TWI796001B - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
TWI796001B
TWI796001B TW110142636A TW110142636A TWI796001B TW I796001 B TWI796001 B TW I796001B TW 110142636 A TW110142636 A TW 110142636A TW 110142636 A TW110142636 A TW 110142636A TW I796001 B TWI796001 B TW I796001B
Authority
TW
Taiwan
Prior art keywords
layer
polysilicon layer
oxide
oxide layer
polysilicon
Prior art date
Application number
TW110142636A
Other languages
Chinese (zh)
Other versions
TW202322395A (en
Inventor
廖廷豐
翁茂元
劉光文
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW110142636A priority Critical patent/TWI796001B/en
Application granted granted Critical
Publication of TWI796001B publication Critical patent/TWI796001B/en
Publication of TW202322395A publication Critical patent/TW202322395A/en

Links

Images

Landscapes

  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A semiconductor device includes a peripheral circuit region, a substrate on the peripheral circuit region, and an array region on the substrate. The peripheral circuit region has complementary metal-oxide-semiconductor components. The substrate includes an N-type doped poly silicon layer on the peripheral circuit region, an oxide layer on the N-type doped poly silicon layer, and a conductive layer on the oxide layer. The array region includes gate structures and insulating layers alternately stacked on the conductive layer. A bottommost gate structure and the conductive layer together serve as a plurality ground select lines of the semiconductor device, and a ratio of a thickness of the conductive layer to a thickness of each of the gate structures is about from 3 to 4. The array region further includes a vertical channel structure penetrating the gate structures and the insulating layers and extending into the N-type doped poly silicon layer.

Description

半導體裝置與其製作方法Semiconductor device and manufacturing method thereof

本揭露是關於一種半導體裝置與其製作方法。The present disclosure relates to a semiconductor device and a manufacturing method thereof.

近年來,半導體裝置的結構不斷改變,且半導體裝置的儲存容量不斷增加。記憶體裝置被應用於許多產品(例如數位相機、手機及電腦等)的儲存元件中。隨著這些應用的增加,記憶體裝置的需求集中在小尺寸與大儲存容量上。為了滿足此條件,需要具有高元件密度與小尺寸的記憶體裝置及其製造方法。In recent years, the structure of semiconductor devices has been constantly changing, and the storage capacity of semiconductor devices has been increasing. Memory devices are used as storage elements in many products (such as digital cameras, mobile phones, and computers, etc.). As these applications increase, the demand for memory devices is focused on small size and large storage capacity. In order to satisfy this condition, a memory device with high device density and small size and its manufacturing method are required.

因此,期望開發出具有更多數量之多個堆疊平面的三維(three-dimensional,3D)記憶體裝置,以達到更大的儲存容量、改善品質並同時保持記憶體裝置的小尺寸。Therefore, it is desirable to develop a three-dimensional (3D) memory device with a greater number of stacked planes to achieve greater storage capacity, improve quality, and maintain a small size of the memory device.

根據本揭露的一些實施態樣,一種半導體裝置,包含周邊區塊、基材、以及陣列區塊。周邊區塊包含互補式金氧半導體元件。基材設置在周邊區塊上,基材包含設置在周邊區塊上的N型摻雜多晶矽層、設置在N型摻雜多晶矽層上的氧化物層,以及設置在氧化物層上的導體層。陣列區塊設置在基材上,陣列區塊包含設置在導體層上並交替堆疊的閘極結構與絕緣層,其中閘極結構中的最底層的一個與導體層一起作為半導體裝置的接地選擇線。導體層的厚度與各閘極結構的厚度的比值約為3至4。陣列區塊更包含垂直通道結構,穿過閘極結構與絕緣層,且延伸進入N型摻雜多晶矽層。According to some embodiments of the present disclosure, a semiconductor device includes a peripheral block, a substrate, and an array block. The peripheral block includes CMOS devices. The substrate is disposed on the peripheral block, and the substrate includes an N-type doped polysilicon layer disposed on the peripheral block, an oxide layer disposed on the N-type doped polysilicon layer, and a conductor layer disposed on the oxide layer . The array block is arranged on the substrate, and the array block includes a gate structure and an insulating layer arranged on the conductor layer and stacked alternately, wherein the bottommost one of the gate structure and the conductor layer are used as the ground selection line of the semiconductor device . The ratio of the thickness of the conductor layer to the thickness of each gate structure is about 3-4. The array block further includes a vertical channel structure, passing through the gate structure and the insulating layer, and extending into the N-type doped polysilicon layer.

根據本揭露的一些實施態樣,一種製作半導體裝置的方法,包含提供一結構,結構包含周邊區塊、基材,與陣列區塊。周邊區塊包含互補式金氧半導體元件。基材設置在周邊區塊上,基材包含設置在周邊區塊上的第一多晶矽層、設置在第一多晶矽層上的第一氧化物層、設置在第一氧化物層上的第二多晶矽層、設置在第二多晶矽層上的第二氧化物層、設置在第二氧化物層上的第三多晶矽層、設置在第三多晶矽層上的第三氧化物層,以及設置在第三氧化物層上的第四多晶矽層。陣列區塊設置在基材上,陣列區塊包含設置在第四多晶矽層上且交替堆疊的第一絕緣層與第二絕緣層,以及穿過第一絕緣層與第二絕緣層且延伸進入第一多晶矽層的垂直通道結構。方法更包含移除第四多晶矽層,以在第三氧化物層和第一絕緣層中最底層的一者之間形成一第一空腔,以及以一導體層填充第一空腔。According to some embodiments of the present disclosure, a method of fabricating a semiconductor device includes providing a structure, the structure including a peripheral block, a substrate, and an array block. The peripheral block includes CMOS devices. The substrate is disposed on the peripheral block, and the substrate includes a first polysilicon layer disposed on the peripheral block, a first oxide layer disposed on the first polysilicon layer, and a first oxide layer disposed on the first oxide layer. The second polysilicon layer, the second oxide layer disposed on the second polysilicon layer, the third polysilicon layer disposed on the second oxide layer, the third polysilicon layer disposed on the The third oxide layer, and the fourth polysilicon layer disposed on the third oxide layer. The array block is arranged on the base material, and the array block includes a first insulating layer and a second insulating layer arranged on the fourth polysilicon layer and stacked alternately, and passes through the first insulating layer and the second insulating layer and extends into the vertical channel structure of the first polysilicon layer. The method further includes removing the fourth polysilicon layer to form a first cavity between the third oxide layer and the bottommost one of the first insulating layers, and filling the first cavity with a conductive layer.

以下將以圖式及詳細說明清楚說明本揭露之精神,任何所屬技術領域中具有通常知識者在瞭解本揭露之較佳實施例後,當可由本揭露所教示之技術,加以改變及修飾,其並不脫離本揭露之精神與範圍。The following will clearly illustrate the spirit of the disclosure with drawings and detailed descriptions. Anyone with ordinary knowledge in the technical field can make changes and modifications based on the techniques taught in the disclosure after understanding the preferred embodiments of the disclosure. It does not depart from the spirit and scope of this disclosure.

參照第1圖至第14圖,其分別為根據本揭露的製作半導體裝置的方法的一些實施例於不同製作階段的剖面圖。參照第1圖,一種半導體結構10被提供。半導體結構10包含有基材100、設置在基材100下方的周邊區塊200,以及設置在基材100上方的陣列區塊300。亦即,周邊區塊200與陣列區塊300分別配置在基材100的相對兩側面上。於一些實施例中,基材100為形成在周邊區塊200的上表面上,而後,陣列區塊300再形成在基材100的上表面上。於其他的一些實施例中,陣列區塊300先形成在基材100的上表面上,而後,基材100與其上的陣列區塊300再一起與周邊區塊200結合。Referring to FIG. 1 to FIG. 14 , they are cross-sectional views at different manufacturing stages of some embodiments of the method for manufacturing a semiconductor device according to the present disclosure. Referring to FIG. 1 , a semiconductor structure 10 is provided. The semiconductor structure 10 includes a substrate 100 , a peripheral block 200 disposed below the substrate 100 , and an array block 300 disposed above the substrate 100 . That is, the peripheral block 200 and the array block 300 are respectively disposed on two opposite sides of the substrate 100 . In some embodiments, the substrate 100 is formed on the upper surface of the peripheral block 200 , and then the array block 300 is formed on the upper surface of the substrate 100 . In some other embodiments, the array block 300 is firstly formed on the upper surface of the substrate 100 , and then the substrate 100 and the array block 300 thereon are combined with the peripheral block 200 together.

周邊區塊200包含有多個半導體元件,例如多個互補式金氧半導體(complementary metal-oxide-semiconductor,CMOS)元件210與其他的適合的電路。 The peripheral block 200 includes a plurality of semiconductor devices, such as a plurality of complementary metal-oxide-semiconductor (CMOS) devices 210 and other suitable circuits.

基材100可以為,舉例而言,矽基材。基材100包含有在周邊區塊200上的第一多晶矽層101、在第一多晶矽層101上的第一氧化物層111、在第一氧化物層111上的第二多晶矽層102、在第二多晶矽層102上的第二氧化物層112、在第二氧化物層112上的第三多晶矽層103、在第三多晶矽層103上的第三氧化物層113,以及在第三氧化物層113上的第四多晶矽層104。 The substrate 100 can be, for example, a silicon substrate. The substrate 100 includes a first polysilicon layer 101 on the peripheral block 200 , a first oxide layer 111 on the first polysilicon layer 101 , a second polysilicon layer on the first oxide layer 111 Silicon layer 102, second oxide layer 112 on the second polysilicon layer 102, third polysilicon layer 103 on the second oxide layer 112, third polysilicon layer 103 on the third an oxide layer 113 , and a fourth polysilicon layer 104 on the third oxide layer 113 .

於一些實施例中,第一多晶矽層101為基材100的第一多晶矽層101到第四多晶矽層104中厚度最厚的一個,而第三多晶矽層103則是基材100的第一多晶矽層101到第四多晶矽層104中厚度最薄的一個。於一些實施例中,第一多晶矽層101的厚度約為1500Å,第二多晶矽層102的厚度約為400Å,第三多晶矽層103的厚度約為100Å,第四多晶矽層104的厚度約為1000Å。於一些實施例中,第一氧化物層111的厚度約為80Å,第二氧化物層112的厚度約為120Å,第三氧化物層113的厚度約為450Å。 In some embodiments, the first polysilicon layer 101 is the thickest one among the first polysilicon layer 101 to the fourth polysilicon layer 104 of the substrate 100, and the third polysilicon layer 103 is The thinnest one among the first polysilicon layer 101 to the fourth polysilicon layer 104 of the substrate 100 . In some embodiments, the thickness of the first polysilicon layer 101 is about 1500Å, the thickness of the second polysilicon layer 102 is about 400Å, the thickness of the third polysilicon layer 103 is about 100Å, and the fourth polysilicon layer Layer 104 has a thickness of about 1000 Å. In some embodiments, the thickness of the first oxide layer 111 is about 80 Å, the thickness of the second oxide layer 112 is about 120 Å, and the thickness of the third oxide layer 113 is about 450 Å.

第一多晶矽層101可以摻雜有N型摻雜物,如磷或砷。第四多晶矽層104可以摻雜有P型摻雜物,如硼或鍺。於一些實施例中,第四多晶矽層104作為半導體裝置的接地選擇線(ground select line,GSL)。 The first polysilicon layer 101 may be doped with N-type dopants, such as phosphorus or arsenic. The fourth polysilicon layer 104 may be doped with P-type dopants, such as boron or germanium. In some embodiments, the fourth polysilicon layer 104 serves as a ground select line (GSL) of the semiconductor device.

陣列區塊300包含有多個第一絕緣層310及多個第二絕緣層320交替地堆疊在基材100上,其中最上層的層與最下層的層皆為第一絕緣層310,且第一絕緣層310的材料不同於第二絕緣層320的材料。於一些實施例中,第一絕緣層310可以為氧化物層,如氧化矽層,而第二絕緣層320可以為氮化物層,如氮化矽層。 The array block 300 includes a plurality of first insulating layers 310 and a plurality of second insulating layers 320 alternately stacked on the substrate 100, wherein both the uppermost layer and the lowermost layer are the first insulating layers 310, and the second The material of an insulating layer 310 is different from that of the second insulating layer 320 . In some embodiments, the first insulating layer 310 may be an oxide layer, such as a silicon oxide layer, and the second insulating layer 320 may be a nitride layer, such as a silicon nitride layer.

陣列區塊300更包含有多個垂直通道結構330,垂直通道結構330平行於基材100的法線方向配置。垂直通道結構330被形成為穿過第一絕緣層310和第二絕緣層320的堆疊並延伸進入基材100。於一些實施例中,垂直通道結構330止於第一多晶矽層101。 The array block 300 further includes a plurality of vertical channel structures 330 , and the vertical channel structures 330 are arranged parallel to the normal direction of the substrate 100 . The vertical channel structure 330 is formed through the stack of the first insulating layer 310 and the second insulating layer 320 and extends into the substrate 100 . In some embodiments, the vertical channel structure 330 ends at the first polysilicon layer 101 .

於一些實施例中,每個垂直通道結構330包含儲存層332、通道層334以及隔離柱336。通道層334被夾在儲存層332以及隔離柱336之間。儲存層332與通道層334具有U形的剖面形狀。於一些實施例中,儲存層332為多層結構,例如氧化物-氮化物-氧化物(oxide-nitride-oxide,ONO)層,用以捕捉電子。通道層334的材料可以為多晶矽,而隔離柱336的材料為絕緣材料。每個垂直通道結構330更包含有導電栓塞338設置在隔離柱336上並與通道層334接觸。於一些實施例中,導電栓塞338、儲存層332、通道層334跟最上層的第一絕緣層310的上表面大致上是齊平的。隔離柱336的上表面低於通道層334的上表面,且導電栓塞338的側壁與通道層334接觸。 In some embodiments, each vertical channel structure 330 includes a storage layer 332 , a channel layer 334 and isolation columns 336 . The channel layer 334 is sandwiched between the storage layer 332 and the isolation posts 336 . The storage layer 332 and the channel layer 334 have a U-shaped cross-section. In some embodiments, the storage layer 332 is a multi-layer structure, such as an oxide-nitride-oxide (ONO) layer, for trapping electrons. The material of the channel layer 334 can be polysilicon, and the material of the isolation column 336 is an insulating material. Each vertical channel structure 330 further includes a conductive plug 338 disposed on the isolation pillar 336 and in contact with the channel layer 334 . In some embodiments, the conductive plug 338 , the storage layer 332 , the channel layer 334 are substantially flush with the top surface of the uppermost first insulating layer 310 . The upper surface of the isolation pillar 336 is lower than the upper surface of the channel layer 334 , and the sidewall of the conductive plug 338 is in contact with the channel layer 334 .

參照第2圖,執行一或多個蝕刻製程,以在陣列區塊300中形成溝槽340。舉例而言,執行第一道蝕刻製程可以移除部分的第一絕緣層310、第二絕緣層320與第四多晶矽層104。亦即,在執行完第一道蝕刻製程之後,溝槽340止於第四多晶矽層104。接著,執行第二道蝕刻製程以加深溝槽340,使得溝槽340止於第三氧化物層113。亦即,第三氧化物層113作為在第二道蝕刻製程的蝕刻終止層。於一些實施例中,第一道蝕刻製程不同於第二道蝕刻製程。 Referring to FIG. 2 , one or more etching processes are performed to form trenches 340 in the array block 300 . For example, performing the first etching process can remove part of the first insulating layer 310 , the second insulating layer 320 and the fourth polysilicon layer 104 . That is, after the first etching process is performed, the trench 340 stops at the fourth polysilicon layer 104 . Next, a second etching process is performed to deepen the trench 340 so that the trench 340 stops at the third oxide layer 113 . That is, the third oxide layer 113 serves as an etch stop layer in the second etch process. In some embodiments, the first etching process is different from the second etching process.

參照第3圖,執行第三道蝕刻製程,以移除第四多晶矽層104(見第2圖)。於執行完第三道蝕刻製程之後,空腔342會形成在最底層的第一絕緣層310以及第三氧化物層113之間。空腔342與溝槽340連通。部分的垂直通道結構330會暴露於空腔342。於一些實施例中,第三道蝕刻製程不同於第一道蝕刻製程以及第二道蝕刻製程。 Referring to FIG. 3, a third etching process is performed to remove the fourth polysilicon layer 104 (see FIG. 2). After the third etching process is performed, the cavity 342 is formed between the bottommost first insulating layer 310 and the third oxide layer 113 . The cavity 342 communicates with the groove 340 . Part of the vertical channel structure 330 is exposed to the cavity 342 . In some embodiments, the third etching process is different from the first etching process and the second etching process.

參照第4圖,形成導體層362以填充空腔342(見第3圖)。導體層362包含有一或多個導電材料,如鎢等填充金屬。導體層362圍繞垂直通道結構330的該部分設置。當導體層362填充空腔342之後,進一步透過溝槽340執行至少一蝕刻製程,以移除部分的導體層362,藉以加深溝槽340。加深溝槽340的蝕刻製程止於第三氧化物層113。至此,第一絕緣層310、第二絕緣層320以及導體層362的側壁暴露於溝槽340。 Referring to FIG. 4, a conductor layer 362 is formed to fill the cavity 342 (see FIG. 3). The conductive layer 362 includes one or more conductive materials, such as tungsten and other filling metals. The conductor layer 362 is disposed around the portion of the vertical channel structure 330 . After the conductive layer 362 fills the cavity 342 , at least one etching process is further performed through the trench 340 to remove part of the conductive layer 362 so as to deepen the trench 340 . The etching process for deepening the trench 340 stops at the third oxide layer 113 . So far, the sidewalls of the first insulating layer 310 , the second insulating layer 320 and the conductive layer 362 are exposed to the trench 340 .

參照第5圖,執行另一蝕刻製程以進一步加深溝 槽340。此蝕刻製程移除部分的第三氧化物層113與第三多晶矽層103並止於第二氧化物層112。亦即,第二氧化物層112作為此蝕刻製程的蝕刻終止層。 Referring to Figure 5, another etch process is performed to further deepen the trench slot 340 . The etching process removes part of the third oxide layer 113 and the third polysilicon layer 103 and ends at the second oxide layer 112 . That is, the second oxide layer 112 serves as an etch stop layer for this etching process.

參照第6圖,間隔件350形成在溝槽340的側壁上。於一些實施例中,先將間隔材料形成在如第5圖所示的半導體結構10的上表面與側表面上。於一些實施例中,間隔件350為多層結構且包含有第一氮化物層352、氧化物層354,以及第二氮化物層356,其中第一氮化物層352直接形成在溝槽340的表面上,氧化物層354被夾設在第一氮化物層352和第二氮化物層356之間。第一絕緣層310、第二絕緣層320、導體層362、第三氧化物層113與第三多晶矽層103的表面被間隔件350所保護。 Referring to FIG. 6 , spacers 350 are formed on sidewalls of the trenches 340 . In some embodiments, a spacer material is firstly formed on the top surface and side surfaces of the semiconductor structure 10 as shown in FIG. 5 . In some embodiments, the spacer 350 is a multilayer structure and includes a first nitride layer 352 , an oxide layer 354 , and a second nitride layer 356 , wherein the first nitride layer 352 is directly formed on the surface of the trench 340 Above, the oxide layer 354 is sandwiched between the first nitride layer 352 and the second nitride layer 356 . Surfaces of the first insulating layer 310 , the second insulating layer 320 , the conductive layer 362 , the third oxide layer 113 and the third polysilicon layer 103 are protected by spacers 350 .

當第一絕緣層310、第二絕緣層320、導體層362、第三氧化物層113與第三多晶矽層103的表面被間隔件350所保護之後,執行再一蝕刻製程以再一次地加深溝槽340。此蝕刻製程移除了間隔件350的底部以及部分的第二氧化物層112與第二多晶矽層102,並止於第二多晶矽層102。溝槽340不會穿透第二多晶矽層102。 After the surfaces of the first insulating layer 310, the second insulating layer 320, the conductor layer 362, the third oxide layer 113 and the third polysilicon layer 103 are protected by the spacer 350, another etching process is performed to again Groove 340 is deepened. This etching process removes the bottom of the spacer 350 and part of the second oxide layer 112 and the second polysilicon layer 102 , and stops at the second polysilicon layer 102 . The trench 340 does not penetrate the second polysilicon layer 102 .

參照第7圖,第二多晶矽層102(見第6圖)透過濕式蝕刻被移除。第二多晶矽層102亦可被視為犧牲層。在第二多晶矽層102被移除之後,空腔344會形成在第一氧化物層111與第二氧化物層112之間。而位於第一氧化物層111以及第二氧化物層112之間的該部分的垂直通道結構330則會暴露於空腔344。 Referring to FIG. 7, the second polysilicon layer 102 (see FIG. 6) is removed by wet etching. The second polysilicon layer 102 can also be regarded as a sacrificial layer. After the second polysilicon layer 102 is removed, a cavity 344 is formed between the first oxide layer 111 and the second oxide layer 112 . The portion of the vertical channel structure 330 between the first oxide layer 111 and the second oxide layer 112 is exposed to the cavity 344 .

參照第8圖,執行一連串的蝕刻製程,以移除暴露的該部分的垂直通道結構330的該部分的儲存層332。舉例而言,第一蝕刻劑,其對氧化物的蝕刻速率大於氮化物的蝕刻速率,以及第二蝕刻劑,其對氮化物的蝕刻速率大於氧化物的蝕刻速率,可使用來移除暴露的該部分的儲存層332,其中儲存層332為氧化物-氮化物-氧化物層。而在移除暴露的該部分的儲存層332(即氧化物-氮化物-氧化物層)的同時,間隔件350的氧化物層354以及第二氮化物層356(見第7圖)以及第一氧化物層111和第二氧化物層112(見第7圖)也會在過程中一併被移除。因此,空腔344在經過上述移除步驟之後會被擴大。間隔件350的第一氮化物層352則是仍然保留在溝槽340的側壁上。 Referring to FIG. 8 , a series of etching processes are performed to remove the exposed portion of the storage layer 332 of the vertical channel structure 330 . For example, a first etchant, which etches oxide at a rate greater than nitride, and a second etchant, which etch nitride at a rate greater than oxide, can be used to remove exposed The part of the storage layer 332, wherein the storage layer 332 is an oxide-nitride-oxide layer. While removing the exposed portion of the storage layer 332 (ie, the oxide-nitride-oxide layer), the oxide layer 354 and the second nitride layer 356 (see FIG. 7 ) and the first nitride layer 356 of the spacer 350 The first oxide layer 111 and the second oxide layer 112 (see FIG. 7 ) are also removed during the process. Therefore, the cavity 344 is enlarged after the removal step described above. The first nitride layer 352 of the spacer 350 still remains on the sidewall of the trench 340 .

於一些實施例中,不僅僅是暴露的該部分的儲存層332被移除,儲存層332被第一多晶矽層101與第三多晶矽層103所覆蓋的該部分的端點也會對應地在將暴露的該部分的儲存層332移除之後被凹陷。於一些實施例中,儲存層332包含有上部區段332U以及下部區段332L,其中上部區段332U和下部區段332L被空腔344所分隔開來。 In some embodiments, not only the exposed portion of the storage layer 332 is removed, but also the end of the portion of the storage layer 332 covered by the first polysilicon layer 101 and the third polysilicon layer 103 is removed. Correspondingly, the exposed portion of the storage layer 332 is recessed after removal. In some embodiments, the storage layer 332 includes an upper section 332U and a lower section 332L, wherein the upper section 332U and the lower section 332L are separated by a cavity 344 .

於一些實施例中,儲存層332的下部區段332L的上表面比第一多晶矽層101的最頂表面低。於一些實施例中,儲存層332的上部區段332U的下表面比第三多晶矽層103的最底表面高且高於第三氧化物層113的底表面。於一些實施例中,第三多晶矽層103鄰接於儲存層332的 一部分亦在移除暴露的該部分的儲存層332被一併移除。 In some embodiments, the upper surface of the lower section 332L of the storage layer 332 is lower than the topmost surface of the first polysilicon layer 101 . In some embodiments, the lower surface of the upper section 332U of the storage layer 332 is higher than the bottommost surface of the third polysilicon layer 103 and higher than the bottom surface of the third oxide layer 113 . In some embodiments, the third polysilicon layer 103 is adjacent to the storage layer 332 A part is also removed when removing the exposed part of the storage layer 332 .

參照第9圖,額外的多晶矽材料105在空腔344(見第8圖)中磊晶成長並回填空腔344。多晶矽材料105可以為摻雜有N型摻雜物,如磷或砷。殘留的第三多晶矽層103、多晶矽材料105以及第一多晶矽層101的組合被合稱為N型摻雜多晶矽層106。N型摻雜多晶矽層106的厚度約為2200Å。N型摻雜多晶矽層106以及導體層362之間被第三氧化物層113所隔開。換言之,第三氧化物層113作為N型摻雜多晶矽層106與導體層362之間的隔離層。 Referring to FIG. 9 , additional polysilicon material 105 is epitaxially grown in cavity 344 (see FIG. 8 ) and backfills cavity 344 . The polysilicon material 105 can be doped with N-type dopants, such as phosphorus or arsenic. The combination of the remaining third polysilicon layer 103 , the polysilicon material 105 and the first polysilicon layer 101 is collectively called the N-type doped polysilicon layer 106 . The thickness of the N-type doped polysilicon layer 106 is about 2200Å. The N-type doped polysilicon layer 106 and the conductive layer 362 are separated by the third oxide layer 113 . In other words, the third oxide layer 113 acts as an isolation layer between the N-type doped polysilicon layer 106 and the conductive layer 362 .

在N型摻雜多晶矽層106形成之後,執行蝕刻製程以移除部分的N型摻雜多晶矽層106進而加深溝槽340。於一些實施例中,溝槽340的底部位於儲存層332的上部區段332U和下部區段332L之間。介於儲存層332的上部區段332U和下部區段332L之間的該部分通道層334直接接觸N型摻雜多晶矽層106。 After the N-type doped polysilicon layer 106 is formed, an etching process is performed to remove part of the N-type doped polysilicon layer 106 to deepen the trench 340 . In some embodiments, the bottom of the trench 340 is located between the upper section 332U and the lower section 332L of the storage layer 332 . The portion of the channel layer 334 between the upper section 332U and the lower section 332L of the storage layer 332 directly contacts the N-type doped polysilicon layer 106 .

參照第10圖,間隔件350的第一氮化物層352(見第9圖)被移除,使得堆疊的第一絕緣層310、第二絕緣層320、導體層362、以及N型摻雜多晶矽層106的側壁暴露於溝槽340。 Referring to FIG. 10, the first nitride layer 352 (see FIG. 9) of the spacer 350 is removed, so that the stacked first insulating layer 310, second insulating layer 320, conductor layer 362, and N-type doped polysilicon Sidewalls of layer 106 are exposed to trench 340 .

參照第11圖,執行氧化製程,如熱氧化製程,以將N型摻雜多晶矽層106的表面轉化為氧化矽,而在N型摻雜多晶矽層106的側壁上形成第四氧化物層114。於一些實施例中,第四氧化物層114具有U形的剖面形狀, 且第四氧化物層114與第三氧化物層113相連。 Referring to FIG. 11 , an oxidation process, such as a thermal oxidation process, is performed to convert the surface of the N-type doped polysilicon layer 106 into silicon oxide, and a fourth oxide layer 114 is formed on the sidewall of the N-type doped polysilicon layer 106 . In some embodiments, the fourth oxide layer 114 has a U-shaped cross-section, And the fourth oxide layer 114 is connected to the third oxide layer 113 .

參照第12圖,執行蝕刻製程以移除第二絕緣層320(見第11圖)。更具體地說,第二絕緣層320為氮化矽層,蝕刻製程是選用氮化物蝕刻速率大於氧化物蝕刻速率的蝕刻劑進行蝕刻,讓氧化矽層的第一絕緣層310在第二絕緣層320被移除之後保留下來。部分的垂直通道結構330會暴露在第一絕緣層310之間。由於N型摻雜多晶矽層106的側壁被第四氧化物層114與第三氧化物層113所覆蓋,因此,N型摻雜多晶矽層106可以免於在此蝕刻製程中遭受傷害。 Referring to FIG. 12, an etching process is performed to remove the second insulating layer 320 (see FIG. 11). More specifically, the second insulating layer 320 is a silicon nitride layer, and the etching process is to select an etchant whose etching rate of nitride is higher than that of oxide, so that the first insulating layer 310 of the silicon oxide layer is formed on the second insulating layer. 320 remained after it was removed. Part of the vertical channel structure 330 is exposed between the first insulating layers 310 . Since the sidewalls of the N-type doped polysilicon layer 106 are covered by the fourth oxide layer 114 and the third oxide layer 113 , the N-type doped polysilicon layer 106 can be protected from damage during the etching process.

參照第13圖,多個閘極結構360形成在第一絕緣層310之間並鄰接垂直通道結構330。每個閘極結構360包含有導電材料,如鎢的填充金屬。 Referring to FIG. 13 , a plurality of gate structures 360 are formed between the first insulating layers 310 and adjacent to the vertical channel structures 330 . Each gate structure 360 includes a fill metal of conductive material, such as tungsten.

於一些實施例中,在半導體結構10的頂部的一或多個閘極結構360作為半導體結構10的串列選擇線(string select line,SSL),在半導體結構10的底部的一或多個閘極結構360以及導體層362共同作為半導體結構10的接地選擇線(ground select line,GSL),而其餘的閘極結構360則是作為半導體結構10的字元線(word line,WL)。閘極結構360與導體層362分別圍繞垂直通道結構330設置。因此,陣列區塊300中的單元可以被稱作閘極環繞(gate-all-around,GAA)記憶體單元。 In some embodiments, one or more gate structures 360 on the top of the semiconductor structure 10 serve as string select lines (SSL) for the semiconductor structure 10 , and one or more gate structures 360 on the bottom of the semiconductor structure 10 The gate structure 360 and the conductor layer 362 together serve as a ground select line (GSL) of the semiconductor structure 10 , while the remaining gate structures 360 serve as word lines (WL) of the semiconductor structure 10 . The gate structure 360 and the conductor layer 362 are respectively disposed around the vertical channel structure 330 . Therefore, the cells in the array block 300 may be referred to as gate-all-around (GAA) memory cells.

於一些實施例中,導體層362的厚度T1大於每 個閘極結構360的厚度T2。於一些實施例中,導體層362的厚度T1約為1000Å,每個閘極結構360的厚度T2約為300Å。於一些實施例中,導體層362的厚度T1與每個閘極結構360的厚度T2之間的比值約為3到4。於一些實施例中,導體層362的厚度T1小於N型摻雜多晶矽層106的厚度T3。 In some embodiments, the thickness T1 of the conductor layer 362 is greater than each Thickness T2 of each gate structure 360 . In some embodiments, the thickness T1 of the conductive layer 362 is about 1000 Å, and the thickness T2 of each gate structure 360 is about 300 Å. In some embodiments, the ratio between the thickness T1 of the conductive layer 362 and the thickness T2 of each gate structure 360 is about 3-4. In some embodiments, the thickness T1 of the conductive layer 362 is smaller than the thickness T3 of the N-type doped polysilicon layer 106 .

在閘極結構360與導體層362形成之後,執行回蝕刻製程以凹陷閘極結構360與導體層362,使得閘極結構360與導體層362的側壁從第一絕緣層310的側壁凹入。於一些實施例中,閘極結構360與導體層362的側壁從第一絕緣層310的側壁凹入的深度可以不同。閘極結構360與導體層362的側壁在經過回蝕刻製程之後,可以為平面、凸面,或是凹面。 After the gate structure 360 and the conductive layer 362 are formed, an etch-back process is performed to recess the gate structure 360 and the conductive layer 362 so that the sidewalls of the gate structure 360 and the conductive layer 362 are recessed from the sidewalls of the first insulating layer 310 . In some embodiments, the recess depths of the sidewalls of the gate structure 360 and the conductive layer 362 from the sidewalls of the first insulating layer 310 may be different. The sidewalls of the gate structure 360 and the conductive layer 362 can be flat, convex, or concave after the etch-back process.

參照第14圖,額外的氧化物材料沉積在閘極結構360、第一絕緣層310以及第四氧化物層114(見第13圖)的側壁上。接著,進行一蝕刻製程以移除部分的氧化物材料與第四氧化物層114的底部部分,以打開第四氧化物層114。如此一來,便可形成圍繞溝槽340(見第11圖)的絕緣間隔件370,並且使得N型摻雜多晶矽層106從打開的第四氧化物層114顯露出來。 Referring to FIG. 14, additional oxide material is deposited on the sidewalls of the gate structure 360, the first insulating layer 310, and the fourth oxide layer 114 (see FIG. 13). Next, an etching process is performed to remove part of the oxide material and the bottom portion of the fourth oxide layer 114 to open the fourth oxide layer 114 . In this way, an insulating spacer 370 is formed surrounding the trench 340 (see FIG. 11 ), and the N-type doped polysilicon layer 106 is exposed from the opened fourth oxide layer 114 .

接著,執行沉積製程以在溝槽340中形成填充溝槽340且被絕緣間隔件370所圍繞的共用源極線(common source line,CSL)372。絕緣間隔件370的底表面低於N型摻雜多晶矽層106的上表面。於一些實 施例中,共用源極線372可以為多晶矽並摻雜有N型摻雜物,如磷或砷。於另一些實施例中,共用源極線372可以為導體,如鎢。共用源極線372從N型摻雜多晶矽層106向上沉積,其中N型摻雜多晶矽層106作為半導體結構10的共用源極面(common source plane)。接著,形成金屬栓塞374連接共用源極線372。 Next, a deposition process is performed to form a common source line (CSL) 372 in the trench 340 that fills the trench 340 and is surrounded by insulating spacers 370 . The bottom surface of the insulating spacer 370 is lower than the upper surface of the N-type doped polysilicon layer 106 . in some real In an embodiment, the common source line 372 may be polysilicon doped with N-type dopants, such as phosphorus or arsenic. In other embodiments, the common source line 372 can be a conductor such as tungsten. The common source line 372 is deposited upward from the N-type doped polysilicon layer 106 , wherein the N-type doped polysilicon layer 106 serves as a common source plane of the semiconductor structure 10 . Next, a metal plug 374 is formed to connect to the common source line 372 .

參照第15圖,其為第14圖的半導體結構10中的區域A的放大圖。於一些實施例中,第三氧化物層113具有圍繞儲存層332之上部區段332U的第一部分113a以及連接第一部分113a的第二部分113b。第一部分113a的厚度T4小於第二部分113b的厚度T5。第三氧化物層113的第一部分113a的底表面實質上齊平於儲存層332之上部區段332U的底表面。於一些實施例中,第三氧化物層113的第一部分113a的底表面以及儲存層332之上部區段332U的底表面可以為平面、凹面、或是凸面。於一些實施例中,導體層362相較於閘極結構360更接近共用源極線372。亦即,導體層362的側壁與共用源極線372之間的距離d1小於閘極結構360的側壁與共用源極線372之間的距離d2。 Referring to FIG. 15 , it is an enlarged view of region A in the semiconductor structure 10 of FIG. 14 . In some embodiments, the third oxide layer 113 has a first portion 113a surrounding the upper section 332U of the storage layer 332 and a second portion 113b connected to the first portion 113a. The thickness T4 of the first portion 113a is smaller than the thickness T5 of the second portion 113b. The bottom surface of the first portion 113 a of the third oxide layer 113 is substantially flush with the bottom surface of the upper section 332U of the storage layer 332 . In some embodiments, the bottom surface of the first portion 113a of the third oxide layer 113 and the bottom surface of the upper section 332U of the storage layer 332 may be flat, concave, or convex. In some embodiments, the conductive layer 362 is closer to the common source line 372 than the gate structure 360 . That is, the distance d1 between the sidewall of the conductive layer 362 and the common source line 372 is smaller than the distance d2 between the sidewall of the gate structure 360 and the common source line 372 .

請同時參照第14圖與第15圖,製作完成的半導體結構10可作為具有多個記憶體單元的半導體裝置。至少一個位在半導體結構10底部的閘極結構360以及導體層362共同作為半導體結構10的接地選擇線(ground select line,GSL)。N型摻雜多晶矽層106作為半導 體結構10的共用源極面(common source plane)。N型摻雜多晶矽層106和接地選擇線GSL(即N型摻雜多晶矽層106和導體層362)之間的距離極短。於一些實施例中,導體層362和N型摻雜多晶矽層106之間的距離為第三氧化物層113的第一部分113a的厚度T4,其約只有300Å。因此,擴散N型摻雜多晶矽層106中的N型摻雜物所需要的熱預算(thermal budget)也相應地減少。除此之外,使用導體層362作為接地選擇線GSL的最底層導電層,相較於不具有最底層導電層的情況,使用導體層362作為接地選擇線GSL的最底層導電層可以提升記憶體單元的抹除速度以及減少漏電流。 Please refer to FIG. 14 and FIG. 15 at the same time, the fabricated semiconductor structure 10 can be used as a semiconductor device having a plurality of memory cells. At least one gate structure 360 located at the bottom of the semiconductor structure 10 and the conductive layer 362 together serve as a ground select line (GSL) of the semiconductor structure 10 . N-type doped polysilicon layer 106 as a semiconductor The common source plane of the bulk structure 10 . The distance between the N-type doped polysilicon layer 106 and the ground selection line GSL (that is, the N-type doped polysilicon layer 106 and the conductive layer 362 ) is extremely short. In some embodiments, the distance between the conductive layer 362 and the N-type doped polysilicon layer 106 is the thickness T4 of the first portion 113 a of the third oxide layer 113 , which is only about 300 Å. Therefore, the thermal budget required to diffuse the N-type dopant in the N-type doped polysilicon layer 106 is correspondingly reduced. In addition, using the conductive layer 362 as the bottom conductive layer of the ground selection line GSL, compared with the case without the bottom conductive layer, using the conductive layer 362 as the bottom conductive layer of the ground selection line GSL can improve memory performance. Erase speed of cells and reduce leakage current.

雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露,任何熟習此技藝者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 Although this disclosure has been disclosed as above with the embodiment, it is not intended to limit this disclosure. Anyone who is familiar with this technology can make various changes and modifications without departing from the spirit and scope of this disclosure. Therefore, the protection of this disclosure The scope shall be defined by the appended patent application scope.

10:半導體結構 10:Semiconductor structure

100:基材 100: Substrate

101:第一多晶矽層 101: the first polysilicon layer

102:第二多晶矽層 102: the second polysilicon layer

103:第三多晶矽層 103: the third polysilicon layer

104:第四多晶矽層 104: the fourth polysilicon layer

105:多晶矽材料 105: Polysilicon material

106:N型摻雜多晶矽層 106: N-type doped polysilicon layer

111:第一氧化物層 111: the first oxide layer

112:第二氧化物層 112: second oxide layer

113:第三氧化物層 113: The third oxide layer

113a:第一部分 113a: Part I

113b:第二部分 113b: Part II

114:第四氧化物層 114: the fourth oxide layer

200:周邊區塊 200: Surrounding blocks

210:互補式金氧半導體元件 210: Complementary metal oxide semiconductor element

300:陣列區塊 300: array block

310:第一絕緣層 310: the first insulating layer

320:第二絕緣層 320: second insulating layer

330:垂直通道結構 330: Vertical channel structure

332:儲存層 332: storage layer

332U:上部區段 332U: upper section

332L:下部區段 332L: Lower section

334:通道層 334: channel layer

336:隔離柱 336: isolation column

338:導電栓塞 338: Conductive embolism

340:溝槽 340: Groove

342,344:空腔 342,344: cavities

350:間隔件 350: spacer

352:第一氮化物層 352: the first nitride layer

354:氧化物層 354: oxide layer

356:第二氮化物層 356: Second nitride layer

360:閘極結構 360:Gate structure

362:導體層 362: conductor layer

370:絕緣間隔件 370: insulating spacer

372:共用源極線 372: Shared source line

374:金屬栓塞 374: metal plug

d1,d2:距離 d1, d2: distance

T1,T2,T3,T4,T5:厚度 T1, T2, T3, T4, T5: Thickness

A:區域 A: area

為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之詳細說明如下: 第1圖至第14圖分別為根據本揭露的製作半導體裝置的方法的一些實施例於不同製作階段的剖面圖。 第15圖為第14圖中之半導體結構的區域A的放大圖。 In order to make the above and other purposes, features, advantages and embodiments of the present disclosure more comprehensible, the detailed description of the accompanying drawings is as follows: FIG. 1 to FIG. 14 are cross-sectional views of some embodiments of the method for manufacturing a semiconductor device according to the present disclosure at different manufacturing stages. FIG. 15 is an enlarged view of region A of the semiconductor structure in FIG. 14 .

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic deposit information (please note in order of depositor, date, and number) none Overseas storage information (please note in order of storage country, institution, date, and number) none

10:半導體結構 10:Semiconductor structure

100:基材 100: Substrate

106:N型摻雜多晶矽層 106: N-type doped polysilicon layer

200:周邊區塊 200: Surrounding blocks

300:陣列區塊 300: array block

310:第一絕緣層 310: the first insulating layer

360:閘極結構 360:Gate structure

362:導體層 362: conductor layer

370:絕緣間隔件 370: insulating spacer

372:共用源極線 372: Shared source line

374:金屬栓塞 374: metal plug

A:區域 A: area

Claims (10)

一種半導體裝置,包含: 一周邊區塊,包含複數個互補式金氧半導體元件; 一基材,設置在該周邊區塊上,該基材包含: 一N型摻雜多晶矽層,設置在該周邊區塊上; 一氧化物層,設置在該N型摻雜多晶矽層上;以及 一導體層,設置在該氧化物層上;以及 一陣列區塊,設置在該基材上,該陣列區塊包含: 交替堆疊的複數個閘極結構與複數個絕緣層,設置在該導體層上,其中該些閘極結構中的最底層的一個與該導體層一起作為該半導體裝置的接地選擇線,其中該導體層的厚度與各該閘極結構的厚度的比值約為3至4;以及 一垂直通道結構,穿過該些閘極結構與該些絕緣層,且延伸進入該N型摻雜多晶矽層。 A semiconductor device comprising: a peripheral block, including a plurality of complementary metal oxide semiconductor devices; A base material is disposed on the peripheral block, the base material includes: an N-type doped polysilicon layer disposed on the peripheral block; an oxide layer disposed on the N-type doped polysilicon layer; and a conductive layer disposed on the oxide layer; and An array block is arranged on the substrate, and the array block includes: A plurality of gate structures and a plurality of insulating layers stacked alternately are arranged on the conductor layer, wherein the lowest one of the gate structures and the conductor layer serve as a ground selection line of the semiconductor device, wherein the conductor the ratio of the thickness of the layer to the thickness of each of the gate structures is about 3 to 4; and A vertical channel structure passes through the gate structures and the insulating layers, and extends into the N-type doped polysilicon layer. 如請求項1所述之半導體裝置,其中該垂直通道結構的一通道層的一部分接觸該N型摻雜多晶矽層。The semiconductor device according to claim 1, wherein a part of a channel layer of the vertical channel structure contacts the N-type doped polysilicon layer. 如請求項2所述之半導體裝置,其中該垂直通道結構的一儲存層包含圍繞該通道層的頂端的一上部區段與圍繞該通道層的底端的一下部區段,且該垂直通道結構的該通道層的該部分介於該上部區段與該下部區段之間。The semiconductor device as claimed in claim 2, wherein a storage layer of the vertical channel structure includes an upper section surrounding the top of the channel layer and a lower section surrounding the bottom of the channel layer, and the vertical channel structure The portion of the channel layer is between the upper section and the lower section. 如請求項3所述之半導體裝置,其中該氧化物層包含鄰接該儲存層的該上部區段的一第一部分以及連接該第一部分的一第二部分,其中該第一部分的厚度小於該第二部分的厚度。The semiconductor device as claimed in claim 3, wherein the oxide layer includes a first portion adjacent to the upper section of the storage layer and a second portion connected to the first portion, wherein the thickness of the first portion is smaller than that of the second portion part thickness. 如請求項1所述之半導體裝置,更包含: 一共用源極線,穿過該陣列區塊,且延伸進入該基材,其中該導體層與該共用源極線之間的距離小於該些閘極結構與該共用源極線之間的距離。 The semiconductor device described in claim 1 further includes: a common source line passing through the array block and extending into the substrate, wherein the distance between the conductor layer and the common source line is smaller than the distance between the gate structures and the common source line . 一種製作半導體裝置的方法,包含: 提供一結構,該結構包含: 一周邊區塊,包含複數個互補式金氧半導體元件; 一基材,設置在該周邊區塊上,該基材包含: 一第一多晶矽層,設置在該周邊區塊上; 一第一氧化物層,設置在該第一多晶矽層上; 一第二多晶矽層,設置在該第一氧化物層上; 一第二氧化物層,設置在該第二多晶矽層上; 一第三多晶矽層,設置在該第二氧化物層上; 一第三氧化物層,設置在該第三多晶矽層上;以及 一第四多晶矽層,設置在該第三氧化物層上;以及 一陣列區塊,設置在該基材上,該陣列區塊包含: 交替堆疊的複數個第一絕緣層與複數個第二絕緣層,設置在該第四多晶矽層上;以及 一垂直通道結構,穿過該些第一絕緣層與該些第二絕緣層,且延伸進入該第一多晶矽層; 移除該第四多晶矽層,以在該第三氧化物層和該些第一絕緣層中最底層的一者之間形成一第一空腔;以及 以一導體層填充該第一空腔。 A method of fabricating a semiconductor device, comprising: Provide a structure that contains: a peripheral block, including a plurality of complementary metal oxide semiconductor devices; A base material is disposed on the peripheral block, the base material includes: a first polysilicon layer disposed on the peripheral block; a first oxide layer disposed on the first polysilicon layer; a second polysilicon layer disposed on the first oxide layer; a second oxide layer disposed on the second polysilicon layer; a third polysilicon layer disposed on the second oxide layer; a third oxide layer disposed on the third polysilicon layer; and a fourth polysilicon layer disposed on the third oxide layer; and An array block is arranged on the substrate, and the array block includes: A plurality of first insulating layers and a plurality of second insulating layers stacked alternately are disposed on the fourth polysilicon layer; and a vertical channel structure passing through the first insulating layers and the second insulating layers and extending into the first polysilicon layer; removing the fourth polysilicon layer to form a first cavity between the third oxide layer and a lowermost one of the first insulating layers; and The first cavity is filled with a conductor layer. 如請求項6所述之方法,其中移除該第四多晶矽層包含: 在該結構中形成一溝槽以暴露該第四多晶矽層;以及 蝕刻該第四多晶矽層。 The method according to claim 6, wherein removing the fourth polysilicon layer comprises: forming a trench in the structure to expose the fourth polysilicon layer; and Etching the fourth polysilicon layer. 如請求項7所述之方法,更包含: 加深該溝槽以暴露該第二氧化物層; 在加深該溝槽之後,形成一間隔物於該溝槽的側壁; 再次加深該溝槽以暴露該第二多晶矽層; 移除該第二多晶矽層;以及 移除該第一氧化物層和該第二氧化物層。 The method as described in claim item 7 further includes: deepening the trench to expose the second oxide layer; After deepening the trench, forming a spacer on the sidewall of the trench; deepening the trench again to expose the second polysilicon layer; removing the second polysilicon layer; and The first oxide layer and the second oxide layer are removed. 如請求項8所述之方法,其中移除該第一氧化物層和該第二氧化物層更包含: 移除該垂直通道結構的一儲存層的一部分以及該間隔件的一部分,使得一第二空腔形成在該第一多晶矽層和該第三多晶矽層之間。 The method of claim 8, wherein removing the first oxide layer and the second oxide layer further comprises: A portion of a storage layer of the vertical channel structure and a portion of the spacer are removed such that a second cavity is formed between the first polysilicon layer and the third polysilicon layer. 如請求項9所述之方法,更包含: 以一N型摻雜多晶矽填充該第二空腔。 The method as described in claim item 9 further includes: The second cavity is filled with an N-type doped polysilicon.
TW110142636A 2021-11-16 2021-11-16 Semiconductor device and manufacturing method thereof TWI796001B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110142636A TWI796001B (en) 2021-11-16 2021-11-16 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110142636A TWI796001B (en) 2021-11-16 2021-11-16 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI796001B true TWI796001B (en) 2023-03-11
TW202322395A TW202322395A (en) 2023-06-01

Family

ID=86692176

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110142636A TWI796001B (en) 2021-11-16 2021-11-16 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI796001B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210202247A1 (en) * 2018-06-27 2021-07-01 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of Reducing Gate Spacer Loss During Semiconductor Manufacturing
US20210272955A1 (en) * 2020-02-27 2021-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing semiconductor devices and semiconductor devices
US20210343705A1 (en) * 2016-11-29 2021-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210343705A1 (en) * 2016-11-29 2021-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and manufacturing method thereof
US20210202247A1 (en) * 2018-06-27 2021-07-01 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of Reducing Gate Spacer Loss During Semiconductor Manufacturing
US20210272955A1 (en) * 2020-02-27 2021-09-02 Taiwan Semiconductor Manufacturing Co., Ltd. Method of manufacturing semiconductor devices and semiconductor devices

Also Published As

Publication number Publication date
TW202322395A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US10141328B2 (en) Three dimensional memory device and method for fabricating the same
US9117923B2 (en) Three-dimensional semiconductor memory device and a method of fabricating the same
KR100855990B1 (en) Non-volatile memory device and method of fabricating the same
US20230067443A1 (en) Semiconductor device
US11348941B2 (en) Memory device and method of fabricating the same
US11342415B2 (en) Semiconductor devices and method of manufacturing the same
TW202201744A (en) Memory device and method of manufacturing the same
US11476276B2 (en) Semiconductor device and method for fabricating the same
US11417675B2 (en) Three-dimensional semiconductor memory devices
KR100807221B1 (en) Non-volatile memory device and Method of manufacturing the same
CN113394197A (en) Semiconductor device with a plurality of transistors
TWI796001B (en) Semiconductor device and manufacturing method thereof
TWI780950B (en) Semiconductor device and manufacturing method thereof
TWI647819B (en) Three dimensional memory device and method for fabricating the same
TW202017113A (en) Three dimensional memory device and method for fabricating the same
WO2023102964A1 (en) Memory device and manufacturing method therefor
TWI844824B (en) Semiconductor structure and method of fabricating the same
US20230157016A1 (en) Semiconductor device and method of fabricating the same
US20230118976A1 (en) Semiconductor device and method of fabricating the same
US8148243B2 (en) Zero capacitor RAM with reliable drain voltage application and method for manufacturing the same
TW202335261A (en) Semiconductor structure and method of fabricating the same
US20230269938A1 (en) Semiconductor structure and method of fabricating the same
KR101069415B1 (en) Stacked Noah Flash Memory Array and Manufacturing Method Thereof
TWI787096B (en) Semiconductor structure
TWI753670B (en) Semiconductor device