TWI803969B - Power-up circuit with temperature compensation - Google Patents

Power-up circuit with temperature compensation Download PDF

Info

Publication number
TWI803969B
TWI803969B TW110133425A TW110133425A TWI803969B TW I803969 B TWI803969 B TW I803969B TW 110133425 A TW110133425 A TW 110133425A TW 110133425 A TW110133425 A TW 110133425A TW I803969 B TWI803969 B TW I803969B
Authority
TW
Taiwan
Prior art keywords
transistor
current
voltage
coupled
terminal
Prior art date
Application number
TW110133425A
Other languages
Chinese (zh)
Other versions
TW202311900A (en
Inventor
蔡水河
林柏成
Original Assignee
大陸商常州欣盛半導體技術股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商常州欣盛半導體技術股份有限公司 filed Critical 大陸商常州欣盛半導體技術股份有限公司
Priority to TW110133425A priority Critical patent/TWI803969B/en
Publication of TW202311900A publication Critical patent/TW202311900A/en
Application granted granted Critical
Publication of TWI803969B publication Critical patent/TWI803969B/en

Links

Images

Abstract

A power-up circuit with temperature compensation including a first current source, a current amplifier and a temperature compensation circuit is disclosed. The first current source is coupled to a first system voltage, and configured to generate an internal operating current according to an internal operating voltage. The current amplifier is coupled to the first current source and the first system voltage, and configured to generate an amplified current and a reference voltage corresponding to the amplified current according to the internal operating voltage and a parameter, wherein the internal operating voltage and the reference voltage have positive temperature coefficients, and the internal operating current and the amplified current have negative temperature coefficients. The temperature compensation circuit is coupled to the current amplifier, and configured to generate an output voltage with temperature compensation according to the reference voltage.

Description

具溫度補償的電源啟動電路Power startup circuit with temperature compensation

本發明係指一種電源啟動電路,尤指一種具溫度補償的電源啟動電路。The invention refers to a power starting circuit, especially a power starting circuit with temperature compensation.

傳統的電源啟動電路可由多個金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,以下簡稱MOSFET)所組成,其中MOSFET的電阻值具有負溫度係數(Negative Temperature Coefficient,NTC)。當操作溫度上升時,會使得MOSFET的載子濃度上升而提高導電率;意即MOSFET的導電率在高溫時上升,使得MOSFET的電阻值下降,故MOSFET的電阻值具有負溫度係數。因此,傳統的電源啟動電路產生的輸出電壓也具有負溫度係數。在實際應用中,當操作溫度上升時,MOSFET的電阻值和臨界電壓(Threshold Voltage,Vth)下降,造成傳統的電源啟動電路的操作也隨之變動,進而改變輸出電壓的大小。在某些情況下,由於電源啟動電路產生的輸出電壓隨著溫度變動,將會導致後續電路無法正常操作。The traditional power start-up circuit can be composed of multiple metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor, hereinafter referred to as MOSFET), in which the resistance value of MOSFET has a negative temperature coefficient (Negative Temperature Coefficient, NTC) . When the operating temperature rises, the carrier concentration of the MOSFET will increase and the conductivity will increase; that is, the conductivity of the MOSFET will increase at high temperature, causing the resistance of the MOSFET to decrease, so the resistance of the MOSFET has a negative temperature coefficient. Therefore, the output voltage generated by the traditional power startup circuit also has a negative temperature coefficient. In practical applications, when the operating temperature rises, the resistance value and the threshold voltage (Threshold Voltage, Vth) of the MOSFET decrease, causing the operation of the traditional power startup circuit to change accordingly, thereby changing the magnitude of the output voltage. In some cases, since the output voltage generated by the power startup circuit varies with temperature, subsequent circuits will not operate normally.

因此,如何提供一種具溫度補償的電源啟動電路,實乃本領域的重要課題之一。Therefore, how to provide a power startup circuit with temperature compensation is one of the important issues in this field.

因此,本發明之一目的在於提供一種具溫度補償的電源啟動電路,包含一第一電流源、一電流放大器以及一溫度補償電路。該第一電流源耦接於一第一系統電壓,用來根據一內部操作電壓,產生一內部操作電流。該電流放大器耦接於該第一電流源和該第一系統電壓,用來根據該內部操作電流和一參數,產生一放大電流和對應於該放大電流的一參考電壓;其中該內部操作電壓和該參考電壓具有正溫度係數,且該內部操作電流和該放大電流具有負溫度係數。該溫度補償電路耦接於該電流放大器,用來根據該參考電壓,產生具溫度補償的一輸出電壓。Therefore, an object of the present invention is to provide a power starting circuit with temperature compensation, which includes a first current source, a current amplifier and a temperature compensation circuit. The first current source is coupled to a first system voltage for generating an internal operating current according to an internal operating voltage. The current amplifier is coupled to the first current source and the first system voltage, and is used to generate an amplified current and a reference voltage corresponding to the amplified current according to the internal operating current and a parameter; wherein the internal operating voltage and The reference voltage has a positive temperature coefficient, and the internal operating current and the amplified current have negative temperature coefficients. The temperature compensation circuit is coupled to the current amplifier and is used for generating an output voltage with temperature compensation according to the reference voltage.

相較於現有技術,本發明具溫度補償的電源啟動電路利用電阻來產生具正溫度係數的參考電壓,再將具正溫度係數的參考電壓輸入到溫度補償電路,使得溫度補償電路隨著溫度變化來適應性地補償輸出電壓,如此產生了穩定的輸出電壓,進而確保後續電路能夠正常操作。除此之外,本發明具溫度補償的電源啟動電路不須設置帶隙電路和偏差電路,具備了設計精簡的優勢,進而降低了生產成本。Compared with the prior art, the power starting circuit with temperature compensation of the present invention uses resistance to generate a reference voltage with a positive temperature coefficient, and then inputs the reference voltage with a positive temperature coefficient into the temperature compensation circuit, so that the temperature compensation circuit changes with temperature To adaptively compensate the output voltage, so that a stable output voltage is generated, thereby ensuring the normal operation of subsequent circuits. In addition, the temperature-compensated power starting circuit of the present invention does not need to be provided with a bandgap circuit and a deviation circuit, which has the advantage of simplifying the design, thereby reducing the production cost.

圖1為電源啟動電路1的示意圖。電源啟動電路1的電路結構如圖1所示,其包含前級與後級的互補式金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,以下簡稱CMOS)電路,前級CMOS電路包含彼此串接的一P型電晶體和多個N型電晶體,而後級CMOS電路包含彼此串接的一P型電晶體和一N型電晶體。前級和後級CMOS電路可分別透過彼此串接的電晶體來對系統電壓VDD進行分壓。在操作上,當系統電壓VDD大於前級CMOS電路的多個N型電晶體的臨界電壓(Threshold Voltage,Vth)的總和時,表示系統供電已穩定,即可啟動後級CMOS電路來提供具有高電壓的參考電壓VCOMP。FIG. 1 is a schematic diagram of a power starting circuit 1 . The circuit structure of the power start-up circuit 1 is shown in Figure 1, which includes complementary metal-oxide-semiconductor (Complementary Metal-Oxide-Semiconductor, hereinafter referred to as CMOS) circuits of the front and rear stages, and the front-stage CMOS circuit includes serially connected A P-type transistor and a plurality of N-type transistors, and the subsequent CMOS circuit includes a P-type transistor and an N-type transistor connected in series. The front-stage and rear-stage CMOS circuits can respectively divide the system voltage VDD through transistors connected in series. In operation, when the system voltage VDD is greater than the sum of the threshold voltages (Threshold Voltage, Vth) of multiple N-type transistors in the front-stage CMOS circuit, it means that the system power supply is stable, and the subsequent CMOS circuit can be started to provide high voltage reference voltage VCOMP.

在電源啟動電路1的電路結構下,參考電壓VCOMP會隨著電路本身的操作溫度或所處的環境溫度的變動而變動。具體而言,由於電源啟動電路1是由具有負溫度係數的多個電晶體所組成的,故參考電壓VCOMP也具有負溫度係數。舉例來說,當操作溫度上升時,MOSFET的電阻值和臨界電壓Vth下降,造成前級和後級CMOS電路的分壓比例變動,進而改變後級CMOS電路提供參考電壓VCOMP的判斷條件與時機,同時也會改變參考電壓VCOMP的大小。不幸地,若電源啟動電路1不能在正確的判斷條件與時機提供參考電壓VCOMP,或是不能提供正確的參考電壓VCOMP,可能導致後續電路無法正常操作。Under the circuit structure of the power start-up circuit 1 , the reference voltage VCOMP will vary with the operating temperature of the circuit itself or the temperature of the surrounding environment. Specifically, since the power starting circuit 1 is composed of multiple transistors with negative temperature coefficients, the reference voltage VCOMP also has negative temperature coefficients. For example, when the operating temperature rises, the resistance value of the MOSFET and the critical voltage Vth decrease, causing the voltage division ratio of the front-stage and subsequent-stage CMOS circuits to change, thereby changing the judgment conditions and timing for the latter-stage CMOS circuit to provide the reference voltage VCOMP, At the same time, the magnitude of the reference voltage VCOMP will also be changed. Unfortunately, if the power start-up circuit 1 cannot provide the reference voltage VCOMP at the correct judgment condition and timing, or cannot provide the correct reference voltage VCOMP, subsequent circuits may fail to operate normally.

圖2為具溫度補償的電源啟動電路2的示意圖。電源啟動電路2包含比較器20、帶隙(Bandgap)電路21、偏差(Bias)電路22和電阻R3、R4。電源啟動電路2的電路結構如圖2所示。在操作上,偏差電路22用來提供帶隙電路21的偏差電流;帶隙電路21用來根據偏差電流,產生帶隙電壓VBG到比較器20的負輸入端。電阻R3、R4可等效為電源啟動電路1的後級COMS電路,用來對系統電壓VDD進行分壓,以產生參考電壓VCOMP到比較器20的正輸入端。接著,比較器20用來比較參考電壓VCOMP和帶隙電壓VBG,以產生輸出電壓OUT。FIG. 2 is a schematic diagram of a power starting circuit 2 with temperature compensation. The power starting circuit 2 includes a comparator 20 , a bandgap (Bandgap) circuit 21 , a bias (Bias) circuit 22 and resistors R3 and R4 . The circuit structure of the power starting circuit 2 is shown in FIG. 2 . In operation, the bias circuit 22 is used to provide the bias current of the bandgap circuit 21; the bandgap circuit 21 is used to generate the bandgap voltage VBG to the negative input terminal of the comparator 20 according to the bias current. Resistors R3 and R4 can be equivalent to the post-stage COMS circuit of the power start-up circuit 1 , and are used to divide the system voltage VDD to generate a reference voltage VCOMP to the positive input terminal of the comparator 20 . Next, the comparator 20 is used to compare the reference voltage VCOMP with the bandgap voltage VBG to generate the output voltage OUT.

圖3為圖2的具溫度補償的電源啟動電路2的電壓時序圖。於圖3中,當參考電壓VCOMP小於帶隙電壓VBG時,輸出電壓OUT為低電壓;當參考電壓VCOMP大於帶隙電壓VBG時,輸出電壓OUT為高電壓。簡單來說,由於帶隙電路21可產生穩定的帶隙電壓VBG,即使參考電壓VCOMP隨著溫度變動而變動,透過比較器20來比較參考電壓VCOMP和帶隙電壓VBG,可於比較器20的輸出端產生穩定的輸出電壓OUT。如此一來,電源啟動電路2產生的輸出電壓OUT不會隨著溫度變動,進而確保後續電路可正常操作。FIG. 3 is a voltage timing diagram of the power starting circuit 2 with temperature compensation in FIG. 2 . In FIG. 3 , when the reference voltage VCOMP is less than the bandgap voltage VBG, the output voltage OUT is a low voltage; when the reference voltage VCOMP is greater than the bandgap voltage VBG, the output voltage OUT is a high voltage. In simple terms, since the bandgap circuit 21 can generate a stable bandgap voltage VBG, even if the reference voltage VCOMP changes with temperature, the comparison of the reference voltage VCOMP and the bandgap voltage VBG through the comparator 20 can be used in the comparator 20 The output terminal produces a stable output voltage OUT. In this way, the output voltage OUT generated by the power starting circuit 2 will not vary with temperature, thereby ensuring normal operation of subsequent circuits.

然而,申請人注意到,帶隙電路21和偏差電路22的電路設計較為複雜,導致了較高的生產成本。如何提供一種設計精簡並且具溫度補償的電源啟動電路,進而降低生產成本,亦為本領域的重要課題之一。However, the applicant noticed that the circuit design of the bandgap circuit 21 and the deviation circuit 22 is relatively complicated, resulting in higher production costs. How to provide a power start-up circuit with simplified design and temperature compensation to reduce production cost is also one of the important issues in this field.

圖4為根據本發明實施例具溫度補償的電源啟動電路4的示意圖。具溫度補償的電源啟動電路4可取代圖2的電源啟動電路2,並包含一電流源40、一電流放大器41以及一溫度補償電路5。電流源40耦接於一系統電壓VDD,用來根據一內部操作電壓VI,產生一內部操作電流I。電流放大器41耦接於電流源40和系統電壓VDD,用來根據內部操作電流I和一參數k,產生一放大電流I*k和對應於放大電流I*k的一參考電壓VREF。於本實施例中,內部操作電壓VI和參考電壓VREF具有正溫度係數,且內部操作電流I和放大電流I*k具有負溫度係數。溫度補償電路5耦接於41電流放大器,用來根據參考電壓VREF,產生具溫度補償的一輸出電壓OUT_COMP。FIG. 4 is a schematic diagram of a power starting circuit 4 with temperature compensation according to an embodiment of the present invention. The power starting circuit 4 with temperature compensation can replace the power starting circuit 2 in FIG. 2 , and includes a current source 40 , a current amplifier 41 and a temperature compensation circuit 5 . The current source 40 is coupled to a system voltage VDD for generating an internal operating current I according to an internal operating voltage VI. The current amplifier 41 is coupled to the current source 40 and the system voltage VDD for generating an amplified current I*k and a reference voltage VREF corresponding to the amplified current I*k according to the internal operating current I and a parameter k. In this embodiment, the internal operating voltage VI and the reference voltage VREF have positive temperature coefficients, and the internal operating current I and the amplified current I*k have negative temperature coefficients. The temperature compensation circuit 5 is coupled to the current amplifier 41 for generating an output voltage OUT_COMP with temperature compensation according to the reference voltage VREF.

在結構上,電流源40包含多個電晶體M1、M2、M3、M4以及一電阻R1。電晶體M1包含一第一端,耦接於系統電壓VDD;一第二端,耦接於一第一節點N1;以及一控制端,耦接於一第二節點N2。電晶體M2包含一第一端,耦接於第一節點N1;一第二端,耦接於一第二系統電壓;以及一控制端,耦接於第一節點N1。電晶體M3包含一第一端,耦接於系統電壓VDD;一第二端,耦接於第二節點N2;以及一控制端,耦接於第二節點N2。電晶體M4包含一第一端,耦接於第二節點N2;一第二端,耦接於電阻R1;以及一控制端,耦接於第一節點N1。電阻R1包含一第一端,耦接於電晶體M4的第二端;以及一第二端,耦接於第二系統電壓(例如但不限於接地電壓)。於本實施例中,內部操作電壓VI為電阻R1的第一端和電晶體M4的第二端的電壓,且內部操作電流I為流經電阻R1的電流。Structurally, the current source 40 includes a plurality of transistors M1 , M2 , M3 , M4 and a resistor R1 . The transistor M1 includes a first terminal coupled to the system voltage VDD; a second terminal coupled to a first node N1; and a control terminal coupled to a second node N2. The transistor M2 includes a first terminal coupled to the first node N1; a second terminal coupled to a second system voltage; and a control terminal coupled to the first node N1. The transistor M3 includes a first terminal coupled to the system voltage VDD; a second terminal coupled to the second node N2; and a control terminal coupled to the second node N2. The transistor M4 includes a first terminal coupled to the second node N2; a second terminal coupled to the resistor R1; and a control terminal coupled to the first node N1. The resistor R1 includes a first terminal coupled to the second terminal of the transistor M4 ; and a second terminal coupled to a second system voltage (such as but not limited to ground voltage). In this embodiment, the internal operating voltage VI is the voltage between the first terminal of the resistor R1 and the second terminal of the transistor M4, and the internal operating current I is the current flowing through the resistor R1.

電流放大器41包含一電晶體M5以及一電阻R2。電晶體M5包含一第一端,耦接於系統電壓VDD;一第二端,耦接於參考電壓VREF;以及一控制端,耦接於第二節點N2。電阻R2包含一第一端,耦接於參考電壓VREF;以及一第二端,耦接於第二系統電壓(例如但不限於接地電壓)。於本實施例中,放大電流I*k為流經電阻R2的電流。The current amplifier 41 includes a transistor M5 and a resistor R2. The transistor M5 includes a first terminal coupled to the system voltage VDD; a second terminal coupled to the reference voltage VREF; and a control terminal coupled to the second node N2. The resistor R2 includes a first terminal coupled to the reference voltage VREF; and a second terminal coupled to a second system voltage (such as but not limited to ground voltage). In this embodiment, the amplified current I*k is the current flowing through the resistor R2.

在操作上,在電流源40中,多個電晶體M1、M2、M3、M4可視為一電流鏡,當系統電壓VDD導通電晶體M1及M2而產生一電流時,電晶體M3及M4可產生與該電流具有相同大小的鏡像電流(即內部操作電流I)。接著,由於電晶體M3的控制端耦接到電晶體M5的控制端,且電晶體M3及M5的第一端耦接到系統電壓VDD,故在相同的半導體製程條件下,電晶體M3及M5的電壓對電流轉換特性可視為線性相關的(Linearly Correlated)。於一實施例中,電晶體M3與電晶體M5之間的縱橫比(W/L Ratio)為1:k,在此情況下,電晶體M5的導通電流大小理論上為電晶體M3的導通電流大小的k倍。因此,在電流放大器41中,電晶體M5產生的放大電流I*k為電晶體M3產生的內部操作電流I的k倍。In operation, in the current source 40, a plurality of transistors M1, M2, M3, M4 can be regarded as a current mirror, when the system voltage VDD turns on the transistors M1 and M2 to generate a current, the transistors M3 and M4 can generate A mirror current of the same magnitude as this current (i.e. the internal operating current I). Next, since the control terminal of the transistor M3 is coupled to the control terminal of the transistor M5, and the first terminals of the transistors M3 and M5 are coupled to the system voltage VDD, under the same semiconductor process conditions, the transistors M3 and M5 The voltage-to-current conversion characteristics can be regarded as linearly correlated (Linearly Correlated). In one embodiment, the aspect ratio (W/L Ratio) between the transistor M3 and the transistor M5 is 1:k. In this case, the conduction current of the transistor M5 is theoretically equal to the conduction current of the transistor M3 k times the size. Therefore, in the current amplifier 41, the amplified current I*k generated by the transistor M5 is k times the internal operating current I generated by the transistor M3.

進一步地,由於內部操作電壓VI是內部操作電流I流經電阻R1所產生的跨壓,且參考電壓VREF是放大電流I*k流經電阻R2所產生的跨壓,因此根據歐姆定律可分別推導出內部操作電流I和參考電壓VREF的大小。據此,內部操作電流I和參考電壓VREF可由如下方程式(1)、(2)表示:

Figure 02_image001
(1);
Figure 02_image003
(2); 其中VREF是參考電壓,k是參數,I是內部操作電流,m*R是電阻R2的電阻值,VI是內部操作電壓,且 n*R是電阻R1的電阻值。於一實施例中,電阻R1與電阻R2之間的電阻值比例為n:m,且電阻R1、R2的單位電阻值是R。 Furthermore, since the internal operating voltage VI is the cross-voltage generated by the internal operating current I flowing through the resistor R1, and the reference voltage VREF is the cross-voltage generated by the amplified current I*k flowing through the resistor R2, so according to Ohm's law, they can be deduced respectively Out of the size of the internal operating current I and the reference voltage VREF. Accordingly, the internal operating current I and the reference voltage VREF can be expressed by the following equations (1) and (2):
Figure 02_image001
(1);
Figure 02_image003
(2); where VREF is the reference voltage, k is the parameter, I is the internal operating current, m*R is the resistance value of the resistor R2, VI is the internal operating voltage, and n*R is the resistance value of the resistor R1. In one embodiment, the resistance ratio between the resistor R1 and the resistor R2 is n:m, and the unit resistance value of the resistors R1 and R2 is R.

根據方程式(1)可知,由於內部操作電壓VI是電阻R1的跨壓,故內部操作電壓VI具有正溫度係數,即內部操作電壓VI會隨著溫度上升而上升。根據方程式(2)可知,參考電壓VREF是內部操作電壓VI與多個參數k、m及n的乘積,故參考電壓VREF具有正溫度係數,也會隨著溫度上升而上升。在實際應用中,本領域具通常知識者可針對不同的應用需求,選擇適當的參數k、m及n的大小,以獲取適當的參考電壓VREF。According to the equation (1), since the internal operating voltage VI is a voltage across the resistor R1, the internal operating voltage VI has a positive temperature coefficient, that is, the internal operating voltage VI will increase as the temperature rises. According to equation (2), the reference voltage VREF is the product of the internal operating voltage VI and multiple parameters k, m, and n. Therefore, the reference voltage VREF has a positive temperature coefficient and will increase with temperature. In practical applications, those skilled in the art can select appropriate parameters k, m, and n according to different application requirements, so as to obtain an appropriate reference voltage VREF.

於一實施例中,電晶體M1、M3及M5是P型電晶體,電晶體M1、M3及M5的第一端是源極(Source),電晶體M1、M3及M5的第二端是汲極(Drain),且電晶體M1、M3及M5的控制端是閘極(Gate)。於一實施例中,電晶體M2及M4是N型電晶體,電晶體M2及M4的第一端是汲極,電晶體M2及M4的第二端是源極,電晶體M2及M4的控制端是閘極,且內部操作電壓VI是電晶體M4的源極的電壓。In one embodiment, the transistors M1, M3 and M5 are P-type transistors, the first terminals of the transistors M1, M3 and M5 are sources (Source), and the second terminals of the transistors M1, M3 and M5 are drains. Pole (Drain), and the control terminals of transistors M1, M3 and M5 are gates (Gate). In one embodiment, the transistors M2 and M4 are N-type transistors, the first ends of the transistors M2 and M4 are drains, the second ends of the transistors M2 and M4 are sources, and the control of the transistors M2 and M4 terminal is the gate, and the internal operating voltage VI is the voltage of the source of transistor M4.

圖5為根據本發明實施例的溫度補償電路5的示意圖。溫度補償電路5可取代圖2的比較器20、帶隙電路21和偏差電路22。溫度補償電路5包含一電流源50以及一電晶體M6。在結構上,電流源50耦接於系統電壓VDD與輸出電壓OUT_COMP之間,用來根據系統電壓VDD,產生一正溫度係數電流I_BS,於此正溫度係數以+TC表示。於一實施例中,電流源50可耦接不同於系統電壓VDD的另一系統電壓,並根據該另一系統電壓,產生正溫度係數電流I_BS。電晶體M6包含一第一端,耦接於電流源50和輸出電壓OUT_COMP;一第二端,耦接於第二系統電壓(例如但不限於接地電壓);以及一控制端,耦接於參考電壓VREF;其中電晶體M6根據參考電壓VREF,產生一負溫度係數電流I_M6,於此負溫度係數以-TC表示。於一實施例中,電晶體M6是N型電晶體,電晶體M6的第一端是汲極,電晶體M6的第二端是源極,且電晶體M6的控制端是閘極。FIG. 5 is a schematic diagram of a temperature compensation circuit 5 according to an embodiment of the present invention. The temperature compensation circuit 5 can replace the comparator 20 , the bandgap circuit 21 and the bias circuit 22 of FIG. 2 . The temperature compensation circuit 5 includes a current source 50 and a transistor M6. Structurally, the current source 50 is coupled between the system voltage VDD and the output voltage OUT_COMP for generating a positive temperature coefficient current I_BS according to the system voltage VDD, where the positive temperature coefficient is represented by +TC. In one embodiment, the current source 50 may be coupled to another system voltage different from the system voltage VDD, and generate the positive temperature coefficient current I_BS according to the other system voltage. The transistor M6 includes a first terminal coupled to the current source 50 and the output voltage OUT_COMP; a second terminal coupled to the second system voltage (such as but not limited to ground voltage); and a control terminal coupled to the reference The voltage VREF; wherein the transistor M6 generates a negative temperature coefficient current I_M6 according to the reference voltage VREF, and the negative temperature coefficient is represented by -TC here. In one embodiment, the transistor M6 is an N-type transistor, the first terminal of the transistor M6 is a drain, the second terminal of the transistor M6 is a source, and the control terminal of the transistor M6 is a gate.

在操作上,當電源啟動電路4的操作溫度上升時,參考電壓VREF上升以導通電晶體M6,使得電晶體M6將輸出電壓OUT_COMP拉至第二系統電壓(例如但不限於接地電壓)的大小;同時,系統電壓VDD上升以使得電流源50產生的正溫度係數電流I_BS上升,藉此拉高輸出電壓OUT_COMP的大小。也就是說,當電源啟動電路4的操作溫度上升時,負溫度係數電流I_M6下降以使輸出電壓OUT_COMP下降,且正溫度係數電流I_BS上升以補償輸出電壓OUT_COMP。另一方面,當電源啟動電路4的操作溫度下降時,負溫度係數電流I_M6上升以使輸出電壓OUT_COMP上升,且正溫度係數電流I_BS下降以補償輸出電壓OUT_COMP。In operation, when the operating temperature of the power startup circuit 4 rises, the reference voltage VREF rises to turn on the transistor M6, so that the transistor M6 pulls the output voltage OUT_COMP to the magnitude of the second system voltage (such as but not limited to ground voltage); At the same time, the system voltage VDD increases to increase the positive temperature coefficient current I_BS generated by the current source 50 , thereby pulling up the magnitude of the output voltage OUT_COMP. That is, when the operating temperature of the power start-up circuit 4 increases, the negative temperature coefficient current I_M6 decreases to decrease the output voltage OUT_COMP, and the positive temperature coefficient current I_BS increases to compensate the output voltage OUT_COMP. On the other hand, when the operating temperature of the power start-up circuit 4 drops, the negative temperature coefficient current I_M6 increases to increase the output voltage OUT_COMP, and the positive temperature coefficient current I_BS decreases to compensate the output voltage OUT_COMP.

簡單來說,於本發明圖4和圖5的實施例中,電源啟動電路4利用電阻R1、R2來產生具正溫度係數的參考電壓VREF(其中參考電壓VREF的實際大小可透過參數k、m、n來設定),再將具正溫度係數的參考電壓VREF輸入到溫度補償電路5,使得溫度補償電路5隨著溫度變化來適應性地補償輸出電壓OUT_COMP,如此產生了穩定的輸出電壓OUT_COMP,進而確保後續電路能夠正常操作。值得注意的是,相較於圖2的具溫度補償的電源啟動電路2,本發明具溫度補償的電源啟動電路4不須設置比較器20、帶隙電路21和偏差電路22,具備了設計精簡的優勢,進而降低了生產成本。To put it simply, in the embodiments of FIG. 4 and FIG. 5 of the present invention, the power starting circuit 4 uses resistors R1 and R2 to generate a reference voltage VREF with a positive temperature coefficient (the actual value of the reference voltage VREF can be obtained through the parameters k, m , n to set), and then input the reference voltage VREF with a positive temperature coefficient to the temperature compensation circuit 5, so that the temperature compensation circuit 5 adaptively compensates the output voltage OUT_COMP as the temperature changes, thus generating a stable output voltage OUT_COMP, This ensures that subsequent circuits can operate normally. It is worth noting that, compared with the power starting circuit 2 with temperature compensation in FIG. 2 , the power starting circuit 4 with temperature compensation of the present invention does not need to be equipped with a comparator 20, a bandgap circuit 21 and a deviation circuit 22, and has a simplified design. advantages, thereby reducing production costs.

綜上所述,在圖1的電源啟動電路1中,其具備電路設計精簡並且成本低廉的優勢,然而其不具溫度補償功能,將會導致後續電路無法正常操作。在圖2的電源啟動電路2中,其具溫度補償功能,然而其存有電路設計複雜並且成本昂貴的劣勢。相較之下,本發明具溫度補償的電源啟動電路可產生穩定的輸出電壓,進而確保後續電路能夠正常操作,也具備了設計精簡的優勢,進而降低了生產成本。To sum up, in the power start-up circuit 1 of FIG. 1 , it has the advantages of simple circuit design and low cost, but it does not have a temperature compensation function, which will cause subsequent circuits to fail to operate normally. In the power start-up circuit 2 of FIG. 2 , it has a temperature compensation function, but it has disadvantages of complex circuit design and high cost. In contrast, the temperature-compensated power starting circuit of the present invention can generate a stable output voltage, thereby ensuring normal operation of subsequent circuits, and also has the advantage of simplified design, thereby reducing production costs.

本發明已由上述相關實施例加以描述,然而上述實施例僅為實施本發明之範例。必需指出的是,已揭露之實施例並未限制本發明之範圍。相反地,包含於申請專利範圍之精神及範圍之修改及均等設置均包含於本發明之範圍內。The present invention has been described by the above-mentioned related embodiments, but the above-mentioned embodiments are only examples for implementing the present invention. It must be pointed out that the disclosed embodiments do not limit the scope of the present invention. On the contrary, modifications and equivalent arrangements included in the spirit and scope of the patent claims are included in the scope of the present invention.

1、2、4:電源啟動電路 5:溫度補償電路 20:比較器 21:帶隙電路 22:偏差電路 40、50:電流源 41:電流放大器 I:內部操作電流 I*k:放大電流 I_BS:正溫度係數電流 I_M6:負溫度係數電流 M1、M2、M3、M4、M5、M6:電晶體 N1、N2:節點 +TC:正溫度係數 -TC:負溫度係數 R:電阻值 R1、R2、R3、R4:電阻 k、m、n:參數 VBG:帶隙電壓 VDD:系統電壓 VCOMP、VREF:參考電壓 VI:內部操作電壓 Vth:臨界電壓 OUT、OUT_COMP:輸出電壓 1, 2, 4: Power start circuit 5: Temperature compensation circuit 20: Comparator 21:Band gap circuit 22: Deviation circuit 40, 50: current source 41: Current amplifier I: Internal operating current I*k: amplified current I_BS: positive temperature coefficient current I_M6: negative temperature coefficient current M1, M2, M3, M4, M5, M6: Transistor N1, N2: nodes +TC: positive temperature coefficient -TC: negative temperature coefficient R: resistance value R1, R2, R3, R4: Resistors k, m, n: parameters VBG: bandgap voltage VDD: system voltage VCOMP, VREF: reference voltage VI: Internal operating voltage Vth: critical voltage OUT, OUT_COMP: output voltage

圖1為電源啟動電路的示意圖。 圖2為具溫度補償的電源啟動電路的示意圖。 圖3為圖2的具溫度補償的電源啟動電路的電壓時序圖。 圖4為根據本發明實施例的電源啟動電路的示意圖。 圖5為根據本發明實施例的溫度補償電路的示意圖。 Figure 1 is a schematic diagram of the power starting circuit. FIG. 2 is a schematic diagram of a power startup circuit with temperature compensation. FIG. 3 is a voltage timing diagram of the power starting circuit with temperature compensation in FIG. 2 . FIG. 4 is a schematic diagram of a power starting circuit according to an embodiment of the present invention. FIG. 5 is a schematic diagram of a temperature compensation circuit according to an embodiment of the present invention.

4:電源啟動電路 4: Power start circuit

40:電流源 40: Current source

41:電流放大器 41: Current amplifier

5:溫度補償電路 5: Temperature compensation circuit

I:內部操作電流 I: Internal operating current

I*k:放大電流 I*k: amplified current

M1、M2、M3、M4、M5:電晶體 M1, M2, M3, M4, M5: Transistor

N1、N2:節點 N1, N2: nodes

R:電阻值 R: resistance value

R1、R2:電阻 R1, R2: resistance

k、m、n:參數 k, m, n: parameters

VDD:系統電壓 VDD: system voltage

VI:內部操作電壓 VI: Internal operating voltage

VREF:參考電壓 VREF: reference voltage

OUT_COMP:輸出電壓 OUT_COMP: output voltage

Claims (9)

一種電源啟動電路,包含:一第一電流源,耦接於一第一系統電壓,用來根據一內部操作電壓,產生一內部操作電流;一電流放大器,耦接於該第一電流源和該第一系統電壓,用來根據該內部操作電流和一參數,產生一放大電流和對應於該放大電流的一參考電壓;其中該內部操作電壓和該參考電壓具有正溫度係數,且該內部操作電流和該放大電流具有負溫度係數;以及一溫度補償電路,耦接於該電流放大器,其包括:一第二電流源,耦接於該第一系統電壓與該輸出電壓之間,用來根據該第一系統電壓,產生一正溫度係數電流;一第一電晶體,包含一第一端,耦接於該第二電流源和該輸出電壓;一第二端,耦接於該第二系統電壓;以及一控制端,耦接於該參考電壓;其中該第一電晶體根據該參考電壓,產生一負溫度係數電流;其中當該電源啟動電路的一操作溫度上升時,該負溫度係數電流下降以使該輸出電壓下降,且該正溫度係數電流上升以補償該輸出電壓;以及其中當該電源啟動電路的該操作溫度下降時,該負溫度係數電流上升以使該輸出電壓上升,且該正溫度係數電流下降以補償該輸出電壓。 A power starting circuit, comprising: a first current source, coupled to a first system voltage, used to generate an internal operating current according to an internal operating voltage; a current amplifier, coupled to the first current source and the The first system voltage is used to generate an amplified current and a reference voltage corresponding to the amplified current according to the internal operating current and a parameter; wherein the internal operating voltage and the reference voltage have a positive temperature coefficient, and the internal operating current and the amplified current has a negative temperature coefficient; and a temperature compensation circuit, coupled to the current amplifier, includes: a second current source, coupled between the first system voltage and the output voltage, for according to the The first system voltage generates a positive temperature coefficient current; a first transistor includes a first terminal coupled to the second current source and the output voltage; a second terminal coupled to the second system voltage and a control terminal coupled to the reference voltage; wherein the first transistor generates a negative temperature coefficient current according to the reference voltage; wherein when an operating temperature of the power starting circuit rises, the negative temperature coefficient current decreases causing the output voltage to drop and the positive temperature coefficient current to rise to compensate for the output voltage; and wherein when the operating temperature of the power startup circuit drops, the negative temperature coefficient current rises to raise the output voltage and the positive The temperature coefficient current drops to compensate for this output voltage. 如請求項1所述的電源啟動電路,其中該第一電流源包含:一第二電晶體,包含一第一端,耦接於該第一系統電壓;一第二端,耦接於一第一節點;以及一控制端,耦接於一第二節點; 一第三電晶體,包含一第一端,耦接於該第一節點;一第二端,耦接於一第二系統電壓;以及一控制端,耦接於該第一節點;一第四電晶體,包含一第一端,耦接於該第一系統電壓;一第二端,耦接於該第二節點;以及一控制端,耦接於該第二節點;一第五電晶體,包含一第一端,耦接於該第二節點;一第二端;以及一控制端,耦接於該第一節點;以及一第一電阻,包含一第一端,耦接於該第五電晶體的該第二端;以及一第二端,耦接於該第二系統電壓;其中該內部操作電壓為該第一電阻的該第一端和該第五電晶體的該第二端的電壓,且該內部操作電流為流經該第一電阻的電流。 The power starting circuit as described in claim 1, wherein the first current source includes: a second transistor, including a first terminal, coupled to the first system voltage; a second terminal, coupled to a first system voltage a node; and a control terminal coupled to a second node; A third transistor includes a first terminal coupled to the first node; a second terminal coupled to a second system voltage; and a control terminal coupled to the first node; a fourth The transistor includes a first terminal coupled to the first system voltage; a second terminal coupled to the second node; and a control terminal coupled to the second node; a fifth transistor, Including a first end, coupled to the second node; a second end; and a control end, coupled to the first node; and a first resistor, including a first end, coupled to the fifth the second terminal of the transistor; and a second terminal coupled to the second system voltage; wherein the internal operating voltage is the voltage of the first terminal of the first resistor and the second terminal of the fifth transistor , and the internal operating current is the current flowing through the first resistor. 如請求項2所述的電源啟動電路,其中該電流放大器包含:一第六電晶體,包含一第一端,耦接於該第一系統電壓;一第二端,耦接於一參考電壓;以及一控制端,耦接於該第二節點;以及一第二電阻,包含一第一端,耦接於該參考電壓;以及一第二端,耦接於該第二系統電壓;其中該放大電流為流經該第二電阻的電流。 The power starting circuit as described in claim 2, wherein the current amplifier comprises: a sixth transistor comprising a first terminal coupled to the first system voltage; a second terminal coupled to a reference voltage; and a control terminal, coupled to the second node; and a second resistor, including a first terminal, coupled to the reference voltage; and a second terminal, coupled to the second system voltage; wherein the amplifying The current is the current flowing through the second resistor. 如請求項3所述的電源啟動電路,其中該第四電晶體與該第六電晶體之間的縱橫比為1:k,且k是該參數。 The power starting circuit as claimed in claim 3, wherein the aspect ratio between the fourth transistor and the sixth transistor is 1:k, and k is the parameter. 如請求項3所述的電源啟動電路,其中該參考電壓是以如下方程式表示:
Figure 110133425-A0305-02-0014-1
其中VREF是該參考電壓,k是該參數,I是該內部操作電流,m*R是該第二電阻的電阻值,VI是該內部操作電壓,且n*R是該第一電阻的電阻值。
The power starting circuit as described in claim item 3, wherein the reference voltage is expressed by the following equation:
Figure 110133425-A0305-02-0014-1
Where VREF is the reference voltage, k is the parameter, I is the internal operating current, m*R is the resistance value of the second resistor, VI is the internal operating voltage, and n*R is the resistance value of the first resistor .
如請求項3所述的電源啟動電路,其中該第二電晶體、該第四電晶體及該第六電晶體是P型電晶體,該第二電晶體、該第四電晶體及該第六電晶體的該第一端是源極,該第二電晶體、該第四電晶體及該第六電晶體的該第二端是汲極,且該第二電晶體、該第四電晶體及該第六電晶體的該控制端是閘極。 The power starting circuit as described in claim 3, wherein the second transistor, the fourth transistor and the sixth transistor are P-type transistors, and the second transistor, the fourth transistor and the sixth transistor The first end of the transistor is a source, the second end of the second transistor, the fourth transistor, and the sixth transistor is a drain, and the second transistor, the fourth transistor, and The control end of the sixth transistor is a gate. 如請求項2所述的電源啟動電路,其中該第三電晶體及該第五電晶體是N型電晶體,該第三電晶體及該第五電晶體的該第一端是汲極,該第三電晶體及該第五電晶體的該第二端是源極,該第三電晶體及該第五電晶體的該控制端是閘極。 The power starting circuit as described in claim 2, wherein the third transistor and the fifth transistor are N-type transistors, the first terminals of the third transistor and the fifth transistor are drains, the The second terminals of the third transistor and the fifth transistor are sources, and the control terminals of the third transistor and the fifth transistor are gates. 如請求項7所述的電源啟動電路,其中該內部操作電壓是該第五電晶體的該源極的電壓。 The power starting circuit as claimed in claim 7, wherein the internal operating voltage is the voltage of the source of the fifth transistor. 如請求項1所述的電源啟動電路,其中該第一電晶體是N型電晶體,該第一電晶體的該第一端是汲極,該第一電晶體的該第二端是源極,且該第一電晶體的該控制端是閘極。 The power starting circuit as claimed in claim 1, wherein the first transistor is an N-type transistor, the first terminal of the first transistor is a drain, and the second terminal of the first transistor is a source , and the control terminal of the first transistor is a gate.
TW110133425A 2021-09-08 2021-09-08 Power-up circuit with temperature compensation TWI803969B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110133425A TWI803969B (en) 2021-09-08 2021-09-08 Power-up circuit with temperature compensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110133425A TWI803969B (en) 2021-09-08 2021-09-08 Power-up circuit with temperature compensation

Publications (2)

Publication Number Publication Date
TW202311900A TW202311900A (en) 2023-03-16
TWI803969B true TWI803969B (en) 2023-06-01

Family

ID=86690550

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110133425A TWI803969B (en) 2021-09-08 2021-09-08 Power-up circuit with temperature compensation

Country Status (1)

Country Link
TW (1) TWI803969B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200925824A (en) * 2007-12-05 2009-06-16 Ind Tech Res Inst Voltage generating apparatus
TW201013362A (en) * 2008-09-29 2010-04-01 Sanyo Electric Co Constant current circuit
US20130239695A1 (en) * 2010-12-28 2013-09-19 British Virgin Islands Central Digital Inc. Sensing module
TW201413415A (en) * 2012-09-28 2014-04-01 Novatek Microelectronics Corp Reference voltage generator
TW201621509A (en) * 2014-12-05 2016-06-16 Nat Applied Res Laboratories Bandgap reference circuit
CN107305403A (en) * 2016-04-19 2017-10-31 上海和辉光电有限公司 A kind of low power consumption voltage generation circuit
CN108664072A (en) * 2018-06-11 2018-10-16 上海艾为电子技术股份有限公司 A kind of high-order temperature compensation bandgap reference circuit
US20180307262A1 (en) * 2017-04-25 2018-10-25 Honeywell International Inc. Simple cmos threshold voltage extraction circuit
TW202046041A (en) * 2019-06-04 2020-12-16 極創電子股份有限公司 Voltage generator
TW202121428A (en) * 2019-11-21 2021-06-01 華邦電子股份有限公司 Voltage generating circuit and semiconductor device using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200925824A (en) * 2007-12-05 2009-06-16 Ind Tech Res Inst Voltage generating apparatus
TW201013362A (en) * 2008-09-29 2010-04-01 Sanyo Electric Co Constant current circuit
US20130239695A1 (en) * 2010-12-28 2013-09-19 British Virgin Islands Central Digital Inc. Sensing module
TW201413415A (en) * 2012-09-28 2014-04-01 Novatek Microelectronics Corp Reference voltage generator
TW201621509A (en) * 2014-12-05 2016-06-16 Nat Applied Res Laboratories Bandgap reference circuit
CN107305403A (en) * 2016-04-19 2017-10-31 上海和辉光电有限公司 A kind of low power consumption voltage generation circuit
US20180307262A1 (en) * 2017-04-25 2018-10-25 Honeywell International Inc. Simple cmos threshold voltage extraction circuit
CN108664072A (en) * 2018-06-11 2018-10-16 上海艾为电子技术股份有限公司 A kind of high-order temperature compensation bandgap reference circuit
TW202046041A (en) * 2019-06-04 2020-12-16 極創電子股份有限公司 Voltage generator
TWI716323B (en) * 2019-06-04 2021-01-11 極創電子股份有限公司 Voltage generator
TW202121428A (en) * 2019-11-21 2021-06-01 華邦電子股份有限公司 Voltage generating circuit and semiconductor device using the same

Also Published As

Publication number Publication date
TW202311900A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US8358119B2 (en) Current reference circuit utilizing a current replication circuit
US9632521B2 (en) Voltage generator, a method of generating a voltage and a power-up reset circuit
US8013588B2 (en) Reference voltage circuit
US20070080740A1 (en) Reference circuit for providing a temperature independent reference voltage and current
JP4866929B2 (en) Power-on reset circuit
US20080303588A1 (en) Reference voltage generating circuit and constant voltage circuit
US8147131B2 (en) Temperature sensing circuit and electronic device using same
JP2008108009A (en) Reference voltage generation circuit
US9582021B1 (en) Bandgap reference circuit with curvature compensation
US8476967B2 (en) Constant current circuit and reference voltage circuit
US20090001958A1 (en) Bandgap circuit
US20130234688A1 (en) Boosting circuit
US8026756B2 (en) Bandgap voltage reference circuit
JP2007066043A (en) Reference voltage generating circuit and constant-voltage circuit using the reference voltage-generating circuit
JP2008217203A (en) Regulator circuit
US7843231B2 (en) Temperature-compensated voltage comparator
TW201506577A (en) Bandgap reference voltage circuit and electronic apparatus thereof
CN113253788B (en) Reference voltage circuit
TWI803969B (en) Power-up circuit with temperature compensation
US11537153B2 (en) Low power voltage reference circuits
KR101892069B1 (en) Bandgap voltage reference circuit
CN115333367A (en) Voltage conversion circuit
CN113190077B (en) Voltage stabilizing circuit
CN110362149A (en) Voltage generation circuit
CN113485513A (en) Power supply starting circuit with temperature compensation