 Univ Southern California 3-coordinate copper(I)-carbene complexes
CN105012962A (zh) * 2015-06-08 2015-11-04 上海交通大学 三角体型荧光丝素-碳点复合纳米颗粒的制备方法
CN106978168A (zh) * 2017-03-31 2017-07-25 广州珂纳偲生物技术有限公司 一种碳点及其阵列的制备方法
CN107421932A (zh) * 2017-07-26 2017-12-01 广西师范学院 利用氮磷掺杂碳量子点探针检测六价铬的方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4771689A (en) 1985-09-25 1988-09-20 Dataproducts Corporation Unitary spring armature for a dot matrix printer
WO2002059414A2 (en) 2001-01-25 2002-08-01 Outlast Technologies, Inc. Coated articles having enhanced reversible thermal properties and exhibiting improved flexibility, softness, air permeability, or water vapor transport properties
TWI314947B (en) * 2002-04-24 2009-09-21 Eastman Kodak Compan Organic light emitting diode devices with improved operational stability
KR101097090B1 (ko) * 2010-02-26 2011-12-23 재단법인대구경북과학기술원 트리페닐렌 화합물을 포함하는 유기태양전지
US8946376B2 (en) * 2010-09-29 2015-02-03 Basf Se Semiconductors based on diketopyrrolopyrroles
US8735175B2 (en) 2011-03-18 2014-05-27 Chris D. Geddes Multicolor microwave-accelerated metal-enhanced fluorescence (M-MAMEF)
CN104854023A (zh) * 2012-12-20 2015-08-19 巴斯夫欧洲公司 石墨烯材料的侧面卤化
CN103274388B (zh) 2013-06-03 2015-08-05 南京工业大学 荧光碳量子点制备方法
CN104046353B (zh) 2014-04-25 2015-09-23 安徽师范大学 用于荧光增强的组装物及其制备方法和应用
WO2016142731A1 (en) * 2015-03-12 2016-09-15 Centre National De La Recherche Scientifique Hexabenzocoronene-based compound for organic photovoltaic cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613130A1 (en) * 1993-02-26 1994-08-31 Nec Corporation Carbon material originating from graphite and method of producing same
TW201134918A (en) * 2009-11-19 2011-10-16 Univ Southern California 3-coordinate copper(I)-carbene complexes
CN105012962A (zh) * 2015-06-08 2015-11-04 上海交通大学 三角体型荧光丝素-碳点复合纳米颗粒的制备方法
CN106978168A (zh) * 2017-03-31 2017-07-25 广州珂纳偲生物技术有限公司 一种碳点及其阵列的制备方法
CN107421932A (zh) * 2017-07-26 2017-12-01 广西师范学院 利用氮磷掺杂碳量子点探针检测六价铬的方法

Also Published As

Publication number Publication date
US11111432B2 (en) 2021-09-07
US20200354630A1 (en) 2020-11-12
CN110337482A (zh) 2019-10-15
WO2019134068A1 (en) 2019-07-11
TW201936491A (zh) 2019-09-16
CN110337482B (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
TWI805670B (zh) 三角碳量子點及其組合物和用途
Yuan et al. Carbon quantum dots: an emerging material for optoelectronic applications
Yuan et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs
Jia et al. Electroluminescent warm white light‐emitting diodes based on passivation enabled bright red bandgap emission carbon quantum dots
Kim et al. Li and Mg Co-doped zinc oxide electron transporting layer for highly efficient quantum dot light-emitting diodes
Zhang et al. Color-switchable electroluminescence of carbon dot light-emitting diodes
Yuan et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light‐emitting diodes
Wang et al. Efficient resistance against solid-state quenching of carbon dots towards white light emitting diodes by physical embedding into silica
Luo et al. Synthesis, optical properties, and exciton dynamics of organolead bromide perovskite nanocrystals
Li et al. Diamond-like carbon structure-doped carbon dots: A new class of self-quenching-resistant solid-state fluorescence materials toward light-emitting diodes
Zhao et al. Narrow‐bandwidth emissive carbon dots: A rising star in the fluorescent material family
Wang et al. Facile microwave synthesis of carbon dots powder with enhanced solid-state fluorescence and its applications in rapid fingerprints detection and white-light-emitting diodes
Hu et al. Linkage modes on phthaloyl/triphenylamine hybrid compounds: Multi-functional AIE luminogens, non-doped emitters and organic hosts for highly efficient solution-processed delayed fluorescence OLEDs
Shi et al. Red phosphorescent carbon quantum dot organic framework-based electroluminescent light-emitting diodes exceeding 5% external quantum efficiency
Huang et al. Green grinding-coassembly engineering toward intrinsically luminescent tetracene in cocrystals
Tagare et al. Triphenylamine-imidazole-based luminophores for deep-blue organic light-emitting diodes: experimental and theoretical investigations
US20110203649A1 (en) Use of indanthrene compounds in organic photovoltaics
US20190355908A1 (en) Organic Cocrystal and Applications of the Same
Yang et al. Atomic precision graphene model compound for bright electrochemiluminescence and organic light-emitting diodes
Zheng et al. Localized excitonic electroluminescence from carbon nanodots
AU2013300142A1 (en) Dipyrrin based materials for photovoltaics, compounds capable of undergoing symmetry breaking intramolecular charge transfer in a polarizing medium and organic photovoltaic devices comprising the same
Xu et al. Hybrid hexagonal nanorods of metal nitride clusterfullerene and porphyrin using a supramolecular approach
Chen et al. Enhanced two-photon-excited fluorescence from electron donor-acceptor exciplex
Zhang et al. Enabling DPP derivatives to show multistate emission and developing the multifunctional materials by rational branching effect
Chen et al. Effect of solid-state packing on the photophysical properties of two novel carbazole derivatives containing tetraphenylethylene and cyano groups