TWI799267B - 疊對測量設備 - Google Patents
疊對測量設備 Download PDFInfo
- Publication number
- TWI799267B TWI799267B TW111118087A TW111118087A TWI799267B TW I799267 B TWI799267 B TW I799267B TW 111118087 A TW111118087 A TW 111118087A TW 111118087 A TW111118087 A TW 111118087A TW I799267 B TWI799267 B TW I799267B
- Authority
- TW
- Taiwan
- Prior art keywords
- overlay
- measurement device
- microstructures
- overlay measurement
- component
- Prior art date
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Processing Of Stones Or Stones Resemblance Materials (AREA)
- Optical Communication System (AREA)
- Prostheses (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
本揭露提供一種疊對測量設備,適合於確定一元件之二或多個連續圖案化層的相對位置。該疊對測量設備包括一平台以及一成像組件。該元件置放在該平台上。該成像組件包括複數個光學頭以及複數個疊對標記,該複數個疊對標記組裝在該複數個光學頭上。該元件之二或多個連續圖案化層的該相對位置使用從該元件所反射且穿經安裝在相對應之該光學頭上之該疊對標記的光來確定。
Description
本申請案主張美國第17/680,514及17/680,684號專利申請案之優先權(即優先權日為「2022年2月25日」),其內容以全文引用之方式併入本文中。
本揭露關於一種疊對測量技術,其使用在多個半導體製造程序中。特別是有關於一種疊對標記,用於測量一半導體晶圓堆疊在不同層之間或是在一相同層的不同圖案之間的一對準誤差。
儲存記憶體元件的半導體元件通常藉由應用於一樣本的一系列處理步驟來進行製造。該等半導體元件的各種特徵以及多個結構層級的製作技術包含這些處理步驟。舉例來說,其中,微影是包含產生一圖案在一半導體晶圓上的其中一個半導體製造程序。該等半導體製造程序的額外例子包括離子植入(摻雜)、沉積、蝕刻、金屬化、氧化以及化學機械研磨,但並不以此為限。多個半導體元件可製造在一單個半導體晶圓上,然後藉由例如切割(dicing)或鋸切(sawing)的一技術而分隔成多個單獨半導體元件。
該等半導體元件通常藉由沉積一系列的層在一基底上所製造。該等層的一些或全部包括不同的圖案化結構。在一層內以及在多層之間的多個結構之該等相對位置對於完成之多個電子元件的效能是至關重要的。疊對是指在一晶圓的同一層或不同層上之重疊或交錯結構的相對位置。疊對誤差是指與該等重疊或交錯結構之一象徵相對位置的偏差。一較大的疊對誤差導致該等結構之較大的未對準(misalignment)。若是該疊對誤差太大的話,則製造的該電子元件之效能可能會受到影響。
基於影像的疊對(IBO)測量是在積體電路製造中用於提取多個疊對誤差值的一種非常普遍的技術。該疊對誤差是使用多個專用疊對目標所測量,這些目標經過最佳化以提高疊對精確度以及解析度。然而,該等專用疊對目標甚大於該積體電路的多個產品特性。該IBO測量是基於該等專用目標而不是該等產品特性,因為目前主要基於光學的疊對測量解決方法並無法使用該等產品特性來提供足夠的解析度。
上文之「先前技術」說明僅係提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。
本揭露之一實施例提供一種疊對測量設備,用於確定一元件之二或多個連續圖案化層的相對位置。該疊對測量設備包括一平台以及一成像組件,該成像組件經配置以記錄置放在該平台上之該元件的多個影像。該成像組件包括複數個光學頭,經配置以擷取該元件的該等影像;以及複數個疊對標記,分別組裝在該複數個光學頭上。該元件之該等連續圖案化層的該等相對位置使用從該元件所反射且穿經安裝在相對應之該光學頭上之該疊對標記的光來確定。
在一些實施例中,該疊對測量設備還包括一電腦,經配置以執行多個演算,其從藉由該光學頭所記錄之該影像所傳送的多個電訊號而計算該等連續圖案化層的一相對位移。
在一些實施例中,為了獲得在該元件上之該等圖案化層的該相對位移,該電腦分析藉由該元件所反射的光的一預定強度分布與藉由該元件所反射且穿經相對應的該疊對標記的一獨特強度分布之間的一差距。
在一些實施例中,該電腦經配置以控制該平台的一運動,且經配置以選擇該光學頭而記錄該影像。
在一些實施例中,該成像組件還包括一光源,經配置以產生光而照明該元件。
在一些實施例中,該成像組件還包括一光束分離器,設置在該光源與該光學頭之各軸線的一交叉處,其中該光束分離器反射從該光源所產生的光,且從該元件所反射的光穿經該光束分離器與相對應的該疊對標記且入射到相對應的該光學頭上。
在一些實施例中,該疊對測量設備還包括一第一透鏡,設置在該光束分離器與該元件之間;以及一第二透鏡,設置在該光束分離器與該光學頭之間。
在一些實施例中,該疊對標記包括複數個微結構,呈一同心配置進行排列。
在一些實施例中,該等微結構包括多個圓形。
在一些實施例中,該等微結構包括多個正方形。
在一些實施例中,該等微結構還包括二條線,交叉在該等正方形的一中心處並將該等正方形分割成四等分。
在一些實施例中,該等微結構包括多個菱形。
在一些實施例中,該等微結構還包括四條線,從最外面的一個菱形之各側邊的各中心朝外延伸。
在一些實施例中,該等微結構還包括複數條線,以一第一間距而與最外面的一個菱形分隔開,且該第一間距大於在相互鄰近的其中兩個菱形之間的一第二間距。
在一些實施例中,該疊對標記是由重複的多個微結構所構成。
在一些實施例中,該疊對標記是一菱形且由複數個長菱形微結構所構成。
在一些實施例中,該等微結構為矩形,並以一連續的接合配置進行排列。
在一些實施例中,該疊對標記包括長菱形或六角形微結構。
在一些實施例中,該等微結構具有一由四個Γ所組成的十字形(卍)。
在一些實施例中,該疊對標記包括相互交替交錯的複數個梯形微結構以及複數個倒梯形微結構。
在一些實施例中,該疊對標記包括多個鋸齒形微結構。
在一些實施例中,該疊對標記包括多個重疊正方形微結構,且每一個重疊正方形微結構由四個小正方形所構成。
在一些實施例中,該疊對測量設備還包括一鈍化膜,覆蓋該複數個疊對標記。
本揭露之一實施例提供一種光學系統。該光學系統包括一元件以及一疊對測量設備。該元件包括一第一圖案化層、一第二圖案化層以及一第一鈍化膜。該第二圖案化層設置在該第一圖案層上,且該第一鈍化膜覆蓋該第一圖案化層。該疊對測量設備,用以確定該第一與第二圖案化層的相對位置,該疊對測量設備用以確定該第一與第二圖案化層的相對位置,其包括一平台以及一成像組件。該元件置放在該平台上。該成像組件包括複數個光學頭以及複數個疊對標記。該複數個光學頭經配置以記錄該元件的至少一影像。該複數個疊對標記分別組裝到該複數個光學頭上。該元件之該第一與第二圖案化層的該等相對位置使用從該元件所反射且穿經安裝在相對應之該光學頭上之該疊對標記的光來確定。
在一些實施例中,該元件還包括一第二鈍化膜,覆蓋該第二圖案化層。
在一些實施例中,該元件還包括至少一半導體層,設置在該第一鈍化膜與該第二圖案化層之間,且該第二圖案化層經配置以在蝕刻期間圖案化該半導體層。
在一些實施例中,該疊對測量設備還包括一電腦,經配置以執行多個演算,其從藉由該光學頭所記錄之該影像所傳送的多個電訊號而計算該第一與第二圖案化層的一相對位移。
在一些實施例中,該疊對標記包括複數個微結構,呈一同心配置進行排列。
在一些實施例中,該疊對標記由重複的多個微結構所構成。
本揭露之一實施例提供一種疊對測量設備的操作方法。該方法包括提供複數個光學頭;將複數個疊對標記分別組裝到該複數個光學頭上;將待測量的一元件置放到一平台上;將其中一個光學頭與該元件對準;以及記錄該元件的至少一影像。
在一些實施例中,該操作方法還包括依據該至少一影像計算在該元件上之多個圖案的一相對位移。
在一些實施例中,藉由電性耦接到該成像組件的一電腦而執行該計算。
在一些實施例中,該電腦電性耦接到該平台以控制該平台的一運動。
在一些實施例中,該操作方法還包括提供一光源以照明該元件。
在一些實施例中,該操作方法還包括提供一光束分離器並將該光束分離器定位在該光軸與該光學頭之各軸線的一交叉處,以記錄該元件的該影像。
在一些實施例中,該疊對標記包括一週期性結構。
藉由上述疊對測量裝置的配置,該疊對標記的該測試圖案安裝在該光學頭上,並且在該測量期間是可以替換的;因此,所記錄的影像可具有一較佳的解析度,也因此改善測量的準確性。
上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。
現在使用特定語言描述附圖中所示之本揭露的實施例或例子。應當理解,本揭露的範圍無意由此受到限制。所描述之實施例的任何修改或改良,以及本文件中描述之原理的任何進一步應用,所屬技術領域中具有通常知識者都認為是通常會發生的。元件編號可以在整個實施例中重複,但這並不一定意味著一個實施例的特徵適用於另一實施例,即使它們共享相同的元件編號。
應當理解,雖然用語「第一(first)」、「第二(second)」、「第三(third)」等可用於本文中以描述不同的元件、部件、區域、層及/或部分,但是這些元件、部件、區域、層及/或部分不應受這些用語所限制。這些用語僅用於從另一元件、部件、區域、層或部分中區分一個元件、部件、區域、層或部分。因此,以下所討論的「第一裝置(first element)」、「部件(component)」、「區域(region)」、「層(layer)」或「部分(section)」可以被稱為第二裝置、部件、區域、層或部分,而不背離本文所教示。
本文中使用之術語僅是為了實現描述特定實施例之目的,而非意欲限制本發明。如本文中所使用,單數形式「一(a)」、「一(an)」,及「該(the)」意欲亦包括複數形式,除非上下文中另作明確指示。將進一步理解,當術語「包括(comprises)」及/或「包括(comprising)」用於本說明書中時,該等術語規定所陳述之特徵、整數、步驟、操作、元件,及/或組件之存在,但不排除存在或增添一或更多個其他特徵、整數、步驟、操作、元件、組件,及/或上述各者之群組。
圖1是結構示意圖,例示本揭露一些實施例的光學系統10。請參考圖1,光學系統10包括一疊對測量設備20以及一元件30。疊對測量設備20用於提供不同層之間或是元件30之相同一層上的不同圖案之間的疊對之資訊。在一些實施例中,疊對測量設備20是使用在多個半導體製造程序中,且用於確定元件30的一第一圖案化層310(如圖2所示)與設置在第一圖案化層310上方或下方的一第二圖案化層320是如何精確地對準的。替代地,疊對測量設備20可用於確定在元件30上的一第一圖案與設置在相同層上之元件30上的一第二圖案是如何精確地對準的。元件30可包括不同元件,例如半導體元件、雙極性接面電晶體、電阻器、電容器、二極體、熔絲等等,但進行簡化以更好理解本揭露的概念。
請參考圖1及圖2,經配置以確定元件30之第一圖案化層310與第二圖案化層320之間的一相對移動之疊對測量設備20,主要包括一平台110以及一成像組件120,平台110能夠水平運動與垂直運動,成像組件120用於記錄設置在平台110上之元件30的多個影像。在一些實施例中,平台110在直角坐標(Cartesian coordinate)或是極座標(polar coordinate)任一個是可移動的。
成像組件120包括複數個光學頭122以及複數個疊對標記124,複數個光學頭122用於擷取積體電路之元件30的多個影像,複數個疊對標記124組裝到該等光學頭122上。安裝在該等光學頭122上的該等疊對標記124具有多個測試圖案。尤其是,用於監測第一圖案化層310與第二圖案化層320之間的疊對偏差之該等疊對標記124是光學可穿透的,並允許光穿經而沒有明顯的光散射。
在元件30之右上方的光學頭122可接收從元件30反射且穿經相對應之疊對標記124的光,並可將具有一獨特強度分布的光轉換成相對應的多個電訊號,該等電訊號發送到一電腦100並可被電腦100所使用。。在一些實施例中,電腦100包括一標準化操作系統,能夠執行通用應用軟體(general-purpose application software),而該通用應用軟體用於輔助製程效能資料的分析,且用於經由其多個通訊埠而與平台110以及光學頭122進行通訊。電腦100可監測成像組件120的狀態,然後依據多個監測結果提供指令給成像組件120。
在接收該等電訊號之後,電腦100執行多個分析演算,其依據所擷取的影像而計算第一圖案化層310與第二圖案化層320之間的一相對位移。與藉由光學頭122所測量之多個狀況相關聯的資訊是傳送到電腦100,而電腦100執行即時(real-time)及/或測量後(post-measurement)分析,以預測元件30的一品質。
通常,藉由元件30所反射的光具有一預定強度分布,且藉由元件所反射以及穿經疊對標記124之該等測試圖案的光具有該獨特強度分布;電烤100可分析該預定強度分布與該獨特強度分布之間的差距,以獲得元件30之第一圖案化層310與第二圖案化層320的該相對位移。在一些實施例中,該預定強度分布可從一參數化數學模型而進行估算或模擬。替代地,若是該等疊對標記124是可拆卸的話,則未組裝疊對標記124的光學頭122可接收直接從元件30所反射的光,並可將具有該預定強度分布的光轉換成多個相對應的電訊號。該等電訊號發送到電腦100,並可被電腦100所使用。
舉例來說,電腦100是一工作站、一個人電腦或是一中央處理單元。在一些實施例中,電腦100不僅電性耦接到光學頭122,還電性連接到平台110,以控制固定元件30之平台110的運動。在一些實施例中,電腦100可經配置以追踪與平台110及該等光學頭122的記錄影像以及操作有關的資料,並將該資料儲存在一電腦可讀取媒體中。舉例來說,使用在本揭露中之該電腦可讀取媒體的一些常見形式可包括軟碟、磁片(flexible disk)、硬碟、磁帶(magnetic tape)、任何其他的磁性媒體、緊密光碟唯讀記憶體(compact disc read-only memory,CD-ROM)、任何其 光學媒體、打孔卡片(punch card)、紙帶、任何其他具有孔圖案的實體媒體、隨機存取記憶體(random access memory,RAM)、可程式化唯讀記憶體(programmable read-only memory,PROM)、可抹除可程式化唯讀記憶體(erasable programmable read-only memory,EPROM)、快閃-可抹除可程式化唯讀記憶體(flash -EPROM)、任何其他記憶體晶片或記憶體匣、載波(carrier wave)或是合於一電腦讀取的任何其他媒體。
該等疊對標記124的該等測試圖案可包括一週期性結構。該等測試圖案可由複數個微結構所構成,其可增加可用於測量多個疊對誤差之資訊的一數量,且其可進行廣泛修改以減少某些製程對該疊加測量的影響。在一些實施例中,該等微結構的尺寸與間距與實際之多個積體電路的結構大致相同。藉由形成用尺寸更接近實際電路尺寸之該等微結構的每一個週期性結構,可獲得在此電路中之任何對準誤差的一更準確地測量。該等疊對標記124可具有呈一同心配置之排列的多個微結構,如圖3到圖9所示。在一些替代的實施例中,該等疊對標記124可由重複的多個微結構所構成,如圖10到圖18所示。
請參考圖3到圖5,在疊對標記124上的該等微結構為多個同心圓形、多個同心正方形或是多個同心菱形。在圖6及圖7中的疊對標記124包括多個同心正方形以及兩條線,而該兩條線交叉在該等同心正方形的一中間處並將該等同心正方形分隔成四等分;在圖6中的該等條線跨經該等正方形的各側邊,同時在圖7中的該等條線是多個對角線。
參考圖8到圖9,疊對標記124的該等微結構包括複數個同心菱形以及複數條線。詳而言之,在圖8中的該等微結構還包括四條線,從最外面的該等菱形之各側邊的各中心朝外延伸。在圖9中,該等微結構還包括以一第一間距P1與該等最外面之該等菱形分隔開的複數條線,而第一間距P1大於在該等同心菱形之間的一第二間距P2;該等條線平行於該等同心菱形的各側邊。
請參考圖10,疊對標記124是一菱形並由複數個長菱形微結構所構成。如圖11所示的疊對標記124包括呈一連續接合配置之排列的多個矩形微結構。請參考圖12及圖13,該等疊對標記124分別由重複的多個長菱形與六角形微結構所構成。
在圖14中,疊對標記124包括相互交錯的多個梯形以及倒梯形微結構。在圖15中,疊對標記124包括相互分隔開的複數個圓形微結構。在圖16中,疊對標記124包括多個鋸齒狀微結構。在圖17中,疊對標記124包括由四個Γ所組成之十字形(卍或是卐)的多個微結構。在一些實施例中,由四個Γ所組成之十字形是在一右手方向。在圖18中,疊對標記124包括多個重疊正方形微結構,其由四個小正方形所構成。本揭露的該等疊對標記124並不以上述的該等實施例為限,並可具有其他不同的實施例。
請再參考圖2,元件30還可包括一第一鈍化膜330,設置在第一圖案化層310與第二圖案化層320之間。覆蓋第一圖案化層310的第一鈍化膜330可對第一圖案化層310提供結構強度,其可能需要適應壓縮力(compression forces)(例如來自沉積及/或鍍覆製程)及/或剪切力(shear force)(例如來自化學機械研磨製程)。第一鈍化膜330是一共形層,其具有一大致平坦的厚度。在第二圖案化層320的沉積之前,第一鈍化膜330可使用一鍍覆製程或是例如一化學氣相沉積(CVD)製程或是一物理氣相沉積(PVD)製程的多個沉積製程而形成在第一圖案層310上。在一些實施例中,舉例來說,第一鈍化膜330是一類鑽石碳(DLC)膜或是一奈米複合膜。
在一些實施例中,元件30還可包括一或多個半導體層350a與350b,設置在第一鈍化膜330與第二圖案化層320之間,其中在半導體層350a與350b沉積之前,形成第一鈍化膜330以覆蓋第一圖案化層310。半導體層350a與350b是光學可穿透的,因此允許藉由第一圖案化層310所描述的光經由半導體層350a與350b而傳送,並入射到光學頭122上。
以適合的機制設計該等光學頭122以有效地擷取從元件30所反射的光。在一些實施例中,現場技術人員(on-site technician)可藉由機械地旋轉光學頭122而對該等疊對標記124進行充電以測量元件30。替代地,電腦100可控制該等光學頭122的旋轉,因此疊對標記124的該等測試圖案用以測量疊對誤差。舉例來說,該等光學頭122可為電荷耦合元件(CCDs)或是互補式金屬氧化物半導體(CMOS)感測器。在該測量之後,若是由光學頭122提供之所記錄的該等影像無法符合預期的話,則現場技術人員可對該等疊對標記124進行充電,然後執行其他測量。
例如遮蔽以及光波長的一些製程條件亦可影像訊號品質。因此,成像組件120還包括一光源130,適合於發射光以照明元件30。光源130提供入射在元件30上的光以最佳化影像解析度並最小化光學像差(optical aberrations)。光源130可經配置以提供一均勻強度的照明。光源130可提供所選擇之波長的光,包括非同調或同調波長。用於照明元件30的光可藉由電磁輻射所產生,例如雷射、發光二極體(LED)或是寬帶輻射。替代地,光可藉由燈泡所產生。在一些實施例中,光源130可為一可調光源,其可操作於產生具有不同波長的光束以達到多波長疊對測量。此外,光源130可產生可見光或不可見光,包括紅外光、近紅外(NIR)光或是遠紅外(FIR)光。
疊對測量設備20還可包括一顯示器102,用以與疊對測量設備20的效能與操作相關的資料顯示給現場技術人員。顯示器102還經配置以接受來自現場技術人員所輸入的資料。換言之,顯示器102設置有直接到電腦100的一通訊鏈結(communications link),以藉由現場技術人員提供疊對測量設備20的多個即時控制功能,特別是在需要現場技術人員干預的情況下。
疊對測量設備20還可包括電腦100、平台110、該等光學頭124、光源130以及其他周邊元件之間的操作介面通訊鏈結,並使操作介面能夠監控電腦100、平台110、該等光學頭124以及光源130之多個診斷功能的操作的一程序序列;觸發關於該等光學頭124以及光源130之狀況的聲音及/或光警報;接收來自該等光學頭124的效能資料;以及接收來自包括顯示器102與一鍵盤之一或多個輸入裝置的輸入資料。顯示器102亦經配置以顯示疊對測量設備20的一測量結果,以提供可視化的測量結果給現場技術人員。
在圖1中,藉由光源130所產生的光沿著一水平方向直線行進,且並未照明元件30;因此,使用能夠定向光的一光束分離器132以將光導向元件30。光束分離器132可定位在光源130的一光軸A1與記錄元件30之影像的其中一個光學頭122之一光軸A2的一交叉處。藉由使用光束分離器132,從光源130所輸出的光藉由光束分離器132所反射,且其傳送路徑導向元件30;從元件30所反射的光可穿經光束分離器132,並傳送到記錄元件30之影像的其中一個光學頭122。在圖1中,光束分離器132是一立方體配置;然而,光束分離器132可具有一板體(plate)或薄膜(pellicle)配置。
成像組件120亦可包括一第一透鏡134以及一第二透鏡136;第一透鏡134設置在光束分離器132與元件30之間,而第二透鏡136設置在光束分離器132與該等光學頭122之間。藉由光束分離器132所反射的光藉由第一透鏡134而聚焦在元件30,同時穿經光束分離器132的光藉由第二透鏡136而聚焦在光學頭122上。
圖19是結構示意圖,例示本揭露一些實施例的光學系統10。請參考圖19,光學系統10包括一疊對測量設備20以及一元件30。疊對測量設備20是使用在多個半導體製造程序中,且用於確定元件30的一疊對誤差。疊對測量設備20包括一電腦100、一平台110以及一成像組件120;電腦100與平台110以及成像組件120是相關聯的,且經配置以確定該疊對誤差是否存在。
圖20是剖視示意圖,例示本揭露一些實施例的元件30。請參考圖20,元件30包括一第一圖案化層310、一第二圖案化層320、一第一鈍化膜330以及一第二鈍化膜340,第二圖案化層320設置在第一圖案化層310上,第一鈍化膜330設置在第一圖案化層310與第二圖案化層320之間,第二鈍化膜340覆蓋第二圖案化層320。第一鈍化膜330與第二鈍化膜340可分別對第一圖案化層310與第二圖案化層320提供結構支撐。在一些實施例中,第一鈍化膜330與第二鈍化膜340是DLC膜或是奈米複合膜。
第二圖案化層320可包括光阻材料,並使用一微影製程所形成。第二圖案化層320可為一圖案,其用於在蝕刻期間保護半導體層350b的一些部分。通常,在一曝光製程之後,檢查該等疊對誤差。一般而言,藉由移除與重新沉積該光阻層以重工並重新曝光具有對於特定製造步驟之不可接受的疊對誤差的元件30。在一些實施例中,電腦100可執行資料分析並計算該疊對誤差,然後為了消除或減少該疊對誤差,則經由網路而提供不同指令給現場技術人員,例如調整層形成條件的指令,或是調整微影條件的指令。在一些實施例中,電腦100可發送多個指令到平台100以調整元件30而傾斜、轉動、移動,進而減少該疊對誤差。
成像組件120是用於擷取元件30的多個影像。元件30包括置放在平台110上之待測量的第一圖案化層310與第二圖案化層320,平台110通常在電腦100的控制下由馬達所驅動。電腦100亦執行依據從成像組件120所接收的資料執行實際計算。在一些實施例中,電腦100包括一標準化操作系統,能夠執行通用應用軟體(general-purpose application software),而該通用應用軟體用於輔助製程效能資料的分析,且用於經由其多個通訊埠而與平台110以及光學頭122進行通訊。
成像組件120包括複數個光學頭122以及複數個疊對標記124;該等光學頭用於擷取元件30的多個影像,且該等疊對標記124組裝到該等光學頭122上。每一個疊對標記124安裝到該等光學頭124上、是光學可穿透的,且包括一測試圖案。該等疊對標記124可用於測量元件30之第一圖案化層310相對於其第二圖案化層320的對準。此外,疊對標記124可用於測量元件30的一第一圖案相對於其一第二圖案的對準,其中該第一圖案與該第二圖案是形成在相同半導體層上的連續圖案。
光學頭122可接收指向到元件30、從元件30所反射以及穿經相對應之疊對標記124的該測試圖案的光。然後,光學頭122將具有預定強度分布之所接收的光轉換成相對應的多個電訊號,並傳送將該等電訊號到電腦100。電腦100可執行多個分析演算,其依據所擷取的影像計算在元件30上之多個圖案的一相對位移。電腦100可為一桌上型電腦、筆記型電腦(laptop computer)或是平板電腦(tablet computer)。此外,電腦100與該等光學頭122可使用有線鏈結、無線鏈結、其組合或任何其他已知的或以後開發的元件而進行交互作用,該等以後開發的元件能夠向所連接的電腦100與該等光學頭122提供資料及/或從電腦100與該等光學頭122傳送資料。
舉例來說,用作多個鏈結的傳輸媒體可為用於該等電訊號之任何適合的載體,包括同軸電纜、銅線和光纖,並且可以採用聲波或光波的形式,例如在無線電波以及紅外資料通訊期間所產生的那些。電腦100可在一網路上直接與該等光學頭122進行通訊;舉例來說,一Wi-Fi網路或是例如藍芽的其他區域無線網路。替代地,電腦100亦可在例如網際網路(Internet)的一網路上間接地與該等光學頭122進行通訊。在一些實施例中,電腦100可包括一電腦平台,可操作於執行多個應用程式,其可與該等光學頭122進行交互作用。
光源130適於產生光以在執行測量期間照明元件30。在圖19中,藉由光源130所產生的光直接朝向元件30進行輻射,藉由元件30所反射的光傳送到在元件30右上方之光學頭122。意即,在一入射光與反射光之間的一夾角α是一銳角。在一些實施例中,光源130的照度(luminance)可藉由電腦100進行控制。
圖21是結構示意圖,例示本揭露一些實施例的光學系統10。請參考圖21,光學系統10包括一疊對測量設備20以及一元件30。疊對測量設備20適於確定一疊對誤差是否存在元件30中。疊對測量設備20包括一電腦100、一平台110以及一成像組件120。平台110與成像組件120可藉由電腦100進行控制。
固定元件30且能夠水平運動與垂直運動的平台110通常在電腦100的控制下由馬達所驅動。提供於與電腦100執行實際測量的成像組件120可記錄元件30的多個影像並產生影像資訊給電腦100。電腦100可依據該影像資訊而確定該疊對誤差是否存在。電腦100可包括一標準化操作系統,能夠執行通用應用軟體(general-purpose application software),而該通用應用軟體用於輔助製程效能資料的分析,且用於經由其多個通訊埠而與平台110以及光學頭122進行通訊。
成像組件120包括複數個光學頭122、複數個疊對標記124以及一光源130,該等光學頭122用於記錄元件30的一或多個影像,該等疊對標記124安裝在該等光學頭122上,光源130則適於照明元件30。安裝在該等光學頭122上的該等疊對標記124是光學可穿透的,且包括多個測試圖案。在一些實施例中,電腦100可僅使用一個測試圖案而確定該疊對誤差是否存在。替代地,電腦100可使用不同測試圖案所記錄的多個影像而確定該疊對誤差是否存在。
光學頭122可接收投影到元件的光,其是藉由元件30所反射並穿經相對應的疊對標記124。光學頭122還可將具有預定強度分布的光轉換成相對應的多個電訊號,而電腦100可使用該等電訊號確定該疊對誤差是否存在。在一些實施例中,電腦100依據所擷取的影像執行多個分析演算,其計算在元件30上之多個圖案的一相對位移。
光學頭122與光源130設置在元件30的相對兩側上。在一些實施例中,從光源130所發射的光與傳送到元件30的光之一夾角β等於從元件30所發射的光與入射到其中一個光學頭122上的光的一夾角δ。
圖22是流程示意圖,例示本揭露一些實施例之疊對測量設備的操作方法400。請參考圖1到圖22,疊對測試設備的操作方法可在步驟S402開始,其為提供一成像組件120。成像組件120包括複數個光學頭122以及複數個疊對標記124,該等光學頭122適於記錄一元件30的一或多個影像,該等疊對標記124安裝在該等光學頭122上。
然後,該方法進行一步驟S404,其為待測量的元件30置放在一平台110上。元件30包括二或多個連續圖案化層。在前段(FEOL)製程或是後段(BEOL)製程期間,可形成元件30的該等圖案化層。在設置元件30之後,適於擷取一或多個影像的其中一個光學頭122對準元件30(步驟S406)。光學頭122與元件30可依據藉由一電腦100所提供的多個指令進行對準,電腦100進行程式化以控制平台110與該等光學頭122的操作。在對準期間,電腦100可驅動平台110以對準其中一個光學頭122。替代地,電腦100可驅動用於記錄該影像的該等光學頭122,以對準平台110。
在光學頭122與元件30對準之後,光學頭122可開始記錄元件30的影像(步驟S412)。光學頭122可將所記錄的影像轉換成相對應的多個電訊號,並將該等電訊號傳送到電腦100。電腦100可確定一疊對誤差是否存在,並可依據該等電訊號而確定形成在元件30之該等層上之多個圖案的一相對位移(步驟S414)。
電腦100與該等光學頭122可使用有線鏈結、無線鏈結、其組合或任何其他已知的或以後開發的元件而進行交互作用,該等以後開發的元件能夠向所連接的電腦100與該等光學頭122提供資料及/或從電腦100與該等光學頭122傳送資料。舉例來說,用作多個鏈結的傳輸媒體可為用於該等電訊號之任何適合的載體,包括同軸電纜、銅線和光纖,並且可以採用聲波或光波的形式,例如在無線電波以及紅外資料通訊期間所產生的那些。電腦100可在一網路上直接與該等光學頭122進行通訊;舉例來說,一Wi-Fi網路或是例如藍芽的其他區域無線網路。替代地,電腦100亦可在例如網際網路(Internet)的一網路上間接地與該等光學頭122進行通訊。在一些實施例中,電腦100可包括一電腦平台,可操作於執行多個應用程式,其可與該等光學頭122進行交互作用。
影響影像品質的材料特性因素包括反射率、折射率、表面粗糙度以及厚度。例如遮蔽以及光波長的製程條件亦可影響訊號品質。因此,若是該測量是在背景光線不足的環境中進行的話,則可以可選擇地提供一光源130以在對元件30進行記錄之前照明元件30(步驟S408)。入射光角度可能影響影像品質;因此,可以可選擇地提供包括一光束分離器132的其他元件以修改藉由光源130所產生的、藉由元件30所反射的以及傳送到光學頭122之光的一光學路徑(步驟S410)。在一些實施例中,光束分離器132定位在光源130的一光軸A1與記錄元件30之影像的光學頭122的一光軸A2的一交叉處。在一些實施例中,藉由光源130所產生的光直接輻射朝向元件30。在一些實施例中,在該照明路徑中可提供一光圈(aperture stop)或是空間光調變器(spatial light modulator)(圖未示),以控制在元件30上之光的入射角度的一範圍。
總之,藉由疊對測量設備20的配置,疊對標記124的測試圖案安裝在光學頭122上並且在測量期間是可替換的;因此,所記錄的影像可具有一較佳的解析度,也因此改善測量的準確性。
本揭露之一實施例提供一種疊對測量設備,用於確定一元件之二或多個連續圖案化層的相對位置。該疊對測量設備包括一平台以及一成像組件,該成像組件經配置以記錄置放在該平台上之該元件的多個影像。該成像組件包括複數個光學頭,經配置以擷取該元件的該等影像;以及複數個疊對標記,分別組裝在該複數個光學頭上。該元件之該等連續圖案化層的該等相對位置使用從該元件所反射且穿經安裝在相對應之該光學頭上之該疊對標記的光來確定。
本揭露之一實施例提供一種光學系統。該光學系統包括一元件以及一疊對測量設備。該元件包括一第一圖案化層、一第二圖案化層以及一第一鈍化膜。該第二圖案化層設置在該第一圖案層上,且該第一鈍化膜覆蓋該第一圖案化層。該疊對測量設備,用以確定該第一與第二圖案化層的相對位置,該疊對測量設備用以確定該第一與第二圖案化層的相對位置,其包括一平台以及一成像組件。該元件置放在該平台上。該成像組件包括複數個光學頭以及複數個疊對標記。該複數個光學頭經配置以記錄該元件的至少一影像。該複數個疊對標記分別組裝到該複數個光學頭上。該元件之該第一與第二圖案化層的該等相對位置使用從該元件所反射且穿經安裝在相對應之該光學頭上之該疊對標記的光來確定。
本揭露之一實施例提供一種疊對測量設備的操作方法。該方法包括提供複數個光學頭;將複數個疊對標記分別組裝到該複數個光學頭上;將待測量的一元件置放到一平台上;將其中一個光學頭與該元件對準;以及記錄該元件的至少一影像。
雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所定義之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。
再者,本申請案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟係包含於本申請案之申請專利範圍內。
10:光學系統
100:電腦
102:顯示器
110:平台
120:成像組件
122:光學頭
124:疊對標記
130:光源
132:光束分離器
134:第一透鏡
136:第二透鏡
20:疊對測量設備
30:元件
310:第一圖案化層
320:第二圖案化層
330:第一鈍化膜
340:第二鈍化膜
350a:半導體層
305b:半導體層
400:操作方法
A1:光軸
A2:光軸
P1:第一間距
P2:第二間距
S402:步驟
S404:步驟
S406:步驟
S408:步驟
S410:步驟
S412:步驟
S414:步驟
α:夾角
β:夾角
δ:夾角
藉由參考詳細描述以及申請專利範圍而可以獲得對本揭露更完整的理解。本揭露還應理解為與圖式的元件編號相關聯,而圖式的元件編號在整個描述中代表類似的元件。
圖1是結構示意圖,例示本揭露一些實施例的光學系統。
圖2是剖視示意圖,例示本揭露一些實施例的元件。
圖3到圖18是示意圖,例示本揭露一些實施例用於確定半導體晶圓之其中兩層之對準的多個疊對標記。
圖19是結構示意圖,例示本揭露一些實施例的光學系統。
圖20是剖視示意圖,例示本揭露一些實施例的元件。
圖21是結構示意圖,例示本揭露一些實施例的光學系統。
圖22是流程示意圖,例示本揭露一些實施例之疊對測量設備的操作方法。
10:光學系統
100:電腦
102:顯示器
110:平台
120:成像組件
122:光學頭
124:疊對標記
130:光源
132:光束分離器
134:第一透鏡
136:第二透鏡
20:疊對測量設備
30:元件
A1:光軸
A2:光軸
Claims (21)
- 一種疊對測量設備,用於確定一元件之二或多個連續圖案化層的相對位置,該疊對測量設備包括:一平台,放置該元件;以及一成像組件,包括:複數個光學頭,經配置以記錄該元件的至少一影像;以及複數個疊對標記,分別組裝在該複數個光學頭上,其中該元件之該等連續圖案化層的該等相對位置使用從該元件所反射且穿經安裝在相對應之該光學頭上之該疊對標記的光來確定;一電腦,經配置以執行多個演算,其從藉由該光學頭所記錄之該影像所傳送的多個電訊號而計算該等連續圖案化層的一相對位移。
- 如請求項1所述之疊對測量設備,其中為了獲得在該元件上之該等圖案化層的該相對位移,該電腦分析藉由該元件所反射的光的一預定強度分布與藉由該元件所反射且穿經相對應的該疊對標記的一獨特強度分布之間的一差距。
- 如請求項1所述之疊對測量設備,其中該電腦經配置以控制該平台的一運動,且經配置以選擇該光學頭而記錄該影像。
- 如請求項1所述之疊對測量設備,其中該成像組件還包括一光源,經 配置以產生光而照明該元件。
- 如請求項4所述之疊對測量設備,其中該成像組件還包括一光束分離器,設置在該光源與該光學頭之各軸線的一交叉處,其中該光束分離器反射從該光源所產生的光,且從該元件所反射的光穿經該光束分離器與相對應的該疊對標記且入射到相對應的該光學頭上。
- 如請求項5所述之疊對測量設備,還包括:一第一透鏡,設置在該光束分離器與該元件之間;以及一第二透鏡,設置在該光束分離器與該光學頭之間。
- 如請求項1所述之疊對測量設備,其中該疊對標記包括複數個微結構,呈一同心配置進行排列。
- 如請求項7所述之疊對測量設備,其中該等微結構包括多個圓形。
- 如請求項7所述之疊對測量設備,其中該等微結構包括多個正方形。
- 如請求項9所述之疊對測量設備,其中該等微結構還包括二條線,交叉在該等正方形的一中心處並將該等正方形分割成四等分。
- 如請求項7所述之疊對測量設備,其中該等微結構包括多個菱形。
- 如請求項11所述之疊對測量設備,其中該等微結構還包括四條線,從最外面的一個菱形之各側邊的各中心朝外延伸。
- 如請求項11所述之疊對測量設備,其中該等微結構還包括複數條線,以一第一間距而與最外面的一個菱形分隔開,且該第一間距大於在相互鄰近的其中兩個菱形之間的一第二間距。
- 如請求項1所述之疊對測量設備,其中該疊對標記是由重複的多個微結構所構成。
- 如請求項14所述之疊對測量設備,其中該疊對標記是一菱形且由複數個長菱形微結構所構成。
- 如請求項14所述之疊對測量設備,其中該等微結構為矩形,並以一連續的接合配置進行排列。
- 如請求項14所述之疊對測量設備,其中該疊對標記包括長菱形或六角形微結構。
- 如請求項14所述之疊對測量設備,其中該等微結構具有一由四個Γ所組成的十字形(卍)。
- 如請求項1所述之疊對測量設備,其中該疊對標記包括相互交替交錯 的複數個梯形微結構以及複數個倒梯形微結構。
- 如請求項1所述之疊對測量設備,其中該疊對標記包括多個鋸齒形微結構。
- 如請求項1所述之疊對測量設備,其中該疊對標記包括多個重疊正方形微結構,且每一個重疊正方形微結構由四個小正方形所構成。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/680,684 | 2022-02-25 | ||
US17/680,514 | 2022-02-25 | ||
US17/680,514 US11829078B2 (en) | 2022-02-25 | 2022-02-25 | Overlay measuring apparatus |
US17/680,684 US20230273590A1 (en) | 2022-02-25 | 2022-02-25 | Method and system of operating overlay measuring |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI799267B true TWI799267B (zh) | 2023-04-11 |
TW202335120A TW202335120A (zh) | 2023-09-01 |
Family
ID=86948698
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111118087A TWI799267B (zh) | 2022-02-25 | 2022-05-13 | 疊對測量設備 |
TW111118088A TWI809871B (zh) | 2022-02-25 | 2022-05-13 | 光學系統及其操作方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW111118088A TWI809871B (zh) | 2022-02-25 | 2022-05-13 | 光學系統及其操作方法 |
Country Status (1)
Country | Link |
---|---|
TW (2) | TWI799267B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW202122934A (zh) * | 2019-10-14 | 2021-06-16 | 荷蘭商Asml控股公司 | 度量衡標記結構及判定度量衡標記結構的方法 |
TW202134797A (zh) * | 2019-11-05 | 2021-09-16 | 荷蘭商Asml荷蘭公司 | 用於引導輻射之總成及方法 |
TW202146889A (zh) * | 2020-04-07 | 2021-12-16 | 美商科磊股份有限公司 | 用於計量測量之線上導航偏移校正 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW526573B (en) * | 2000-12-27 | 2003-04-01 | Koninkl Philips Electronics Nv | Method of measuring overlay |
CN108010875B (zh) * | 2016-10-31 | 2020-04-14 | 中芯国际集成电路制造(上海)有限公司 | 基板校准装置以及检测系统 |
JP7240166B2 (ja) * | 2018-12-18 | 2023-03-15 | キヤノン株式会社 | 決定方法、露光方法、露光装置、および物品製造方法 |
US11784077B2 (en) * | 2019-12-18 | 2023-10-10 | Micron Technology, Inc. | Wafer overlay marks, overlay measurement systems, and related methods |
-
2022
- 2022-05-13 TW TW111118087A patent/TWI799267B/zh active
- 2022-05-13 TW TW111118088A patent/TWI809871B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW202122934A (zh) * | 2019-10-14 | 2021-06-16 | 荷蘭商Asml控股公司 | 度量衡標記結構及判定度量衡標記結構的方法 |
TW202134797A (zh) * | 2019-11-05 | 2021-09-16 | 荷蘭商Asml荷蘭公司 | 用於引導輻射之總成及方法 |
TW202146889A (zh) * | 2020-04-07 | 2021-12-16 | 美商科磊股份有限公司 | 用於計量測量之線上導航偏移校正 |
Also Published As
Publication number | Publication date |
---|---|
TW202335071A (zh) | 2023-09-01 |
TWI809871B (zh) | 2023-07-21 |
TW202335120A (zh) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI551956B (zh) | 檢查方法和裝置,微影裝置,微影製程單元及器件製造方法 | |
TWI715575B (zh) | 計量系統及方法 | |
TWI804440B (zh) | 度量衡裝置及判定受關注特性的方法 | |
TWI673487B (zh) | 度量系統、度量設備及度量方法 | |
JP4751411B2 (ja) | オーバーレイを測定する方法 | |
CN105612601A (zh) | 用于图案化晶片表征的方法与设备 | |
JP2019518973A (ja) | パターン構造物検査装置及び検査方法 | |
CN105593973A (zh) | 用于确定聚焦的方法及设备 | |
TW201923477A (zh) | 用於度量光束穩定之系統及方法 | |
TW200837507A (en) | A scatterometer, a lithographic apparatus and a focus analysis method | |
TW202043716A (zh) | 基於高光譜成像之半導體度量 | |
JP2022514365A (ja) | オーバーレイターゲットを用いるフィールド間補正 | |
TW202018423A (zh) | 度量衡設備 | |
TW201820047A (zh) | 用於在檢測系統中聚焦的方法和裝置 | |
TWI793295B (zh) | 雷射加工裝置、雷射加工系統及雷射加工方法 | |
TW201812850A (zh) | 監控製程裝置的方法與裝置 | |
US11829078B2 (en) | Overlay measuring apparatus | |
TW202117309A (zh) | 量測方法 | |
US20230273590A1 (en) | Method and system of operating overlay measuring | |
TWI799267B (zh) | 疊對測量設備 | |
TW202032283A (zh) | 測量圖案化製程之參數的方法、度量衡裝置與目標 | |
US10061210B2 (en) | 3D target for monitoring multiple patterning process | |
TWI792789B (zh) | 量測基板上之目標之方法 | |
US11761906B2 (en) | Optical device | |
KR101785075B1 (ko) | 이송용 기준 미러를 사용한 웨이퍼 형상 변화값을 검출하는 장치 |