TWI804893B - 研磨墊、製備該研磨墊之方法及使用該研磨墊以製備半導體裝置之方法 - Google Patents

研磨墊、製備該研磨墊之方法及使用該研磨墊以製備半導體裝置之方法 Download PDF

Info

Publication number
TWI804893B
TWI804893B TW110122157A TW110122157A TWI804893B TW I804893 B TWI804893 B TW I804893B TW 110122157 A TW110122157 A TW 110122157A TW 110122157 A TW110122157 A TW 110122157A TW I804893 B TWI804893 B TW I804893B
Authority
TW
Taiwan
Prior art keywords
polishing pad
polishing
wafer
grinding
vmp
Prior art date
Application number
TW110122157A
Other languages
English (en)
Other versions
TW202206513A (zh
Inventor
安宰仁
金京煥
尹晟勛
徐章源
明康植
Original Assignee
南韓商Sk恩普士股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200075102A external-priority patent/KR102237321B1/ko
Priority claimed from KR1020200075101A external-priority patent/KR102237316B1/ko
Application filed by 南韓商Sk恩普士股份有限公司 filed Critical 南韓商Sk恩普士股份有限公司
Publication of TW202206513A publication Critical patent/TW202206513A/zh
Application granted granted Critical
Publication of TWI804893B publication Critical patent/TWI804893B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

實施例有關於一種用於半導體之化學機械平坦化(CMP)製程之研磨墊、一種製備該研磨墊之方法及一種使用該研磨墊以製備半導體元件之方法。根據該實施例之研磨墊調整研磨後該研磨墊之表面粗糙度特性,從而可提高研磨速率,且可明顯地降低晶圓的表面殘留物、表面刮痕及震痕。

Description

研磨墊、製備該研磨墊之方法及使用該研磨墊以製備半導體裝置之方法
發明領域
實施例有關於一種研磨後的表面粗糙度特性經過調整之研磨墊,一種製備該研磨墊之方法,及一種使用該研磨墊以製備半導體元件之方法。
發明背景
用於製備半導體之製程中的化學機械平坦化(CMP)製程,意指將半導體基材如晶圓固定至一轉頭並與安裝在平台上之研磨墊表面接觸,之後藉由提供漿料以化學方式處理該晶圓,同時使該平台與該轉頭相對移動,從而以機械方式平坦化半導體基材上的不平整之步驟。
在此CMP製程中,研磨墊是發揮重要作用之基本元件。通常,研磨墊是由聚胺甲酸酯基樹脂構成,且在其表面上具有供漿料大量流動的溝槽以及用於支持其微細流動的孔。以上研磨墊中的孔可藉由使用具有空隙的固相發泡劑、氣相發泡劑或液相發泡劑形成,或可透過化學反應產生氣體而形成。
然而,雖然使用氣相或液相發泡劑形成微孔之方法具有不排放可能影響CMP製程的物質之優點,但可能有很難精準地控制孔的大小、大小分佈及數量之問題。此外,因為每一個微孔沒有單獨的外壁,所以有在CMP製程期間難以維持微孔形狀的缺點。
另一方面,與使用氣相或液相發泡劑之方法不同,使用具有外壁及空隙之固相發泡劑製備研磨墊之方法,具有可精準地控制孔之形狀、大小分佈及數量的優點。有利的是,由於固相發泡劑存在外壁,所以在CMP製程期間可維持微孔的形狀。
然而,在使用固相發泡劑之方法中,存在難以自由地控制固相發泡劑之形狀的問題,以及在固相發泡劑混合與聚合物之過程期間,固相發泡劑可能會部分地聚結在研磨墊上的問題。
研磨墊中微孔的形狀及部分發生的孔聚結現象,可能會影響CMP製程之重要性能中的研磨速率、晶圓平整度及晶圓表面上的殘留物、刮痕及震痕。 [先前技術文獻] [專利文獻] (專利文獻1)韓國公開專利公開案第2008-0037719號。
技術問題
本發明之目的是解決上述先前技術的問題。
本發明要解決該技術問題是提供一種研磨墊及一種製備該研磨墊之方法,其中可控制微孔的形狀及聚結現象,從而將研磨後該研磨墊之表面粗糙度特性調整至一特定位準;所以有可能改善晶圓表面上的殘留物、刮痕及震痕及進一步提高研磨速率。
此外,其目的係提供一種使用該研磨墊以製備半導體元件之方法。解決問題之方法
一個可達到以上目的之實施例提供一種研磨墊,在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓(dummy wafers)各研磨60秒以及對二個監控晶圓(monitoring wafers)各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以下關係1及2。 [關係1] 0.020 ≤ Vmp(10)/Vvv(80) ≤ 1.000 [關係2] 0.005 ≤ Vmp(10)/Vmc(10,80) ≤ 2.000 在關係1及2中, Vmp(10)是對應於上部10%之尖峰的材料體積, Vvv(80)是對應於上部80%至100%之谷的空隙體積,及 Vmc(10,80)是對應於上部10%至80%之核心的材料體積。
另一個實施例提供一種製備研磨墊之方法,其包含混合胺甲酸乙酯基預聚物、一固化劑及一發泡劑,以製得一原料混合物;及將該原料混合物注入一模具中並使其固化形成一研磨墊,其中在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以上關係1及2。
又另一個實施例提供一種製備半導體元件之方法,其包含將一研磨墊安裝在一平台上,該研磨墊包含一研磨層;及在該研磨層之研磨表面與一晶圓之表面彼此接觸時,相對地旋轉其等以研磨該晶圓之表面,其中在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以上關係1及2。
又另一個實施例提供一種研磨墊,在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以下關係4: [關係4] 0.002 ≤ Vmp(10)/Vv(0) ≤ 0.100 在關係4中,Vmp(10)是對應於上部10%之尖峰的材料體積,及Vv(0)是總空隙體積。
又另一個實施例提供一種製備研磨墊之方法,其包含混合胺甲酸乙酯基預聚物、一固化劑及一發泡劑,以製得一原料混合物;及將該原料混合物注入一模具中並使其固化形成一研磨墊,其中在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以上關係4。
又另一個實施例提供一種製備半導體元件之方法,其包含將一研磨墊安裝在一平台上,該研磨墊包含一研磨層;及在該研磨層之研磨表面與一晶圓之表面彼此接觸時,相對地旋轉其等以研磨該晶圓之表面,其中在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以上關係4。本發明之有利作用
在根據該實施例之研磨墊中,控制微孔的形狀及聚結現象,從而將研磨後該研磨墊之表面粗糙度調整至一特定位準;所以有可能改善晶圓表面上的殘留物、刮痕及震痕,及進一步提高研磨速率。
進行本發明之最佳模式
在以下實施例之說明中,當提及要將每一層或墊形成在另一層或墊“上”或“下”時,不僅意指將一個元件“直接”形成在另一個元件上或下,且意指將一個元件“間接”形成在另一個元件上或下,在其等之間插有其它元件。
此外,針對每一個元件的上或下之術語,可參考圖式。為說明起見,所附圖式中個別元件的大小可能放大表示,並不表示實際大小。
此外,有關本文中所使用的組件之物理性質、尺寸等等之所有的數字範圍,應理解為經術語“約”修飾過的,除非另有說明。[ 研磨墊]
根據本發明之一個實施例之研磨墊在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,在基於ISO 25178-2標準之面積材料比曲線中滿足以下關係1及2: [關係1] 0.020 ≤ Vmp(10)/Vvv(80) ≤ 1.000 [關係2] 0.005 ≤ Vmp(10)/Vmc(10,80) ≤ 2.000 在關係1與2中, Vmp(10)是對應於上部10%之尖峰的材料體積, Vvv(80)是對應於上部80%至100%之谷的空隙體積,及 Vmc(10,80)是對應於上部10%至80%之核心的材料體積。
根據本發明之另一個實施例之研磨墊在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,在基於ISO 25178-2標準之面積材料比曲線中滿足以下關係4: [關係4] 0.002 ≤ Vmp(10)/Vv(0) ≤ 0.100 在關係4中,Vmp(10)之定義如上,及Vv(0)是總空隙體積。
根據本發明之一個實施例之研磨墊在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,在基於ISO 25178-2標準之面積材料比曲線中滿足以下關係5及6: [關係5] Spk/Svk < 1.2 [關係6] 0.1 ≤ Spk/Sk ≤ 1.1 在關係5及6中,Spk是降低的尖峰高度,Svk是降低的谷深度及Sk是核心粗糙度深度。
根據本發明之又另一個實施例之研磨墊在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,在基於ISO 25178-2標準之面積材料比曲線中滿足以下關係11: [關係11] 0.5 ≤ (Spk + Svk)/Sk ≤ 3.5 在關係11中,Spk、Svk及Sk之定義如上。
根據本發明之一個實施例,研磨後該研磨墊之表面粗糙度特性,特別是從該面積材料比曲線衍生的體積參數及高度參數之比,被控制在一特定範圍內,藉此有可能改善晶圓表面上之殘留物、刮痕及震痕及進一步提高研磨速率。 研磨後該研磨墊之表面粗糙度
在本說明書中,該表面粗糙度意指研磨墊上經過加工或研磨所形成的表面之表面粗糙度。本發明中所使用的光學表面粗糙度計是Bruker製造的Contour GT型號。測量研磨墊之表面粗糙度的詳細條件,見本說明書中之範例。
當研磨墊之表面粗糙度在研磨過程期間或研磨後維持不變時,晶圓之研磨速率、表面殘留物、表面刮痕及震痕可維持不變。此外,隨著研磨過程的進行,拋光墊的表面粗糙度會隨著下列(因為對研磨墊之表面施加損壞或變形)而改變(1)修整器的表面切割、(2)載體元件(包括晶圓)施加的壓力及剪切應力,及(3)晶圓與研磨墊間界面處所存在的漿料之形狀。
舉例而言,參考圖1,在化學機械平坦化(CMP)製程中使用一研磨墊,其中在製程期間,該研磨墊之表面形狀因接附於轉頭(110)之半導體基材(或晶圓) (120)於垂直方向上施加的壓力以及因平台(130)旋轉在水平方向上施加的剪切應力而變形。
在該研磨墊之表面上提供有供大量漿料(140)流動之溝槽及支持其微細流動的孔。在該研磨墊中,不僅表面上的溝槽,且孔(150)的形狀也會因外部應力而變形,此會導致研磨墊之表面粗糙度改變。
特別是,導致研磨墊之表面粗糙度改變的微孔形狀變化及孔聚結程度,可能會對CMP製程的重要性能中的研磨速率、晶圓基材之平坦化及晶圓表面上的殘留物、刮痕及震痕產生影響。因此其等之控制特別重要。
經由此等特性調整之研磨後該研磨墊之表面粗糙度,可根據胺甲酸乙酯基預聚物之類型而不同。此外,該表面粗糙度可根據發泡劑(氣相發泡劑、液相發泡劑或固相發泡劑)之類型而不同。此外,該表面粗糙度可根據是否有使用固相發泡劑之純化系統而不同。此外,該表面粗糙度可根據個別的組份是否有純化而不同。此外,該表面粗糙度可根據混合各別組份時,混合轉頭之旋轉速率、開槽之程度及預處理之條件而不同。此外,該表面粗糙度可由各種變數控制。
在根據本發明之一個實施例之研磨墊中,該表面粗糙度可以是研磨後測得的表面粗糙度,即在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後。
在此,該虛設晶圓是主要用於實驗及測試的晶圓。其用於在研磨墊使用之初,即在研磨實際進行之前,壓縮研磨墊之表面,將非均勻研磨墊之表面特性控制成均勻的形狀。該監控晶圓是目的用於基本上監控研磨後該研磨墊之物理性質的晶圓。
該研磨墊可用於進行使用CTS之AP-300型號之CMP製程。為了優化該墊之表面條件,可在研磨之前,具體地在研磨虛設晶圓之前,先進行預磨合處理10至20分鐘,以便修整該研磨墊之研磨層。針對用於研磨墊之研磨處理的具體條件,見後續將描述的範例。
如上述進行研磨處理後,使用表面粗糙度計獲得的面積材料比曲線,稱作支承面曲線(BAC)或Abbott-Firestone曲線。其是透過表面粗糙度計,針對單位面積相對於高度測量的累積數據所繪製的圖表。
從表面粗糙度之面積材料比曲線衍生而來的參數是轉換成高度之S參數(之後稱作高度參數)及轉換成體積之V參數(之後稱作體積參數)。在本發明中,根據該實施例控制作為S參數之Spk、Svk及Sk及作為V參數之Vmp(10)、Vmc(10,80)、Vvv(80)及Vv(0),以改善研磨性能。
在此方面,圖2是描繪用光學表面粗糙度計測量研磨墊時,從面積材料比曲線衍生而來的體積參數(a)及高度參數(b)之圖解。
以下,將參考圖2(a)及2(b)詳細說明表面粗糙度之體積參數及高度參數。 表面粗糙度之體積參數>
表面粗糙度之體積參數包括材料體積參數(Vmp(10)、Vmc(10,80))及空隙體積參數(Vvv(80)、Vv(0))。
該材料體積參數是評估區域中與實際材料所占的體積相關之參數。其等是該研磨墊中,與研磨過程期間晶圓和研磨墊因研磨裝置中的載體元件所施加的壓力而直接磨擦之體積相關的參數。
在該材料體積參數方面,參考圖2(a),Vmp(10)是對應於上部10%之尖峰的材料體積。其是圖中的百分比數據切割0%至100% (x軸)當中,從對應於10%之高度(y軸)的表面至最高峰所構成之材料的體積。因為Vmp(10)是待研磨材料最初磨損的材料體積之參數,所以其可能是與CMP製程中之機械研磨最相關的參數。
Vmc(10,80)是對應於上部10%至80%之核心的材料體積。其是構成百分比數據切割的0%至100% (x軸)當中,對應於10%與80%之高度(y軸)間的表面紋理之材料體積。
同時,空隙體積參數是評估區域中與空白空間所佔的空隙相關的參數。其等是與孔相關的參數,該等孔之作用為微通道,透過微通道,容許研磨過程期間可能導致缺陷/刮痕之漿料及副產物,在晶圓與研磨墊間的界面處自由地移動。通過此等孔移動的漿料,透過與晶圓接觸而與該晶圓之待研磨層產生化學反應,從而實現化學研磨。
此外,假如在研磨過程中所產生的研磨墊之粉碎材料、待研磨層之研磨碎片以及化學反應完成時的漿料顆粒,因其等本身或因彼此的反應而生成大型顆粒,則其等可能因與該待研磨層之化學鍵結或機械磨擦而停留在該待研磨層上成為殘留物,或在該待研磨層表面扮演導致刮痕或震痕的角色。
因此,該研磨墊之孔可作為微通道,通過該微通道容許研磨過程期間此等顆粒輕易地退出研磨墊與晶圓間的界面,而不會導致殘留物、表面刮痕或震痕。
在空隙體積參數方面,參考圖2(a),Vv(0)是總空隙體積。其是以圖表中從對應於百分比數據切割的0% (x軸)之高度(y軸)至最低谷(100%)之表面紋理為界的空隙體積。因為Vv(0)是可攜帶漿料之空隙的總體積,所以其可能是與CMP過程中漿料的流動通道及CMP過程期間產生的異物之流動性最相關的參數。
Vvv(80)是對應於上部80%至100%之谷的空隙體積。其是以圖表中的百分比數據切割之0%至100% (x軸)當中對應於80%之高度(y軸)至最低谷之表面紋理為界的空隙體積。
在此,可調整作為各個V參數參考的百分比。
因此,體積參數可提供有關研磨墊、晶圓及漿料間之機械磨擦及化學反應所決定的研磨性能之重要訊息。
在本發明中,以上關係中的體積參數於研磨過程後維持在特定範圍內,且其等在研磨過程期間維持恆定,藉此有可能改善研磨速率,晶圓表面上形成的殘留物、刮痕及震痕。
根據本發明之一個實施例,研磨後該研磨墊可滿足關係1中之Vmp(10)/Vvv(80)值為0.020至1.000。在半導體製造製程中,於一特定研磨速率下具有低表面殘留物、表面刮痕及震痕之特性很重要。假如Vmp(10)/Vvv(80)小於0.020,則在使用氧化鈰粒子之研磨過程中,研磨墊與晶圓表面的接觸比率低,而孔之比率相對高,如此通過該等孔移動而接觸晶圓並與該晶圓之待研磨層化學反應之漿料的數量增加,導致研磨速率增加。然而,假如空隙對研磨墊表面直接受到磨擦的面積之比例太高,則當在研磨過程中所產生的研磨墊之粉碎材料、待研磨層之研磨碎片以及化學反應完成時的漿料顆粒,因其等本身或因彼此的反應而生成大型顆粒時,空隙率高。因此,其更有可能經由化學鍵結而鍵結至晶圓表面,據此其等留下來成為殘留物。
假如Vmp(10)/Vvv(80)大於1.000,則在使用氧化鈰粒子之研磨過程中,研磨墊與晶圓表面之接觸比率高,而孔之比率相對低,如此通過該等孔移動而接觸晶圓並與該晶圓之待研磨層化學反應之漿料的數量減少,導致研磨速率降低。另一方面,假如研磨墊表面直接受到磨擦的面積對空隙之比率太高,則當在研磨過程中所產生的研磨墊之粉碎材料、待研磨層之研磨碎片以及化學反應完成時的漿料顆粒,因其等自己或因彼此的反應而生成大型顆粒時,更可能由於研磨墊表面與晶圓表面上產生直接磨擦之區域間之剪應力,而在晶圓表面上產生刮痕或震痕。
因此,當Vmp(10)/Vvv(80)之比維持在一適當範圍內時,可使在晶圓表面上產生的殘留物、刮痕及震痕之數量降至最低限度。
研磨後該研磨墊可滿足以下關係1-1或1-2: [關係1-1] 0.030 ≤ Vmp(10)/Vvv(80) ≤ 0.990 [關係1-2] 0.030 ≤ Vmp(10)/Vvv(80) ≤ 0.900 在關係1-1及1-2中,Vmp(10)及Vvv(80)之定義如上。
此外,Vmp(10)/Vvv(80)可為0.040至0.800、0.050至0.700、0.070至0.500、0.090至0.400、0.100至0.400、0.200至0.400、0.090至0.300或大於0.300至0.500。
此外,根據本發明之一個實施例,研磨後該研磨墊可滿足關係2中之Vmp(10)/Vmc(10,80)值為0.005至2.000。
假如Vmp(10)/Vmc(10,80)低於0.005,則研磨墊與晶圓表面之接觸比率低,而孔之比率相對高,如此通過該等孔移動而接觸晶圓並與該晶圓之待研磨層化學反應之漿料數量增加,導致研磨速率增加。另一方面,假如空隙對研磨墊表面直接受到磨擦的面積之比例太高,則當研磨過程中所產生的研磨墊之粉碎材料、待研磨層之研磨碎片以及化學反應完成時的漿料顆粒,因其等本身或因彼此的反應而生成大型顆粒時,空隙率高。因此,更有可能其等鍵結至晶圓表面,據此其等留下來成為殘留物。
假如Vmp(10)/Vmc(10,80)大於2.000,則研磨墊與晶圓表面之接觸比率高,而孔之比率相對低,如此通過該等孔移動而接觸晶圓並與該晶圓之待研磨層化學反應之漿料數量減少,導致研磨速率下降。另一方面,假如研磨墊表面直接受到磨擦的面積對空隙之比例太高,則當在研磨過程中所產生的研磨墊之粉碎材料、待研磨層之研磨碎片以及化學反應完成時的漿料顆粒,因其等本身或因彼此的反應而生成大型顆粒時,更可能由於研磨墊表面與晶圓表面上產生直接磨擦之區域間界面處的應力,而在晶圓表面上產生刮痕或震痕。
研磨後該研磨墊可滿足以下關係2-1或2-2: [關係2-1] 0.010 ≤ Vmp(10)/Vmc(10,80) ≤ 1.600 [關係2-2] 0.015 ≤ Vmp(10)/Vmc(10,80) ≤ 1.200 在關係2-1及2-2中,Vmp(10)及Vmc(10,80)之定義如上。
此外,Vmp(10)/Vmc(10,80)可為0.010至1.000、0.020至0.800、0.020至0.600、0.020至0.200、0.020至0.100、0.020至0.090、0.030至0.080、0.020至0.060或小於0.060至0.200。
此外,只要Vmp(10)/Vvv(80)及Vmp(10)/Vmc(10,80)分別在以上範圍內,則Vmp(10)可為0.020至0.900、0.040至0.800、0.060至0.700、0.080至0.600或0.100至0.500。
Vvv(80)可為0.200至10.000、0.200至9.600、0.200至2.400、0.300至2.300、0.400至2.200、0.500至2.100或0.600至2.000。
Vmc(10,80)可為0.200至11.000、0.250至10.000、0.250至7.000、1.000至11.000、1.500至10.500、2.000至10.000、2.500至9.500或3.000至9.000。
同時,根據本發明之一個實施例,研磨後該研磨墊可滿足以下關係3: [關係3] 0.027 ≤ Vmp(10)/{Vv(0) + Vvv(80) + Vmc(10,80)} ≤ 3.100 在關係3中,Vmp(10)、Vv(0)、Vvv(80)及Vmc(10,80)之定義如上。
Vv(0)可為3.000至57.000、6.000至54.000、9.000至51.000、12.000至48.000或15.000至45.000。
假如關係3中之值超過3.100,則使用氧化鈰之CMP中的研磨速率降低,及該晶圓之表面殘留物、表面刮痕及震痕可能顯著地增加。假如關係3中之值小於0.027,則漿料之流動性過大及起始研磨速率過度增加,其可能會不利地影響研磨性能,及該晶圓之表面殘留物、表面刮痕及震痕可能增加。
此外,研磨後該研磨墊可滿足以下關係3-1或3-2: [關係3-1] 0.042 ≤ Vmp(10)/{Vv(0) + Vvv(80) + Vmc(10,80)} ≤ 2.55 [關係3-2] 0.057 ≤ Vmp(10)/{Vv(0) + Vvv(80) + Vmc(10,80)} ≤ 2.02 在3-1及3-2中,Vmp(10)、Vv(0)、Vvv(80)及Vmc(10,80)之定義如上。
此外,根據本發明之一個實施例,Vv(0)、Vvv(80)及Vmc(10,80)之總合可為4.200至70.400、7.800至66.800、11.400至63.200、12.000至59.600或18.600至56.000。Vv(0)、Vvv(80)及Vmc(10,80)之總合可影響該研磨墊接觸該晶圓表面時之所有的機械研磨特性或磨擦特性及漿料攜帶能力。因此,當研磨後該研磨墊滿足Vv(0)、Vvv(80)及Vmc(10,80)的總合在以上範圍內時,有可能改善該晶圓之研磨速率、表面殘留物、表面刮痕及震痕。
假如Vv(0)、Vvv(80)及Vmc(10,80)之總合小於以上範圍,則起始研磨速率過度增加,其可能會不利地影響研磨性能,及該晶圓之表面殘留物、表面刮痕及震痕可能增加。假如Vv(0)、Vvv(80)及Vmc(10,80)之總合大於以上範圍,則研磨速率可能惡化,且殘留物可能顯著地增加。
此外,研磨後該研磨墊可同時滿足以上關係1-1、2-1及3-1。或者,研磨後該研磨墊可同時滿足以上關係1-2、2-2及3-2。
根據本發明之一個實施例,研磨後該研磨墊可滿足以上關係4。
假如Vmp(10)/Vv(0)大於0.100,則當該研磨墊接觸半導體基材(晶圓)之表面時,機械研磨特性或摩擦特性太過,藉此刮痕或震痕可能顯著地增加。假如Vmp(10)/Vv(0)小於0.002,則漿料之流動性太過且初始研磨速率過度增加,其可能不利地影響研磨性能,且晶圓之表面殘留物、表面刮痕及震痕可能增加。 表面粗糙度之高度參數>
同時,參考圖2(b),Spk是降低的尖峰高度,其提供CMP過程期間該研磨墊接觸半導體基材(或晶圓)表面時之初始接觸面積;因此,其意指由高尖峰所構成的表面,其提供高接觸應力區域(應力/面積)。Spk意指可在操作期間移除的材料之標稱高度。
Sk是核心粗糙度深度,其意指表面磨損後可分佈負載之表面的核心粗糙度。
Svk是降低的谷深度,其是測量該表面之核心粗糙度下的谷之深度所獲得的值,及與漿料攜帶能力或研磨墊碎屑的捕捉能力有關。
同時,在圖2(b)中,SMr1是尖峰材料部分,其意指構成與Spk相關之尖峰結構材料的比率。
此外,SMr2是谷材料部分,其意指構成與Svk相關之深谷結構之測量面積的百分比(100% – SMr2)。
根據本發明之一個實施例,當研磨後關係5至7中之至少一個維持在一特定範圍內時,有可能改善該晶圓之研磨速率、表面殘留物、表面刮痕及震痕。
因此,根據本發明之一個實施例,研磨後該研磨墊可滿足以下關係5: [關係5] Spk/Svk < 1.2 在關係5中,Spk及Svk之定義如上。
關係5中之Spk/Svk可影響該研磨墊初始接觸該晶圓表面時之所有的機械研磨特性或磨擦特性及漿料攜帶能力。因此,當研磨後該研磨墊滿足以上關係5時,有可能改善該晶圓之研磨速率、表面殘留物、表面刮痕及震痕。
此外,研磨後該研磨墊可滿足以下關係5-1: [關係5-1] 0.2 ≤ Spk/Svk ≤ 1.1 在關係5-1中,Spk及Svk之定義如上。
此外,研磨後該研磨墊可具有Spk/Svk值為0.2至1.0、0.2至0.7、0.5至小於1.2、0.7 至1.1或0.3至0.7。
根據本發明之另一個實施例,研磨後該研磨墊可滿足以下關係6: [關係6] 0.1 ≤ Spk/Sk ≤ 1.1 在關係6中,Spk及Sk之定義如上。
關係6中之Spk/Sk可影響起始接觸後該研磨墊接觸該晶圓表面時之機械研磨特性或磨擦特性。因此,當研磨後該研磨墊滿足以上關係6,有可能改善該晶圓之研磨速率、表面殘留物、表面刮痕及震痕。
此外,研磨後該研磨墊可滿足以下關係6-1: [關係6-1] 0.2 ≤ Spk/Sk ≤ 1.1 在關係6-1中,Spk及Sk之定義如上。
此外,研磨後該研磨墊可具有Spk/Sk值為0.2至1.0、0.3至1.1、0.4至1.0或0.7至1.1。
根據本發明之另一個實施例,研磨後該研磨墊可滿足以下關係7: [關係7] 0.2 < Svk/Sk ≤ 2.5 在關係7中,Svk及Sk之定義如上。
關係7中之Svk/Sk可影響起始接觸後該研磨墊接觸該晶圓表面時之漿料攜帶能力。因此,當研磨後該研磨墊滿足以上關係7時,有可能改善該晶圓之研磨速率、表面殘留物、表面刮痕及震痕。
研磨後該研磨墊可滿足以下關係7-1: [關係7-1] 0.4 ≤ Svk/Sk ≤ 2.5 在關係7-1中,Svk及Sk之定義如上。
此外,研磨後該研磨墊可具有Svk/Sk值為0.5至2.4、0.9至2.4、1.6至2.4、1.6至2.0或0.5至1.5。
根據本發明之一個實施例,Spk可為2至10、2.5至9.5、2至7、3至8或5.6至10。
Sk可為5至40、5至30、6至26、6至20、10至30或6至10。
Svk可大於11至22、大於11至20、11.3至19.9、大於11至15、13至20或12至15。
根據本發明之另一個實施例,研磨後該研磨墊可滿足以下關係8: [關係8] 0.3 < Spk/Svk + Svk/Sk ≤ 3.6 在關係8中,Spk、Svk及Sk之定義如上。
關係8中之Spk/Svk及Svk/Sk的總合可影響該研磨墊初始接觸該晶圓表面時之機械研磨特性或磨擦特性及漿料攜帶能力,及該初始接觸後之漿料攜帶能力。因此,當研磨後該研磨墊滿足以上關係8時,有可能改善晶圓之研磨速率、表面殘留物、刮痕及震痕。
根據本發明之另一個實施例,研磨後該研磨墊可滿足以下關係9: [關係9] 0.3 < Spk/Sk + Svk/Sk ≤ 3.6 在關係9中,Spk、Svk及Sk之定義如上。
關係9中之Spk/Sk及Svk/Sk的總合可影響初始接觸後該研磨墊接觸該晶圓表面時之所有的機械研磨特性或磨擦特性及漿料攜帶能力。因此,當研磨後該研磨墊滿足以上關係9時,有可能改善晶圓之研磨速率、表面殘留物、刮痕及震痕。
根據本發明之另一實施例,研磨後該研磨墊可滿足以下關係10: [關係10] 0.45 ≤ Spk/Sk + Svk/Sk + Spk/Svk ≤ 4.7 在關係10中,Spk、Svk及Sk之定義如上。
關係10中之Spk/Sk、Svk/Sk及Spk/Svk的總合可影響該研磨墊初始接觸該晶圓表面時及該初始接觸後之所有的機械研磨特性或磨擦特性及漿料攜帶能力。因此,當研磨後該研磨墊滿足以上關係10時,有可能改善晶圓之研磨速率、表面殘留物、刮痕及震痕。
此外,研磨後該研磨墊可滿足以下關係10-1: [關係10-1] 0.8 ≤ Spk/Sk + Svk/Sk + Spk/Svk ≤ 4.6 在關係10-1中,Spk、Svk及Sk之定義如上。
根據本發明之另一個實施例,研磨後該研磨墊可滿足以下關係11:: [關係11] 0.5 ≤ (Spk + Svk)/Sk ≤ 3.5 在關係11中,Spk、Svk及Sk之定義如上。
關係11中之(Spk + Svk)/Sk可影響起始接觸後該研磨墊接觸該晶圓表面時之所有的機械研磨特性或磨擦特性及漿料攜帶能力。因此,當研磨後該研磨墊滿足以上關係11時,有可能改善晶圓之研磨速率、表面殘留物、刮痕及震痕。
此外,研磨後該研磨墊可滿足以下關係11-1: [關係11-1] 0.7 ≤ (Spk + Svk)/Sk ≤ 3.2 在關係11-1中,Spk、Svk及Sk之定義如上。
關係11及11-1中,Spk與Svk之總合可大於13至32、15至30、15.5至29、15至20、17至30或17至20。 研磨前該研磨墊之表面粗糙度
根據本發明之一個實施例,研磨前該研磨墊之表面粗糙度可在和研磨後該研磨墊之表面粗糙度的各個參數之範圍相同或相似之範圍內,或其可落到研磨後之表面粗糙度的各個參數之範圍外。即,不管研磨前該研磨墊之表面粗糙度如何,只要研磨後之表面粗糙度維持在以上範圍內,則可改善研磨速率,且可減少晶圓之表面殘留物、表面刮痕及震痕。然而,研磨之前與之後該研磨墊之表面條件越相似,研磨性能越好。
具體地,根據本發明之一個實施例,該研磨墊於研磨之前與之後Vmp(10)/Vvv(80)差的絕對值可為0.005至0.800、0.005至0.700、0.010至0.700、0.010至0.400、0.010至0.310、0.005至0.030或0.300至0.700。
此外,該研磨墊於研磨之前與之後Vmp(10)/Vv(0)差的絕對值可為0.002至0.087、0.002至0.070、0.002至0.020或0.01至0.09。
假如該研磨墊於研磨之前與之後Vmp(10)/Vv(80)或Vmp(10)/Vv(0)差的絕對值滿足以上之範圍,則研磨之前與之後二者之表面粗糙度是恆定的,藉此可提高研磨性能。
此外,該研磨墊於研磨之前與之後Svk/Sk或Spk/Sk差的絕對值可分別為1.5或更低。
具體地,該研磨墊於研磨之前與之後Svk/Sk差的絕對值可為0.1至1.5、0.2至1.5、0.1至1.0、0.1至0.7或0.8至1.5。
該研磨墊於研磨之前與之後Spk/Sk差的絕對值可為0至0.6、0至0.5、0至0.4或0.4至0.6。
假如該研磨墊於研磨之前與之後Svk/Sk或Spk/Sk差的絕對值滿足以上之範圍,則研磨之前與之後二者之表面粗糙度是恆定的,藉此可提高研磨性能。[ 製備研磨墊之方法]
根據本發明之一個實施例之製備研磨墊之方法包含混合胺甲酸乙酯基預聚物、一固化劑及一發泡劑,以製得一原料混合物;及將該原料混合物注入一模具中並使其固化形成一研磨層,其中在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以上關係1及2。
根據本發明之另一個實施例之製備研磨墊之方法包含混合胺甲酸乙酯基預聚物、一固化劑及一發泡劑,以製得一原料混合物;及將該原料混合物注入一模具中並使其固化形成一研磨層,其中在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以上關係4。
根據本發明之一個實施例之製備研磨墊之方法包含混合胺甲酸乙酯基預聚物、一固化劑及一發泡劑,以製得一原料混合物;及將該原料混合物注入一模具中並使其固化形成一研磨層,其中在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以上關係5及6。
根據本發明之一個實施例之製備研磨墊之方法包含混合胺甲酸乙酯基預聚物、一固化劑及一發泡劑,以製得一原料混合物;及將該原料混合物注入一模具中並使其固化形成一研磨層,其中在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以上關係11。
該研磨墊包含一研磨層,其包含由含有胺甲酸乙酯基預聚物、一固化劑及一發泡劑之組成物所形成的固化產物,其中該發泡劑可包含至少一種選至於由下列所構成之群組:固相發泡劑、液相發泡劑及氣相發泡劑。或者,該發泡劑可包含固相發泡劑、氣相發泡劑或其等之混合的發泡劑。
之後,將於下文中詳細說明該原料混合物中所含的各個組份。 胺甲酸乙酯基預聚物
如本發明中所述之研磨後該研磨墊之表面粗糙度,可藉由改變胺甲酸乙酯基預聚物之類型作調整。
該胺甲酸乙酯基預聚物可經由異氰酸酯化合物與多元醇之反應製得。
預聚物通常意指具有相對低分子量的聚合物,其中為了在產品生產過程中方便模製產品,將聚合程度調整至中間位準。預聚物可自我成型或在與另一可聚合化合物反應後成型。例如,預聚物可經由異氰酸酯化合物與多元醇之反應製得。
例如,可用於製備該胺甲酸乙酯基預聚物之異氰酸酯化合物,可為至少一種選自於由下列所構成之群組之異氰酸酯:甲苯二異氰酸酯(TDI)、萘-1,5-二異氰酸酯、對伸苯基二異氰酸酯、甲苯胺二異氰酸酯、4,4'-二苯甲烷二異氰酸酯、六亞甲基二異氰酸酯、二環己基甲烷二異氰酸酯及異佛爾酮二異氰酸酯。但不限於此。
例如,可用於製備該胺甲酸乙酯基預聚物之多元醇,可為至少一種選自於由下列所構成之群組之多元醇:聚醚多元醇、聚酯多元醇、聚碳酸酯多元醇及丙烯酸多元醇。但不限於此。該多元醇可具有300克/莫耳至3,000克/莫耳之重量平均分子量(Mw)。
該胺甲酸乙酯基預聚物可具有500克/莫耳至3,000克/莫耳之重量平均分子量(Mw)。具體地,該胺甲酸乙酯基預聚物可具有600克/莫耳至2,000克/莫耳或800克/莫耳至1,000克/莫耳之重量平均分子量(Mw)。
作為例子,該胺甲酸乙酯基預聚物可為具有500克/莫耳至3,000克/莫耳之重量平均分子量(Mw)的聚合物,其係從作為異氰酸酯化合物之甲苯二異氰酸酯與作為多元醇之聚四亞甲基醚二醇聚合產生。
該胺甲酸乙酯基預聚物具有8重量%至10重量%、8.5重量%至9.5重量%或8.8重量%至9.4重量%之異氰酸酯端基含量(NCO%)。
假如該NCO%滿足以上範圍,則有可能如本發明所欲的將研磨後該研磨墊之表面粗糙度維持恆定,從而改善該晶圓之研磨速率及表面殘留物、表面刮痕及震痕之特性。 發泡劑
根據本發明之一個實施例之研磨墊中的多個孔,可從發泡劑衍生而來。
該發泡劑可包含至少一種選自於由下列所構成之群組之發泡劑:固相發泡劑、氣相發泡劑及液相發泡劑。
此外,依靠氣相發泡劑、液相發泡劑或固相發泡劑之種類、固相發泡劑之平均粒徑及是否有針對固相發泡劑之純化系統,有可能控制該研磨墊中微孔的形狀及發生孔聚結的程度,從而控制研磨後該研磨墊之表面粗糙度。固相發泡劑
依靠該固相發泡劑的類型、形狀或物理性質,有可能控制微孔的形狀和孔的聚結現象。因此,可調整研磨後該研磨墊的表面粗糙度。
該固相發泡劑是熱膨脹(即,大小可控的)微膠囊且可為具有平均孔徑5μm至200μm之微球結構。該熱膨脹(即,大小可控的)微膠囊可經由熱膨脹性微膠囊的熱膨脹獲得。
該熱膨脹性微膠囊可包含一殼,其包含熱塑性樹脂;及包覆在該殼內之一發泡劑。該熱塑性樹脂可為至少一種選自於由下列所構成之群組:二氯亞乙烯基共聚物、丙烯腈基共聚物、甲基丙烯腈基共聚物及丙烯酸基共聚物。此外,包覆在裡面的發泡劑可為至少一種選自於由下列所構成之群組:具有1至7個碳原子之烴。具體地,包覆在裡面的發泡劑可選自於由下列所構成之群組:低分子量烴,如乙烷、乙烯、丙烷、丙烯、正丁烷、異丁烷、丁烯、異丁烯、正戊烷、異戊烷、辛戊烷、正己烷、庚烷、石油醚等等;氯氟烴,如三氯氟甲烷(CCl3 F)、二氯二氟甲烷(CCl2 F2 )、氯三氟甲烷(CClF3 )、四氟乙烯(CClF2 -CClF2 )等等;及四烷基矽烷,如四甲基矽烷、三甲乙基矽烷、三甲基異丙基矽烷、三甲基-正-丙基矽烷等等。
固相發泡劑可精準地控制孔的形狀及大小分布及孔的含量。由於固相發泡劑之外壁的存在,即使在CMP過程期間,仍可保持良好的微孔形狀。然而,因為固相發泡劑是微球的結構,所以其具低密度及小尺寸,從而具有大的表面張力。薄且小型的球狀材料容易聚結在一起。因此,即使控制了固相發泡劑之大小,仍可能不容易控制固相發泡劑的形狀,以及微孔的形狀或孔之聚結現象。
根據本發明之一個實施例,該固相發泡劑經過純化系統之純化,因此有可能不僅控制了該固相發泡劑之平均粒徑,且可將其分散而不聚結在一起,以及可過濾掉形狀不均的固相發泡劑。結果,有可能控制微孔的形狀與聚結現象及控制研磨後該研麼墊之表面粗糙度。因此,該固相發泡劑之平均粒徑、該平均粒徑之標準差或密度,可根據該固相發泡劑之純化系統的使用而改變。
例如,因此純化的固相發泡劑之平均粒徑(D50)可為5μm至200μm。在此,術語D50意指粒徑分佈中第50百分位(中位數)之體積分率。更具體地,該固相發泡劑可具有7μm至100μm之D50。甚至更具體地,該固相發泡劑可具有10μm至50μm;15μm至45μm;或20μm至40μm之D50。
用於固相發泡劑之純化系統可過濾掉平均粒徑太小或太大的固相發泡劑,以滿足以上範圍之平均粒徑。有可能根據所需的目的,選擇性地將該固相發泡劑之平均粒徑控制在以上範圍內。
假如該固相發泡劑的D50滿足以上範圍,則可進一步提高研磨速率及晶圓內的不均勻性。假如該固相發泡劑的D50小於以上範圍,則孔的數均直徑減少,其可能會對研磨速率及晶圓內不均勻性產生影響。假如其超過以上範圍,則孔的數均直徑過度增加,其可能會對研磨速率及晶圓內不均勻性產生不利的影響。
假如使用經過以上所述的固相發泡劑之純化系統純化的固相發泡劑,則研磨後的研磨墊之表面粗糙度可維持均勻。
以該原料混合物100重量份為基準,該固相發泡劑之使用量可為0.5重量份至5重量份。具體地,以該胺甲酸乙酯基預聚物100重量份為基準,該固相發泡劑之使用量可為0.6重量份至2.5重量份、或1重量份至2.5重量份、1.5重量份至2.5重量份或1.8重量份至2.3重量份。
在本發明之研磨墊的製備中,固相發泡劑可單獨使用作為發泡劑,或可根據所需特性,與氣相發泡劑及揮發性液相發泡劑結合使用。固相發泡劑 之純化系統
各種純化系統均可用作固相發泡劑之純化系統,只要其等可達到固相發泡劑的平均粒徑(D50)在以上範圍內且滿足本發明所需的研磨墊之表面粗糙度即可。
根據本發明之一個實施例,使用固相發泡劑的分級及純化裝置作為固相發泡劑的純化系統。
根據一個實施例之固相發泡劑的分級及純化裝置包含一分級單元,其用於將供應的固相發泡劑分級成第一微球及第二微球;連接至該分級單元之一儲存單元,於其中引入、儲存及排出該分級的第一微球;及一過濾單元,其安裝在該固相發泡劑或該第一微球之移動路徑上,以便將金屬材料與包含該固相發泡劑或該第一微球之待過濾的物體分開。
圖3是顯示根據一個實施例之分級單元之示意圖。圖4是描繪圖3之分級單元之操作狀態。
參考圖3及4,分級單元(50)包含一分級機殼(51),其中形成有一分級空間(511)、連接至分級空間(511)之一氣體供應孔(515)及連接至分級空間(511)之一分級排放口。分級單元(50)可進一步包含位在分級空間(511)中且配置在氣體供應孔(515)附近之一渦流產生構件(53)。分級單元(50)可進一步包含配置在分級機殼(51)中之一振動產生單元(56)。分級單元(50)可進一步包含一分級及攪拌單元。
透過任一個分級進入孔(512)引入分級空間(511)之固相發泡劑,可依下列進行分級。在分級空間(511)中供應一流化氣體,用以將該固相發泡劑分級。被引入分級空間(511)的流化氣體在通過渦流產生構件(53)時,朝氣體排放孔(516)之方向流動。在此情況下,該流化氣體流動同時產生旋轉或漩渦(圖4之分級空間(511)中的虛線箭頭:標記為A)。該流化氣體流至頂部,氣體排放孔(516)所在的位置。被引入分級空間(511)之固相發泡劑沿著該流化氣體之流動上升, 然後在分級空間(511)內因該流化氣體的流動變弱產生的向下流動或因從外部傳送的旋轉力、振動等等的推動而下降(在圖4中,固相發泡劑之流動以雙虛線箭頭:B表示,及振動箭頭:C)。在此情況下,在分級空間(511)中空氣的流動形成空氣胞循環流,以致當該固相發泡劑之顆粒相對於其等之大小太重或太輕,或當顆粒的形狀明顯不同時,其等之上升或下降速率不同,如此而被分級出來。即,固相發泡劑在分級空間(511)中隨著流化氣體的流動而流體化,然後該固相發泡劑在重力、振動等等之影響下根據其重量及大小以不同的速率下降,所以可根據大小將其分級及回收。
在如上所述之流化氣體的影響下上升或下降的固相發泡劑,可分別透過根據分級機殼(51)之高度形成的第一微球排放孔(513)及第二微球排放孔(514)排放至分級機殼(51)外。
可在分級機殼(51)之頂側形成一氣體排放孔(516),透過該孔將引入分級空間(511)的流化氣體排出。可在氣體排放孔(516)中配置用於過濾排出的流化氣體中之異物、殘留微球等等之一排放濾器(54)。
在一個實施例中,該振動過程可通過振動產生單元(56)圍繞著中心軸(511a)對分級機殼(51)上下移動之垂直振動及左右移動之水平振動,或在垂直與水平二個方向上依序或同時施以垂直與水平振動來進行。此外,該振動過程可藉由重複地相對於中心軸(511a)順時針或逆時針旋轉分級機殼(51),或重複該順時針與逆時針方向上之旋轉進行。在此情況下,施用於該振動過程之頻率可為例如100至10,000 Hz、500至5,000 Hz或700至3,500 Hz。當施用以上範圍內之振動時,可更有效地將該固相發泡劑分級。
由於固相發泡劑相對小且輕的特性,所以可藉由固相發泡劑隨著流化氣體的流動上升與下降速率的差異分級。此外,藉由振動,可使藉由流化氣體上升但很難下降的中空微球容易降下來。即,該振動過程可以下壓力振動的方法進行,其會促進分級空間(511)中的固相發泡劑降落。假如該振動過程更進一步進行,則可實現高效及有效的分級。透過此過程形成的研磨層可提供具更少表面缺陷如晶圓之表面殘留物、表面刮痕及震痕之半導體基材。
透過注入的流化氣體之流速、第一微球排放孔(513)的位置、振動程度等等,可調整分級後固相發泡劑的粒徑。因此,可將該固相發泡劑分級成平均粒徑約5μm至約200μm之第一微球及平均粒徑小於約5μm之第二微球。受損或密度太高的固相發泡劑可為第三微球。因此,該固相發泡劑在該分級空間(511)中可被分級成第一至第三微球。分級的固相發泡劑之粒徑可取決於該研磨墊的設計。
圖5是根據一個實施例之過濾單元(30a,30b)之分解透視圖。參考圖3及5,過濾單元(30a,30b)可安裝在該分級單元的前端、後端或前與後端。安裝在該分級單元後端的過濾單元(30b)可移除經過分級空間(511)分離的第一微球中之金屬組份。安裝在該分級單元前端的過濾單元(30a),可在將該固相發泡劑引入分級單元(50)之前,從其中移除金屬組份。
參考圖5,過濾單元(30a,30b)包含一過濾外殼(31),其具有該固相發泡劑可通過其中之一過濾空間(311);可拆卸地安裝至過濾外殼(31)之一過濾蓋(32),用於打開及關閉過濾空間(311);及安裝在第一空間(311)中並產生磁力之一過濾元件(33)。
連接管(10a及10c)之一過濾入口(312)可形成在過濾外殼(31)中。該固相發泡劑經由過濾入口(312)被引入過濾空間(311)中,且可在沿著過濾空間(311)的圓周旋轉之時,朝一開放方向移動。過濾元件(33)位在過濾空間(311)中,其可在該固相發泡劑之流中動引起渦流的產生。
在一個實施例中,連接至過濾空間(311)之過濾出口(321)可形成在過濾蓋(32)中。在另一個實施例中,過濾出口(321)可形成在過濾外殼(31)的周邊。過濾出口(321)的位置可視待過濾的物體之類型或密度變化。透過過濾入口(312)通過過濾空間(311)之固相發泡劑,可透過過濾出口(321)排至過濾外殼(31)外。
過濾元件(33)可包含定位在過濾空間(311)中之一固定元件(331)及設置在固定元件(331)中之一磁鐵(332)。在一個實施例中,磁鐵(332)可設置在固定元件(331)內部。磁鐵(332)可包含永久磁鐵或電磁鐵。該磁鐵可為銣磁鐵。該磁鐵可具有10,000高斯至12,000高斯之磁力。該磁鐵在固定元件(331)周圍產生磁場,金屬材料會吸附至該磁鐵。在過濾空間(311)中旋轉的固相發泡劑中所含的金屬材料,可經由磁力而吸附至固定元件(331)之外圍。通過過濾空間(311)之與待過濾物體混合在一起的金屬材料可被磁鐵(332)分離出來。透過該過濾單元可提供純化的固相發泡劑或第一微球。
因為該固相發泡劑通過該分級單元之處理,所以可提高使用其製備的研磨墊之表面處理中的粗糙度控制性能。假如該固相發泡劑之尺寸太小,則用於製備研磨墊之組成物可能會凝集。假如該固相發泡劑之尺寸太大,則難以控制孔的大小,從而惡化研磨墊之表面特性。因此,透過該分級單元提供適當尺寸的固相發泡劑,有可能防止用於製備研磨墊之組成物產生凝集。再者,可在研磨墊之表面上實現具有均勻且合適的深度/寬度之粗糙度特性。
此外,該固相發泡劑中之高密度金屬異物、由其形成如晶種之凝集物等等,會影響研磨墊之表面條件且成為處理所需程度的粗糙度特性之阻礙。因此,使用已透過過濾單元移除金屬組份之固相發泡劑,可使該研磨墊中所含的高密度異物及凝集物減至最少。因此,可以確保提高品質之作用,如明顯地降低經過具有優異表面性質之研磨墊研磨的產物,如半導體基材,的缺陷。氣相發泡劑
本發明所需之研磨後的研磨墊之表面粗糙度,可藉由改變氣相發泡劑的類型調整。
該氣相發泡劑可包含惰性氣體。該氣相發泡劑可在該胺甲酸乙酯基預聚物、該固化劑、該固相發泡劑、該反應速率控制劑及該聚矽氧基界面活性劑混合且反應時饋入,從而形成孔。該惰性氣體之種類沒有特別限制,只要其是不會參與該預聚物與該固化劑間的反應之氣體即可。例如,該惰性氣體可為選自於由下列所構成之群組中之至少一種:氮氣(N2 )、氬氣(Ar)及氦氣(He)。具體地,該惰性氣體可為氮氣(N2 )或氬氣(Ar)。
以該原料混合物之總體積,具體地該胺甲酸乙酯基預聚物、該發泡劑、該反應速率控制劑及該固化劑,之總體積為基準,該氣相發泡劑饋入的體積可為5%至30%。具體地,以該原料混合物之總體積為基準,該氣相發泡劑饋入的體積可為5體積%至30體積%、5體積%至25體積%、5體積%至20體積%、5體積%至18體積%、6體積%至15體積%、6體積%至13體積%或7.5體積%至10體積%。液相發泡劑
本發明所需之研磨後的研磨墊之表面粗糙度,可藉由改變液相發泡劑的類型及混合方法調整。
該液相發泡劑可在該預聚物與該固化劑之混合及反應期間引入,以便形成孔。其不會參與該預聚物與該固化劑之間的反應。此外,該液相發泡劑係經由該預聚物與該固化劑之混合及反應期間產生的熱進行物理性蒸發,以形成孔。
該液相發泡劑可包含二或多種具有不同沸點的揮發性液相發泡劑。具體地,該揮發性液相發泡劑可包含一或多種低沸點液相發泡劑及一或多種高沸點液相發泡劑。
該揮發性液相發泡劑在25℃下可為液體,然而其不會與異氰酸酯基團、醯胺基團及醇基團反應。具體地,該揮發性液相發泡劑可選自於由下列所構成之群組:三氯氟甲烷、2,2-二氯-1,1,1-三氟乙烷、1,1-二氯-1-氟乙烷、環戊烷、正戊烷、環己烷、醋酸正丁酯、雙(九氟丁基)(三氟甲基)胺;及全氟化合物,如全氟三丁胺、全氟-N-甲基𠰌啉、全氟三戊胺及全氟己烷。
商業可得的全氟化合物產品包括FC-40 (3M)、FC-43 (3M)、FC-70 (3M)、FC-72 (3M)、FC-770 (3M)、FC-3283 (3M)及FC-3284 (3M)。
低沸點液相發泡劑可在反應一開始時蒸發,以形成具有45至90μm平均孔徑之中孔。具體地,該低沸點液相發泡劑在1大氣壓下可具有30至100℃之沸點。更具體地,該低沸點液相發泡劑在1大氣壓下可具有40至70℃之沸點。甚至更具體地,該低沸點液相發泡劑可為選自於由下列所構成之群組中之至少一種:三氯氟甲烷、2,2-二氯-1,1,1-三氟乙烷、1,1-二氯-1-氟乙烷、環戊烷、環己烷、正戊烷、全氟-N-甲基𠰌啉及全氟己烷。商業可得的低沸點液相發泡劑產品包括FC-72 (3M)、FC-770 (3M)及FC-3284 (3M)。
該高沸點液相發泡劑可延遲蒸發以形成具有20至50μm平均孔徑之微孔。具體地,該高沸點液相發泡劑在1大氣壓下可具有100至250℃之沸點。更具體地,該高沸點液相發泡劑在1大氣壓下可具有100至200℃之沸點。更具體地,該高沸點液相發泡劑可為選自於由下列所構成之群組中之至少一種:醋酸正丁酯、雙(九氟丁基)(三氟甲基)胺、全氟三丁胺及全氟三戊胺。商業可得的高沸點液相發泡劑產品包括FC-40 (3M)、FC-43 (3M)、FC-70 (3M)及FC-3283 (3M)。
該低沸點液相發泡劑與該高沸點液相發泡劑可具有20至80℃的沸點差,具體地50至80℃。具體地,該低沸點液相發泡劑與該高沸點液相發泡劑之組合的例子,包括環戊烷與醋酸正丁酯之組合,及三氯氟甲烷與雙(九氟丁基)(三氟甲基)胺之組合。
該揮發性液相發泡劑可包含莫耳比為1:0.5至2之該低沸點液相發泡劑與該高沸點液相發泡劑。具體地,該揮發性液相發泡劑可包含莫耳比為1:0.8至1.2之該低沸點液相發泡劑與該高沸點液相發泡劑。以該原料混合物100重量份為基準,該液相發泡劑之使用量可為1至10重量份。此外,以該原料混合物100重量份為基準,該液相發泡劑之使用量可為2至8重量份。固化劑
該固化劑可為胺化合物及醇化合物中之至少一種。具體地,該固化劑可包含選自於由下列所構成之群組中之至少一種化合物:芳族胺、脂族胺、芳族醇及脂族醇。
例如,該固化劑可為選自於由下列所構成之群組中之至少一種:4,4'-亞甲基雙(2-氯苯胺) (MOCA)、二乙基甲苯二胺、二胺基二苯甲烷、二胺基二苯碸、間苯二甲胺、異佛爾酮二胺、乙二胺、二伸乙三胺、三伸乙四胺、聚丙烯二胺、聚丙烯三胺、乙二醇、二乙二醇、二丙二醇、丁二醇、己二醇、甘油、三羥甲丙烷及雙(4-胺基-3-氯苯基)甲烷。
以各分子中之反應性基團的莫耳數為基準,該胺甲酸乙酯基預聚物與該固化劑可以1:0.8至1:1.2之莫耳當量比或1:0.9至1:1.1之莫耳當量比混合。此時,“各分子中之反應性基團的莫耳數”意指,例如,胺甲酸乙酯基預聚物中異氰酸酯基團之莫耳數及該固化劑中反應性基團(如,胺基團、醇基團等等)之莫耳數。因此,可藉由控制進料速率使得混合過程期間以恆定的速率饋入該胺甲酸乙酯預聚物與該固化劑,如此該胺甲酸乙酯基預聚物與該固化劑能以每單位時間滿足以上例示的莫耳當量比之數量饋入。
以該原料混合物100重量份為基準,該固化劑之使用量可為3.0重量份至40重量份。具體地,以該原料混合物100重量份為基準,該固化劑之使用量可為5.0重量份至35重量份。具體地,以該原料混合物100重量份為基準,該固化劑之使用量可為7.0重量份至30重量份。界面活性劑
該原料混合物可進一步包含界面活性劑。該界面活性劑可用於防止待形成的孔產生重疊及彼此凝聚。具體地,該界面活性劑較佳地為聚矽氧基非離子性界面活性劑。但可依照研磨墊所需之物理性質選擇其它界面活性劑。
可單獨使用具有羥基之聚矽氧基非離子性界面活性劑,或合併使用不具羥基之聚矽氧基非離子性界面活性劑,作為該聚矽氧基非離子性界面活性劑。
該具有羥基之聚矽氧基非離子性界面活性劑沒有特別限制,只要其是廣泛地使用於聚胺甲酸酯產業的即可,因為其與含異氰酸酯之化合物及活性氫化合物具有很好的相容性。該具有羥基之聚矽氧基非離子性界面活性劑之商業可得的例子包括Dow Corning製的DOW CORNING 193 (一種液相聚矽氧烷二醇共聚物,25℃下比重為1.07,20下℃之黏度為465mm2 /s及閃燃點為92℃) (下文中稱作DC-193)。
該不具羥基之聚矽氧基非離子性界面活性劑之商業可得的例子包括Dow Corning製的DOW CORNING 190 (一種聚矽氧烷二醇共聚物,具有加德納色度為2、25℃下比重為1.037,25℃下之黏度為2,000mm2 /s及閃燃點為63℃以上及反轉溶解點(1.0%水溶液)為36℃) (下文中稱作DC-190)。
以該原料混合物100重量份為基準,該界面活性劑之使用量可為0.1至2重量份。具體地,以該原料混合物100重量份為基準,該界面活性劑之使用量可為0.2至1.8重量份、0.2至1.7重量份、0.2至1.6重量份或0.2至1.5重量份。假如該界面活性劑之數量在以上範圍內,則由該氣相發泡劑衍生而得的孔可穩定地形成且維持在模具中。 反應及孔的形成
該胺甲酸乙酯預聚物與該固化劑在其等混合時彼此反應形成固態聚胺甲酸酯,之後將其形成薄片或類似形式。具體地,該胺甲酸乙酯基預聚物中的異氰酸酯基團會與該固化劑中的胺基團、醇基團等等反應。在此情況下,發泡劑如固相發泡劑均勻地分散於該原料中,在沒有參與該胺甲酸乙酯基預聚物與該固化劑間的反應的情況下形成孔。 模製
該模製是使用模具進行。具體地,可將在混合轉頭等中充分攪拌的原料混合物注入模具中至填滿其內部。
根據本發明之一個實施例之研磨墊中所含的多個孔之球形率,可使用混合轉頭之旋轉速率及固相發泡劑純化系統來控制。具體地,在將該胺甲酸乙酯基預聚物、該固相發泡劑及該固化劑混合及分散之過程中,利用例如混合轉頭之旋轉速率為例如500 rpm至10,000 rpm、700 rpm至9,000 rpm、900 rpm至8,000 rpm、900 rpm至7,000 rpm或1,000至5,000 rpm之混合系統混合其等。或者是,在將該胺甲酸乙酯基預聚物、該固相發泡劑及該固化劑之混合及分散之過程中,可使用通過該純化系統純化的固相發泡劑。
該胺甲酸乙酯基預聚物與該固化劑間之反應在模具中完成,從而產生符合該模具形狀之固化餅狀型體。
之後,可將因此獲得的型體適當地切片或切割成薄片供研磨墊之生產。舉例而言,在高度為最終要生產的研磨墊厚度的5至50倍之模具中製備一型體,然後將其切成相同厚度以便一次產生多個用於研磨墊之薄片。在此情況下,可使用反應阻滯劑作為反應速率控制劑,以便確保足夠的固化時間。因此,該模具的高度可為最終要生產的研磨墊厚度的約5至約50倍,以便製備用於其等之薄片。然而,根據在該模具內的成型位置,切成的薄片可能具有不同直徑的孔。即,在該模具之較低位置處成型的薄片可能具有細徑的孔,而在該模具之較高位置處成型的薄片可能具有比在較低位置處形成的薄片大的直徑之孔。
因此,較佳地使用能夠一次模製產生一個薄片之模具,以便每一薄片具有均一直徑的孔。為此,該模具的高度不可與最終要生產的研磨墊厚度相差太多。例如,該模製可使用高度為最終要生產的研磨墊厚度的1至3倍之模具進行。更具體地,該模具可具有最終要生產的研磨墊厚度的1.1至3.0倍或1.2至3.0倍之高度。在此情況下,可使用反應促進劑作為反應速率控制劑,用以形成具有直徑更均勻的孔。由單一薄片製得的研磨墊可具有1 mm至10 mm之厚度。具體地,該研磨墊可具有1 mm至9 mm、1 mm至8.5 mm、1.5 mm至10 mm、1.5 mm至9 mm、1.5 mm至8.5 mm、1.8 mm至10 mm、1.8 mm至9 mm或1.8 mm至8.5 mm之厚度。
之後,可分別將從該模具獲得的型體之頂端與底端切除。例如,可從該型體之頂端及底端個別切除該型體總厚度的1/3或更低、1/22至3/10或1/12至1/4。
舉一具體例子,使用高度為最終要生產的研磨墊厚度的1.2至2倍之模具進行該模製,及可進行從在模製時獲得的型體之頂端及底端個別切除該型體總厚度的1/12至1/4之進一步的步驟。
在以上切割步驟後,以上的製備方法可進一步包含在該型體表面製造溝槽、與下部黏合、檢驗、包裝等等之步驟。此等步驟可以用於製備研磨墊之習知方法進行。
此外,由上述製備方法製得的研磨墊可具有根據上述實施例之研磨墊之所有的特性。[ 研磨墊之物理性質]
如上所述,根據一個實施例之研磨墊控制研磨後該研磨墊表面粗糙度之各個參數,藉此可提高研磨速率,及減少晶圓的表面殘留物、表面刮痕及震痕。
具體地,當使用經煅燒的氧化鈰漿料研磨其上已形成氧化矽膜之矽晶圓時,該研磨墊對該氧化物層可具有2,600 Å/分至3,300 Å/分、2,850 Å/分至3,200 Å/分、2,900 Å/分至3,100 Å/分或2,900 Å/分至3,000 Å/分之研磨速率。
此外,當在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))時,該監控晶圓之震痕數可為5個或更少、1至5個、1至4個或1至3個。
此外,研磨後該監控晶圓之表面刮痕數可為200個或更少、1至200個、1至180個、1至160個或1至150個。
此外,研磨後該監控晶圓上之表面殘留物數可為100個或更少、90個或更少、86個或更少或者80個或更少。
同時,該研磨墊包含多個孔。
在根據本發明之一個實施例之研磨墊中,該多個孔之平均直徑可為5μm至200μm。此外,該多個孔之平均直徑可為7μm至100μm、10μm至50μm、10μm至32μm或20μm至32μm。該多個孔之平均直徑是計算孔直徑的數均值。例如,以掃描式電子顯微鏡(SEM)在200倍下觀察該研磨墊。從使用影像分析軟體獲得的影像中測得各孔的直徑,從其中計算平均直徑(Da )。平均直徑定義為,將1mm2 研磨表面中多個孔之直徑的總合除以該孔數所獲得的平均值。
該孔包括位在該研磨墊內部的封閉孔及位在該研磨墊研磨表面上的開放孔。
具體地,在該開放孔方面,該孔口曝露在該研磨表面上。
此時,開放孔之孔口的直徑可意指與該開放孔之孔口具有相同平面面積之圓的直徑。此外,開放孔之孔口的平均直徑,可計算該研磨表面上存在的多個開放孔之孔口直徑的數均值。
該研磨墊之每單位面積(mm2 )中該孔之總數可為700個或更多。更具體地,該研磨墊之每單位面積(mm2 )中該孔之總數可為750個或更多。甚至更具體地,該研磨墊之每單位面積(mm2 )中該孔之總數可為800個或更多。 甚至更具體地,該研磨墊之每單位面積(mm2 )中該孔之總數可為900個或更多。但不限於此。此外,該研磨墊之每單位面積(mm2 )中該孔之總數可為2,500個或更少,具體地2,200個或更少、1,500個或更少或者1,200個或更少,但不限於此。因此,該研磨墊之每單位面積(mm2 )中該孔之總數可為700至2,500個,例如750至2,200個、800至1,500個或800至1,200個,但不限於此。
具體地,該研磨墊可具有60 kgf/cm2 或更多的彈性模數。更具體地,該研磨墊可具有100 kgf/cm2 或更多的彈性模數,但不限於此。該研磨墊之彈性模數的上限可為150 kgf/cm2 ,但不限於此。
此外,根據一個實施例之研磨墊可具有優異的研磨性能以及研磨墊之基本物理性質如擊穿電壓、比重、表面硬度、拉伸強度及伸長率。
該研磨墊之物理性質如比重及硬度,可透過異氰酸酯與多元醇間之反應所聚合的胺甲酸乙酯基預聚物之分子結構控制。
具體地,該研磨墊在25℃下可具有45 Shore D至65 Shore D之表面硬度。具體地,該研磨墊可具有50 Shore D至65 Shore D之表面硬度,但不限於此。
具體地,該研磨墊可具有0.6 g/cm3 至0.9 g/cm3 之比重。更具體地,該研磨墊可具有0.7 g/cm3 至0.85 g/cm3 之比重,但不限於此。
具體地,該研磨墊可具有10 N/mm 至100 N/mm2 之拉伸強度。更具體地,該研磨墊可具有15 N/mm 至70 N/mm2 之拉伸強度。甚至更具體地,該研磨墊可具有20 N/mm 至70 N/mm2 之拉伸強度,但不限於此。
具體地,該研磨墊可具有30%至300%之伸長率。更具體地,該研磨墊可具有50%至200%之伸長率。
該研磨墊可具有14 kV至23 kV之擊穿電壓、1.5 mm至2.5 mm之厚度、0.7 g/cm3 至0.9 g/cm3 之比重、25℃下50 shore D至65 shore D之表面硬度、15 N/mm2 至25 N/mm2 之拉伸強度及80%至250%之伸長率,但不限於此。
該研磨墊可具有1 mm至5 mm之厚度。具體地,該研磨墊可具有1 mm至3 mm、1 mm至2.5 mm、1.5 mm至5 mm、1.5 mm至3 mm、1.5 mm至2.5 mm、1.8 mm至5 mm、1.8 mm至3 mm或1.8 mm至2.5 mm之厚度。假如該研磨墊之厚度在以上範圍內,則研磨墊之基本物理性質可充分地展現。
同時,該研磨墊可在其表面上具有供機械研磨之溝槽。該溝槽可具有供機械研磨所需的深度、寬度及空間,其等沒有特別限制。
根據一個實施例之研磨墊可同時具有上述研磨墊之物理性質。[ 製備半導體元件之方法]
根據本發明之製備半導體元件之方法可包含提供一研磨墊,其包含一研磨層;及在該研磨層之研磨表面與一待研磨物體的表面彼此接觸之時,相對地旋轉其等以研磨該待研磨之物體。
具體地,根據本發明之一個實施例之製備半導體元件之方法包含將含有一研磨層之一研磨墊安裝在一平台上;及在該研磨層之研磨表面與一晶圓的表面彼此接觸之時,相對地旋轉其等以研磨該晶圓之表面,其中在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以上關係1及2。
根據本發明之另一個實施例之製備半導體元件之方法包含將含有一研磨層之一研磨墊安裝在一平台上;及在該研磨層之研磨表面與一晶圓的表面彼此接觸之時,相對地旋轉其等以研磨該晶圓之表面,其中在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以上關係4。
根據本發明之又另一個實施例之製備半導體元件之方法包含將含有一研磨層之一研磨墊安裝在一平台上;及在該研磨層之研磨表面與一晶圓的表面彼此接觸之時,相對地旋轉其等以研磨該晶圓之表面,其中在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以上關係5及6。
根據本發明之又另一個實施例之製備半導體元件之方法包含將含有一研磨層之一研磨墊安裝在一平台上;及在該研磨層之研磨表面與一晶圓的表面彼此接觸之時,相對地旋轉其等以研磨該晶圓之表面,其中在以200 cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒(每一個晶圓均為氧化矽晶圓(或PETEOS晶圓))後,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以上關係11。
具體地,一旦將根據一個實施例之研磨墊安裝在一平台上,就將半導體基材安置在該研磨墊上。在此情況下,該半導體基材可為晶圓,及該晶圓表面與該研磨墊之研磨表面直接接觸。可透過噴嘴將研磨漿料噴塗至研磨墊上供研磨。可根據目的在約10 cm3 /分至約1,000 cm3 /分之範圍內選擇透過該噴嘴供應的研磨漿料之流速。例如,其可為約50 cm3 /分至約500 cm3 /分,但不限於此。
之後,使該晶圓與該研磨墊彼此相對地旋轉,如此可研磨該晶圓表面。在此情況下,該晶圓之旋轉方向及該研磨墊之旋轉方向可為相同方向或相反的方向。該晶圓與該研磨墊之研磨速率可根據目的在約10 rpm至約500 rpm之範圍內作選擇。例如,其可為約30 rpm至約200 rpm,但不限於此。
使安裝在該研磨轉頭之晶圓以一預定負載壓住將與其接觸之研磨墊的研磨表面,如此可研磨到其表面。由該研磨轉頭所施加使得該晶圓表面與該研磨墊之研磨表面接觸之負載,可根據目的在約1 gf/cm2 至約1,000 gf/cm2 之範圍內選擇。例如,其可為約10 gf/cm2 至約800 gf/cm2 ,但不限於此。
在一個實施例中,為了將該研磨墊之研磨表面維持在適合研磨之狀態,該製備半導體元件之方法可進一步包含在研磨該晶圓之同時用一修整器處理該研磨墊之研磨表面。
根據一個實施例,當用光學表面粗糙度計測量研磨後的研磨墊時,由於表面粗糙度之體積參數及表面粗糙度之高度參數被控制在基於ISO 25178-2標準之面積材料比曲線中之特定範圍內,所以提供了可提高研磨速率及減少晶圓之表面殘留物、表面刮痕及震痕之研磨墊。使用該研磨墊有可能高效地製造品質優良的半導體元件。本發明之模式
以下,將藉由下列範例詳細解釋本發明。然而,提出此等實施例是為了說明本發明,本發明的範圍不限於此。範例1 :研磨墊之製備 (1) 胺甲酸乙酯基預聚物之製備
將作為多元醇之聚四亞甲基醚二醇(Korea PTG)及作為異氰酸酯化合物之甲苯二異氰酸酯(BASF)載入四頸燒瓶中。反應器內部充填作為惰性氣體之氮氣(N2 ),然後在75℃之反應溫度並攪拌下,進行反應75小時,製得胺甲酸乙酯基預聚物。此時,NCO%調整至9.1%。 (2) 研磨墊之製備
提供裝設有供原料如胺甲酸乙酯基預聚物、固化劑及發泡劑之槽及進料線之鑄造機。準備以上製得的胺甲酸乙酯基預聚物及作為固化劑之MOCA (4,4'-亞甲基雙(2-氯苯胺);Sigma-Aldrich)。準備作為固相發泡劑之微膠囊(Akzonobel),其中該固相發泡劑之平均粒徑已經過使用固相發泡劑之純化系統調整。使用該固相發泡劑之分級及純化裝置,作為固相發泡劑之純化系統(見圖3至5)。
在裝設有用於胺甲酸乙酯基預聚物、固化劑、惰性氣體及固相發泡劑之進料線之鑄造機中,將製備具有NCO%為9.1%之胺甲酸乙酯基預聚物載入該預聚物槽中,將三伸乙二胺載入該固化劑槽中,及饋入以該原料混合物100重量份為基準,數量為2.0重量份之固相發泡劑,用混合轉頭以3,000 rpm之旋轉速率攪拌。將該混合的混合物以10公斤/分之速率排出,注入長寬1,000 mm、高25 cm之開口形狀的模具中,然後透過熱固化反應固化,獲得一型體。
之後,將該型體之固態材料切片並加工成薄片形式。之後,切割表面,使得研磨前該研磨墊之表面粗糙度如以下表3中所示。對該切割薄片進行開槽處理,以獲得一個具有2 mm厚的薄片(或研磨層)。使用黏合劑將完成的薄片與一副墊層疊在一起,最後獲得研磨墊。 (3) 研磨過程
使用該研磨墊進行用CTS之AP-300型號的CMP製程。用於該CMP製程之詳細條件示於以下表1中。在該CMP製程完成後,乾燥該研磨墊。之後,使用Bruker之Contour GT型號測量研磨墊之表面粗糙度。用於測量表面粗糙度之詳細條件示於表2中。測量基於研磨墊半徑之1/2點處之溝槽的壓花區域。每一研磨墊共進行該測量5次並獲得平均值。獲得研磨後該研磨墊之表面粗糙度的體積參數及表面粗糙度的高度參數,分別示於表3及4中。範例 2 5
用與範例1中相同的方法來獲得研磨墊,但改變研磨墊之表面處理條件,使得研磨之前與之後該研磨墊之表面粗糙度的體積參數及表面粗糙度的高度參數被調整成如以下表3及4所示。比較例 1
用與範例1中相同的方法來獲得研磨墊,但調整混合轉頭的旋轉速率且未進行分級與純化設備對固相發泡劑的純化過程,使得研磨之前與之後該研磨墊之表面粗糙度的體積參數及表面粗糙度的高度參數被調整成如以下表3及4所示。比較例2 及3
用與範例1中相同的方法來獲得研磨墊,但未進行分級與純化設備對固相發泡劑的純化過程且改變研磨墊的表面處理條件,使得研磨之前與之後該研磨墊之表面粗糙度的體積參數及表面粗糙度的高度參數被調整成如以下表3及4所示。
以下表1總結用於CMP製程的詳細條件。 [表1]
類別 細節 測量條件
晶圓 晶圓類型 PETEOS
虛設晶圓(研磨時間/研磨數) 60秒/25
監控晶圓(研磨時間/研磨數) 60秒/2
預磨合 時間(分) 15分
載體&平台 載體速率(rpm) 87.0
載體壓力 (w1/w2/w3/w4/w5/保持器,psi) 6/3.5/3.5/3.5/3.5/10
平台速率(rpm) 93.0
主軸掃掠速率(sw/分) 19.0
修整器 修整器類型 8031C7 (Saesol)
修整類型 原位
修整力(lb) 6.0
修整速率(rpm) 101.0
修整器掃掠速率(sw/分) 19.0
漿料 漿料類型 ACS-350 (KC Tech)
漿料比 漿料:去離子水(DIW) 1:10
流速(cc/分) 200
以下表2總結用於測量研磨墊之表面粗糙度的條件。 [表2]
  細節 測量條件
測量 測量模式 VSI/VXI
目鏡 5倍
物鏡 1.5倍
測量區域 X軸 1182.6μm
Y軸 893.8μm
掃描選項 速率 x1
反向掃描 10μm
長度 80μm
閾值 5%
以下表3及4總結測量範例及比較例中研磨之前與之後該研磨墊之表面粗糙的結果。 [表3]
  範例 比較例
1 2 3 4 5 1 2 3
混合轉頭之旋轉速率(rpm) 3,000 3,000 3,000 3,000 3,000 7,000 3,000 3,000
孔之平均直徑(μm) 27 28 26 15 40 24 28 26
研磨前該研磨墊之表面粗糙度的體積參數 Vmp(10)/Vv(0) 0.105 0.001 0.015 0.040 0.057 0.011 0.089 0.037
Vmp(10)/Vvv(80) 1.050 0.018 0.187 0.478 0.540 0.193 1.231 0.467
Vmp(10)/Vmc(10,80) 2.151 0.005 0.041 1.250 1.531 0.061 1.387 1.226
Vmp(10)/{Vv(0) + Vvv(80) + Vmc(10,80)} 3.306 0.024 0.243 1.768 2.128 0.265 2.707 1.730
固相發泡劑之分級與純化裝置
研磨後該研磨墊之表面粗糙度的體積參數 Vmp(10) 0.296 0.312 0.275 0.230 0.489 0.315 0.261 0.425
Vv(0) 16.4 22.3 27.5 46.0 5.0 2.6 261.0 11.5
Vvv(80) 0.811 0.975 1.375 9.580 0.498 0.311 15.353 0.731
Vmc(10,80) 4.111 4.875 5.730 5.750 0.265 0.141 65.250 0.118
Vmp(10)/Vv(0) 0.018 0.014 0.010 0.005 0.098 0.120 0.001 0.037
Vmp(10)/Vvv(80) 0.365 0.320 0.200 0.024 0.982 1.013 0.017 0.581
Vmp(10)/Vmc(10,80) 0.072 0.064 0.048 0.040 1.842 2.231 0.004 3.591
Vmp(10)/{Vv(0) + Vvv(80) + Vmc(10,80)} 0.455 0.398 0.258 0.069 2.922 3.364 0.022 4.209
[表4]
  範例 比較例
1 2 3 4 5 1 2 3
混合轉頭之旋轉速率(rpm) 3,000 3,000 3,000 3,000 3,000 7,000 3,000 3,000
孔之平均直徑(μm) 27 28 26 15 40 24 28 26
研磨前該研磨墊之表面粗糙度的高度參數 Spk/Sk 0.9 0.1 0.3 0.4 0.6 0.4 0.8 0.5
Svk/Sk 2.2 0.15 0.8 1 1.5 0.9 1.9 1.3
Spk/Svk 1.2 0.15 0.2 0.4 0.9 0.2 1.1 0.6
(Spk + Svk)/Sk 3.1 0.25 1.1 1.5 2.1 1.3 2.7 1.8
Spk/Sk + Svk/Sk + Spk/Svk 4.3 0.4 1.3 1.8 3.0 1.5 3.8 2.4
固相發泡劑之分級與純化裝置
研磨後該研磨墊之表面粗糙度的高度參數 Spk 5.4 5.8 5.0 2.6 9.1 5.5 4.9 5.1
Sk 6.0 8.3 12.5 26.0 8.3 55.0 4.1 2.6
Svk 12.0 13.3 11.3 13.0 19.9 11.0 10.7 6.4
Spk/Sk 0.9 0.7 0.4 0.1 1.1 0.1 1.2 2.0
Svk/Sk 2.0 1.6 0.9 0.5 2.4 0.2 2.6 2.0
Spk/Svk 0.7 0.5 0.3 0.2 1.1 0.1 1.2 0.8
(Spk + Svk)/Sk 2.9 2.3 1.3 0.5 3.5 0.3 3.6 4.0
Spk/Sk + Svk/Sk + Spk/Svk 3.6 2.8 1.6 0.8 4.6 0.4 4.8 4.8
測試範例1 :研磨速率( 移除速率)
在製得研磨墊後立即測量初始研磨速率如下。
利用化學氣相沈積(CVD)法在一個具有直徑300 mm之矽晶圓上沈積氧化矽。將研磨墊安裝在CMP機器上,將該矽晶圓設成其氧化矽層面向該研磨墊之研磨表面。之後,在以150 rpm之速率旋轉該矽晶圓、以150 rpm之速率旋轉該平台60秒及以250 ml/分之速率將經煅燒的氧化鈰漿料施加至該研磨墊上之時,在4.0 psi之研磨負載下研磨該氧化矽層。研磨完成時,使該矽晶圓與該載體分開,將其安裝在旋轉式乾燥機中,用去離子水(DIW)洗滌,之後用氮氣(N2 )乾燥15秒。使用光譜反射計型測厚儀(製造商:Keyence,型號:SI-F80R)測量研磨之前與之後乾燥矽晶圓的膜厚度。使用以下方程式12計算研磨速率。 [方程式12] 研磨速率(Å/分) = 矽晶圓之研磨厚度(Å) / 研磨時間(分)測試範例2 :殘留物、刮痕及震痕之測量
在使用範例及比較例之研磨墊進行研磨過程後,使用晶圓檢驗設備(AIT XP+, KLA Tencor) (閾值:150,模濾器閾值:280)測量研磨時晶圓(即,監控晶圓)表面上出現的殘留物、刮痕及震痕。
該殘留物意指附著於晶圓表面之基本上無定形異物。例如,其意指如圖6中所示之形狀缺陷。
該刮痕意指基本上連續的直線刮痕。例如,其意指如圖7中所示之形狀缺陷。
同時,該震痕意指基本上不連續的直線刮痕。例如,其意指如圖8中所示之形狀缺陷。
結果示於以下表5中。 [表5]
  範例 比較例
1 2 3 4 5 1 2 3
研磨速率(Å/分) 2,998 2,919 2,945 3,257 2,615 2,081 4,153 2,394
殘留物(計數) 73 62 86 100 81 217 256 209
刮痕(計數) 141 125 159 161 146 789 575 710
震痕(計數) 2.5 2.0 3.5 3.0 2.5 18.5 13.5 16.0
從表5中可看到,範例1至5中之研磨墊,其中研磨後該研磨墊的表面粗糙度的高度參數及表面粗糙度的體積參數調整至特定範圍內,具有優異的研磨速率。出現在晶圓表面上的殘留物、表面刮痕及震痕之數目顯著地低於使用比較例1至3之研磨墊的情況。
具體地,範例1至3中之研磨速率為2,919 Å/分及2,998 Å/分,整體都很優異。相反的,比較例2中之研磨墊的研磨速率為3,715 Å/分,其中由於摩擦面積對能夠攜帶漿料之孔的比率增加,起始研磨速率非常高。因此,由於墊鈍化(glazing)現象,預期比較例2之研磨墊的研磨速率會進一步增加。另一方面,比較例1中之研磨墊的研磨速率為2,081 Å/分,此非常的低。
同時,在範例4及5之研磨墊中,雖然與範例1至3之研磨墊相比,研磨速率些微減少或些微增加,但晶圓表面上的殘留物、表面刮痕及震痕的數目與使用範例1至3之研磨墊的情況相似,且與使用比較例1至3之研磨墊的情況相比,顯著地降低。
具體地,就出現在晶圓表面上之殘留物而言,在範例1至5之研磨墊的情況下殘留物的數目為62至100個,而在比較例1至3之研磨墊的情況下殘留物的數目超過200個,其與使用範例1至5之研磨墊之情況相比,大幅地增加二倍或更多。
此外,就刮痕而言,在範例1至5之研磨墊的情況下刮痕的數目為125至161個,而在比較例1至3之研磨墊的情況下刮痕的數目為575個或更多,其與使用範例1至5之研磨墊之情況相比,大幅地增加三倍或更多。
此外,就震痕而言,在範例1至5之研磨墊的情況下震痕的數目為3.5個或更少,而在比較例1至3之研磨墊的情況下震痕的數目超過13個或更多,其與使用範例1至5之研磨墊之情況相比,大幅地增加四倍或更多。
據此,確定了將研磨期間或後之表面粗糙度,而不是研磨前的表面粗糙度維持恆定,有利於維持恆定的研磨性能。
110:轉頭 120:半導體基材(或晶圓) 130:平台 140:漿料 150:孔 10a,10c:管 30a,30b:過濾單元 31:過濾外殼 32:過濾蓋 33:過濾元件 311:過濾空間 312:過濾入口 321:過濾出口 331:固定元件 332:磁鐵 50:分級單元 51:分級機殼 53:渦流產生構件 54:排放濾器 56:振動產生單元 511:分級空間 511a:中心軸 512:分級進入孔 513:第一微球排放孔 514:第二微球排放孔 515:氣體供應孔 516:氣體排放孔 A:流化氣體之流動 B:固相發泡劑之流動 C:振動箭頭
圖1描繪根據本發明之一個實施例之能夠通過剪切應力表現出研磨墊之表面形狀及孔形狀變形之研磨過程的例子。 圖2是描繪用光學表面粗糙度計測量研磨墊時,從基於ISO 25178-2標準之面積材料比曲線衍生的體積參數(a)及高度參數(b)之圖解。 圖3是顯示根據本發明之固相發泡劑的分級及純化裝置中之分級單元之示意圖。 圖4是描繪根據一個實施例之固相發泡劑的分級及純化裝置中之分級單元之運行狀態。 圖5是根據一個實施例之固相發泡劑的分級及純化裝置中之過濾單元之分解透視圖。 圖6是顯示根據一個實施例之晶圓上的殘留物形狀之照片。 圖7是顯示根據一個實施例之晶圓上的刮痕形狀之照片。 圖8是顯示根據一個實施例之晶圓上的震痕形狀之照片。

Claims (10)

  1. 一種研磨墊,在以200cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓(dummy wafers)各研磨60秒以及對二個監控晶圓(monitoring wafers)各研磨60秒後,每一個晶圓均為氧化矽晶圓,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以下關係1及2:
    Figure 110122157-A0305-02-0051-3
    Figure 110122157-A0305-02-0051-4
    在關係1及2中,Vmp(10)是對應於上部10%之尖峰的材料體積,Vvv(80)是對應於上部80%至100%之谷的空隙體積,及Vmc(10,80)是對應於上部10%至80%之核心的材料體積。
  2. 如請求項1之研磨墊,其中在研磨該虛設晶圓之前,先進行預磨合處理10至20分鐘,以修整該研磨墊之研磨層。
  3. 如請求項1之研磨墊,其中Vmp(10)是0.020至0.900,Vvv(80)是0.200至10.000及Vmc(10,80)是0.200至11.000。
  4. 如請求項1之研磨墊,其中研磨後該研磨墊滿足以下關係3:
    Figure 110122157-A0305-02-0051-5
    在關係3中,Vmp(10)、Vvv(80)及Vmc(10,80)是如上所定義,及Vv(0)是總空隙體積。
  5. 如請求項4之研磨墊,其中Vv(0)是3.000至57.000,或Vv(0)、 Vvv(80)及Vmc(10,80)的總合是4.200至70.400,及該研磨墊於研磨之前與之後Vmp(10)/Vvv(80)差的絕對值為0.005至0.800,或該研磨墊於研磨之前與之後Vmp(10)/Vv(0)差的絕對值為0.002至0.087。
  6. 一種研磨墊,在以200cc/分之速率將經煅燒的氧化鈰漿料噴塗至該研磨墊上之時,對25個虛設晶圓各研磨60秒以及對二個監控晶圓各研磨60秒後,每一個晶圓均為氧化矽晶圓,用光學表面粗糙度計測量研磨後該研磨墊時,該研磨墊在基於ISO 25178-2標準之面積材料比曲線中滿足以下關係4:
    Figure 110122157-A0305-02-0052-1
    在關係4中,Vmp(10)是對應於上部10%之尖峰的材料體積,及Vv(0)是總空隙體積。
  7. 如請求項6之研磨墊,其中Vmp(10)是0.020至0.900,及Vv(0)是3.000至57.000。
  8. 如請求項6之研磨墊,其中研磨後該研磨墊滿足以下關係3:
    Figure 110122157-A0305-02-0052-2
    在關係3中,Vmp(10)及Vv(0)是如上所定義,Vvv(80)是對應於上部80%至100%之谷的空隙體積,及Vmc(10,80)是對應於上部10%至80%之核心的材料體積。
  9. 如請求項8之研磨墊,其中Vvv(80)是0.200至10.000,Vmc(10,80)是0.200至11.000,Vv(0)、Vvv(80)及Vmc(10,80)之總合是4.200至70.400,及其中該研磨墊於研磨之前與之後Vmp(10)/Vv(0)差的絕對值為0.002至0.087,或該研磨墊於研磨之前與之後Vmp(10)/Vvv(80)差的絕對值為0.005至 0.800。
  10. 如請求項6之研磨墊,其滿足選自下列特性中之至少一個:25℃下之表面硬度為45至65 Shore D,對氧化物層之研磨速率為2,600Å/分至3,300Å/分;該監控晶圓上之表面殘留物數為100或更少;該監控晶圓上之表面刮痕數為200或更少;及該監控晶圓上之震痕數為5或更少。
TW110122157A 2020-06-19 2021-06-17 研磨墊、製備該研磨墊之方法及使用該研磨墊以製備半導體裝置之方法 TWI804893B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020200075102A KR102237321B1 (ko) 2020-06-19 2020-06-19 연마패드, 이의 제조방법 및 이를 이용한 반도체 소자의 제조방법
KR1020200075101A KR102237316B1 (ko) 2020-06-19 2020-06-19 연마패드, 이의 제조방법 및 이를 이용한 반도체 소자의 제조방법
KR10-2020-0075101 2020-06-19
KR10-2020-0075102 2020-06-19

Publications (2)

Publication Number Publication Date
TW202206513A TW202206513A (zh) 2022-02-16
TWI804893B true TWI804893B (zh) 2023-06-11

Family

ID=78923960

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110122157A TWI804893B (zh) 2020-06-19 2021-06-17 研磨墊、製備該研磨墊之方法及使用該研磨墊以製備半導體裝置之方法

Country Status (4)

Country Link
US (1) US20210394334A1 (zh)
JP (1) JP7133683B2 (zh)
CN (2) CN113814888B (zh)
TW (1) TWI804893B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114589616B (zh) * 2022-04-21 2022-10-04 哈尔滨工业大学 一种加热与振动协同化学机械抛光CaF2晶片的装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200404648A (en) * 2002-05-23 2004-04-01 Cabot Microelectronics Corp Microporous polishing pads
TW200510116A (en) * 2003-02-24 2005-03-16 Dow Global Technologies Inc Materials and methods for chemical-mechanical planarization
TW201542318A (zh) * 2014-04-03 2015-11-16 3M Innovative Properties Co 拋光墊與系統及其製造與使用方法
JP2016170407A (ja) * 2015-03-10 2016-09-23 旭硝子株式会社 マスクブランク用ガラス基板
TW201900335A (zh) * 2017-05-29 2019-01-01 南韓商Skc股份有限公司 多孔性聚胺甲酸酯拋光墊及使用其來製備半導體裝置的方法
TW202000369A (zh) * 2018-06-21 2020-01-01 南韓商Skc股份有限公司 具有改良的漿料流動性之研磨墊及其製備方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1110523A (ja) * 1997-06-20 1999-01-19 Nec Kyushu Ltd 研磨装置
US6443812B1 (en) * 1999-08-24 2002-09-03 Rodel Holdings Inc. Compositions for insulator and metal CMP and methods relating thereto
US6293845B1 (en) * 1999-09-04 2001-09-25 Mitsubishi Materials Corporation System and method for end-point detection in a multi-head CMP tool using real-time monitoring of motor current
TW470684B (en) * 2000-06-19 2002-01-01 Taiwan Semiconductor Mfg In-line monitoring the removing rate of chemical mechanical polish
US7066801B2 (en) * 2003-02-21 2006-06-27 Dow Global Technologies, Inc. Method of manufacturing a fixed abrasive material
JP4986099B2 (ja) * 2003-06-09 2012-07-25 花王株式会社 基板の製造方法
JP3547737B1 (ja) * 2003-08-22 2004-07-28 東洋ゴム工業株式会社 研磨シートの製造方法、研磨シート、及び研磨パッド
KR100630754B1 (ko) * 2005-07-15 2006-10-02 삼성전자주식회사 슬러리 유막 두께 변화량을 이용한 연마패드의 마모 및마찰 측정방법 및 장치
WO2009035073A1 (ja) * 2007-09-13 2009-03-19 Nikon Corporation 研磨装置、研磨方法及びこの研磨方法を用いて基板の研磨加工を行う基板の製造方法
KR101563130B1 (ko) * 2014-11-07 2015-11-09 주식회사 펨빅스 플라즈마 내식각성이 향상된 공정부품 및 공정부품의 플라즈마 내식각성 강화 처리 방법
CN107536477A (zh) * 2016-06-28 2018-01-05 木沛松 一种网状结构钛金属复合不粘锅及其制造方法
CN108247528B (zh) * 2016-12-29 2020-08-28 中芯国际集成电路制造(上海)有限公司 一种研磨垫的处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200404648A (en) * 2002-05-23 2004-04-01 Cabot Microelectronics Corp Microporous polishing pads
TW200510116A (en) * 2003-02-24 2005-03-16 Dow Global Technologies Inc Materials and methods for chemical-mechanical planarization
TW201542318A (zh) * 2014-04-03 2015-11-16 3M Innovative Properties Co 拋光墊與系統及其製造與使用方法
JP2016170407A (ja) * 2015-03-10 2016-09-23 旭硝子株式会社 マスクブランク用ガラス基板
TW201900335A (zh) * 2017-05-29 2019-01-01 南韓商Skc股份有限公司 多孔性聚胺甲酸酯拋光墊及使用其來製備半導體裝置的方法
TW202000369A (zh) * 2018-06-21 2020-01-01 南韓商Skc股份有限公司 具有改良的漿料流動性之研磨墊及其製備方法

Also Published As

Publication number Publication date
TW202206513A (zh) 2022-02-16
CN118061073A (zh) 2024-05-24
CN113814888A (zh) 2021-12-21
JP2022002305A (ja) 2022-01-06
US20210394334A1 (en) 2021-12-23
CN113814888B (zh) 2024-06-18
JP7133683B2 (ja) 2022-09-08

Similar Documents

Publication Publication Date Title
JP2019217627A (ja) スラリー流動性が向上された研磨パッドおよびその製造方法
JP7291986B2 (ja) 研磨パッドおよびこれを用いた半導体素子の製造方法
EP3974109B1 (en) Polishing pad, manufacturing method thereof and preparing method of semiconductor device using the same
KR102237326B1 (ko) 연마패드, 이의 제조방법 및 이를 이용한 반도체 소자의 제조방법
TWI804893B (zh) 研磨墊、製備該研磨墊之方法及使用該研磨墊以製備半導體裝置之方法
KR102237311B1 (ko) 연마패드, 이의 제조방법 및 이를 이용한 반도체 소자의 제조방법
KR102237321B1 (ko) 연마패드, 이의 제조방법 및 이를 이용한 반도체 소자의 제조방법
TWI782581B (zh) 研磨墊、製備該研磨墊之方法及使用該研磨墊以製備半導體裝置之方法
KR102237316B1 (ko) 연마패드, 이의 제조방법 및 이를 이용한 반도체 소자의 제조방법
JP7231704B2 (ja) 研磨パッド、研磨パッドの製造方法及びこれを用いた半導体素子の製造方法
TWI766447B (zh) 研磨墊、其製備方法及使用其之半導體裝置的製備方法
JP7285613B2 (ja) 研磨パッド、その製造方法およびこれを用いる半導体素子の製造方法
JP2021079541A (ja) 研磨パッド、その製造方法およびこれを用いる半導体素子の製造方法
JP2024048262A (ja) 研磨パッド
CN118789449A (zh) 调节氯含量的抛光垫以及用其制备半导体装置的方法