TW201621509A - Bandgap reference circuit - Google Patents

Bandgap reference circuit Download PDF

Info

Publication number
TW201621509A
TW201621509A TW103142274A TW103142274A TW201621509A TW 201621509 A TW201621509 A TW 201621509A TW 103142274 A TW103142274 A TW 103142274A TW 103142274 A TW103142274 A TW 103142274A TW 201621509 A TW201621509 A TW 201621509A
Authority
TW
Taiwan
Prior art keywords
current
circuit
voltage
coupled
signal
Prior art date
Application number
TW103142274A
Other languages
Chinese (zh)
Other versions
TWI559115B (en
Inventor
Yu-Shao Xiao
Original Assignee
Nat Applied Res Laboratories
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Applied Res Laboratories filed Critical Nat Applied Res Laboratories
Priority to TW103142274A priority Critical patent/TWI559115B/en
Publication of TW201621509A publication Critical patent/TW201621509A/en
Application granted granted Critical
Publication of TWI559115B publication Critical patent/TWI559115B/en

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

The present invention relates to a bandgap reference circuit, which having an output operation circuit configured to generate an output voltage for any low voltage level and provide a variety of reference voltages required by an integrated circuit. Moreover, the voltage level of the power required by the bandgap reference circuit of the present invention is low. Therefore, it is applicable to a low-voltage semiconductor manufacturing process. In addition, the bandgap reference circuit of the present invention can be digitalized and does not need a high-gain operational amplifier.

Description

能隙參考電路Bandgap reference circuit 【0001】【0001】

本發明係關於一種能隙參考電路,尤指一種可以產生低電壓準位之能隙參考電路。The present invention relates to a bandgap reference circuit, and more particularly to a bandgap reference circuit that can generate a low voltage level.

【0002】【0002】

能隙參考電路(Bandgap reference circuit)具有穩定性好的特點,其對系統的工作環境(例如工作電壓、環境溫度與輸出負載)的變化不敏感,所以能隙參考電路可以為其他電路提供精確的參考電壓,因此能隙參考電路在類比積體電路和許多混合訊號積體電路中是很重要的子電路。能隙參考電路所產生的參考電壓能提供給資料轉換器和偏壓電路。一般習用能隙參考電路所產生的輸出電壓必須是1.25V,且習用能隙參考電路所需之電源至少要為1.5V以上。然而,現今最新的CMOS製程已經將電壓降到1V以下。因此,習用能隙參考電路不適合用於目前最新的CMOS製程中。The Bandgap reference circuit has good stability and is insensitive to changes in the system's working environment (such as operating voltage, ambient temperature and output load), so the gap reference circuit can provide accurate accuracy for other circuits. The reference voltage, therefore, the gap reference circuit is an important sub-circuit in analog-like integrated circuits and many mixed-signal integrated circuits. The reference voltage generated by the bandgap reference circuit can be supplied to the data converter and the bias circuit. Generally, the output voltage generated by the conventional bandgap reference circuit must be 1.25V, and the power required for the conventional bandgap reference circuit must be at least 1.5V. However, today's latest CMOS processes have reduced the voltage below 1V. Therefore, the conventional bandgap reference circuit is not suitable for use in the latest CMOS process.

【0003】[0003]

請參閱第1圖,其為習用能隙參考電路之電路圖,其包含兩個二極體D1與D2、複數個電阻R1、R2與R3以及一運算放大器10,該些元件之連接關係如圖所示,所以於此不再詳述。運算放大器10之正輸入端的電壓V+為VD1 ,VD1 為二極體D1的電壓。運算放大器10之負輸入端的電壓V-被強制相等於運算放大器10之正輸入端的電壓V+而為VD1 。跨於電阻R3之電壓降ΔV可被表示為如下:
ΔV = VD1 - VD2
其中,VD2 為二極體D2的電壓。流經電阻R3之電流I可被表示為如下:
I = ΔV / R3
跨於電阻R2之電壓降VR2 可被表示為如下:
VR2 = I × R2
=(ΔV / R3)× R2
運算放大器10之輸出電壓VO 可被表示為如下:
VO = VD1 + VR2
= VD1 +(R2/R3)× ΔV
其中,VD1 為具負溫度係數的電壓,ΔV與門檻電壓VT 成比例,而為具正溫度係數的電壓,如此藉由適當地調整R2與R3之電阻值的比例,即可控制輸出電壓VO 不受溫度影響,而維持為固定電壓,以作為參考電壓。此習用能隙參考電路所產生之輸出電壓VO 會落在1.25V附近。運算放大器10所接收之一電源VDD 必須是1.5V以上。
Please refer to FIG. 1 , which is a circuit diagram of a conventional energy gap reference circuit, which includes two diodes D1 and D2 , a plurality of resistors R1 , R2 and R3 , and an operational amplifier 10 , and the connection relationship between the components is as shown in FIG. Show, so no longer detailed here. The voltage V+ at the positive input terminal of the operational amplifier 10 is V D1 , and V D1 is the voltage of the diode D1. The negative input terminal of the operational amplifier 10 to be forced equal to the voltage V- at the positive input of the operational amplifier 10 to voltage V + and V D1. The voltage drop ΔV across resistor R3 can be expressed as follows:
ΔV = V D1 - V D2
Where V D2 is the voltage of the diode D2. The current I flowing through the resistor R3 can be expressed as follows:
I = ΔV / R3
The voltage drop V R2 across resistor R2 can be expressed as follows:
V R2 = I × R2
=(ΔV / R3)× R2
The output voltage V O of the operational amplifier 10 can be expressed as follows:
V O = V D1 + V R2
= V D1 +(R2/R3)× ΔV
Wherein, V D1 is a voltage having a negative temperature coefficient, and ΔV is proportional to the threshold voltage V T , and is a voltage having a positive temperature coefficient, so that the output voltage can be controlled by appropriately adjusting the ratio of the resistance values of R 2 and R 3 . V O is not affected by temperature and is maintained at a fixed voltage as a reference voltage. This produced the conventional bandgap reference circuit output voltage V O would fall near 1.25V. One of the power supplies V DD received by the operational amplifier 10 must be 1.5V or more.

【0004】[0004]

如同前述,在現今最新CMOS製程之低電壓需求下,許多積體電路內部之電路需要低於1V以下之參考電壓。然而,第1圖所示之習用能隙參考電路並無法產生低電壓之參考電壓,且其需要較高電壓準位之電源VDD ,所以此習用能隙參考電路不適合用於新CMOS製程。雖然,目前有很多種型態的能隙參考電路,但大都同樣無法產生低電壓之參考電壓,且也都需要較高電壓準位之電源。目前雖然有其他型態的參考電壓產生電路可以產生1V以下的參考電壓,其是運用電阻分流方式產生參考電壓,但是此種型態的電路會有較大非線性溫度的問題,而需要補償。As mentioned above, in the current low voltage requirements of the latest CMOS process, many of the circuits inside the integrated circuit require a reference voltage below 1V. However, the conventional bandgap reference circuit shown in Figure 1 does not produce a low voltage reference voltage, and it requires a higher voltage level power supply V DD , so this conventional bandgap reference circuit is not suitable for a new CMOS process. Although there are many types of bandgap reference circuits, most of them cannot produce a low voltage reference voltage, and both require a higher voltage level power supply. At present, although other types of reference voltage generating circuits can generate reference voltages below 1V, which use a resistor shunt to generate a reference voltage, such a type of circuit has a problem of large nonlinear temperature and requires compensation.

【0005】[0005]

因此,本發明針對上述問題提供了一種能隙參考電路,其可產生低電壓準位的參考電壓,且不需要較高電壓準位之電源,而適用於低電壓半導體製程。如此,以解決上述習用電路的問題。Accordingly, the present invention is directed to the above problem to provide a bandgap reference circuit that can generate a low voltage level reference voltage and does not require a higher voltage level power supply, but is suitable for low voltage semiconductor processes. In this way, the problem of the above conventional circuit is solved.

【0006】[0006]

本發明之一目的,係提供一種能隙參考電路,其可以產生低電壓準位的輸出電壓,以提供給其他電路而作為參考電壓。It is an object of the present invention to provide a bandgap reference circuit that can generate an output voltage of a low voltage level for supply to other circuits as a reference voltage.

【0007】【0007】

本發明之一目的,係提供一種能隙參考電路,其所需電源之電壓準位為低電壓準位,所以適用於低電壓半導體製程。It is an object of the present invention to provide a bandgap reference circuit having a voltage level of a required power supply at a low voltage level, and thus is suitable for a low voltage semiconductor process.

【0008】[0008]

本發明之一目的,係提供一種能隙參考電路,其藉由一輸出運算電路,而可以產生各種電壓準位的輸出電壓。It is an object of the present invention to provide a bandgap reference circuit that can generate output voltages of various voltage levels by an output operation circuit.

【0009】【0009】

本發明之一目的,係提供一種能隙參考電路,其電路架構為數位架構,而不需要高增益的運算放大器,以適用於新半導體製程。It is an object of the present invention to provide a bandgap reference circuit having a circuit architecture that is a digital architecture without the need for a high gain operational amplifier for use in new semiconductor processes.

【0010】[0010]

本發明揭示了一種能隙參考電路,其包含一電流產生電路、一第一雙極性接面元件、一第一阻抗元件、一第二雙極性接面元件、一第二阻抗元件、一控制電路以及一輸出運算電路。電流產生電路產生一第一電流、一第二電流與一第三電流;第一雙極性接面元件耦接於電流產生電路與一接地端之間,並耦接第一電流,第一雙極性接面元件與電流產生電路相連接之一連接端具有一第一電壓;第一阻抗元件之一第一端耦接電流產生電路而耦接第二電流,第一阻抗元件之第一端具有一第二電壓;第二雙極性接面元件耦接於第一阻抗元件之一第二端與接地端之間;第二阻抗元件之一第一端耦接第一雙極性接面元件與電流產生電路之連接端,第二阻抗元件之一第二端耦接第三電流並具有一第三電壓;控制電路控制電流產生電路;輸出運算電路接收第一電壓與第三電壓,並運算第一電壓與第三電壓,而產生一輸出電壓。此輸出電壓提供給積體電路之其他電路,而作為參考電壓。

The present invention discloses a bandgap reference circuit including a current generating circuit, a first bipolar junction component, a first impedance component, a second bipolar junction component, a second impedance component, and a control circuit. And an output operation circuit. The current generating circuit generates a first current, a second current and a third current; the first bipolar junction element is coupled between the current generating circuit and a ground, and is coupled to the first current, the first bipolar The connection end of the junction element and the current generating circuit has a first voltage; the first end of the first impedance element is coupled to the current generating circuit and coupled to the second current, and the first end of the first impedance element has a first end a second voltage; a second bipolar junction element is coupled between the second end of the first impedance element and the ground; the first end of the second impedance element is coupled to the first bipolar junction element and the current is generated a second end of the second impedance element coupled to the third current and having a third voltage; the control circuit controls the current generating circuit; the output computing circuit receives the first voltage and the third voltage, and operates the first voltage With the third voltage, an output voltage is generated. This output voltage is supplied to other circuits of the integrated circuit as a reference voltage.

10、40‧‧‧運算放大器
30‧‧‧輸出運算電路
310‧‧‧第一運算放大器
313、315、317、323、325、327‧‧‧開關
320‧‧‧第二運算放大器
45、47‧‧‧比較器
50‧‧‧數位電路
61‧‧‧第一數位類比轉換器
62‧‧‧第二數位類比轉換器
63‧‧‧第三數位類比轉換器
71‧‧‧第一開關
73‧‧‧第二開關
75‧‧‧第三開關
77‧‧‧第四開關
79‧‧‧偵測運算電路
AN1‧‧‧第一類比訊號
AN2‧‧‧第二類比訊號
AN3‧‧‧第三類比訊號
C1、C2、C3、C4‧‧‧電容
D1、D2‧‧‧二極體
D11‧‧‧第一雙極性接面元件
D22‧‧‧第二雙極性接面元件
DI1‧‧‧第一數位訊號
DI2‧‧‧第二數位訊號
DI3‧‧‧第三數位訊號
I‧‧‧電流
I1‧‧‧第一電流
I2‧‧‧第二電流
I3‧‧‧第三電流
IR‧‧‧參考電流
M1‧‧‧第一電流源
M2‧‧‧第二電流源
M3‧‧‧參考電流源
M4、M5‧‧‧電晶體
M6‧‧‧第三電流源
R1、R2、R3‧‧‧電阻
R11‧‧‧第一阻抗元件
R22‧‧‧第二阻抗元件
RS1‧‧‧第一偵測單元
RS2‧‧‧第二偵測單元
RS3‧‧‧第三偵測單元
SW1、SW11‧‧‧第一切換訊號
SW2、SW22‧‧‧第二切換訊號
SW3、SW33‧‧‧第三切換訊號
SW4、SW44‧‧‧第四切換訊號
SW5‧‧‧第五切換訊號
SW6‧‧‧第六切換訊號
V+、V-、V4、VD1、VD11、VD2、VD22‧‧‧電壓
V1‧‧‧第一電壓
V2‧‧‧第二電壓
V3‧‧‧第三電壓
VCOM‧‧‧比較訊號
VCOM1‧‧‧第一比較訊號
VCOM2‧‧‧第二比較訊號
VCON‧‧‧控制訊號
VDD‧‧‧電源
VO‧‧‧輸出電壓
VOUT‧‧‧輸出電壓
VS1‧‧‧第一偵測訊號
VS2‧‧‧第二偵測訊號
VS3‧‧‧第三偵測訊號
10, 40‧‧‧Operational Amplifier
30‧‧‧Output arithmetic circuit
310‧‧‧First operational amplifier
313, 315, 317, 323, 325, 327‧ ‧ switches
320‧‧‧Second operational amplifier
45, 47‧‧‧ comparator
50‧‧‧Digital Circuit
61‧‧‧First digital analog converter
62‧‧‧Second digital analog converter
63‧‧‧ third digit analog converter
71‧‧‧First switch
73‧‧‧Second switch
75‧‧‧third switch
77‧‧‧fourth switch
79‧‧‧Detection operation circuit
AN1‧‧‧first analog signal
AN2‧‧‧Second analog signal
AN3‧‧‧ third analog signal
C1, C2, C3, C4‧‧‧ capacitors
D1, D2‧‧‧ diode
D11‧‧‧First bipolar junction element
D22‧‧‧Second bipolar junction element
DI1‧‧‧ first digit signal
DI2‧‧‧ second digit signal
DI3‧‧‧ third digit signal
I‧‧‧current
I 1 ‧‧‧First current
I 2 ‧‧‧second current
I 3 ‧‧‧third current
I R ‧‧‧reference current
M1‧‧‧ first current source
M2‧‧‧second current source
M3‧‧‧ reference current source
M4, M5‧‧‧ transistor
M6‧‧‧ third current source
R1, R2, R3‧‧‧ resistance
R11‧‧‧First impedance element
R22‧‧‧second impedance element
RS1‧‧‧first detection unit
RS2‧‧‧Second detection unit
RS3‧‧‧ third detection unit
SW1, SW11‧‧‧ first switching signal
SW2, SW22‧‧‧ second switching signal
SW3, SW33‧‧‧ third switching signal
SW4, SW44‧‧‧ fourth switching signal
SW5‧‧‧ fifth switching signal
SW6‧‧‧ sixth switching signal
V+, V-, V 4 , V D1 , V D11 , V D2 , V D22 ‧‧‧ voltage
V 1 ‧‧‧First voltage
V 2 ‧‧‧second voltage
V 3 ‧‧‧ third voltage
V COM ‧‧‧ comparison signal
V COM1 ‧‧‧ first comparison signal
V COM2 ‧‧‧Second comparison signal
V CON ‧‧‧ control signal
V DD ‧‧‧ power supply
V O ‧‧‧Output voltage
V OUT ‧‧‧ output voltage
V S1 ‧‧‧First detection signal
V S2 ‧‧‧second detection signal
V S3 ‧‧‧ third detection signal

【0011】[0011]


第1圖為習用能隙參考電路之電路圖;
第2圖為本發明之能隙參考電路之一實施例的電路圖;
第3A與3B圖為本發明之能隙參考電路之輸出運算電路之一實施例的電路圖;
第4圖為本發明之能隙參考電路之另一實施例的電路圖;及
第5圖為本發明之能隙參考電路之又一實施例的電路圖。

Figure 1 is a circuit diagram of a conventional energy gap reference circuit;
2 is a circuit diagram of an embodiment of a bandgap reference circuit of the present invention;
3A and 3B are circuit diagrams showing an embodiment of an output operation circuit of the bandgap reference circuit of the present invention;
4 is a circuit diagram of another embodiment of a bandgap reference circuit of the present invention; and FIG. 5 is a circuit diagram of still another embodiment of a bandgap reference circuit of the present invention.

【0012】[0012]

為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明,說明如後:In order to provide a better understanding and understanding of the features and the efficacies of the present invention, the preferred embodiment and the detailed description are as follows:

【0013】[0013]

請參閱第2圖,其為本發明之能隙參考電路之一實施例的電路圖。如圖所示,本實施例之能隙參考電路包含一電流產生電路、複數個阻抗元件R11與R22、複數個雙極性接面元件D11與D22、一輸出運算電路30以及一控制電路。於本實施例中,電流產生電路耦接一電源VDD ,而用於產生一第一電流I1 、一第二電流I2 與一第三電流I3 。電流產生電路包含一第一電流源M1、一第二電流源M2與一第三電流源。第三電流源包括一參考電流源M3與一電流鏡,電流鏡包括兩電晶體M4與M5。Please refer to FIG. 2, which is a circuit diagram of an embodiment of a bandgap reference circuit of the present invention. As shown, the bandgap reference circuit of the present embodiment includes a current generating circuit, a plurality of impedance elements R11 and R22, a plurality of bipolar junction elements D11 and D22, an output operation circuit 30, and a control circuit. In this embodiment, the current generating circuit is coupled to a power source V DD for generating a first current I 1 , a second current I 2 , and a third current I 3 . The current generating circuit includes a first current source M1, a second current source M2 and a third current source. The third current source includes a reference current source M3 and a current mirror, and the current mirror includes two transistors M4 and M5.

【0014】[0014]

第一電流源M1、第二電流源M2與參考電流源M3皆耦接電源VDD ,而分別提供第一電流I1 、第二電流I2 與一參考電流IR 。電流鏡之電晶體M5耦接於參考電流源M3,而接收參考電流IR ,電流鏡之電晶體M4耦接電晶體M5,電流鏡鏡射參考電流IR 而產生第三電流I3 於電晶體M4。電流鏡之電晶體M4與M5更耦接於接地端。於本發明之一實施例中,第一電流源M1、第二電流源M2與參考電流源M3是由電晶體實現。於本發明之一實施例中,電流I1 、I2 、IR 與I3 之電流量的比例為2:1:1:1。A first current source M1, M2 and the second current source M3 are the reference current source coupled to the power V DD, respectively providing a first current I 1, I 2 and a second current reference current I R. The current mirror transistor M5 is coupled to the reference current source M3, and receives the reference current I R , the current mirror transistor M4 is coupled to the transistor M5, and the current mirror mirrors the reference current I R to generate the third current I 3 . Crystal M4. The transistors M4 and M5 of the current mirror are more coupled to the ground. In an embodiment of the invention, the first current source M1, the second current source M2, and the reference current source M3 are implemented by a transistor. In one embodiment of the invention, the ratio of the currents of the currents I 1 , I 2 , I R and I 3 is 2:1:1:1.

【0015】[0015]

第一雙極性接面元件D11之一第一端耦接於電流產生電路之第一電流源M1,而耦接第一電流I1 。第一雙極性接面元件D11之一第二端則耦接於接地端。如此,第一雙極性接面元件D11與第一電流源M1相連接之連接端會具有一第一電壓V1The first end of the first bipolar junction element D11 is coupled to the first current source M1 of the current generating circuit, and coupled to the first current I 1 . The second end of one of the first bipolar junction elements D11 is coupled to the ground. Thus, the connection end of the first bipolar junction element D11 connected to the first current source M1 has a first voltage V 1 .

【0016】[0016]

第一阻抗元件R11之一第一端耦接於第二電流源M2,而耦接第二電流I2 。第二雙極性接面元件D22之一第一端耦接於第一阻抗元件R11之一第二端,而第二雙極性接面元件D22之一第二端耦接於接地端。此外,第一阻抗元件R11之第一端具有一第二電壓V2 。於本實施例中,第一雙極性接面元件D11與第二雙極性接面元件D22為一二極體。然而,第一雙極性接面元件D11與第二雙極性接面元件D22也可為一雙極性接面電晶體(Bipolar Junction Transistor,BJT)。第一雙極性接面元件D11與第二雙極性接面元件D22之面積的比例為N:1,N為大於1。The first end of the first impedance element R11 is coupled to the second current source M2 and coupled to the second current I 2 . The first end of the second bipolar junction element D22 is coupled to the second end of the first impedance element R11, and the second end of the second bipolar junction element D22 is coupled to the ground end. In addition, the first end of the first impedance element R11 has a second voltage V 2 . In this embodiment, the first bipolar junction element D11 and the second bipolar junction element D22 are a diode. However, the first bipolar junction element D11 and the second bipolar junction element D22 may also be a Bipolar Junction Transistor (BJT). The ratio of the area of the first bipolar junction element D11 to the second bipolar junction element D22 is N:1, and N is greater than one.

【0017】[0017]

第二阻抗元件R22之一第一端耦接於第一雙極性接面元件D11與第一電流源M1之連接端,第二阻抗元件R22之一第二端耦接第三電流源之電晶體M4,而耦接第三電流I3 ,第二阻抗元件R22之第二端具有一第三電壓V3 。於本發明之一實施例中,第一阻抗元件R11與第二阻抗元件R22為電阻器。The first end of the second impedance element R22 is coupled to the connection end of the first bipolar junction element D11 and the first current source M1, and the second end of the second impedance element R22 is coupled to the transistor of the third current source M4 is coupled to the third current I 3 , and the second end of the second impedance element R22 has a third voltage V 3 . In an embodiment of the invention, the first impedance element R11 and the second impedance element R22 are resistors.

【0018】[0018]

於本實施例中,一運算放大器40作為控制電路,用於控制電流產生電路,以控制第一電流I1 、第二電流I2 與第三電流I3 之電流量。運算放大器40之一負輸入端耦接第一雙極性接面元件D11與第一電流源M1之連接端,而接收第一電壓V1 。運算放大器40之一正輸入端則耦接第一阻抗元件R11之第一端,而接收第二電壓V2 。運算放大器40比較第一電壓V1 與第二電壓V2 ,而產生一控制訊號VCON ,以控制第一電流源M1、第二電流源M2與第三電流源之參考電流源M3,以控制第一電流I1 、第二電流I2 、參考電流IR 與第三電流I3 之電流量。輸出運算電路30耦接第一雙極性接面元件D11與第一電流源M1之連接端以及第二阻抗元件R22之第二端,以接收第一電壓V1 與第三電壓V3 ,並運算第一電壓V1 與第三電壓V3 ,而產生一輸出電壓VOUTIn the embodiment, an operational amplifier 40 is used as a control circuit for controlling the current generating circuit to control the amount of current of the first current I 1 , the second current I 2 and the third current I 3 . The negative input terminal of the operational amplifier 40 is coupled to the connection end of the first bipolar junction element D11 and the first current source M1 to receive the first voltage V 1 . One positive input terminal of the operational amplifier 40 is coupled to the first end of the first impedance element R11 and receives the second voltage V 2 . The operational amplifier 40 compares the first voltage V 1 and the second voltage V 2 to generate a control signal V CON to control the first current source M1, the second current source M2 and the reference current source M3 of the third current source to control The amount of current of the first current I 1 , the second current I 2 , the reference current I R and the third current I 3 . The output operation circuit 30 is coupled to the connection end of the first bipolar junction element D11 and the first current source M1 and the second end of the second impedance element R22 to receive the first voltage V 1 and the third voltage V 3 and operate The first voltage V 1 and the third voltage V 3 generate an output voltage V OUT .

【0019】[0019]

於本實施例之電路架構下,運算放大器40會調整第一電流源M1與第二電流源M2,迫使第二電壓V2 相等於第一電壓V1 。第一電壓V1 為第一雙極性接面元件D11之電壓VD11 。於本實施例中,第一雙極性接面元件D11為二極體,所以第一電壓V1 為二極體之電壓VD11 ,第一電壓V1 具有一負溫度係數,其即表示第一電壓V1 會隨溫度上升而下降。若第一雙極性接面元件D11為雙極性接面電晶體時,第一電壓V1 為雙極性接面電晶體之基極-射極電壓VBEIn the circuit architecture of this embodiment, the operational amplifier 40 adjusts the first current source M1 and the second current source M2 to force the second voltage V 2 to be equal to the first voltage V 1 . The first voltage V 1 is the voltage V D11 of the first bipolar junction element D11 . In this embodiment, the first bipolar junction element D11 is a diode, so the first voltage V 1 is the voltage V D11 of the diode, and the first voltage V 1 has a negative temperature coefficient, which means the first The voltage V 1 drops as the temperature rises. If the first bipolar junction element D11 is a bipolar junction transistor, the first voltage V 1 is the base-emitter voltage V BE of the bipolar junction transistor.

【0020】[0020]

由於第二電壓V2 相等於第一電壓V1 ,所以跨於第一阻抗元件R11之電壓降ΔVd可被表示為如下:
ΔVd = V2 - VD22
= VD11 - VD22
其中,VD22 為第二雙極性接面元件D22的電壓。於本實施例中,其為二極體電壓。若第二雙極性接面元件D22為雙極性接面電晶體時,VD22 為雙極性接面電晶體之基極-射極電壓VBE 。ΔVd會與門檻電壓VT 成比例,而門檻電壓VT 具有正溫度係數,其即表示跨於第一阻抗元件R11之電壓降ΔVd會隨溫度上升而上升。
Since the second voltage V 2 is equal to the first voltage V 1 , the voltage drop ΔVd across the first impedance element R11 can be expressed as follows:
ΔVd = V 2 - V D22
= V D11 - V D22
Wherein, V D22 is the voltage of the second bipolar junction element D22. In this embodiment, it is a diode voltage. If the second bipolar junction element D22 is a bipolar junction transistor, V D22 is the base-emitter voltage V BE of the bipolar junction transistor. ΔVd and threshold voltage V T will be proportional to the threshold voltage V T has a positive temperature coefficient, which means that the voltage across the first impedance element R11 of ΔVd drop will increase with increasing temperature.

【0021】[0021]

流經第一阻抗元件R11之第二電流I2 可被表示為如下:
I2 = ΔVd / R11
由於參考電流IR 相等於第二電流I2 ,且第三電流I3 相等於參考電流IR ,所以第三電流I3 可被表示為如下:
I3 = IR = I2 = ΔVd / R11
The second current I 2 flowing through the first impedance element R11 can be expressed as follows:
I 2 = ΔVd / R11
Since the reference current I R is equal to the second current I 2 and the third current I 3 is equal to the reference current I R , the third current I 3 can be expressed as follows:
I 3 = I R = I 2 = ΔVd / R11

【0022】[0022]

跨於第二阻抗元件R22之電壓降VR22 可被表示為如下:
VR22 = I3 × R22
=(ΔVd / R11)× R22
= ΔVd × (R22/ R11)
The voltage drop V R22 across the second impedance element R22 can be expressed as follows:
V R22 = I 3 × R22
=(ΔVd / R11)× R22
= ΔVd × (R22/ R11)

【0023】[0023]

由於ΔVd具有正溫度係數,所以跨於第二阻抗元件R22之電壓降VR22 即具有正溫度係數。如此,具有正溫度係數的電壓降VR22 可用於補償具有負溫度係數的第一電壓V1 ,所以第一電壓V1 與跨於第二阻抗元件R22之電壓降VR22 可以用來產生不隨溫度變化之輸出電壓VOUT ,此輸出電壓VOUT 即可提供給其他電路作為參考電壓。輸出電壓VOUT 可被表示為如下:
VOUT = V1 + VR22
= V1 + ΔVd ×(R22/ R11)
由上述方程式可知,第二阻抗元件R22之電阻值與第一阻抗元件R11之電阻值的比值用於做為補償比例,所以第一阻抗元件R11與第二阻抗元件R22用於作為調整溫度補償係數。由上述方程式可知,第二阻抗元件R22之電阻值大於第一阻抗元件R11之電阻值。
Since ΔVd has a positive temperature coefficient, the voltage drop V R22 across the second impedance element R22 has a positive temperature coefficient. Thus, the voltage drop V R22 having a positive temperature coefficient can be used to compensate the first voltage V 1 having a negative temperature coefficient, so the first voltage V 1 and the voltage drop V R22 across the second impedance element R22 can be used to generate The output voltage V OUT of the temperature change, this output voltage V OUT can be supplied to other circuits as a reference voltage. The output voltage V OUT can be expressed as follows:
V OUT = V 1 + V R22
= V 1 + ΔVd × (R22/ R11)
It can be seen from the above equation that the ratio of the resistance value of the second impedance element R22 to the resistance value of the first impedance element R11 is used as the compensation ratio, so the first impedance element R11 and the second impedance element R22 are used as the adjustment temperature compensation coefficient. . As can be seen from the above equation, the resistance value of the second impedance element R22 is greater than the resistance value of the first impedance element R11.

【0024】[0024]

如第2圖所示,跨於第二阻抗元件R22之兩端的電壓降VR22 為第一電壓V1 與第三電壓V3 之電壓差。因此,輸出電壓VOUT 可被表示為如下:
VOUT = V1 + VR22
= V1 +(V1 - V3
= 2V1 - V3
基於上述方程式,輸出運算電路30運算第一電壓V1 與第三電壓V3 而產生輸出電壓VOUT 。於本發明之一實施例中,第一電壓V1 約為0.7V,而上述方程式所示之輸出電壓VOUT (2V1 - V3 )約為1.25V,此僅為本發明之一實施例,本發明並不以此為限。此外,輸出運算電路30基於上述方程式與一比例因子K下,即可產生各種電壓準位之輸出電壓VOUT 。輸出電壓VOUT 可進一步被表示為如下:
VOUT =(V1 +(V1 - V3 ))/ K
=(2V1 - V3 )/ K
其中,比例因子K為大於0的正數。由上述方程式可知,本發明之輸出電壓VOUT 與跨於第二阻抗元件R22之兩端的電壓降(V1 - V3 )和第一電壓V1 的總合成比例。如此,本發明之能隙參考電路可以產生低於1V以下之輸出電壓。
As shown in FIG. 2, the voltage drop V R22 across the two ends of the second impedance element R22 is the voltage difference between the first voltage V 1 and the third voltage V 3 . Therefore, the output voltage V OUT can be expressed as follows:
V OUT = V 1 + V R22
= V 1 +(V 1 - V 3 )
= 2V 1 - V 3
Generates an output voltage V OUT based on the above equation, the arithmetic circuit 30 outputs a first voltage V 1 is operational and the third voltage V 3. In an embodiment of the invention, the first voltage V 1 is about 0.7V, and the output voltage V OUT (2V 1 - V 3 ) shown in the above equation is about 1.25V, which is only one embodiment of the present invention. The invention is not limited thereto. In addition, the output operation circuit 30 can generate output voltages V OUT of various voltage levels based on the above equation and a scaling factor K. The output voltage V OUT can be further expressed as follows:
V OUT = (V 1 + (V 1 - V 3 )) / K
=(2V 1 - V 3 )/ K
Wherein, the scale factor K is a positive number greater than zero. As can be seen from the above equation, the output voltage V OUT of the present invention has a total composite ratio of the voltage drop (V 1 - V 3 ) across the second impedance element R22 and the first voltage V 1 . As such, the bandgap reference circuit of the present invention can produce an output voltage below 1V.

【0025】[0025]

由上述可知,本發明之能隙參考電路可產生電壓準位低於1V的輸出電壓VOUT ,且更可藉由設計輸出運算電路30之運算式,而產生各種電壓準位之輸出電壓VOUT 。再者,由於第一電壓V1 與第二電壓V2 之電壓準位約為0.7V,因此本發明之能隙參考電路僅需要約0.9V之電源VDD 。綜上可知,本發明之能隙參考電路適用於低電壓半導體製程。It can be seen from the above that the bandgap reference circuit of the present invention can generate an output voltage V OUT with a voltage level lower than 1V, and can also generate output voltages V OUT of various voltage levels by designing an arithmetic expression of the output operation circuit 30. . Moreover, since the voltage level of the first voltage V 1 and the second voltage V 2 is about 0.7 V, the bandgap reference circuit of the present invention requires only a power supply V DD of about 0.9V. In summary, the bandgap reference circuit of the present invention is suitable for low voltage semiconductor processes.

【0026】[0026]

請參閱第3A與3B圖,其為本發明之能隙參考電路之輸出運算電路30之一實施例的電路圖。本實施例之輸出運算電路30是切換電容運算電路。如圖所示,本實施例之輸出運算電路30包含兩個切換電容運算單元,本實施例是以下列方程式為例進行說明
VOUT =(2V1 - V3 )/ 2
= V1 -(V3 / 2)
Please refer to FIGS. 3A and 3B, which are circuit diagrams of an embodiment of the output operation circuit 30 of the bandgap reference circuit of the present invention. The output arithmetic circuit 30 of this embodiment is a switched capacitor arithmetic circuit. As shown in the figure, the output operation circuit 30 of the present embodiment includes two switching capacitor operation units. This embodiment is described by taking the following equation as an example.
V OUT = (2V 1 - V 3 ) / 2
= V 1 -(V 3 / 2)

【0027】[0027]

第一切換電容運算單元包含一第一運算放大器310、複數個電容C1與C2以及複數個開關313、315與317。開關313之一第一端耦接電容C1之一第一端,開關313之一第二端耦接第二阻抗元件R22(如第2圖所示)之第二端,而耦接第三電壓V3 ,開關313之一第三端耦接於接地端,開關313受控於一第一切換訊號SW1。開關315之一第一端耦接電容C1之一第二端,開關315之一第二端耦接於第一運算放大器310之一負輸入端,開關315之一第三端耦接於接地端,開關315受控於一第二切換訊號SW2。第一運算放大器310之一正輸入端耦接於接地端。電容C2耦接於第一運算放大器310之負輸入端與第一運算放大器310之一輸出端之間。開關317之兩端耦接於電容C2之兩端,開關317受控於一第三切換訊號SW3。於本實施例中,電容C2之電容值為電容C1之電容值的兩倍。The first switching capacitor operation unit includes a first operational amplifier 310, a plurality of capacitors C1 and C2, and a plurality of switches 313, 315 and 317. The first end of the switch 313 is coupled to the first end of the capacitor C1, and the second end of the switch 313 is coupled to the second end of the second impedance element R22 (shown in FIG. 2) and coupled to the third voltage. V 3 , a third end of the switch 313 is coupled to the ground end, and the switch 313 is controlled by a first switching signal SW1 . The first end of the switch 315 is coupled to one of the second ends of the capacitor C1. The second end of the switch 315 is coupled to one of the negative inputs of the first operational amplifier 310. The third end of the switch 315 is coupled to the ground. The switch 315 is controlled by a second switching signal SW2. One of the first operational amplifiers 310 has a positive input coupled to the ground. The capacitor C2 is coupled between the negative input terminal of the first operational amplifier 310 and one of the output terminals of the first operational amplifier 310. The two ends of the switch 317 are coupled to the two ends of the capacitor C2, and the switch 317 is controlled by a third switching signal SW3. In this embodiment, the capacitance of the capacitor C2 is twice the capacitance of the capacitor C1.

【0028】[0028]

第二切換電容運算單元包含一第二運算放大器320、複數個電容C3與C4以及複數個開關323、325與327。開關323之一第一端耦接電容C3之一第一端,開關323之一第二端耦接第一雙極性接面元件D11之第一端(如第2圖所示),而耦接第一電壓V1 ,開關323之一第三端耦接於第一運算放大器310之輸出端與電容C2,開關323受控於一第四切換訊號SW4。開關325之一第一端耦接電容C3之一第二端,開關325之一第二端耦接於第二運算放大器320之一負輸入端,開關325之一第三端耦接於接地端,開關325受控於一第五切換訊號SW5。第二運算放大器320之一正輸入端耦接於接地端。The second switched capacitor operation unit includes a second operational amplifier 320, a plurality of capacitors C3 and C4, and a plurality of switches 323, 325, and 327. The first end of the switch 323 is coupled to one of the first ends of the capacitor C3, and the second end of the switch 323 is coupled to the first end of the first bipolar junction element D11 (as shown in FIG. 2), and coupled The first voltage V 1 , the third end of the switch 323 is coupled to the output end of the first operational amplifier 310 and the capacitor C2 , and the switch 323 is controlled by a fourth switching signal SW4 . The first end of the switch 325 is coupled to one of the second ends of the capacitor C3. The second end of the switch 325 is coupled to one of the negative inputs of the second operational amplifier 320. The third end of the switch 325 is coupled to the ground. The switch 325 is controlled by a fifth switching signal SW5. One positive input terminal of the second operational amplifier 320 is coupled to the ground.

【0029】[0029]

電容C4耦接於第二運算放大器320之負輸入端與第二運算放大器320之一輸出端之間。開關327之兩端耦接於電容C4之兩端,開關327受控於一第六切換訊號SW6。於本實施例中,電容C4之電容值等於電容C3之電容值。於本發明之一實施例中,該些切換訊號SW1~SW6產生於數位電路50(如第4圖所示),或者是由積體電路之任一電路所產生,其為本發明所屬領域之公知技術,所以於此不再詳述。The capacitor C4 is coupled between the negative input terminal of the second operational amplifier 320 and the output terminal of the second operational amplifier 320. The two ends of the switch 327 are coupled to the two ends of the capacitor C4, and the switch 327 is controlled by a sixth switching signal SW6. In this embodiment, the capacitance of the capacitor C4 is equal to the capacitance of the capacitor C3. In an embodiment of the present invention, the switching signals SW1 SW SW6 are generated by the digital circuit 50 (as shown in FIG. 4 ) or generated by any circuit of the integrated circuit, which is the field of the present invention. Known techniques are therefore not described in detail herein.

【0030】[0030]

如第3A圖所示,開關313受控於第一切換訊號SW1,而導通於第二阻抗元件R22之第二端(如第2圖所示)與電容C1之第一端之間,以傳送第三電壓V3 至電容C1。開關315受控於第二切換訊號SW2,而導通於電容C1之第二端與接地端之間。如此,第三電壓V3 會對電容C1充電,即第三電壓V3 被取樣於電容C1。此外,開關317受控於第三切換訊號SW3而導通,以驅使電容C2放電,而重置電容C2。如同上述,開關323受控於第四切換訊號SW4,而導通於第一雙極性接面元件D11之第一端(如第2圖所示)與電容C3之第一端之間,以傳送第一電壓V1 至電容C3。開關325受控於第五切換訊號SW5,而導通於電容C3之第二端與接地端之間。如此,第一電壓V1 被取樣於電容C3。此外,開關327受控於第六切換訊號SW6而導通,以驅使電容C4放電,而重置電容C4。As shown in FIG. 3A, the switch 313 is controlled by the first switching signal SW1, and is connected between the second end of the second impedance element R22 (as shown in FIG. 2) and the first end of the capacitor C1 for transmission. The third voltage V 3 is to the capacitor C1. The switch 315 is controlled by the second switching signal SW2 and is connected between the second end of the capacitor C1 and the ground. Thus, the third voltage V 3 charges the capacitor C1, that is, the third voltage V 3 is sampled at the capacitor C1. In addition, the switch 317 is turned on by the third switching signal SW3 to drive the capacitor C2 to discharge and reset the capacitor C2. As described above, the switch 323 is controlled by the fourth switching signal SW4, and is connected between the first end of the first bipolar junction element D11 (as shown in FIG. 2) and the first end of the capacitor C3 to transmit the first A voltage V 1 to capacitor C3. The switch 325 is controlled by the fifth switching signal SW5 and is connected between the second end of the capacitor C3 and the ground. As such, the first voltage V 1 is sampled at the capacitor C3. In addition, the switch 327 is turned on by the sixth switching signal SW6 to drive the capacitor C4 to discharge and reset the capacitor C4.

【0031】[0031]

接續,如第3B圖所示,開關313被切換而導通於接地端與電容C1之第一端之間。開關315被切換而導通於電容C1之第二端與第一運算放大器310之負輸入端之間。開關317受控於第三切換訊號SW3而截止。如此,儲存於電容C1之電荷會轉移至電容C2,即積分被取樣之第三電壓V3 。於本實施例中,由於電容C2之電容值為電容C1之電容值的兩倍,所以積分被取樣之第三電壓V3 所得之電壓值為第三電壓V3 的一半(V3 /2)。Next, as shown in FIG. 3B, the switch 313 is switched to be turned on between the ground terminal and the first end of the capacitor C1. Switch 315 is switched to conduct between a second end of capacitor C1 and a negative input of first operational amplifier 310. The switch 317 is turned off by the third switching signal SW3. Thus, the charge stored in the capacitor C1 is transferred to the capacitor C2, that is, the third voltage V 3 sampled is integrated. In the present embodiment, since the capacitance value of twice the capacitance value of capacitor C2 of the capacitor C1, the third voltage of the integrator is sampled voltage of 3 V obtained from the half value of the third voltage V 3 (V 3/2) .

【0032】[0032]

復參閱第3B圖,開關323被切換而導通於第一運算放大器310之輸出端與電容C3之第一端之間。開關325被切換而導通於電容C3之第二端與第二運算放大器320之負輸入端之間。開關327受控於第六切換訊號SW6而截止。如此,第一運算放大器310之輸出電壓(V3 /2)與第一電壓V1 (被取樣於電容C3)之間的電壓差(V1 -(V3 / 2))會被積分。於本實施例中,由於電容C4之電容值相等於電容C3之電容值,所以第二運算放大器320之輸出電壓VOUT 為第一運算放大器310之輸出電壓(V3 /2)與第一電壓V1 之間的電壓差。Referring to FIG. 3B, the switch 323 is switched to be turned on between the output of the first operational amplifier 310 and the first end of the capacitor C3. Switch 325 is switched to conduct between a second end of capacitor C3 and a negative input of second operational amplifier 320. The switch 327 is turned off by the sixth switching signal SW6. Thus, the voltage difference (V 1 -(V 3 / 2)) between the output voltage (V 3 /2) of the first operational amplifier 310 and the first voltage V 1 (sampled to the capacitor C3) is integrated. In this embodiment, since the capacitance value of the capacitor C4 is equal to the capacitance value of the capacitor C3, the output voltage V OUT of the second operational amplifier 320 is the output voltage (V 3 /2) of the first operational amplifier 310 and the first voltage. The voltage difference between V 1 .

【0033】[0033]

請參閱第4圖,其為本發明之能隙參考電路之另一實施例的電路圖。本實施例與前一實施例(如第2圖所示)之差異在於本實施例之控制電路包含一比較器45、一數位電路50、一數位類比轉換電路,而不需要運算放大器40。本實施例之數位類比轉換電路包含複數個數位類比轉換器(DAC)61、62與63。本實施例之能隙參考電路的架構是數位架構,不需要高增益的運算放大器,因而適用於新半導體製程。此外,本實施例更包含一第三電流源M6,而不需要第2圖所示之參考電流源M3與電流鏡(電晶體M4與M5)。第三電流源M6耦接於第二阻抗元件R22之第二端與接地端之間,並提供第三電流I3 。於本發明之一實施例中,第三電流源M6是由電晶體實現。Please refer to FIG. 4, which is a circuit diagram of another embodiment of the bandgap reference circuit of the present invention. The difference between this embodiment and the previous embodiment (as shown in FIG. 2) is that the control circuit of the present embodiment includes a comparator 45, a digital circuit 50, and a digital analog conversion circuit without the need for the operational amplifier 40. The digital analog conversion circuit of this embodiment includes a plurality of digital analog converters (DACs) 61, 62 and 63. The architecture of the bandgap reference circuit of this embodiment is a digital architecture that does not require a high gain operational amplifier and is therefore suitable for new semiconductor processes. In addition, the embodiment further includes a third current source M6, and does not require the reference current source M3 and the current mirror (the transistors M4 and M5) shown in FIG. The third current source M6 is coupled between the second end of the second impedance element R22 and the ground, and provides a third current I 3 . In an embodiment of the invention, the third current source M6 is implemented by a transistor.

【0034】[0034]

如第4圖所示,比較器45之一負輸入端耦接第一雙極性接面元件D11與第一電流源M1之連接端,而接收第一電壓V1 。比較器45之一正輸入端則耦接第一阻抗元件R11之第一端,而接收第二電壓V2 。比較器45比較第一電壓V1 與第二電壓V2 ,而產生一比較訊號VCOM 。數位電路50耦接比較器45之一輸出端,以接收比較訊號VCOM 。數位電路50依據比較訊號VCOM 產生複數個數位訊號DI1、DI2與DI3。第一數位類比轉換器61、第二數位類比轉換器62與第三數位類比轉換器63耦接數位電路50,並轉換該些數位訊號DI1、DI2與DI3為類比訊號AN1、AN2與AN3。As shown in FIG. 4, one of the negative input terminals of the comparator 45 is coupled to the connection end of the first bipolar junction element D11 and the first current source M1 to receive the first voltage V 1 . The positive input terminal of one of the comparators 45 is coupled to the first end of the first impedance element R11 and receives the second voltage V 2 . The comparator 45 compares the first voltage V 1 with the second voltage V 2 to generate a comparison signal V COM . The digital circuit 50 is coupled to one of the outputs of the comparator 45 to receive the comparison signal V COM . The digital circuit 50 generates a plurality of digital signals DI1, DI2, and DI3 according to the comparison signal V COM . The first digital analog converter 61, the second digital analog converter 62 and the third digital analog converter 63 are coupled to the digital circuit 50, and convert the digital signals DI1, DI2 and DI3 into analog signals AN1, AN2 and AN3.

【0035】[0035]

該些數位類比轉換器61、62與63更分別耦接第一電流源M1、第二電流源M2與第三電流源M6,以藉由第一類比訊號AN1、第二類比訊號AN2與第三類比訊號AN3分別控制該些電流源M1、M2與M6,而控制該些電流I1 、I2 與I3 的電流量。於本發明之一實施例中,數位電路50可為一微處理器,但不侷限數位電路50僅可為微處理器。本實施例之其餘電路相同於前一實施例的電路,所以於此不再詳述,且該些電流I1 、I2 、I3 之電流量的比例則同樣保持為2:1:1。The digital analog converters 61, 62 and 63 are respectively coupled to the first current source M1, the second current source M2 and the third current source M6, respectively, by the first analog signal AN1, the second analog signal AN2 and the third AN3 analog signal respectively controlling the plurality of current source M1, M2 and M6, and the plurality of the control current I 1, I 2 and I 3 of the current. In one embodiment of the invention, the digital circuit 50 can be a microprocessor, but the digital circuit 50 is not limited to a microprocessor. The remaining circuits of this embodiment are the same as those of the previous embodiment, so they will not be described in detail here, and the ratio of the current quantities of the currents I 1 , I 2 , and I 3 is also maintained at 2:1:1.

【0036】[0036]

請參閱第5圖,其為本發明之能隙參考電路之又一實施例的電路圖。本實施例之控制電路更包含一偵測電路,其耦接於電流產生電路之該些電流源M1、M2與M6,而偵測該些電流I1 、I2 與I3 ,且依據該些電流I1 、I2 與I3 產生一第一偵測訊號VS1 、一第二偵測訊號VS2 與一第三偵測訊號VS3 。該些偵測訊號VS1 、VS2 與VS3 提供給一比較電路。於本實施例中,比較電路包含一比較器47。比較器47比較第一偵測訊號VS1 與第二偵測訊號VS2 ,而產生一第一比較訊號VCOM1 。此外,比較器47比較第二偵測訊號VS2 與第三偵測訊號VS3 ,而產生一第二比較訊號VCOM2 。數位電路50接收第一比較訊號VCOM1 與第二比較訊號VCOM2 ,並依據第一比較訊號VCOM1 與第二比較訊號VCOM2 產生複數個數位訊號DI1、DI2與DI3。該些數位類比轉換器61、62與63轉換該些數位訊號DI1、DI2與DI3為類比訊號AN1、AN2與AN3,以控制該些電流源M1、M2與M6,進而控制該些電流I1 、I2 與I3 的電流量。Please refer to FIG. 5, which is a circuit diagram of still another embodiment of the bandgap reference circuit of the present invention. The control circuit of the present embodiment further includes a detection circuit coupled to the current sources M1, M2, and M6 of the current generating circuit to detect the currents I 1 , I 2 , and I 3 , and according to the The currents I 1 , I 2 and I 3 generate a first detection signal V S1 , a second detection signal V S2 and a third detection signal V S3 . The detection signals V S1 , V S2 and V S3 are supplied to a comparison circuit. In the present embodiment, the comparison circuit includes a comparator 47. The comparator 47 compares the first detection signal V S1 with the second detection signal V S2 to generate a first comparison signal V COM1 . In addition, the comparator 47 compares the second detection signal V S2 with the third detection signal V S3 to generate a second comparison signal V COM2 . The digital circuit 50 receives the first comparison signal V COM1 and the second comparison signal V COM2 , and generates a plurality of digital signals DI1 , DI2 and DI3 according to the first comparison signal V COM1 and the second comparison signal V COM2 . The plurality of digital to analog converters 61, 62 and 63 convert the plurality of digital signals DI1, DI2 and DI3 of analog signals AN1, AN2 and AN3, to control the current sources M1, M2 and M6, and then control the plurality of current I 1, The amount of current of I 2 and I 3 .

【0037】[0037]

本實施例之偵測電路包含一第一偵測單元RS1、一第二偵測單元RS2、一第三偵測單元RS3、一第一開關71、一第二開關73、一第三開關75與一偵測運算電路79。於本發明之一實施例中,該些偵測單元RS1、RS2與RS3為電阻。第一開關71之一第一端耦接於第一電流源M1,第一開關71之一第二端耦接於第一偵測單元RS1之一第一端,第一偵測單元RS1之一第二端耦接於接地端,第一開關71之一第三端耦接於第一雙極性接面元件D11之第一端。第一開關71受控於一第一切換訊號SW11,當第一切換訊號SW11控制第一開關71導通於第一電流源M1與第一偵測單元RS1之間時,第一電流I1 流經第一開關71與第一偵測單元RS1,如此第一偵測單元RS1即會依據第一電流I1 產生第一偵測訊號VS1The detecting circuit of the embodiment includes a first detecting unit RS1, a second detecting unit RS2, a third detecting unit RS3, a first switch 71, a second switch 73, and a third switch 75. A detection operation circuit 79. In an embodiment of the invention, the detecting units RS1, RS2 and RS3 are resistors. The first end of the first switch 71 is coupled to the first current source M1, and the second end of the first switch 71 is coupled to one of the first ends of the first detecting unit RS1, and one of the first detecting units RS1 The second end of the first switch 71 is coupled to the first end of the first bipolar junction element D11. The first switch 71 is controlled by a first switching signal SW11, SW11 when the first switching signal controls the first switch 71 is turned between the first current source and the first detecting unit M1 RS1, first current I 1 flowing through The first switch 71 and the first detecting unit RS1, such that the first detecting unit RS1 generates the first detecting signal V S1 according to the first current I 1 .

【0038】[0038]

第二開關73之一第一端耦接於第二電流源M2,第二開關73之一第二端耦接於第二偵測單元RS2之一第一端,第二偵測單元RS2之一第二端耦接於接地端,第二開關73之一第三端耦接於第一阻抗元件R11之第一端。第二開關73受控於一第二切換訊號SW22,當第二切換訊號SW22控制第二開關73導通於第二電流源M2與第二偵測單元RS2之間時,第二電流I2 流經第二開關73與第二偵測單元RS2,如此第二偵測單元RS2即會依據第二電流I2 產生第二偵測訊號VS2The first end of the second switch 73 is coupled to the second current source M2, and the second end of the second switch 73 is coupled to one of the first ends of the second detecting unit RS2, and one of the second detecting units RS2 The second end of the second switch 73 is coupled to the first end of the first impedance element R11. The second switch 73 is controlled by a second switching signal SW22. When the second switching signal SW22 controls the second switch 73 to be turned on between the second current source M2 and the second detecting unit RS2, the second current I 2 flows through. The second switch 73 and the second detecting unit RS2, such that the second detecting unit RS2 generates the second detecting signal V S2 according to the second current I 2 .

【0039】[0039]

第三開關75之一第一端耦接於第三電流源M6,第三開關75之一第二端耦接於第三偵測單元RS3之一第二端,第三偵測單元RS3之一第一端耦接於電源VDD ,電源VDD 用於提供一電壓於第三偵測單元RS3,第三開關75之一第三端耦接於第二阻抗元件R22之第二端。第三開關75受控於一第三切換訊號SW33,當第三切換訊號SW33控制第三開關75導通於第三電流源M6與第三偵測單元RS3之間時,第三電流I3 流經第三偵測單元RS3,如此第三偵測單元RS3即會依據第三電流I3 產生第三偵測訊號VS3 。第三偵測訊號VS3 即是跨於第三偵測單元RS3之兩端的電壓降,所以第三偵測訊號VS3 可表示為如下:
VS3 =(VDD - V4
其中,V4 為第三偵測單元RS3之第二端的電壓。偵測運算電路79接收電源VDD 與電壓V4 ,並依據上述方程式運算電源VDD 與電壓V4 而輸出第三偵測訊號VS3 。偵測運算電路79之詳細電路相似於第3A圖之輸出運算電路30。
The first end of the third switch 75 is coupled to the third current source M6, and the second end of the third switch 75 is coupled to one of the second ends of the third detecting unit RS3, and one of the third detecting units RS3 The first end is coupled to the power source V DD , the power source V DD is used to provide a voltage to the third detecting unit RS3 , and the third end of the third switch 75 is coupled to the second end of the second impedance element R22 . The third switch 75 is controlled by a third switching signal SW33, SW33 when the third switching signal to control the third switch 75 is turned between the third current source and the third detecting unit M6 RS3, a third current I 3 flowing through The third detecting unit RS3, such that the third detecting unit RS3 generates the third detecting signal V S3 according to the third current I 3 . The third detection signal V S3 is the voltage drop across the third detection unit RS3, so the third detection signal V S3 can be expressed as follows:
V S3 = (V DD - V 4 )
Wherein V 4 is the voltage of the second end of the third detecting unit RS3. The detection operation circuit 79 receives the power source V DD and the voltage V 4 , and outputs the third detection signal V S3 by calculating the power source V DD and the voltage V 4 according to the above equation. The detailed circuit of the detection arithmetic circuit 79 is similar to the output operation circuit 30 of FIG. 3A.

【0040】[0040]

比較器47之一正輸入端耦接第二偵測單元RS2之第一端,而接收第二偵測訊號VS2 。比較器47之一負輸入端耦接一第四開關77之一第一端,第四開關77之一第二端耦接第一偵測單元RS1之第一端,而接收第一偵測訊號VS1 ,第四開關77之一第三端耦接偵測運算電路79之一輸出端,而接收第三偵測訊號VS3 。第四開關77受控於一第四切換訊號SW44。於本發明之一實施例中,該些切換訊號SW11、SW22、SW33與SW44產生於數位電路50,或者是由積體電路之任一電路所產生,其為本發明所屬領域之公知技術,所以於此不再詳述。One of the positive input terminal of comparator 47 is coupled to a first end of the second detecting unit RS2, the received second detection signal V S2. One of the negative ends of the comparator 47 is coupled to a first end of the fourth switch 77, and the second end of the fourth switch 77 is coupled to the first end of the first detecting unit RS1 to receive the first detecting signal. V S1, the fourth switch 77, one end of one of the third output terminal 79 coupled to the detection operation circuit receiving the third detection signal V S3. The fourth switch 77 is controlled by a fourth switching signal SW44. In an embodiment of the present invention, the switching signals SW11, SW22, SW33, and SW44 are generated by the digital circuit 50, or are generated by any circuit of the integrated circuit, which is a well-known technology in the field to which the present invention pertains. It will not be detailed here.

【0041】[0041]

本實施例之能隙參考電路調整該些電流I1 、I2 與I3 之電流量的方式如下說明,其讓該些電流I1 、I2 與I3 之電流量的比例為2:1:1。本實施例之該些偵測單元RS1、RS2與RS3之電阻值比為1:2:2。第一切換訊號SW11控制第一開關71導通於第一電流源M1與第一偵測單元RS1之間,以產生第一偵測訊號VS1 。第二切換訊號SW22控制第二開關73導通於第二電流源M2與第二偵測單元RS2之間,以產生第二偵測訊號VS2 。第四切換訊號SW44控制第四開關77導通於比較器47之負輸入端與第一偵測單元RS1之第一端之間。The manner in which the bandgap reference circuit of the present embodiment adjusts the current quantities of the currents I 1 , I 2 and I 3 is as follows. The ratio of the currents of the currents I 1 , I 2 and I 3 is 2:1. :1. The resistance ratios of the detecting units RS1, RS2 and RS3 in this embodiment are 1:2:2. A first switching signal 71 controls the first switch SW11 is turned between the first current source and the first detecting unit M1 RS1, to generate a first detecting signal V S1. The second switching signal SW22 controls the second switch 73 to be turned on between the second current source M2 and the second detecting unit RS2 to generate the second detecting signal V S2 . The fourth switching signal SW44 controls the fourth switch 77 to be turned on between the negative input terminal of the comparator 47 and the first end of the first detecting unit RS1.

【0042】[0042]

比較器47即會接收第一偵測訊號VS1 與第二偵測訊號VS2 並進行比較,而產生第一比較訊號VCOM1 。數位電路50即會取樣第一比較訊號VCOM1 ,而依據第一比較訊號VCOM1 產生第一數位訊號DI1與第二數位訊號DI2。數位類比轉換器61與62分別轉換第一數位訊號DI1與第二數位訊號DI2為第一類比訊號AN1與第二類比訊號AN2,以控制第一電流源M1與第二電流源M2,而調整電流I1 與I2 。數位電路50會持續調整電流I1 與I2 直至第一偵測訊號VS1 等於第二偵測訊號VS2 ,如此即表示電流I1 與I2 之電流量的比例為2:1。The comparator 47 receives the first detection signal V S1 and the second detection signal V S2 and compares them to generate a first comparison signal V COM1 . The digital circuit 50 samples the first comparison signal V COM1 and generates the first digital signal DI1 and the second digital signal DI2 according to the first comparison signal V COM1 . The digital analog converters 61 and 62 respectively convert the first digital signal DI1 and the second digital signal DI2 into a first analog signal AN1 and a second analog signal AN2 to control the first current source M1 and the second current source M2, and adjust the current. I 1 and I 2 . The digital circuit 50 continuously adjusts the currents I 1 and I 2 until the first detection signal V S1 is equal to the second detection signal V S2 , which means that the ratio of the currents of the currents I 1 and I 2 is 2:1.

【0043】[0043]

接續,第三切換訊號SW33控制第三開關75導通於第三電流源M6與第三偵測單元RS3之間。偵測運算電路79運算電源VDD 之電壓與電壓V4 而輸出第三偵測訊號VS3 。此外,第四切換訊號SW44控制第四開關77導通於比較器47之負輸入端與偵測運算單元79之輸出端之間,以接收第三偵測訊號VS3 。比較器47接收第三偵測訊號VS3 與第二偵測訊號VS2 並進行比較,而產生第二比較訊號VCOM2 。數位電路50即會取樣第二比較訊號VCOM2 ,以產生第二數位訊號DI2與第三數位訊號DI3。數位類比轉換器62與63分別轉換第二數位訊號DI2與第三數位訊號DI3為第二類比訊號AN2與第三類比訊號AN3,以控制第二電流源M2與第三電流源M6,而調整電流I2 與I3 。數位電路50會持續調整電流I2 與I3 直至第二偵測訊號VS2 等於第三偵測訊號VS3 ,如此即表示電流I2 與I3 之電流量的比例為1:1。In the continuation, the third switching signal SW33 controls the third switch 75 to be turned on between the third current source M6 and the third detecting unit RS3. The detection operation circuit 79 calculates the voltage of the power source V DD and the voltage V 4 to output a third detection signal V S3 . In addition, the fourth switching signal SW44 controls the fourth switch 77 to be turned on between the negative input terminal of the comparator 47 and the output terminal of the detecting operation unit 79 to receive the third detecting signal V S3 . The comparator 47 receives the third detection signal V S3 and the second detection signal V S2 and compares it to generate a second comparison signal V COM2 . The digital circuit 50 samples the second comparison signal V COM2 to generate the second digital signal DI2 and the third digital signal DI3. The digital analog converters 62 and 63 respectively convert the second digital signal DI2 and the third digital signal DI3 into a second analog signal AN2 and a third analog signal AN3 to control the second current source M2 and the third current source M6 to adjust the current. I 2 and I 3 . Digital circuit 50 continuously adjusts the current I 2 and I 3 until the second detection signal V S2 equal to the third detection signal V S3, so it means that the current I and the current I 2 ratio of 3 to 1: 1.

【0044】[0044]

由上述可知,數位電路50先調整電流I1 與I2 ,之後再調整電流I2 與I3 。由於電流I2 可能會再被調整,所以電流I1 與I2 的比例可能並非為2:1。因此,偵測電路會再重新偵測電流I1 與I2 ,而數位電路50會再重新調整電流I1 與I2 ,並再接續調整電流I2 與I3 。本實施例之數位電路50會一直反覆進行調整運作,而慢慢收斂該些電流I1 、I2 與I3 ,直至該些電流I1 、I2 與I3 之比例為2:1:1。數位電路50完成調整該些電流I1 、I2 與I3 後,第一開關71被切換而導通於第一電流源M1與第一雙極性接面元件D11之間,第二開關73被切換而導通於第二電流源M2與第一阻抗元件R11之間,第三開關75被切換而導通於第三電流源M3與第二阻抗元件R22之間,以產生輸出電壓VOUTAs can be seen from the above, the digital circuit 50 first adjusts the currents I 1 and I 2 and then adjusts the currents I 2 and I 3 . Since the current I 2 may be adjusted again, the ratio of the currents I 1 to I 2 may not be 2:1. Therefore, the detection circuit will re-detect the currents I 1 and I 2 , and the digital circuit 50 will re-adjust the currents I 1 and I 2 and then adjust the currents I 2 and I 3 . The digital circuit 50 of this embodiment will continue to perform the adjustment operation repeatedly, and slowly converge the currents I 1 , I 2 and I 3 until the ratio of the currents I 1 , I 2 and I 3 is 2:1:1. . After the digital circuit 50 finishes adjusting the currents I 1 , I 2 and I 3 , the first switch 71 is switched to be turned on between the first current source M1 and the first bipolar junction element D11 , and the second switch 73 is switched. The third switch 75 is switched between the second current source M2 and the first impedance element R11 to be turned on between the third current source M3 and the second impedance element R22 to generate an output voltage V OUT .

【0045】[0045]

於本發明之另一實施例中,比較電路包含兩個比較器(圖未示),第一比較器接收第一偵測訊號VS1 與第二偵測訊號VS2 並進行比較,而產生第一比較訊號VCOM1 。第二比較器接收第二偵測訊號VS2 與第三偵測訊號VS3 並進行比較,而產生第二比較訊號VCOM2 。如此,即不需要第四開關77。上述之偵測電路與調整方式僅為本發明之一實施例,並非限制本發明僅能運用上述之偵測電路與調整方式調整該些電流I1 、I2 與I3In another embodiment of the present invention, the comparison circuit includes two comparators (not shown), and the first comparator receives the first detection signal V S1 and the second detection signal V S2 and compares A comparison signal V COM1 . The second comparator receives the second detection signal V S2 and the third detection signal V S3 and compares it to generate a second comparison signal V COM2 . Thus, the fourth switch 77 is not required. The detection circuit and the adjustment method are only one embodiment of the present invention, and the present invention is not limited to the adjustment of the currents I 1 , I 2 and I 3 by using the detection circuit and the adjustment method described above.

【0046】[0046]

綜上所述,本發明之能隙參考電路運用輸出運算電路可產生任何電壓準位的輸出電壓,尤其是低電壓準位的輸出電壓,例如電壓準位是1V以下。再者,本發明之能隙參考電路所需電源之電壓準位為低,所以本發明之能隙參考電路適合用於低電壓半導體製程。此外,本發明之能隙參考電路可數位化,而可不需要高增益的運算放大器,而適合用於新半導體製程。In summary, the energy gap reference circuit of the present invention can use an output operation circuit to generate an output voltage of any voltage level, especially an output voltage of a low voltage level, for example, the voltage level is 1V or less. Moreover, the voltage level of the power supply required by the bandgap reference circuit of the present invention is low, so the bandgap reference circuit of the present invention is suitable for use in a low voltage semiconductor process. In addition, the bandgap reference circuit of the present invention can be digitized without the need for a high gain operational amplifier, but is suitable for use in new semiconductor processes.

【0047】[0047]

惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, and the variations, modifications, and modifications of the shapes, structures, features, and spirits described in the claims of the present invention. All should be included in the scope of the patent application of the present invention.

【0048】[0048]

本發明係實為一具有新穎性、進步性及可供產業利用者,應符合我國專利法所規定之專利申請要件無疑,爰依法提出發明專利申請,祈 鈞局早日賜准專利,至感為禱。The invention is a novelty, progressive and available for industrial use, and should meet the requirements of the patent application stipulated in the Patent Law of China, and the invention patent application is filed according to law, and the prayer bureau will grant the patent as soon as possible. prayer.

30‧‧‧輸出運算電路 30‧‧‧Output arithmetic circuit

40‧‧‧運算放大器 40‧‧‧Operational Amplifier

D11‧‧‧第一雙極性接面元件 D11‧‧‧First bipolar junction element

D22‧‧‧第二雙極性接面元件 D22‧‧‧Second bipolar junction element

I1‧‧‧第一電流 I 1 ‧‧‧First current

I2‧‧‧第二電流 I 2 ‧‧‧second current

I3‧‧‧第三電流 I 3 ‧‧‧third current

IR‧‧‧參考電流 I R ‧‧‧reference current

M1‧‧‧第一電流源 M1‧‧‧ first current source

M2‧‧‧第二電流源 M2‧‧‧second current source

M3‧‧‧參考電流源 M3‧‧‧ reference current source

M4‧‧‧電晶體 M4‧‧‧O crystal

M5‧‧‧電晶體 M5‧‧‧O crystal

R11‧‧‧第一阻抗元件 R11‧‧‧First impedance element

R22‧‧‧第二阻抗元件 R22‧‧‧second impedance element

V1‧‧‧第一電壓 V 1 ‧‧‧First voltage

V2‧‧‧第二電壓 V 2 ‧‧‧second voltage

V3‧‧‧第三電壓 V 3 ‧‧‧ third voltage

VCON‧‧‧控制訊號 V CON ‧‧‧ control signal

VD11‧‧‧電壓 V D11 ‧‧‧ voltage

VD22‧‧‧電壓 V D22 ‧‧‧ voltage

VDD‧‧‧電源 V DD ‧‧‧ power supply

VOUT‧‧‧輸出電壓 V OUT ‧‧‧ output voltage

Claims (14)

【第1項】[Item 1] 一種能隙參考電路,其包含:
一電流產生電路,產生一第一電流、一第二電流與一第三電流;
一第一雙極性接面元件,耦接於該電流產生電路與一接地端之間,並耦接該第一電流,該第一雙極性接面元件與該電流產生電路相連接之一連接端具有一第一電壓;
一第一阻抗元件,其一第一端耦接該電流產生電路而耦接該第二電流,該第一阻抗元件之該第一端具有一第二電壓;
一第二雙極性接面元件,耦接於該第一阻抗元件之一第二端與該接地端之間;
一第二阻抗元件,其一第一端耦接該第一雙極性接面元件與該電流產生電路之該連接端,該第二阻抗元件之一第二端耦接該第三電流並具有一第三電壓;
一控制電路,控制該電流產生電路;以及
一輸出運算電路,接收該第一電壓與該第三電壓,並運算該第一電壓與該第三電壓,而產生一輸出電壓。
A bandgap reference circuit comprising:
a current generating circuit for generating a first current, a second current and a third current;
a first bipolar junction element coupled between the current generating circuit and a ground, coupled to the first current, the first bipolar junction element and the current generating circuit connected to one end Having a first voltage;
a first impedance component having a first end coupled to the current generating circuit and coupled to the second current, the first end of the first impedance component having a second voltage;
a second bipolar junction element coupled between the second end of the first impedance element and the ground end;
a second impedance element having a first end coupled to the first bipolar junction element and the connection end of the current generating circuit, and a second end of the second impedance element coupled to the third current and having a Third voltage
a control circuit that controls the current generating circuit; and an output computing circuit that receives the first voltage and the third voltage and calculates the first voltage and the third voltage to generate an output voltage.
【第2項】[Item 2] 如申請專利範圍第1項所述之能隙參考電路,其中該電流產生電路包含:
一第一電流源,提供該第一電流;
一第二電流源,提供該第二電流;以及
一第三電流源,耦接於該第二阻抗元件之該第二端與該接地端之間,並提供該第三電流。
The bandgap reference circuit of claim 1, wherein the current generating circuit comprises:
a first current source providing the first current;
a second current source is provided to provide the second current; and a third current source is coupled between the second end of the second impedance element and the ground, and provides the third current.
【第3項】[Item 3] 如申請專利範圍第2項所述之能隙參考電路,其中該第三電流源包含:
一參考電流源,提供一參考電流;以及
一電流鏡,耦接該參考電流源、該第二阻抗元件之該第二端與該接地端,並依據該參考電流提供該第三電流。
The gap reference circuit of claim 2, wherein the third current source comprises:
a reference current source, providing a reference current; and a current mirror coupled to the reference current source, the second end of the second impedance element and the ground, and providing the third current according to the reference current.
【第4項】[Item 4] 如申請專利範圍第1項所述之能隙參考電路,其中該控制電路包含:
一運算放大器,比較該第一電壓與該第二電壓,而產生一控制訊號,以控制該電流產生電路,而控制該第一電流、該第二電流與該第三電流的電流量。
The energy gap reference circuit of claim 1, wherein the control circuit comprises:
An operational amplifier compares the first voltage with the second voltage to generate a control signal to control the current generating circuit to control the current of the first current, the second current, and the third current.
【第5項】[Item 5] 如申請專利範圍第1項所述之能隙參考電路,其中該控制電路包含:
一比較器,依據該第一電壓與該第二電壓產生一比較訊號;
一數位電路,耦接該比較器,並依據該比較訊號產生複數個數位訊號;以及
一數位類比轉換電路,耦接該數位電路與該電流產生電路,並轉換該些數位訊號為複數個類比訊號,該些類比訊號控制該電流產生電路,而控制該第一電流、該第二電流與該第三電流的電流量。
The energy gap reference circuit of claim 1, wherein the control circuit comprises:
a comparator, generating a comparison signal according to the first voltage and the second voltage;
a digital circuit coupled to the comparator and generating a plurality of digital signals according to the comparison signal; and a digital analog conversion circuit coupled to the digital circuit and the current generating circuit, and converting the digital signals into a plurality of analog signals The analog signals control the current generating circuit to control the amount of current of the first current, the second current, and the third current.
【第6項】[Item 6] 如申請專利範圍第5項所述之能隙參考電路,其中該些數位訊號包含一第一數位訊號、一第二數位訊號與一第三數位訊號,該些類比訊號包含一第一類比訊號、一第二類比訊號與一第三類比訊號,該數位類比轉換電路包含:
一第一數位類比轉換器,耦接該數位電路,並轉換該第一數位訊號為該第一類比訊號;
一第二數位類比轉換器,耦接該數位電路,並轉換該第二數位訊號為該第二類比訊號;
一第三數位類比轉換器,耦接該數位電路,並轉換該第三數位訊號為該第三類比訊號;
該電流產生電路包含:
一第一電流源,提供該第一電流,且受控於該第一類比訊號;
一第二電流源,提供該第二電流,且受控於該第二類比訊號;以及
一第三電流源,耦接於該第二阻抗元件之該第二端與該接地端之間,並提供該第三電流,且受控於該第三類比訊號。
The energy gap reference circuit of claim 5, wherein the digital signals comprise a first digital signal, a second digital signal and a third digital signal, wherein the analog signals comprise a first analog signal, a second analog signal and a third analog signal, the digital analog conversion circuit comprising:
a first digital analog converter coupled to the digital circuit and converting the first digital signal to the first analog signal;
a second digital analog converter coupled to the digital circuit and converting the second digital signal to the second analog signal;
a third digital analog converter coupled to the digital circuit and converting the third digital signal to the third analog signal;
The current generating circuit comprises:
a first current source providing the first current and controlled by the first analog signal;
a second current source is provided to be controlled by the second analog signal; and a third current source is coupled between the second end of the second impedance element and the ground end, and The third current is provided and controlled by the third analog signal.
【第7項】[Item 7] 如申請專利範圍第1項所述之能隙參考電路,其中該控制電路包含:
一偵測電路,耦接該電流產生電路,而偵測該第一電流、該第二電流與該第三電流,且依據該第一電流、該第二電流與該第三電流產生一第一偵測訊號、一第二偵測訊號與一第三偵測訊號;
一比較電路,比較該第一偵測訊號與該第二偵測訊號,而產生一第一比較訊號,以及比較該第二偵測訊號與該第三偵測訊號,而產生一第二比較訊號;
一數位電路,耦接該比較電路,並依據該第一比較訊號與該第二比較訊號產生複數個數位訊號;以及
一數位類比轉換電路,耦接該數位電路與該電流產生電路,並轉換該些數位訊號為複數個類比訊號,該些類比訊號控制該電流產生電路,而控制該第一電流、該第二電流與該第三電流的電流量。
The energy gap reference circuit of claim 1, wherein the control circuit comprises:
a detecting circuit coupled to the current generating circuit to detect the first current, the second current, and the third current, and generating a first according to the first current, the second current, and the third current a detection signal, a second detection signal and a third detection signal;
Comparing the first detection signal and the second detection signal to generate a first comparison signal, and comparing the second detection signal with the third detection signal to generate a second comparison signal ;
a digital circuit coupled to the comparison circuit and generating a plurality of digital signals according to the first comparison signal and the second comparison signal; and a digital analog conversion circuit coupled to the digital circuit and the current generation circuit, and converting the The digital signals are a plurality of analog signals, and the analog signals control the current generating circuit to control the currents of the first current, the second current and the third current.
【第8項】[Item 8] 如申請專利範圍第7項所述之能隙參考電路,其中該偵測電路包含:
一第一偵測單元,耦接於該電流產生電路與該接地端之間,並依據該第一電流產生該第一偵測訊號;
一第一開關,耦接於該電流產生電路與該第一偵測單元之間,以及耦接於該電流產生電路與該第一雙極性接面元件之間,當該第一開關導通於該電流產生電路與該第一偵測單元之間時,該第一電流流經該第一開關與該第一偵測單元;
一第二偵測單元,耦接於該電流產生電路與該接地端之間,並依據該第二電流產生該第二偵測訊號;
一第二開關,耦接於該電流產生電路與該第二偵測單元之間,以及耦接於該電流產生電路與該第一阻抗元件之該第一端之間,當該第二開關導通於該電流產生電路與該第二偵測單元之間時,該第二電流流經該第二開關與該第二偵測單元;
一第三偵測單元,耦接於一電壓與該電流產生電路之間,並依據該第三電流產生該第三偵測訊號;以及
一第三開關,耦接於該電流產生電路與該第三偵測單元之間,以及耦接於該電流產生電路與該第二阻抗元件之該第二端之間,當該第三開關導通於該電流產生電路與該第三偵測單元之間時,該第三電流流經該第三偵測單元。
The energy gap reference circuit of claim 7, wherein the detection circuit comprises:
a first detecting unit is coupled between the current generating circuit and the ground, and generates the first detecting signal according to the first current;
a first switch coupled between the current generating circuit and the first detecting unit, and coupled between the current generating circuit and the first bipolar junction element, when the first switch is turned on When the current generating circuit is between the first detecting unit, the first current flows through the first switch and the first detecting unit;
a second detecting unit is coupled between the current generating circuit and the ground, and generates the second detecting signal according to the second current;
a second switch coupled between the current generating circuit and the second detecting unit, and coupled between the current generating circuit and the first end of the first impedance element, when the second switch is turned on When the current generating circuit is between the second detecting unit, the second current flows through the second switch and the second detecting unit;
a third detecting unit is coupled between a voltage and the current generating circuit, and generates the third detecting signal according to the third current; and a third switch coupled to the current generating circuit and the first Between the three detecting units, and coupled between the current generating circuit and the second end of the second impedance element, when the third switch is turned on between the current generating circuit and the third detecting unit The third current flows through the third detecting unit.
【第9項】[Item 9] 如申請專利範圍第8項所述之能隙參考電路,其中該偵測電路更包含:
一偵測運算電路,運算該第三偵測單元之兩端的兩電壓,而輸出該第三偵測訊號。
The energy gap reference circuit of claim 8, wherein the detecting circuit further comprises:
A detecting operation circuit calculates two voltages at both ends of the third detecting unit to output the third detecting signal.
【第10項】[Item 10] 如申請專利範圍第1項所述之能隙參考電路,其中該第一電流、該第二電流與該第三電流之間的比例為2:1:1。The gap reference circuit of claim 1, wherein the ratio between the first current, the second current, and the third current is 2:1:1. 【第11項】[Item 11] 如申請專利範圍第1項所述之能隙參考電路,其中該輸出電壓與跨於該第二阻抗元件之兩端的一電壓降和該第一電壓的總合成比例。The gap reference circuit of claim 1, wherein the output voltage and a voltage drop across the two ends of the second impedance element and a total composite ratio of the first voltage. 【第12項】[Item 12] 如申請專利範圍第11項所述之能隙參考電路,其中該第一電壓具有一負溫度係數,跨於該第二阻抗元件之兩端的該電壓降具有一正溫度係數。The gap reference circuit of claim 11, wherein the first voltage has a negative temperature coefficient, and the voltage drop across the second impedance element has a positive temperature coefficient. 【第13項】[Item 13] 如申請專利範圍第1項所述之能隙參考電路,其中該第一雙極性接面元件與該第二雙極性接面元件為一雙極性接面電晶體或一二極體。The gap reference circuit of claim 1, wherein the first bipolar junction element and the second bipolar junction element are a bipolar junction transistor or a diode. 【第14項】[Item 14] 如申請專利範圍第1項所述之能隙參考電路,其中該第二阻抗元件之電阻值大於該第一阻抗元件之電阻值。The gap reference circuit of claim 1, wherein the resistance value of the second impedance element is greater than the resistance value of the first impedance element.
TW103142274A 2014-12-05 2014-12-05 Energy gap reference circuit TWI559115B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103142274A TWI559115B (en) 2014-12-05 2014-12-05 Energy gap reference circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103142274A TWI559115B (en) 2014-12-05 2014-12-05 Energy gap reference circuit

Publications (2)

Publication Number Publication Date
TW201621509A true TW201621509A (en) 2016-06-16
TWI559115B TWI559115B (en) 2016-11-21

Family

ID=56755434

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103142274A TWI559115B (en) 2014-12-05 2014-12-05 Energy gap reference circuit

Country Status (1)

Country Link
TW (1) TWI559115B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI622866B (en) * 2017-01-06 2018-05-01 瑞昱半導體股份有限公司 Operating voltage switching device
US10606292B1 (en) 2018-11-23 2020-03-31 Nanya Technology Corporation Current circuit for providing adjustable constant circuit
TWI714188B (en) * 2019-07-30 2020-12-21 立積電子股份有限公司 Reference voltage generation circuit
TWI803969B (en) * 2021-09-08 2023-06-01 大陸商常州欣盛半導體技術股份有限公司 Power-up circuit with temperature compensation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6811265B2 (en) 2019-02-07 2021-01-13 ウィンボンド エレクトロニクス コーポレーション Reference voltage generation circuit, power-on detection circuit and semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7514987B2 (en) * 2005-11-16 2009-04-07 Mediatek Inc. Bandgap reference circuits
CN101241378B (en) * 2007-02-07 2010-08-18 中国科学院半导体研究所 Output adjustable band-gap reference source circuit
JP5842164B2 (en) * 2011-05-20 2016-01-13 パナソニックIpマネジメント株式会社 Reference voltage generation circuit and reference voltage source
EP2555078B1 (en) * 2011-08-03 2014-06-25 ams AG Reference circuit arrangement and method for generating a reference voltage
US9092044B2 (en) * 2011-11-01 2015-07-28 Silicon Storage Technology, Inc. Low voltage, low power bandgap circuit
JP5946304B2 (en) * 2012-03-22 2016-07-06 エスアイアイ・セミコンダクタ株式会社 Reference voltage circuit
JP2014115861A (en) * 2012-12-11 2014-06-26 Sony Corp Band gap reference circuit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI622866B (en) * 2017-01-06 2018-05-01 瑞昱半導體股份有限公司 Operating voltage switching device
US10606292B1 (en) 2018-11-23 2020-03-31 Nanya Technology Corporation Current circuit for providing adjustable constant circuit
TWI694321B (en) * 2018-11-23 2020-05-21 南亞科技股份有限公司 Current circuit for providing adjustable constant current
TWI714188B (en) * 2019-07-30 2020-12-21 立積電子股份有限公司 Reference voltage generation circuit
US11048285B2 (en) 2019-07-30 2021-06-29 Richwave Technology Corp. Reference voltage generation circuit
TWI803969B (en) * 2021-09-08 2023-06-01 大陸商常州欣盛半導體技術股份有限公司 Power-up circuit with temperature compensation

Also Published As

Publication number Publication date
TWI559115B (en) 2016-11-21

Similar Documents

Publication Publication Date Title
TWI559115B (en) Energy gap reference circuit
US9785176B2 (en) Small-circuit-scale reference voltage generating circuit
US8008901B2 (en) Regulated power supply with multiple regulators sharing the total current supplied to a load
US8536844B1 (en) Self-calibrating, stable LDO regulator
US7170330B2 (en) Hysteresis comparator circuit
US9335778B2 (en) Reference voltage generating circuit
US7906976B2 (en) Switched capacitor measurement circuit for measuring the capacitance of an input capacitor
US7541844B2 (en) Current weighted voltage interpolation buffer
WO2012097035A1 (en) A buffer to drive reference voltage
US10224884B2 (en) Circuit for and method of implementing a multifunction output generator
JP5596200B2 (en) Temperature compensation power supply voltage output circuit and method for variable power supply
WO2018205832A1 (en) Superposed operation circuit and floating-voltage digital-to-analog conversion circuit
CN104779958A (en) Amplifying system
JP5018570B2 (en) Linear correction circuit and sensor device
US6957278B1 (en) Reference -switch hysteresis for comparator applications
US6600439B1 (en) Reference voltage circuit for differential analog-to-digital converter
US20070222651A1 (en) Method and circuit for amplitude compensation in a digital-to-analog converter
KR100318448B1 (en) A reference voltage generating circuit in semiconductor device
CN111193512B (en) Digital-to-analog conversion circuit
KR101939147B1 (en) Variable Voltage Reference Generator and Analog-to-Digital Converter using thereof
US6759975B1 (en) Digital-to-analog converter with a shifted output and an increased range
US9729113B2 (en) Constant transconductance bias circuit
JP2956119B2 (en) Parallel A / D converter
WO2023243050A1 (en) Switching regulator
CN111399574B (en) Programmable voltage source

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees