TWI801460B - Heating, ventilating and air conditioning (hvac) system, control method for a vapor compression system, and related machine-readable media - Google Patents

Heating, ventilating and air conditioning (hvac) system, control method for a vapor compression system, and related machine-readable media Download PDF

Info

Publication number
TWI801460B
TWI801460B TW107143672A TW107143672A TWI801460B TW I801460 B TWI801460 B TW I801460B TW 107143672 A TW107143672 A TW 107143672A TW 107143672 A TW107143672 A TW 107143672A TW I801460 B TWI801460 B TW I801460B
Authority
TW
Taiwan
Prior art keywords
compressor
refrigerant
discharge temperature
expansion device
superheat
Prior art date
Application number
TW107143672A
Other languages
Chinese (zh)
Other versions
TW201925696A (en
Inventor
蓋爾 E 林柏格
庫提斯 C 克雷恩
卡洛斯 J 烏里貝
Original Assignee
美商江森自控科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商江森自控科技公司 filed Critical 美商江森自控科技公司
Publication of TW201925696A publication Critical patent/TW201925696A/en
Application granted granted Critical
Publication of TWI801460B publication Critical patent/TWI801460B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21156Temperatures of a compressor or the drive means therefor of the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A heating, ventilating, and air conditioning (HVAC) system that includes a vapor compression system having a refrigerant, a compressor of the vapor compression system configured to circulate the refrigerant through the vapor compression system, an expansion device of the vapor compression system configured to adjust a flow of the refrigerant through the vapor compression system, and a controller configured to adjust a position of the expansion device based on a measured amount of superheat of the refrigerant entering the compressor, a measured discharge temperature of the refrigerant leaving the compressor, or a combination thereof, such that the measured amount of superheat of the refrigerant entering the compressor reaches a target amount of superheat, the measured discharge temperature of the refrigerant leaving the compressor reaches a target discharge temperature, or a combination thereof.

Description

暖通空調(HVAC)系統、用於蒸氣壓縮系統之 控制方法以及相關機器可讀媒體 Heating, ventilation and air conditioning (HVAC) systems, for vapor compression systems Control method and related machine-readable medium

本揭露總體上涉及暖通空調系統。具體地,本揭露涉及用於對蒸氣壓縮系統中的電子膨脹閥(EEV)進行控制之系統及方法。 The present disclosure relates generally to heating, ventilation and air conditioning systems. In particular, the present disclosure relates to systems and methods for controlling electronic expansion valves (EEVs) in vapor compression systems.

加熱、通風及空氣調節(Heating,Ventilating and Air Conditioning,HVAC,簡稱「暖通空調」)系統存在廣泛的應用。例如,住宅、商業和工業系統用於利用諸如製冷劑等流體來控制住宅和建築物中的溫度與空氣。HVAC系統可以使製冷劑循環通過蒸發器與冷凝器之間的閉合回路,製冷劑在蒸發器處吸收熱量,製冷劑在冷凝器處釋放熱量。例如,製冷劑可以從第一流體中吸收熱量,並且將熱量傳遞至第二流體,以最終冷卻第一流體和/或加熱第二流體。在流經蒸發器時,製冷劑通過從第一流體中吸收熱量而蒸發成蒸氣。然後,壓縮機對蒸氣進行壓縮以導致蒸氣的壓力和/或溫度上升,以便隨後通過冷凝器 中的第二流體進行冷卻,從而將熱量從第一流體傳遞至第二流體。 Heating, Ventilating and Air Conditioning (HVAC, referred to as "HVAC") systems are widely used. For example, residential, commercial and industrial systems are used to control the temperature and air in homes and buildings using fluids such as refrigerants. HVAC systems circulate a refrigerant through a closed loop between an evaporator and a condenser, where the refrigerant absorbs heat at the evaporator, and where the refrigerant releases heat at the condenser. For example, a refrigerant may absorb heat from a first fluid and transfer heat to a second fluid to ultimately cool the first fluid and/or heat the second fluid. While passing through the evaporator, the refrigerant evaporates into a vapor by absorbing heat from the first fluid. The compressor then compresses the vapor causing an increase in the pressure and/or temperature of the vapor for subsequent passage through the condenser Cooling the second fluid in the fluid transfers heat from the first fluid to the second fluid.

在一些情況下,蒸氣在壓縮機的入口處係過熱的,以確保製冷劑在進入壓縮機之前處於蒸氣狀態。為了控制進入壓縮機的製冷劑的過熱量,現有系統包括對壓縮機內的蒸氣進行冷卻的液體注入裝置。例如,液體注入裝置將液體製冷劑液滴注入到壓縮機中或壓縮機的入口處,以對進入壓縮機的蒸氣的過熱量和/或離開壓縮機的蒸氣的溫度進行調整。遺憾的是,液體注入裝置包括附加部件(例如,管、泵、噴嘴等)以將液體製冷劑注入到壓縮機中。此外,將液體製冷劑注入到壓縮機中可能降低壓縮機的性能,並且因此降低HVAC系統的性能。 In some cases, the vapor is superheated at the inlet of the compressor to ensure that the refrigerant is in a vapor state before entering the compressor. To control the superheat of the refrigerant entering the compressor, existing systems include liquid injection means to cool the vapor within the compressor. For example, the liquid injection device injects liquid refrigerant droplets into the compressor or at the inlet of the compressor to adjust the superheat of the vapor entering the compressor and/or the temperature of the vapor exiting the compressor. Unfortunately, liquid injection devices include additional components (eg, tubes, pumps, nozzles, etc.) to inject liquid refrigerant into the compressor. Furthermore, injecting liquid refrigerant into the compressor may reduce the performance of the compressor, and thus the performance of the HVAC system.

在一個實施方式中,一種暖通空調(HVAC)系統,包括:具有製冷劑的蒸氣壓縮系統;該蒸氣壓縮系統的壓縮機,該壓縮機被配置成使該製冷劑循環通過該蒸氣壓縮系統;該蒸氣壓縮系統的膨脹裝置,該膨脹裝置被配置成通過該蒸氣壓縮系統的製冷劑的流量進行調整;以及控制器,該控制器被配置成基於測得的進入該壓縮機的製冷劑的過熱量、測得的離開該壓縮機的製冷劑的排放溫度或其組合來調整該膨脹裝置的位置,使得測得的進入該壓縮機的製冷劑的過熱量達到目標過熱量、測得的離開該壓縮機的製冷劑的排放溫度達到目標排放溫度或其組合。 In one embodiment, a heating, ventilation and air conditioning (HVAC) system includes: a vapor compression system having a refrigerant; a compressor of the vapor compression system configured to circulate the refrigerant through the vapor compression system; An expansion device of the vapor compression system, the expansion device configured to adjust the flow of refrigerant through the vapor compression system; and a controller configured to based on the measured superheat of the refrigerant entering the compressor amount, the measured discharge temperature of the refrigerant leaving the compressor, or a combination thereof to adjust the position of the expansion device so that the measured superheat of refrigerant entering the compressor reaches the target superheat, the measured The discharge temperature of the refrigerant of the compressor reaches the target discharge temperature or a combination thereof.

在另一個實施方式中,一個或多個有形非暫態機器可讀媒體包括處理器可執行指令,這些指令用於:接收進入蒸氣壓縮系統的壓縮機的製冷劑的溫度和壓力的第一回饋指示,利用進入該蒸氣壓縮系統的壓縮機的製冷劑的溫度和壓力來確定測得的進入該蒸氣壓縮系統的壓縮機的製冷劑的過熱量,接收離開該蒸氣壓縮系統的壓縮機的製冷劑的排放溫度的第二回饋指示,並且基於該測得的進入該壓縮機的製冷劑的過熱量、該測得的離開該壓縮機的製冷劑的排放溫度或其組合來調整該蒸氣壓縮系統的膨脹裝置的位置,從而使得進入該壓縮機的製冷劑達到目標過熱量、離開該壓縮機的製冷劑達到目標排放溫度或其組合。 In another embodiment, one or more tangible, non-transitory machine-readable media include processor-executable instructions for: receiving a first feedback of temperature and pressure of refrigerant entering a compressor of a vapor compression system Indicating, using the temperature and pressure of the refrigerant entering the compressor of the vapor compression system to determine the measured superheat of the refrigerant entering the compressor of the vapor compression system, receiving the refrigerant leaving the compressor of the vapor compression system a second feedback indication of the discharge temperature of the compressor, and adjust the vapor compression system based on the measured superheat of the refrigerant entering the compressor, the measured discharge temperature of the refrigerant leaving the compressor, or a combination thereof The location of the expansion device so that refrigerant entering the compressor reaches a target superheat, refrigerant leaving the compressor reaches a target discharge temperature, or a combination thereof.

在另一個實施方式中,一種方法包括:接收進入蒸氣壓縮系統的壓縮機的製冷劑的溫度和壓力的第一回饋指示,利用進入該蒸氣壓縮系統的壓縮機的製冷劑的溫度和壓力來確定測得的進入該蒸氣壓縮系統的壓縮機的製冷劑的過熱量,接收離開該蒸氣壓縮系統的壓縮機的製冷劑的排放溫度的第二回饋指示,並且基於該測得的進入該壓縮機的製冷劑的過熱量、該測得的離開該壓縮機的製冷劑的排放溫度或其組合來調整該蒸氣壓縮系統的膨脹裝置的位置,從而使得進入該壓縮機的製冷劑達到目標過熱量、離開該壓縮機的製冷劑達到目標排放溫度或其組合。 In another embodiment, a method includes receiving a first feedback indication of the temperature and pressure of refrigerant entering a compressor of a vapor compression system, using the temperature and pressure of refrigerant entering a compressor of a vapor compression system to determine a measured superheat of refrigerant entering the compressor of the vapor compression system, receiving a second feedback indication of a discharge temperature of refrigerant exiting the compressor of the vapor compression system, and based on the measured superheat of refrigerant entering the compressor The superheat of the refrigerant, the measured discharge temperature of the refrigerant leaving the compressor, or a combination thereof to adjust the position of the expansion device of the vapor compression system so that the refrigerant entering the compressor reaches a target superheat, leaves The compressor's refrigerant reaches the target discharge temperature, or a combination thereof.

10:加熱、通風、空氣調節和製冷(HVAC&R)系統 10: Heating, ventilation, air conditioning and refrigeration (HVAC&R) systems

12:建築物 12: Buildings

14:蒸氣壓縮系統 14: Vapor Compression System

16:鍋爐 16: Boiler

18:空氣返回管 18: Air return pipe

20:空氣供應管 20: Air supply pipe

22:空氣處理機 22: Air handler

24:管道 24: pipeline

72:蒸氣壓縮系統 72: Vapor Compression System

73:製冷劑回路 73: Refrigerant circuit

74:壓縮機 74: Compressor

76:冷凝器 76: condenser

78:膨脹閥或膨脹裝置 78: Expansion valve or expansion device

80:蒸發器 80: evaporator

82:控制台 82: Console

84:模數(A/D)轉換器 84: Analog-to-digital (A/D) converter

86:微處理器 86: Microprocessor

88:非易失性記憶體 88: Non-volatile memory

90:介面板 90:Interface board

92:變速驅動裝置(VSD) 92:Variable Speed Drive (VSD)

94:馬達 94: motor

96:環境空氣 96: ambient air

98:供應空氣流 98: Supply air flow

100:控制電路 100: control circuit

104:控制器 104: Controller

106:處理器 106: Processor

108:記憶體 108: memory

110、112、114、116、118:感測器 110, 112, 114, 116, 118: sensors

120:致動器 120: Actuator

140:流程圖 140: Flowchart

142、144、148、150、154:框 142, 144, 148, 150, 154: frame

146:第一控制模組 146: The first control module

152:第二控制模組 152: Second control module

圖1係根據本揭露的一個方面的可以採用一個或多個HVAC單元的用於建築物環境管理的環境控制之示意圖;圖2係根據本揭露的一個方面的可以用於圖1的HVAC單元的蒸氣壓縮系統之示意圖;圖3係根據本揭露的一個方面的圖2的蒸氣壓縮系統之示意圖;並且圖4係根據本揭露的一個方面的可以用於對圖2和圖3的蒸氣壓縮系統的電子膨脹閥進行調整的過程之框圖。 1 is a schematic diagram of environmental control for building environmental management that may employ one or more HVAC units according to one aspect of the present disclosure; FIG. 2 is a schematic diagram of the HVAC unit of FIG. 3 is a schematic diagram of the vapor compression system of FIG. 2 according to one aspect of the present disclosure; and FIG. 4 is a schematic diagram of the vapor compression system of FIGS. 2 and 3 according to one aspect of the present disclosure. Block diagram of the process of adjusting the electronic expansion valve.

本揭露的實施方式涉及暖通空調(HVAC)系統,該系統對膨脹裝置(例如,電子膨脹閥(EEV))的位置進行調整以控制進入壓縮機的製冷劑的過熱量(例如,吸入過熱度)和/或從壓縮機排放的製冷劑的溫度(例如,排放溫度)。根據本揭露的實施方式,HVAC系統包括一個或多個控制裝置,這些裝置被配置成對膨脹裝置的位置進行調整以控制吸入過熱度和/或排放溫度。如以上討論的,現有的HVAC系統使用將液體製冷劑液滴注入到壓縮機中的液體注入裝置。遺憾的是,液體注入裝置使用的附加部件增加了HVAC系統的成本。此外,由於液體製冷劑與壓縮機的活動部件接觸,所以液體注入裝置降低了壓縮機的性能。 Embodiments of the present disclosure relate to heating, ventilation, and air conditioning (HVAC) systems that adjust the position of an expansion device (e.g., an electronic expansion valve (EEV)) to control the superheat (e.g., suction superheat) of refrigerant entering a compressor. ) and/or the temperature of the refrigerant discharged from the compressor (eg, discharge temperature). According to an embodiment of the present disclosure, the HVAC system includes one or more control devices configured to adjust the position of the expansion device to control suction superheat and/or discharge temperature. As discussed above, existing HVAC systems use liquid injection devices that inject droplets of liquid refrigerant into the compressor. Unfortunately, the additional components used by the liquid injection devices add to the cost of the HVAC system. Furthermore, the liquid injection device degrades the performance of the compressor due to the liquid refrigerant coming into contact with the moving parts of the compressor.

因此,對膨脹裝置進行調節以控制壓縮機的吸入過熱度和/或排放溫度,可以從HVAC系統中消除液體注入裝置並且 改善壓縮機的性能。在一些實施方式中,在HVAC系統的第一組運行參數下利用第一控制模組(例如,吸入過熱模組)對膨脹裝置進行控制,並且在HVAC系統的第二組運行參數下利用第二控制模組(例如,排放溫度模組)對膨脹裝置進行控制。例如,在啟動條件期間(例如,在啟動壓縮機運行時達預定時間量)和/或當進入壓縮機的製冷劑的過熱量(例如,由製冷劑的壓力和溫度來確定)超過第一閾值時,可以利用第一控制模組。此外,當從壓縮機排放的製冷劑的溫度超過第二閾值時,可以利用第二控制模組。在某些實施方式中,HVAC系統包括第一控制器(例如,第一比例積分微分(PID)控制器)和第二控制器(例如,第二PID控制器),該第一控制器包括第一控制模組,該第二控制器包括第二控制模組。在其他實施方式中,HVAC系統包括單個控制器(例如,PID控制器),該單個控制器包括第一控制模組與第二控制模組兩者。在任何情況下,基於流入壓縮機的製冷劑的過熱量(例如,吸入過熱度)和從壓縮機排放的製冷劑的溫度(例如,排放溫度)來對膨脹裝置進行調整。如此,可以在不將液滴注入到壓縮機中的情況下對製冷劑的溫度進行控制,從而增加了壓縮機和/或HVAC系統的效率。 Therefore, adjusting the expansion device to control the compressor suction superheat and/or discharge temperature can eliminate the liquid injection device from the HVAC system and Improve compressor performance. In some embodiments, the expansion device is controlled using a first control module (e.g., a suction superheat module) under a first set of operating parameters of the HVAC system, and a second control module is used under a second set of operating parameters of the HVAC system. A control module (eg, a discharge temperature module) controls the expansion device. For example, during start-up conditions (e.g., when starting the compressor to run for a predetermined amount of time) and/or when the superheat of the refrigerant entering the compressor (e.g., as determined by the pressure and temperature of the refrigerant) exceeds a first threshold , the first control module can be used. Additionally, a second control module may be utilized when a temperature of refrigerant discharged from the compressor exceeds a second threshold. In certain embodiments, an HVAC system includes a first controller (eg, a first proportional-integral-derivative (PID) controller) and a second controller (eg, a second PID controller), the first controller including a second A control module, the second controller includes a second control module. In other embodiments, the HVAC system includes a single controller (eg, a PID controller) that includes both the first control module and the second control module. In any case, the expansion device is adjusted based on the amount of superheat of the refrigerant flowing into the compressor (eg, suction superheat) and the temperature of the refrigerant discharged from the compressor (eg, discharge temperature). In this way, the temperature of the refrigerant can be controlled without injecting liquid droplets into the compressor, thereby increasing the efficiency of the compressor and/or the HVAC system.

現在轉到附圖,圖1係用於典型商業環境的建築物12中的加熱、通風、空氣調節和製冷(Heating,Ventilating,Air Conditioning and Refrigeration,HVAC&R)系統10的環境的實施方式之透視圖。HVAC&R系統10可以包括蒸氣壓縮系統14,該蒸氣壓縮系統供應可以用於冷卻建築物12的冷凍液體。 HVAC&R系統10還可以包括供應溫暖液體以加熱建築物12的鍋爐16以及使空氣循環通過建築物12的空氣分配系統。空氣分配系統還可以包括空氣返回管18、空氣供應管20和/或空氣處理機22。在一些實施方式中,空氣處理機22可以包括熱交換器,該熱交換器通過管道24連接至鍋爐16和蒸氣壓縮系統14。空氣處理機22中的熱交換器可以接收來自鍋爐16的加熱液體或來自蒸氣壓縮系統14的冷凍液體,這取決於HVAC&R系統10的運行模式。HVAC&R系統10示出為在建築物12的每個樓層上具有單獨的空氣處理機,但是在其他實施方式中,HVAC&R系統10可以包括可以在樓層之間共用的空氣處理機22和/或其他部件。 Turning now to the drawings, FIG. 1 is a perspective view of an embodiment of an environment for a Heating, Ventilating, Air Conditioning and Refrigeration (HVAC&R) system 10 in a building 12 in a typical commercial environment. . HVAC&R system 10 may include vapor compression system 14 that supplies refrigerated liquid that may be used to cool building 12 . HVAC&R system 10 may also include a boiler 16 that supplies warm liquid to heat building 12 and an air distribution system that circulates air through building 12 . The air distribution system may also include an air return duct 18 , an air supply duct 20 and/or an air handler 22 . In some embodiments, air handler 22 may include a heat exchanger connected to boiler 16 and vapor compression system 14 by conduit 24 . The heat exchanger in air handler 22 may receive heated liquid from boiler 16 or chilled liquid from vapor compression system 14 , depending on the mode of operation of HVAC&R system 10 . HVAC&R system 10 is shown with individual air handlers on each floor of building 12, but in other embodiments, HVAC&R system 10 may include air handlers 22 and/or other components that may be shared between floors .

圖2係可以在上述HVAC單元12中使用的蒸氣壓縮系統72之實施方式。蒸氣壓縮系統72可以使製冷劑循環通過以壓縮機74開始的製冷劑回路73。該回路還可以包括冷凝器76、(多個)膨脹閥或(多個)膨脹裝置78以及蒸發器80。蒸氣壓縮系統72可以進一步包括控制台82,該控制台具有模數(A/D)轉換器84、微處理器86、非易失性記憶體88和/或介面板90。控制台82及其部件可以用於基於來自操作者、來自對運行條件進行檢測的蒸氣壓縮系統72的感測器等的回饋來對蒸氣壓縮系統72的運行進行調整。 FIG. 2 is an embodiment of a vapor compression system 72 that may be used in the HVAC unit 12 described above. A vapor compression system 72 may circulate refrigerant through a refrigerant circuit 73 beginning with a compressor 74 . The circuit may also include a condenser 76 , expansion valve(s) or device(s) 78 and an evaporator 80 . Vapor compression system 72 may further include console 82 having analog-to-digital (A/D) converter 84 , microprocessor 86 , non-volatile memory 88 and/or interface board 90 . Console 82 and its components may be used to make adjustments to the operation of vapor compression system 72 based on feedback from an operator, from sensors of vapor compression system 72 detecting operating conditions, and the like.

在一些實施方式中,蒸氣壓縮系統72可以使用變速驅動裝置(VSD)92、馬達94、壓縮機74、冷凝器76、膨脹閥或膨脹裝置78和/或蒸發器80中的一個或多個。馬達94可以驅動壓縮機74並且可以由變速驅動裝置(VSD)92供電。VSD92從AC 電源接收具有特定的固定線電壓和固定線頻率的交流(AC)電力,並且向馬達94提供具有可變電壓和頻率的電力。在其他實施方式中,馬達94可以直接由AC或直流(DC)電源供電。馬達94可以包括可由VSD供電或直接由AC或DC電源供電的任何類型的電動馬達,例如開關磁阻馬達、感應馬達、電子整流永磁馬達或其他合適的馬達。 In some embodiments, vapor compression system 72 may utilize one or more of variable speed drive (VSD) 92 , motor 94 , compressor 74 , condenser 76 , expansion valve or device 78 , and/or evaporator 80 . A motor 94 may drive compressor 74 and may be powered by a variable speed drive (VSD) 92 . VSD92 from AC The power supply receives alternating current (AC) power having a particular fixed line voltage and fixed line frequency and provides power to the motor 94 with variable voltage and frequency. In other embodiments, the motor 94 may be powered directly by an AC or direct current (DC) power source. Motor 94 may comprise any type of electric motor that may be powered by a VSD or directly from an AC or DC source, such as a switched reluctance motor, induction motor, electronically commutated permanent magnet motor, or other suitable motor.

壓縮機74對製冷劑蒸氣進行壓縮並且通過排放通道將蒸氣輸送至冷凝器76。在一些實施方式中,壓縮機74可以是離心式壓縮機。由壓縮機74輸送至冷凝器76的製冷劑蒸氣可以將熱量傳遞至穿過冷凝器76的流體,例如周圍或環境空氣96。由於與環境空氣96進行熱量傳遞,製冷劑蒸氣可以在冷凝器76中冷凝成製冷劑液體。來自冷凝器76的液體製冷劑可以流過膨脹裝置78到達蒸發器80。 Compressor 74 compresses the refrigerant vapor and delivers the vapor to condenser 76 through a discharge passage. In some embodiments, compressor 74 may be a centrifugal compressor. Refrigerant vapor delivered by compressor 74 to condenser 76 may transfer heat to a fluid passing through condenser 76 , such as ambient or ambient air 96 . Due to heat transfer with ambient air 96 , the refrigerant vapor may condense into a refrigerant liquid in condenser 76 . Liquid refrigerant from condenser 76 may flow through expansion device 78 to evaporator 80 .

輸送至蒸發器80的液體製冷劑可以從另一氣流中吸收熱量,例如提供給建築物10或住宅52的供應空氣流98。例如,供應空氣流98可以包括周圍或環境空氣、來自建築物的回流空氣或兩者組合。蒸發器80中的液體製冷劑可以經歷從液態製冷劑到製冷劑蒸氣的相變。以這種方式,蒸發器38可以經由與製冷劑進行熱傳遞來降低供應空氣流98的溫度。此後,蒸氣製冷劑離開蒸發器80並且通過抽吸管線返回至壓縮機74以完成循環。 The liquid refrigerant delivered to evaporator 80 may absorb heat from another air stream, such as supply air stream 98 provided to building 10 or dwelling 52 . For example, supply air stream 98 may include ambient or ambient air, return air from a building, or a combination of both. The liquid refrigerant in the evaporator 80 may undergo a phase change from liquid refrigerant to refrigerant vapor. In this manner, evaporator 38 may reduce the temperature of supply air stream 98 via heat transfer with the refrigerant. Thereafter, the vapor refrigerant exits the evaporator 80 and returns through the suction line to the compressor 74 to complete the cycle.

在一些實施方式中,除了蒸發器80之外,蒸氣壓縮系統72可以進一步包括再加熱盤管。例如,再熱盤管可以定位在 蒸發器相對於供應空氣流98的下游,並且可以在供應空氣流98過冷時對供應空氣流98進行再加熱,以便在將供應空氣流98引導至建築物10或住宅52之前從供應空氣流98中除去水分。 In some embodiments, vapor compression system 72 may further include a reheat coil in addition to evaporator 80 . For example, the reheat coil can be positioned at The evaporator is downstream relative to the supply air stream 98 and may reheat the supply air stream 98 when the supply air stream 98 is subcooled so that the supply air stream 98 is 98 to remove water.

應當理解的是,本文所述的任何特徵都可以與HVAC單元12、住宅加熱和冷卻系統50或其他HVAC系統合併。此外,雖然在對提供至建築物或其他負載的供應空氣流進行直接加熱和冷卻的實施方式的內容中描述了本文所揭露的特徵,但是本揭露的實施方式也可以應用於其他HVAC系統。例如,本文所述的特徵可以應用於機械冷卻系統、自由冷卻系統、冷卻器系統或其他加熱泵或製冷應用。 It should be understood that any of the features described herein may be incorporated with the HVAC unit 12, the residential heating and cooling system 50, or other HVAC systems. Furthermore, while the features disclosed herein are described in the context of embodiments for direct heating and cooling of supply air streams provided to buildings or other loads, embodiments of the present disclosure may also be applied to other HVAC systems. For example, the features described herein may be applied to mechanical cooling systems, free cooling systems, chiller systems, or other heat pump or refrigeration applications.

如以上討論的,在一些實施方式中,膨脹裝置78係電子膨脹閥(EEV),可以對其進行調整以便對進入和/或離開壓縮機74的製冷劑的溫度進行控制。現有的系統使用液體注入系統來控制壓縮機74中的製冷劑的溫度。遺憾的是,液體注入系統可以降低壓縮機74和/或HVAC單元12的效率。因此,本揭露的實施方式涉及在HVAC系統的第一組運行參數下利用第一控制模組(例如,吸入過熱模組)、以及在HVAC系統的第二組運行參數下利用第二控制模組(例如,排放溫度模組)對膨脹裝置78進行控制。例如,在啟動條件期間(例如,在啟動壓縮機74運行時達預定時間量)和/或當進入壓縮機74的製冷劑的溫度超過第一閾值時,可以利用第一控制模組。此外,當從壓縮機74排放的製冷劑的溫度超過第二閾值時,可以利用第二控制模組。 As discussed above, in some embodiments, expansion device 78 is an electronic expansion valve (EEV), which may be adjusted to control the temperature of refrigerant entering and/or exiting compressor 74 . Existing systems use a liquid injection system to control the temperature of the refrigerant in the compressor 74 . Unfortunately, the liquid injection system can reduce the efficiency of the compressor 74 and/or the HVAC unit 12 . Accordingly, embodiments of the present disclosure relate to utilizing a first control module (eg, a suction superheat module) under a first set of operating parameters of the HVAC system and utilizing a second control module under a second set of operating parameters of the HVAC system The expansion device 78 is controlled (eg, a discharge temperature module). For example, the first control module may be utilized during start-up conditions (eg, when compressor 74 is started running for a predetermined amount of time) and/or when the temperature of refrigerant entering compressor 74 exceeds a first threshold. Additionally, a second control module may be utilized when the temperature of the refrigerant discharged from compressor 74 exceeds a second threshold.

圖3展示了控制電路100,其可以用於控制如圖2所述的蒸氣壓縮系統72中的膨脹裝置78的運行。可以基於進入壓縮機74(例如,壓縮機74的吸入口)的製冷劑的過熱量和/或離開壓縮機74(例如,壓縮機74的排放口)的製冷劑的溫度來調整膨脹裝置78的位置。即控制電路100可以調整膨脹裝置78的位置以獲得製冷劑的流量,該製冷劑的流量使得在蒸發器80出口處和/或壓縮機74入口處的製冷劑的過熱量達到目標過熱量。此外,控制電路100可以調整膨脹裝置78的位置,以達到導致從壓縮機74排放的製冷劑的溫度達到目標排放溫度的製冷劑的流速。控制電路100可以包括控制器104,例如微控制器。控制器104可以包括處理器106,該處理器可操作地聯接至記憶體108以執行軟體,例如用於控制膨脹裝置78的位置的軟體。而且,處理器106可以包括多個處理器、一個或多個“通用”微處理器、一個或多個專用微處理器和/或一個或多個專用積體電路(ASICS)或其某個組合。例如,處理器106可以包括一個或多個精簡指令集(RISC)處理器、高級RISC機器(ARM)處理器、具有增強型RISC(PowerPC)處理器的性能優化、現場可程式設計閘陣列(FPGA)積體電路、圖形處理單元(GPU)或任何其他合適的處理裝置。 FIG. 3 illustrates a control circuit 100 that may be used to control the operation of expansion device 78 in vapor compression system 72 as described in FIG. 2 . The expansion device 78 may be adjusted based on the amount of superheat of the refrigerant entering the compressor 74 (e.g., the suction of the compressor 74) and/or the temperature of the refrigerant exiting the compressor 74 (e.g., the discharge of the compressor 74). Location. That is, the control circuit 100 can adjust the position of the expansion device 78 to obtain a flow rate of refrigerant such that the superheat of the refrigerant at the outlet of the evaporator 80 and/or at the inlet of the compressor 74 reaches the target superheat. Additionally, the control circuit 100 may adjust the position of the expansion device 78 to achieve a flow rate of refrigerant that causes the temperature of the refrigerant discharged from the compressor 74 to reach the target discharge temperature. The control circuit 100 may include a controller 104, such as a microcontroller. Controller 104 may include a processor 106 operatively coupled to memory 108 to execute software, such as software for controlling the position of expansion device 78 . Furthermore, processor 106 may include multiple processors, one or more "general purpose" microprocessors, one or more special purpose microprocessors, and/or one or more application specific integrated circuits (ASICS), or some combination thereof . For example, processor 106 may include one or more Reduced Instruction Set (RISC) processors, Advanced RISC Machine (ARM) processors, performance optimized with Enhanced RISC (PowerPC) processors, Field Programmable Gate Array (FPGA) ) integrated circuit, graphics processing unit (GPU) or any other suitable processing device.

記憶體件108可以包括易失性記憶體(例如隨機存取記憶體(RAM))、非易失性記憶體(例如唯讀記憶體(ROM))、快閃記憶體或其任何組合。記憶體108可以存儲可以用於多種不同用途的各種資訊。例如,記憶體108可以存儲處理器可執行指 令(例如,固件或軟體),使得處理器106執行諸如用於控制膨脹裝置78的指令。 Memory device 108 may include volatile memory such as random access memory (RAM), nonvolatile memory such as read only memory (ROM), flash memory, or any combination thereof. Memory 108 can store various information that can be used for many different purposes. For example, memory 108 may store processor-executable instructions instructions (eg, firmware or software) that cause processor 106 to execute instructions such as for controlling expansion device 78 .

處理器106可以執行從蒸氣壓縮系統72的一個或多個感測器接收一個或多個信號的指令。例如,控制電路100(例如,控制系統)可以包括定位在蒸氣壓縮系統72的多個不同部件上或周圍的感測器110、112、114、116和/或118。例如,控制電路100可以包括溫度感測器110以及定位在蒸發器80的出口處的壓力感測器112。溫度感測器110可以向控制器104發送信號,指示當製冷劑離開蒸發器80時製冷劑的溫度。類似地,壓力感測器112可以向控制器104發送信號,指示當製冷劑離開蒸發器80時製冷劑的壓力。處理器106可以從溫度感測器110和壓力感測器112接收各個相應信號,並且確定當製冷劑離開蒸發器80(和/或進入壓縮機74)時製冷劑的過熱度,這指示相對於製冷劑飽和點的製冷劑中的熱量。例如,處理器106可以通過使用存儲在記憶體108中的查找表來確定過熱度,該查找表限定了過熱度與蒸發器80的出口處(和/或壓縮機74的入口處)的製冷劑的溫度和壓力之間的關係。查找表可以基於製冷劑的物理特性(例如,飽和點、數量等)。 Processor 106 may execute instructions that receive one or more signals from one or more sensors of vapor compression system 72 . For example, control circuitry 100 (eg, a control system) may include sensors 110 , 112 , 114 , 116 , and/or 118 positioned on or around various components of vapor compression system 72 . For example, the control circuit 100 may include a temperature sensor 110 and a pressure sensor 112 positioned at the outlet of the evaporator 80 . The temperature sensor 110 may send a signal to the controller 104 indicating the temperature of the refrigerant as it exits the evaporator 80 . Similarly, pressure sensor 112 may send a signal to controller 104 indicating the pressure of the refrigerant as it exits evaporator 80 . Processor 106 may receive respective signals from temperature sensor 110 and pressure sensor 112 and determine the degree of superheat of the refrigerant as it exits evaporator 80 (and/or enters compressor 74 ), which is indicative of the relative The heat in the refrigerant at the refrigerant saturation point. For example, processor 106 may determine superheat by using a look-up table stored in memory 108 that defines the relationship between superheat and refrigerant at the outlet of evaporator 80 (and/or at the inlet of compressor 74). The relationship between temperature and pressure. The lookup table may be based on the physical characteristics of the refrigerant (eg, saturation point, quantity, etc.).

此外,控制電路100可以包括溫度感測器114(例如,第二溫度感測器),該溫度感測器監測從壓縮機74排出的製冷劑的溫度。如此,處理器106可以確定來自壓縮機74的製冷劑的排放溫度,並且將排放溫度與閾值溫度、預定溫度範圍或其組合進行比較。另外地或可替代地,控制電路100可以包括溫度感 測器116(例如,第三溫度感測器),該溫度感測器監測被配置成對壓縮機74進行驅動的馬達94的溫度。如此,處理器106可以確定馬達溫度,並且將馬達溫度與閾值馬達溫度、預定馬達溫度範圍或其組合進行比較。在一些實施方式中,環境溫度感測器118可以定位在蒸氣壓縮系統72附近以檢測周圍空氣的溫度。雖然詳細描述了感測器110、112、114、116和/或118,但是可以使用對蒸氣壓縮系統72的運行條件進行檢測的任何合適的感測器。 Additionally, the control circuit 100 may include a temperature sensor 114 (eg, a second temperature sensor) that monitors the temperature of the refrigerant discharged from the compressor 74 . As such, processor 106 may determine the discharge temperature of the refrigerant from compressor 74 and compare the discharge temperature to a threshold temperature, a predetermined temperature range, or a combination thereof. Additionally or alternatively, the control circuit 100 may include a temperature sense sensor 116 (eg, a third temperature sensor) that monitors the temperature of the motor 94 configured to drive the compressor 74 . As such, processor 106 may determine the motor temperature and compare the motor temperature to a threshold motor temperature, a predetermined motor temperature range, or a combination thereof. In some implementations, an ambient temperature sensor 118 may be positioned near the vapor compression system 72 to detect the temperature of the surrounding air. While sensors 110 , 112 , 114 , 116 , and/or 118 are described in detail, any suitable sensor that detects operating conditions of vapor compression system 72 may be used.

處理器106可以接收指示蒸氣壓縮系統72的運行條件(例如,溫度、壓力、振動等)的一個或多個信號。然後,處理器106可以配置成基於指示蒸氣壓縮系統72的運行條件的一個或多個信號來啟動和/或使用處理器106的控制模組。例如,處理器106可以將預定的離開蒸發器80(和/或進入壓縮機74)的製冷劑的過熱量(例如,目標過熱量或設定點過熱量)與測得的離開蒸發器80(和/或進入壓縮機74)的製冷劑的過熱量進行比較。此外,處理器106可以將預定的離開壓縮機74的製冷劑的排放溫度(例如,目標排放溫度或設定點排放溫度)與測得的離開壓縮機74的製冷劑的排放溫度進行比較。然後處理器106可以基於由處理器106執行的比較來確定合適的控制模組以使用和/或啟用。 Processor 106 may receive one or more signals indicative of operating conditions (eg, temperature, pressure, vibration, etc.) of vapor compression system 72 . Processor 106 may then be configured to activate and/or use control modules of processor 106 based on one or more signals indicative of the operating condition of vapor compression system 72 . For example, processor 106 may compare a predetermined amount of superheat of refrigerant leaving evaporator 80 (and/or entering compressor 74) (e.g., a target or setpoint superheat) with a measured amount of refrigerant leaving evaporator 80 (and/or entering compressor 74). /or the superheat of the refrigerant entering the compressor (74) is compared. Additionally, processor 106 may compare a predetermined discharge temperature of refrigerant exiting compressor 74 (eg, a target discharge temperature or a setpoint discharge temperature) to a measured discharge temperature of refrigerant exiting compressor 74 . Processor 106 may then determine an appropriate control module to use and/or enable based on the comparison performed by processor 106 .

當處理器106在第一控制模組(例如,吸入過熱度控制)下操作時,處理器106基於離開蒸發器80和/或進入壓縮機74的製冷劑的目標過熱度與測得的過熱度之間的差來調整膨脹裝置 78。例如,如果目標過熱度高於製冷劑飽和點10華氏度(℉)並且測得的過熱度(例如,基於離開蒸發器80和/或進入壓縮機74的製冷劑的溫度和壓力)比飽和點高5℉,則處理器106可以向膨脹裝置78的致動器120(例如,馬達或步進馬達)發送信號以調整膨脹裝置78的位置。如此,可以調整膨脹裝置78的位置以降低導向蒸發器80的製冷劑的流速,從而增加製冷劑的過熱量以最終達到10℉的目標過熱度。 When the processor 106 is operating under the first control module (eg, suction superheat control), the processor 106 bases the target superheat on the refrigerant leaving the evaporator 80 and/or entering the compressor 74 and the measured superheat The difference between to adjust the expansion device 78. For example, if the target superheat is 10 degrees Fahrenheit (°F) above the refrigerant saturation point and the measured superheat (eg, based on the temperature and pressure of the refrigerant exiting the evaporator 80 and/or entering the compressor 74) is higher than the saturation point 5°F, the processor 106 may send a signal to the actuator 120 (eg, a motor or stepper motor) of the expansion device 78 to adjust the position of the expansion device 78 . In this manner, the position of the expansion device 78 can be adjusted to reduce the flow rate of the refrigerant directed to the evaporator 80, thereby increasing the superheat of the refrigerant to eventually achieve the target superheat of 10°F.

此外,當處理器106在第二控制模組(例如,排放溫度控制)下操作時,處理器106基於離開壓縮機74的製冷劑的目標排放溫度與測得的排放溫度之間的差來調整膨脹裝置78。例如,當目標排放溫度為175℉、並且測得的排放溫度為160℉時,處理器106經由致動器120來調整膨脹裝置78的位置。如此,調整膨脹裝置78的位置以減小通過壓縮機74的製冷劑的流量並提高從壓縮機74排放的製冷劑的溫度。進一步地,在一些實施方式中,除了基於製冷劑的排放溫度來調整膨脹裝置78的位置之外或取而代之,處理器106可以基於驅動壓縮機74的馬達94的溫度(例如,由感測器116測量)來調整膨脹裝置78的位置。 Additionally, when the processor 106 is operating under a second control module (eg, discharge temperature control), the processor 106 adjusts the temperature based on the difference between the target discharge temperature of the refrigerant exiting the compressor 74 and the measured discharge temperature. Expansion device 78. For example, processor 106 adjusts the position of expansion device 78 via actuator 120 when the target discharge temperature is 175°F and the measured discharge temperature is 160°F. As such, the position of the expansion device 78 is adjusted to decrease the flow of refrigerant through the compressor 74 and to increase the temperature of the refrigerant discharged from the compressor 74 . Further, in some embodiments, in addition to or instead of adjusting the position of the expansion device 78 based on the discharge temperature of the refrigerant, the processor 106 may base the temperature on the motor 94 driving the compressor 74 (eg, as determined by the sensor 116 ). measurement) to adjust the position of the expansion device 78.

控制器104可以包括一個或多個比例積分微分(PID)控制器、模糊邏輯控制器或任何其他合適的控制器104以執行控制模組,該控制模組對膨脹裝置78進行調整以達到目標過熱量、目標排放溫度和/或目標馬達溫度。基於從一個或多個感測器110、112、114、116和/或118測得的運行參數,控制器104在 不同控制模組之間(例如,吸入過熱度控制模組、排放溫度控制模組和/或馬達溫度控制模組)切換。 Controller 104 may include one or more proportional-integral-derivative (PID) controllers, fuzzy logic controllers, or any other suitable controller 104 to implement a control module that adjusts expansion device 78 to achieve a target superheat amount, target discharge temperature, and/or target motor temperature. Based on operating parameters measured from one or more sensors 110, 112, 114, 116, and/or 118, controller 104 Switching between different control modules (eg, suction superheat control module, discharge temperature control module and/or motor temperature control module).

例如,圖4係流程圖140之框圖,其展示了通過控制器104執行以在控制模組之間進行操作和切換的邏輯。例如,在框142,壓縮機74不起作用(例如,斷電或不啟用)。如此,蒸氣壓縮系統72可能不使製冷劑循環。因此,不對膨脹裝置78進行調整以對製冷劑到蒸發器80的流速進行控制,因為製冷劑沒有經由壓縮機74循環通過蒸氣壓縮系統72。 For example, FIG. 4 is a block diagram of a flowchart 140 illustrating the logic executed by the controller 104 to operate and switch between control modules. For example, at block 142 the compressor 74 is disabled (eg, powered off or not enabled). As such, the vapor compression system 72 may not circulate the refrigerant. Accordingly, expansion device 78 is not adjusted to control the flow rate of refrigerant to evaporator 80 because the refrigerant is not circulated through vapor compression system 72 via compressor 74 .

在框144,可以使壓縮機74的啟動序列開始,並且控制器104在第一控制模組146(例如,吸入過熱度控制)下操作。例如,第一控制模組146可以包括啟動序列,由此控制器104向膨脹裝置78發送信號,將膨脹裝置78的位置調整至啟動位置達預定時間量(例如,1秒、2秒、3秒、4秒、5秒或超過5秒)。例如,當膨脹裝置78處於啟動位置時,膨脹裝置78可以使流速相對較高的製冷劑循環通過蒸氣壓縮系統72,使得蒸氣壓縮系統72可以迅速達到穩狀運行。 At block 144 , a start-up sequence for the compressor 74 may be initiated with the controller 104 operating under the first control module 146 (eg, suction superheat control). For example, the first control module 146 may include an activation sequence whereby the controller 104 sends a signal to the expansion device 78 to adjust the position of the expansion device 78 to the activated position for a predetermined amount of time (e.g., 1 second, 2 seconds, 3 seconds , 4 seconds, 5 seconds or more than 5 seconds). For example, when expansion device 78 is in the activated position, expansion device 78 may circulate a relatively high flow rate of refrigerant through vapor compression system 72 such that vapor compression system 72 may quickly reach steady state operation.

在框148,一旦膨脹裝置78的啟動位置的預定時間量已經過去,控制器104可以經歷第一控制模組146的吸入過熱度控制斜坡。例如,一旦蒸氣壓縮系統72基本上達到穩狀運行,則控制器104對膨脹裝置78進行調整,使得離開蒸發器80和進入壓縮機74(例如,壓縮機74的吸入口)的製冷劑的過熱度達到目標過熱度。如此,控制器104向膨脹裝置78發送第二信號,以基於從感測器110、112、114、116和/或118接收的回饋來調整膨脹 裝置78的位置。在一些實施方式中,控制器104被配置成將膨脹裝置78調整至閾值位置(例如,使最小量的製冷劑循環通過蒸氣壓縮系統72的預定位置)或基於目標過熱度的命令位置。例如,命令位置由控制器104確定為係使得離開蒸發器80和進入壓縮機74的製冷劑的過熱度達到目標過熱度的膨脹裝置78的位置。控制器104將閾值位置與命令位置進行比較,並且選擇與通過蒸氣壓縮系統72的較高流速的製冷劑相對應的位置。換言之,控制器104可以將膨脹裝置78的位置與同通過蒸氣壓縮系統72的製冷劑的流速成比例的值相關聯。如此,控制器104對位置(例如,閾值位置或命令位置)進行選擇,其包括較高的值而不會阻斷製冷劑循環通過蒸氣壓縮系統72。 At block 148 , the controller 104 may experience the suction superheat control ramp of the first control module 146 once the predetermined amount of time has elapsed from the activated position of the expansion device 78 . For example, once vapor compression system 72 has substantially reached steady state operation, controller 104 adjusts expansion device 78 such that the superheat of refrigerant exiting evaporator 80 and entering compressor 74 (e.g., the suction of compressor 74) to reach the target superheat. As such, controller 104 sends a second signal to expansion device 78 to adjust expansion based on feedback received from sensors 110 , 112 , 114 , 116 , and/or 118 The location of the device 78. In some embodiments, the controller 104 is configured to adjust the expansion device 78 to a threshold position (eg, a predetermined position that circulates a minimum amount of refrigerant through the vapor compression system 72 ) or a commanded position based on a target superheat. For example, the commanded position is determined by the controller 104 as the position of the expansion device 78 such that the superheat of the refrigerant exiting the evaporator 80 and entering the compressor 74 reaches a target degree of superheat. The controller 104 compares the threshold position to the commanded position and selects the position corresponding to the higher flow rate of refrigerant through the vapor compression system 72 . In other words, controller 104 may correlate the position of expansion device 78 with a value proportional to the flow rate of refrigerant through vapor compression system 72 . As such, controller 104 selects a position (eg, a threshold position or a commanded position) that includes a higher value without blocking circulation of refrigerant through vapor compression system 72 .

此外,在框150,一旦測得的製冷劑的過熱度達到目標過熱度,則控制器104可以在第一控制模組146的吸入過熱度控制下操作。在一些實施方式中,吸入過熱度控制可以類似於吸入過熱度控制斜坡,如框148所示,對膨脹裝置78的位置進行較小的調整(例如,吸入過熱度控制斜坡可以對膨脹裝置78的位置進行較大的調整以迅速達到目標過熱度)。換句話說,框150的吸入過熱度控制用於使測得的離開蒸發器80和進入壓縮機74的製冷劑的過熱度保持在目標過熱度。因此,在框150的吸入過熱度控制期間對膨脹裝置78進行相對較小的調節。 Additionally, at block 150 , the controller 104 may operate under suction superheat control of the first control module 146 once the measured refrigerant superheat reaches the target superheat. In some embodiments, the suction superheat control may be similar to the suction superheat control ramp, with minor adjustments to the position of the expansion device 78 as indicated at block 148 (e.g., the suction superheat control ramp may adjust the position of the expansion device 78 large adjustments in position to quickly reach target superheat). In other words, the suction superheat control of block 150 is used to maintain the measured superheat of the refrigerant leaving the evaporator 80 and entering the compressor 74 at the target superheat. Accordingly, relatively minor adjustments to the expansion device 78 are made during the suction superheat control of block 150 .

在框150的吸入過熱度控制期間,控制器104向膨脹裝置78發送第三信號,以基於從感測器110、112、114、116和/或118接收的回饋來調整膨脹裝置78的位置。控制器104被配置成 將膨脹裝置78調整到閾值位置(例如,使最小量的製冷劑循環通過蒸氣壓縮系統72的預定位置)或基於目標過熱度的命令位置。在一些實施方式中,框150的吸入過熱度控制的閾值位置與框148的吸入過熱度控制斜坡的閾值位置相同。然而,在其他實施方式中,框150的吸入過熱度控制的閾值位置不同於框架148的吸入過熱度控制斜坡的閾值位置。在任何情況下,命令位置由控制器104確定為係使得離開蒸發器80和進入壓縮機74的製冷劑的過熱度達到目標過熱度的膨脹裝置78的位置。控制器104將閾值位置與命令位置進行比較,並且選擇與通過蒸氣壓縮系統72的較高流速的製冷劑相對應(或者與通過蒸氣壓縮系統72的製冷劑的流速相對應的較高值)的位置,使得不會阻斷製冷劑循環通過蒸氣壓縮系統72。 During suction superheat control at block 150 , controller 104 sends a third signal to expansion device 78 to adjust the position of expansion device 78 based on feedback received from sensors 110 , 112 , 114 , 116 , and/or 118 . Controller 104 is configured to The expansion device 78 is adjusted to a threshold position (eg, a predetermined position that circulates a minimum amount of refrigerant through the vapor compression system 72 ) or a commanded position based on a target degree of superheat. In some embodiments, the threshold position of the suction superheat control of block 150 is the same as the threshold position of the suction superheat control ramp of block 148 . However, in other implementations, the threshold location for the suction superheat control of frame 150 is different than the threshold location for the suction superheat control ramp of frame 148 . In any event, the commanded position is determined by the controller 104 as the position of the expansion device 78 such that the superheat of the refrigerant exiting the evaporator 80 and entering the compressor 74 reaches the target degree of superheat. The controller 104 compares the threshold position to the commanded position and selects the higher value corresponding to the higher flow rate of refrigerant through the vapor compression system 72 (or the higher value corresponding to the flow rate of refrigerant through the vapor compression system 72 ). Positioned so that circulation of the refrigerant through the vapor compression system 72 is not blocked.

如上所述,控制器104被配置成基於由感測器110、112、114、116和/或118監測的蒸氣壓縮系統72的運行參數而在第一控制模組146和第二控制模組152之間切換。例如,控制器104可以被配置成至少基於離開壓縮機74的製冷劑的排放溫度(例如,由感測器114測量)從第一控制模組146(例如,吸入過熱度控制)切換至第二控制模組152(例如,排放溫度控制)。控制器104可以將來自感測器114的測得的排放溫度與存儲在控制器104的記憶體108中的一個或多個排放溫度閾值進行比較。在一些實施方式中,當測得的排放溫度超過第一排放溫度閾值達預定時間量(例如,1秒、2秒、3秒、4秒、5秒或超過5秒)時,控制器104從第一控制模組146切換至第二控制模組152。此外, 控制器可以被配置成當測得的排放溫度超過第二排放溫度閾值時立即從第一控制模組146切換至第二控制模組152,其中第二排放溫度閾值比第一排放溫度閾值大一個偏移量。在一些實施方式中,第一排放溫度閾值與第二排放溫度閾值之間的偏移量介於5℉和50℉之間、介於7℉和25℉之間或介於8℉和15℉之間。 As described above, controller 104 is configured to control the temperature of first control module 146 and second control module 152 based on the operating parameters of vapor compression system 72 monitored by sensors 110 , 112 , 114 , 116 , and/or 118 . switch between. For example, controller 104 may be configured to switch from first control module 146 (eg, suction superheat control) to a second control module 146 based at least on the discharge temperature of refrigerant exiting compressor 74 (eg, as measured by sensor 114 ). Control module 152 (eg, discharge temperature control). Controller 104 may compare the measured discharge temperature from sensor 114 to one or more discharge temperature thresholds stored in memory 108 of controller 104 . In some embodiments, when the measured discharge temperature exceeds a first discharge temperature threshold for a predetermined amount of time (e.g., 1 second, 2 seconds, 3 seconds, 4 seconds, 5 seconds, or more than 5 seconds), the controller 104 starts from The first control module 146 switches to the second control module 152 . also, The controller may be configured to switch from the first control module 146 to the second control module 152 immediately when the measured discharge temperature exceeds a second discharge temperature threshold, wherein the second discharge temperature threshold is one greater than the first discharge temperature threshold Offset. In some embodiments, the offset between the first discharge temperature threshold and the second discharge temperature threshold is between 5°F and 50°F, between 7°F and 25°F, or between 8°F and 15°F between.

當控制器104在第二控制模組152下操作時,控制器104基於測得的排放溫度來調整膨脹裝置78的位置以達到目標排放溫度,如框154所示。例如,當測得的排放溫度低於目標排放溫度時,控制器104發送信號以調整膨脹裝置78的位置,以減少通過蒸氣壓縮系統72的製冷劑的流量(例如,減少通過蒸發器80的製冷劑的流量提高了從壓縮機74排放的製冷劑的溫度)。類似地,當測得的排放溫度超過目標排放溫度時,控制器104發送信號以調整膨脹裝置78的位置,以增加通過蒸氣壓縮系統72的製冷劑的流量(例如,增加通過蒸發器80的製冷劑的流量降低了從壓縮機74排放的製冷劑的溫度)。如上所述,在其他實施方式中,除了來自壓縮機74的製冷劑的排放溫度之外或者取而代之,第二控制模組152可以基於馬達94的溫度來調整膨脹裝置78的位置。 When the controller 104 is operating under the second control module 152 , the controller 104 adjusts the position of the expansion device 78 based on the measured discharge temperature to achieve the target discharge temperature, as indicated at block 154 . For example, when the measured discharge temperature is below the target discharge temperature, controller 104 sends a signal to adjust the position of expansion device 78 to reduce the flow of refrigerant through vapor compression system 72 (e.g., to reduce the flow of refrigerant through evaporator 80). The flow rate of the refrigerant increases the temperature of the refrigerant discharged from the compressor 74). Similarly, when the measured discharge temperature exceeds the target discharge temperature, controller 104 sends a signal to adjust the position of expansion device 78 to increase the flow of refrigerant through vapor compression system 72 (e.g., increase the flow of refrigerant through evaporator 80 The flow rate of the refrigerant reduces the temperature of the refrigerant discharged from the compressor 74). As noted above, in other embodiments, the second control module 152 may adjust the position of the expansion device 78 based on the temperature of the motor 94 in addition to or instead of the discharge temperature of the refrigerant from the compressor 74 .

如上所述,從控制器104發送的信號可以包括膨脹裝置78的位置,該位置選自於閾值位置(例如,使最少量的製冷劑循環通過蒸氣壓縮系統72的預定位置)和基於測得的排放溫度的命令位置。在一些實施方式中,框154的排放溫度控制的閾值位置與框148的吸入過熱度斜坡控制和/或框150的吸入過熱度控 制的閾值位置相同或不同。命令位置由控制器104確定為係使得離開壓縮機74的製冷劑的排放溫度達到目標排放溫度的膨脹裝置78的位置。控制器104將閾值位置與命令位置進行比較,並且選擇與通過蒸氣壓縮系統72的較高流速的製冷劑相對應的位置。換言之,控制器104可以將膨脹裝置78的位置與同通過蒸氣壓縮系統72的製冷劑的流速成比例的值相關聯。如此,控制器104對位置(例如,閾值位置或命令位置)進行選擇,其包括較高的值而不會阻斷製冷劑循環通過蒸氣壓縮系統72。 As noted above, the signal sent from controller 104 may include a position of expansion device 78 selected from a threshold position (e.g., a predetermined position at which the least amount of refrigerant is circulated through vapor compression system 72) and a position based on measured Command position for discharge temperature. In some embodiments, the threshold position of the discharge temperature control of box 154 is consistent with the suction superheat ramp control of box 148 and/or the suction superheat control of box 150. The threshold position of the control is the same or different. The commanded position is determined by the controller 104 as the position of the expansion device 78 such that the discharge temperature of the refrigerant exiting the compressor 74 reaches the target discharge temperature. The controller 104 compares the threshold position to the commanded position and selects the position corresponding to the higher flow rate of refrigerant through the vapor compression system 72 . In other words, controller 104 may correlate the position of expansion device 78 with a value proportional to the flow rate of refrigerant through vapor compression system 72 . As such, controller 104 selects a position (eg, a threshold position or a commanded position) that includes a higher value without blocking circulation of refrigerant through vapor compression system 72 .

在一些實施方式中,第二控制模組152超控第一控制模組146(例如,吸入過熱度超控)。例如,在某些情況下,調整膨脹裝置78以達到目標排放溫度使得吸入過熱度降低到預定量以下。如此,儘管製冷劑的過熱度低於目標過熱度,但是控制器104仍然會超控第一控制模組146。 In some implementations, the second control module 152 overrides the first control module 146 (eg, suction superheat override). For example, in some cases, the expansion device 78 is adjusted to achieve a target discharge temperature such that the suction superheat is reduced below a predetermined amount. In this way, although the superheat degree of the refrigerant is lower than the target superheat degree, the controller 104 still overrides the first control module 146 .

此外,控制器104從感測器110和112接收回饋,這些感測器指示離開蒸發器80(和/或進入壓縮機74)的製冷劑的溫度和壓力。如上所述,離開蒸發器80(和/和進入壓縮機74)的製冷劑的溫度和壓力可以用於確定製冷劑的過熱量。當測得的過熱量(例如,從來自感測器110和112的回饋中確定)超過第一過熱閾值達預定時間量(例如,1秒、2秒、3秒、4秒、5秒或超過5秒),則控制器104可以從第二控制模組152切換至第一控制模組146(例如,從框154至框150)。此外,當測得的過熱量超過第二過熱閾值時,控制器104可以立即從第二控制模組152切換至第一控制模組146,其中第二過熱閾值大於第一過熱閾值。 然後,控制器104可以在第一控制模組146下操作,並且基於測得的離開蒸發器80(和/或進入壓縮機74)的製冷劑的過熱量來調整膨脹裝置78的位置。 Additionally, controller 104 receives feedback from sensors 110 and 112 that indicate the temperature and pressure of the refrigerant exiting evaporator 80 (and/or entering compressor 74 ). As noted above, the temperature and pressure of the refrigerant exiting evaporator 80 (and/and entering compressor 74 ) may be used to determine the superheat of the refrigerant. When the measured amount of superheat (e.g., determined from feedback from sensors 110 and 112) exceeds a first overheat threshold for a predetermined amount of time (e.g., 1 second, 2 seconds, 3 seconds, 4 seconds, 5 seconds, or more than 5 seconds), the controller 104 may switch from the second control module 152 to the first control module 146 (eg, from block 154 to block 150). Additionally, the controller 104 may immediately switch from the second control module 152 to the first control module 146 when the measured superheat exceeds a second overheat threshold, wherein the second overheat threshold is greater than the first overheat threshold. The controller 104 may then operate under the first control module 146 and adjust the position of the expansion device 78 based on the measured superheat of the refrigerant exiting the evaporator 80 (and/or entering the compressor 74).

如上所述,本揭露的實施方式可以提供用於HVAC系統的運行的一個或多個技術效果以提高壓縮機的效率。例如,本揭露的實施方式涉及基於離開蒸發器的製冷劑和/或進入壓縮機的製冷劑的過熱量以及離開壓縮機的製冷劑的排放溫度來控制電子膨脹閥的位置。電子膨脹閥的控制使得能夠在不使用將液體製冷劑液滴引導到壓縮機中的液體注入系統的情況下對通過壓縮機的製冷劑的運行溫度進行調節。消除和/或減少壓縮機內的液滴提高了壓縮機的效率,並且因此改善了HVAC系統的運行。本說明書中的技術效果和技術問題係示例性而非限制性的。應當注意的是,在本說明書中描述的實施方式可以具有其他技術效果並且可以解決其他技術問題。 As noted above, embodiments of the present disclosure may provide one or more technical effects for operation of an HVAC system to increase compressor efficiency. For example, embodiments of the present disclosure relate to controlling the position of the electronic expansion valve based on the amount of superheat of the refrigerant exiting the evaporator and/or the refrigerant entering the compressor and the discharge temperature of the refrigerant exiting the compressor. Control of the electronic expansion valve enables regulation of the operating temperature of the refrigerant passing through the compressor without the use of a liquid injection system that directs liquid refrigerant droplets into the compressor. Eliminating and/or reducing liquid droplets within the compressor increases the efficiency of the compressor and thus improves the operation of the HVAC system. The technical effects and technical problems in this specification are illustrative rather than restrictive. It should be noted that the implementations described in this specification may have other technical effects and may solve other technical problems.

雖然僅展示和描述了某些特徵和實施方式,但是在實質上不背離申請專利範圍中記載的主題的新穎性教導和優點的情況下,熟悉該項技術者可以想到許多修改和變化(例如,各種元件的大小、尺寸、結構、形狀和比例、參數值(例如,溫度、壓力等)、安裝佈置、材料的使用、顏色、定向等的變化)。可以根據替代性實施方式對任何過程或方法步驟的順序或序列進行改變或重新排序。因此,應理解的是,所附申請專利範圍旨在覆蓋落入本揭露的真實精神內的所有這樣的修改和變化。另外,為了提供對示例性實施方式的簡要描述,可能尚未描述 實際實現方式的所有特徵(即與當前預期的最佳模式無關的那些特徵或者與啟用無關的那些特徵)。應該理解的是,在任何這種實際實現方式的開發中(如在任何工程或設計項目中),可能作出大量實現方式特定的決定。這種開發工作可能是複雜且耗時的,但是對於從本揭露中受益的普通技術人員來說,這仍是常規的設計、生產和製造工作,而無需過多實驗。 While only certain features and implementations have been shown and described, many modifications and changes (e.g., Variations in size, dimensions, structure, shape and proportions of various elements, parameter values (eg, temperature, pressure, etc.), mounting arrangements, use of materials, colors, orientations, etc.). The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the disclosure. Additionally, in order to provide a brief description of the exemplary embodiments, the All features of the actual implementation (i.e., those features that are not relevant to the currently expected best mode or those features that are not relevant to enabling). It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, a number of implementation-specific decisions may be made. Such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, production, and fabrication without undue experimentation for those of ordinary skill having the benefit of this disclosure.

140:流程圖 140: Flowchart

142、144、148、150、154:框 142, 144, 148, 150, 154: box

146:第一控制模組 146: The first control module

152:第二控制模組 152: Second control module

Claims (11)

一種暖通空調(HVAC)系統,包括:包括製冷劑的蒸氣壓縮系統;所述蒸氣壓縮系統的壓縮機,所述壓縮機被配置成使所述製冷劑循環通過所述蒸氣壓縮系統;所述蒸氣壓縮系統的膨脹裝置,所述膨脹裝置被配置成調整通過所述蒸氣壓縮系統的製冷劑的流量;以及控制器,所述控制器被配置成根據第一控制模組操作,以基於測得的進入所述壓縮機的製冷劑的過熱量來調整所述膨脹裝置的位置,以達到目標過熱量,以及被配置成根據第二控制模組操作,以基於測得的離開所述壓縮機的製冷劑的排放溫度來調整所述膨脹裝置的所述位置,以達到目標排放溫度,其中所述控制器被配置成當所述測得的離開所述壓縮機的製冷劑的排放溫度超過第一排放溫度閾值達預定時間量時,或是當所述測得的離開所述壓縮機的製冷劑的排放溫度超過第二排放溫度閾值時,從所述第一控制模組切換至所述第二控制模組,其中所述第二排放溫度閾值大於所述第一排放溫度閾值。 A heating, ventilation and air conditioning (HVAC) system comprising: a vapor compression system including a refrigerant; a compressor of the vapor compression system configured to circulate the refrigerant through the vapor compression system; an expansion device of a vapor compression system, the expansion device configured to adjust the flow of refrigerant through the vapor compression system; and a controller configured to operate in accordance with a first control module to based on the measured the amount of superheat of refrigerant entering the compressor to adjust the position of the expansion device to achieve a target superheat, and is configured to operate in accordance with a second control module to operate based on the measured adjusting the position of the expansion device to achieve a target discharge temperature, wherein the controller is configured to adjust the position of the expansion device when the measured discharge temperature of the refrigerant leaving the compressor exceeds a first switching from the first control module to the second discharge temperature threshold when the discharge temperature threshold reaches a predetermined amount of time, or when the measured discharge temperature of the refrigerant leaving the compressor exceeds a second discharge temperature threshold A control module, wherein the second discharge temperature threshold is greater than the first discharge temperature threshold. 如請求項1所述之HVAC系統,其中所述控制器被配置成當所述測得的進入所述壓縮機的製冷劑的過熱量超過第一過熱閾值達所述預定時間量時,或是當所述測得的進入所述壓縮機的製冷劑的過熱量超過第二過熱閾值時,從所述第二控制模組切換至所述第一控制模組,其中所述第二過熱閾值大於所述第一過熱閾值。 The HVAC system of claim 1, wherein said controller is configured when said measured superheat of refrigerant entering said compressor exceeds a first superheat threshold for said predetermined amount of time, or When the measured superheat of the refrigerant entering the compressor exceeds a second superheat threshold, switching from the second control module to the first control module, wherein the second superheat threshold is greater than the first overheating threshold. 如請求項1所述之HVAC系統,其中所述控制器被配置成當在所述第一控制模組下運行時發出對所述膨脹裝置的位置 進行調整的信號,並且其中所述信號包括所述膨脹裝置的閾值位置或所述膨脹裝置的基於所述測得的進入所述壓縮機的製冷劑的過熱量的命令位置中使得穿過所述膨脹裝置的製冷劑的流量更大的那一者。 The HVAC system of claim 1 wherein said controller is configured to issue a position to said expansion device when operating under said first control module and wherein the signal includes a threshold position of the expansion device or a commanded position of the expansion device based on the measured superheat of refrigerant entering the compressor such that across the The one with the larger refrigerant flow rate of the expansion device. 如請求項1所述之HVAC系統,其中所述控制器被配置成當在所述第二控制模組下運行時發出對所述膨脹裝置的位置進行調整的信號,並且其中所述信號包括所述膨脹裝置的閾值位置或所述膨脹裝置的基於所述測得的離開所述壓縮機的製冷劑的排放溫度的命令位置中使得穿過所述膨脹裝置的製冷劑的流量更大的那一者。 The HVAC system of claim 1, wherein said controller is configured to signal an adjustment to the position of said expansion device when operating under said second control module, and wherein said signal comprises said The threshold position of the expansion device or the commanded position of the expansion device based on the measured discharge temperature of the refrigerant leaving the compressor, whichever results in a greater flow of refrigerant through the expansion device By. 如請求項1所述之HVAC系統,其中所述控制器被配置成在所述壓縮機啟動期間在所述第一控制模組下運行。 The HVAC system of claim 1, wherein said controller is configured to operate under said first control module during startup of said compressor. 如請求項1所述之HVAC系統,其中所述膨脹裝置係電子膨脹閥。 The HVAC system as claimed in claim 1, wherein the expansion device is an electronic expansion valve. 如請求項1所述之HVAC系統,包括被配置成驅動所述壓縮機的馬達,其中所述控制器被配置成基於所述馬達的測得的馬達溫度來調整所述膨脹裝置的位置,以達到目標馬達溫度。 The HVAC system of claim 1, comprising a motor configured to drive the compressor, wherein the controller is configured to adjust the position of the expansion device based on a measured motor temperature of the motor to Target motor temperature reached. 一種有形非暫態機器可讀媒體,包括處理器可執行指令,這些指令用於:接收進入蒸氣壓縮系統的壓縮機的製冷劑的溫度和壓力的第一回饋指示;利用進入所述蒸氣壓縮系統的壓縮機的製冷劑的溫度和壓力來確定測得的進入所述蒸氣壓縮系統的壓縮機的製冷劑的過熱量; 接收離開所述蒸氣壓縮系統的壓縮機的製冷劑的排放溫度的第二回饋指示;以及利用第一控制模組或第二模組來調整所述蒸氣壓縮系統的膨脹裝置的位置,其中所述第一控制模組被配置成基於所述測得的進入所述壓縮機的製冷劑的過熱量來調整所述膨脹裝置,以達到目標過熱量,以及所述第二控制模組被配置成基於所述離開所述壓縮機的製冷劑的排放溫度來調整所述膨脹裝置,以達到目標排放溫度;以及當所述離開所述壓縮機的製冷劑的排放溫度超過第一排放溫度閾值達預定時間量時,或是當所述離開所述壓縮機的製冷劑的排放溫度超過第二排放溫度閾值時,從所述第一控制模組切換至所述第二控制模組,其中所述第二排放溫度閾值大於所述第一排放溫度閾值。 A tangible, non-transitory machine-readable medium comprising processor-executable instructions for: receiving a first feedback indication of temperature and pressure of refrigerant entering a compressor of a vapor compression system; utilizing the temperature and pressure of the refrigerant in the compressor to determine the measured superheat of the refrigerant entering the compressor of the vapor compression system; receiving a second feedback indication of a discharge temperature of refrigerant exiting a compressor of the vapor compression system; and adjusting a position of an expansion device of the vapor compression system with the first control module or the second module, wherein the The first control module is configured to adjust the expansion device to achieve a target superheat based on the measured superheat of refrigerant entering the compressor, and the second control module is configured to adjust the expansion device based on the discharge temperature of the refrigerant leaving the compressor to adjust the expansion device to achieve a target discharge temperature; and when the discharge temperature of the refrigerant leaving the compressor exceeds a first discharge temperature threshold for a predetermined time amount, or when the discharge temperature of the refrigerant leaving the compressor exceeds a second discharge temperature threshold, switching from the first control module to the second control module, wherein the second The discharge temperature threshold is greater than the first discharge temperature threshold. 如請求項8所述之有形非暫態機器可讀媒體,其中所述處理器可執行指令被配置成當所述測得的進入所述壓縮機的製冷劑的過熱量超過第一過熱閾值達所述預定時間量時,或是當所述測得的進入所述壓縮機的製冷劑的過熱量超過第二過熱閾值時,從所述第二控制模組切換至所述第一控制模組,其中所述第二過熱閾值大於所述第一過熱閾值。 The tangible, non-transitory machine-readable medium of claim 8, wherein the processor-executable instructions are configured to, when the measured superheat of refrigerant entering the compressor exceeds a first superheat threshold for switching from the second control module to the first control module when the predetermined amount of time, or when the measured superheat of the refrigerant entering the compressor exceeds a second superheat threshold , wherein the second overheating threshold is greater than the first overheating threshold. 一種用於蒸氣壓縮系統之控制方法,包括:接收進入所述蒸氣壓縮系統的壓縮機的製冷劑的溫度和壓力的第一回饋指示;利用進入所述蒸氣壓縮系統的壓縮機的製冷劑的溫度和壓力來確定測得的進入所述蒸氣壓縮系統的壓縮機的製冷劑的過熱量; 接收離開所述蒸氣壓縮系統的壓縮機的製冷劑的排放溫度的第二回饋指示;以及利用第一控制模組或第二模組來調整所述蒸氣壓縮系統的膨脹裝置的位置,其中所述第一控制模組被配置成基於所述測得的進入所述壓縮機的製冷劑的過熱量來調整所述膨脹裝置,以達到目標過熱量,以及所述第二控制模組被配置成基於所述離開所述壓縮機的製冷劑的排放溫度來調整所述膨脹裝置,以達到目標排放溫度;以及當所述離開所述壓縮機的製冷劑的排放溫度超過第一排放溫度閾值達預定時間量時,或是當所述離開所述壓縮機的製冷劑的排放溫度超過第二排放溫度閾值時,從所述第一控制模組切換至所述第二控制模組,其中所述第二排放溫度閾值大於所述第一排放溫度閾值。 A control method for a vapor compression system comprising: receiving a first feedback indication of the temperature and pressure of refrigerant entering a compressor of said vapor compression system; utilizing the temperature of refrigerant entering a compressor of said vapor compression system and pressure to determine a measured superheat of refrigerant entering a compressor of said vapor compression system; receiving a second feedback indication of a discharge temperature of refrigerant exiting a compressor of the vapor compression system; and adjusting a position of an expansion device of the vapor compression system with the first control module or the second module, wherein the The first control module is configured to adjust the expansion device to achieve a target superheat based on the measured superheat of refrigerant entering the compressor, and the second control module is configured to adjust the expansion device based on the discharge temperature of the refrigerant leaving the compressor to adjust the expansion device to achieve a target discharge temperature; and when the discharge temperature of the refrigerant leaving the compressor exceeds a first discharge temperature threshold for a predetermined time amount, or when the discharge temperature of the refrigerant leaving the compressor exceeds a second discharge temperature threshold, switching from the first control module to the second control module, wherein the second The discharge temperature threshold is greater than the first discharge temperature threshold. 如請求項10所述之控制方法,包括當所述測得的進入所述壓縮機的製冷劑的過熱量超過第一過熱閾值達所述預定時間量時,或是當所述測得的進入所述壓縮機的製冷劑的過熱量超過第二過熱閾值時,從所述第二控制模組切換至所述第一控制模組,其中所述第二過熱閾值大於所述第一過熱閾值。 The control method as recited in claim 10, comprising when said measured superheat of refrigerant entering said compressor exceeds a first superheat threshold for said predetermined amount of time, or when said measured refrigerant entering Switching from the second control module to the first control module when the superheat of the refrigerant in the compressor exceeds a second overheat threshold, wherein the second overheat threshold is greater than the first overheat threshold.
TW107143672A 2017-12-06 2018-12-05 Heating, ventilating and air conditioning (hvac) system, control method for a vapor compression system, and related machine-readable media TWI801460B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762595351P 2017-12-06 2017-12-06
US62/595,351 2017-12-06

Publications (2)

Publication Number Publication Date
TW201925696A TW201925696A (en) 2019-07-01
TWI801460B true TWI801460B (en) 2023-05-11

Family

ID=64744966

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107143672A TWI801460B (en) 2017-12-06 2018-12-05 Heating, ventilating and air conditioning (hvac) system, control method for a vapor compression system, and related machine-readable media

Country Status (6)

Country Link
US (1) US11340002B2 (en)
EP (1) EP3721154A1 (en)
KR (1) KR102384051B1 (en)
CN (1) CN111566422B (en)
TW (1) TWI801460B (en)
WO (1) WO2019113094A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061162A (en) * 2020-07-31 2022-02-18 开利公司 Refrigeration system and control method thereof
CN114353378B (en) * 2021-12-15 2023-08-15 青岛海尔空调电子有限公司 Heat pump unit control method and device and heat pump unit
WO2024000348A1 (en) * 2022-06-30 2024-01-04 Trane International Inc. Compressor staging control architecture for hot gas reheat systems
CN116642278B (en) * 2023-04-19 2024-03-19 江森自控日立万宝空调(广州)有限公司 Control method and device for electronic expansion valve and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101749805A (en) * 2008-12-03 2010-06-23 三星电子株式会社 Air conditioner and control method thereof
EP3130870A1 (en) * 2015-08-10 2017-02-15 Mitsubishi Heavy Industries, Ltd. Refrigerating/air-conditioning device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147048A (en) 1999-11-19 2001-05-29 Sanden Corp Superheat extent controller for refrigeration circuit
KR100540808B1 (en) 2003-10-17 2006-01-10 엘지전자 주식회사 Control method for Superheating of heat pump system
US20070151269A1 (en) * 2005-12-30 2007-07-05 Johnson Controls Technology Company System and method for level control in a flash tank
JP4557031B2 (en) * 2008-03-27 2010-10-06 株式会社デンソー Air conditioner for vehicles
CN102242996B (en) 2011-07-05 2013-06-12 海尔集团公司 Method for controlling opening of electronic expansion valve in central air-conditioning unit
CN104534760B (en) * 2015-01-26 2017-06-06 珠海格力电器股份有限公司 Electronic expansion valve control method and device and air conditioning unit
CN104634033B (en) 2015-01-28 2018-03-20 中国科学院青岛生物能源与过程研究所 A kind of electronic expansion valve controls system and method
CN105115200B (en) * 2015-07-13 2018-01-02 重庆美的通用制冷设备有限公司 Self-adaptation control method, device and the central air-conditioning of electric expansion valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101749805A (en) * 2008-12-03 2010-06-23 三星电子株式会社 Air conditioner and control method thereof
EP3130870A1 (en) * 2015-08-10 2017-02-15 Mitsubishi Heavy Industries, Ltd. Refrigerating/air-conditioning device

Also Published As

Publication number Publication date
EP3721154A1 (en) 2020-10-14
US20210010732A1 (en) 2021-01-14
TW201925696A (en) 2019-07-01
KR20200094773A (en) 2020-08-07
KR102384051B1 (en) 2022-04-08
CN111566422A (en) 2020-08-21
CN111566422B (en) 2022-06-03
WO2019113094A1 (en) 2019-06-13
US11340002B2 (en) 2022-05-24

Similar Documents

Publication Publication Date Title
TWI801460B (en) Heating, ventilating and air conditioning (hvac) system, control method for a vapor compression system, and related machine-readable media
CN108139107B (en) Air conditioner and operation method thereof
JP5984784B2 (en) Hot / cold water air conditioning system
EP3164648B1 (en) Refrigerant cooling for variable speed drive
KR101602741B1 (en) Constant temperature liquid circulating device and operation method thereof
JP2015045479A (en) Hot-cold water air conditioning system
WO2017204287A1 (en) Heat source system and heat source system control method
CN110542237B (en) Air conditioner, operation control method and device thereof and computer readable storage medium
US11686511B2 (en) Motor temperature control technique with temperature override
CN105371403A (en) variable-frequency air-cooled air conditioning unit and control method
KR20190022614A (en) Capacity Control for Cooling System with Screw Compressor
US20200158370A1 (en) Control systems and methods for heat pump systems
JP5973076B2 (en) Hot water heater
JP2010112683A (en) Heat pump cycle device
WO2017138133A1 (en) Hot water/cold water air-conditioning system
JP5454063B2 (en) Heat pump water heater
JP2010112682A (en) Heat pump cycle device
JP2016102635A (en) Air conditioner system
WO2022176273A1 (en) Heat pump-type heat source device
JP6458456B2 (en) Air conditioning system
JP2013015229A (en) Air temperature controller
JP2011242090A (en) Heat pump cycle device
JP2016090180A5 (en)