TWI795151B - 電磁波反射結構 - Google Patents
電磁波反射結構 Download PDFInfo
- Publication number
- TWI795151B TWI795151B TW110149202A TW110149202A TWI795151B TW I795151 B TWI795151 B TW I795151B TW 110149202 A TW110149202 A TW 110149202A TW 110149202 A TW110149202 A TW 110149202A TW I795151 B TWI795151 B TW I795151B
- Authority
- TW
- Taiwan
- Prior art keywords
- substrate
- wires
- electrodes
- electromagnetic wave
- antenna
- Prior art date
Links
Images
Landscapes
- Aerials With Secondary Devices (AREA)
Abstract
一種電磁波反射結構包括第一基板、第二基板、多條第一導線、多條第二導線、多個天線電極、多個調變電極及液晶層。這些第一導線沿著第一方向排列於第一基板上。這些第二導線沿著第二方向排列於第二基板上。這些天線電極分別沿著第一方向在第一基板上排成多個第一電極串。這些第一電極串分別電性連接這些第一導線。這些調變電極完全覆蓋這些天線電極在第二基板上的正投影。這些調變電極分別沿著第一方向在第二基板上排成多個第二電極串。這些第二電極串分別電性連接這些第二導線。液晶層設置在第一基板與第二基板之間。
Description
本發明是有關於一種電磁波反射結構,且特別是有關於一種電磁波收發方向及共振頻率可調的電磁波反射結構。
在行動通訊領域中,如何降低電磁波在傳輸路徑中的能量損耗一直是個重要的課題。隨著電磁波的使用頻率不斷地提高,其在遭遇障礙物(例如水泥牆、樹木、家具、招牌等)時所產生的能量損耗也會越嚴重。也因此,容易在應用空間中產生通訊的死角、暗區,或者訊號微弱的區域。
雖然可以透過增設基地台或強波器來改善,但無論是在建置、使用能耗或後續的硬體維護上的費用都相當可觀。為了解決上述的問題,一種反射式天線陣列被廣泛地應用來增加電磁波訊號的覆蓋率。然而,這類反射式天線陣列的電磁波收發方向因其天線尺寸是固定的而無法根據架設環境的狀況作調整,造成使用上的不便。
本發明提供一種電磁波反射結構,其具有電磁波收發方向和共振頻率的可調性。
本發明的電磁波反射結構,包括第一基板、第二基板、多條第一導線、多條第二導線、多個天線電極、多個調變電極以及液晶層。第二基板與第一基板對向設置。這些第一導線沿著第一方向排列於第一基板上,並且延伸於第二方向上。第一方向與第二方向相交。這些第二導線沿著第二方向排列於第二基板上,並且延伸於第一方向上。這些天線電極設置在第一基板上,並且分別沿著第一方向排成多個第一電極串。這些第一電極串分別電性連接這些第一導線。這些調變電極設置在第二基板上,且分別重疊並完全覆蓋這些天線電極在第二基板上的正投影。這些調變電極分別沿著第一方向排成多個第二電極串,且這些第二電極串分別電性連接這些第二導線。液晶層設置在第一基板與第二基板之間。
在本發明的一實施例中,上述的電磁波反射結構的多條第一導線電性連接第一電壓源而具有第一電壓。多條第二導線電性連接第二電壓源而具有第二電壓。
在本發明的一實施例中,上述的電磁波反射結構的第一導線具有位在多個天線電極之間的多個第一電阻器,且這些第一電阻器各自電性連接第一電極串中的任兩個天線電極。
在本發明的一實施例中,上述的電磁波反射結構的第二導線具有位在多個天線電極之間的多個第二電阻器,且這些第二電阻器各自電性連接第二電極串中的任兩個調變電極。
在本發明的一實施例中,上述的電磁波反射結構的多條第一導線或多條第二導線分別具有不同的電壓。
在本發明的一實施例中,上述的電磁波反射結構的多條第一導線電性連接第一數位類比轉換器陣列而分別具有不同的電壓,多條第二導線電性連接第二數位類比轉換器陣列而分別具有不同的電壓。
在本發明的一實施例中,上述的電磁波反射結構的多條第一導線各自的電壓由這些第一導線在第一方向上的一側往另一側漸增或漸減,多條第二導線各自的電壓由這些第二導線在第二方向上的一側往另一側漸增或漸減。
在本發明的一實施例中,上述的電磁波反射結構的多個天線電極各自沿著第一方向和第二方向分別具有第一寬度和第二寬度。各個天線電極的第一寬度都相同,且各個天線電極的第二寬度都相同。
在本發明的一實施例中,上述的電磁波反射結構的多個天線電極各自沿著第三方向的寬度由這些天線電極在第三方向上的一側往另一側漸增或漸減。
在本發明的一實施例中,上述的電磁波反射結構的第三方向平行於第一方向和第二方向的其中一者。
在本發明的一實施例中,上述的電磁波反射結構的多個天線電極各自沿著第四方向的寬度由這些天線電極在第四方向上的一側往另一側漸增或漸減,且第四方向不平行於第一方向和第二方向。
在本發明的一實施例中,上述的電磁波反射結構的多個調變電極各自沿著第三方向的寬度都相同。
在本發明的一實施例中,上述的電磁波反射結構的多個調變電極各自具有平行於第二基板的底部以及彎折地延伸自底部的側壁部。液晶層區分為彼此分離的多個部分,且各個調變電極的側壁部圍繞液晶層的一部分和一個天線電極。
在本發明的一實施例中,上述的電磁波反射結構的各個天線電極包括至少一導體貼片,且至少一導體貼片在第一基板上的正投影輪廓係圓形、矩形、圓環形、凹字形或L字形。
在本發明的一實施例中,上述的電磁波反射結構的各個天線電極於第二基板上的正投影完全被一個調變電極於第二基板上的正投影所覆蓋。
在本發明的一實施例中,上述的電磁波反射結構更包括至少一配向層,設置在第一基板與第二基板的至少一者與液晶層之間。
在本發明的一實施例中,上述的電磁波反射結構的至少一配向層為對應多個調變電極設置的多個配向圖案,且各個配向圖案與各個調變電極在第一基板上的正投影輪廓都相同。
在本發明的一實施例中,上述的電磁波反射結構的各個配向圖案的配向方向呈輻射狀或同心圓狀。
基於上述,在本發明的一實施例的電磁波反射結構中,陣列排列的多個天線結構各自具有天線電極、調變電極以及位在這兩電極之間的液晶層。透過調整液晶層在這些天線結構的有效介電常數的分布,可改變電磁波經由這些天線結構反射後的輻射場型或電磁波的反射效率。
本文使用的「約」、「近似」、「本質上」、或「實質上」包括所述值和在本領域普通技術人員確定的特定值的可接受的偏差範圍內的平均值,考慮到所討論的測量和與測量相關的誤差的特定數量(即,測量系統的限制)。例如,「約」可以表示在所述值的一個或多個標準偏差內,或例如±30%、±20%、±15%、±10%、±5%內。再者,本文使用的「約」、「近似」、「本質上」、或「實質上」可依量測性質、切割性質或其它性質,來選擇較可接受的偏差範圍或標準偏差,而可不用一個標準偏差適用全部性質。
在附圖中,為了清楚起見,放大了層、膜、面板、區域等的厚度。應當理解,當諸如層、膜、區域或基板的元件被稱為在另一元件「上」或「連接到」另一元件時,其可以直接在另一元件上或與另一元件連接,或者中間元件可以也存在。相反,當元件被稱為「直接在另一元件上」或「直接連接到」另一元件時,不存在中間元件。如本文所使用的,「連接」可以指物理及/或電性連接。再者,「電性連接」可為二元件間存在其它元件。
現將詳細地參考本發明的示範性實施方式,示範性實施方式的實例說明於所附圖式中。只要有可能,相同元件符號在圖式和描述中用來表示相同或相似部分。
圖1是本發明的第一實施例的電磁波反射結構的俯視示意圖。圖2A及圖2B分別是圖1的電磁波反射結構沿著剖線A1-A1’和剖線A2-A2’的剖視示意圖。圖3是圖1的電磁波反射結構的部分膜層的分解示意圖。圖4A至圖4F是本發明的另一些變形實施例的天線電極的俯視示意圖。圖5A是圖2A的配向層的配向方向示意圖。圖5B及圖5C是本發明另一些變形實施例的配向層的配向方向示意圖。為清楚呈現起見,圖1省略了圖2A中第一基板SUB1、液晶層LCL、間隔物SP、配向層AL1和配向層AL2的繪示。需說明的是,圖式中所繪示的天線電極110、調變電極120、第一導線WR1和第二導線WR2的數量僅作為示例性地說明之用,並非用以限制本發明。
請參照圖1至圖3,電磁波反射結構10包括第一基板SUB1、第二基板SUB2、多個天線電極110、多個調變電極120多條第一導線WR1和多條第二導線WR2。第一基板SUB1與第二基板SUB2對向設置。天線電極110設置在第一基板SUB1上,且位在第一基板SUB1背離第二基板SUB2的一側。調變電極120設置在第二基板SUB2上,且位在第一基板SUB1與第二基板SUB2之間。
在本實施例中,多個天線電極110可分別沿著方向D1和方向D2排成多行與多列。亦即,這些天線電極110可陣列排列於第一基板SUB1上,並形成一反射式天線陣列。舉例來說,在本實施例中,方向D1可選擇性地垂直於方向D2,但不以此為限。多個調變電極120分別對應這些天線電極110設置。更具體地說,這些調變電極120分別重疊並且完全覆蓋這些天線電極110在第二基板SUB2上的正投影。
在本實施例中,多個天線電極110僅具有單一尺寸,但不以此為限。更具體地說,天線電極110沿著方向D1和方向D2分別具有寬度W1和寬度W2,各個天線電極110的寬度W1都相同,各個天線電極110的寬度W2也都相同。相似地,多個調變電極120也僅具有單一尺寸,且各個調變電極120的尺寸都略大於對應的天線電極110的尺寸,但不以此為限。在其他實施例中,調變電極和天線電極的尺寸也可大致上相同。然而,在另一實施例中,為了降低電磁波反射結構的成本,調變電極和液晶層也可僅針對天線電極的局部區域進行設置。也就是說,調變電極的尺寸也可小於天線電極的尺寸。
第一基板SUB1上還設有多條第一導線WR1。這些第一導線WR1沿著方向D1排列並且延伸於方向D2上。第二基板SUB2上還設有多條第二導線WR2。這些第二導線WR2沿著方向D2排列並且延伸於方向D1上。舉例來說,多個天線電極110可沿著方向D2排成多個電極串110S,且這些電極串110S分別電性連接這些第一導線WR1。多個調變電極120可沿著方向D1排成多個電極串120S,且這些電極串120S分別電性連接這些第二導線WR2。
電磁波反射結構10更包括設置在第一基板SUB1與第二基板SUB2之間的液晶層LCL。舉例來說,第一基板SUB1與第二基板SUB2之間可設有間隔物SP,以間隔出一容置空間來填充液晶層LCL。另一方面,液晶層LCL的至少一側需設有配向層,使其液晶分子在不受電場作用時仍可順著配向層的配向方向排列,以維持其有效光軸的指向性。
在本實施例中,電磁波反射結構10可設有兩個配向層AL1、AL2,配向層AL1設置在第一基板SUB1接觸液晶層LCL的表面上,而配向層AL2設置在第二基板SUB2和多個調變電極120接觸液晶層LCL的表面上,但不以此為限。在另一實施例中,也可根據電磁波反射結構的設計或製程需求(例如液晶層LCL的膜厚)而省略其中一個配向層的設置。舉例來說,在本實施例中,配向層AL1的配向方向AD1可反向地平行(anti-parallel)於配向層AL2的配向方向(如圖5A所示)。因此,在不施加電場的情況下,液晶層LCL的多個液晶分子(未繪示)會沿著配向層的配向方向以大致上平行於兩基板的方式排列。
另一方面,本實施例的配向層可以是整面性地塗佈在基板上的膜層。然而,本發明不限於此。在另一實施例中,配向層也可以是對應多個調變電極或多個天線電極設置的多個配向圖案,且配向圖案與對應的調變電極或天線電極在基板上的正投影輪廓都相同。
先說明的是,沿著方向D3相重疊的天線電極110、調變電極120以及液晶層LCL位在這兩電極間的部分可視為本實施例的一個天線結構,而電磁波在天線電極110上的共振頻率可藉由液晶層LCL的該部分的有效介電常數的改變來調整。
由於液晶材料具有介電異向性(dielectric anisotropy),即液晶材料在平行於和垂直於液晶分子長軸的方向上分別具有不同的介電常數(例如:介電常數ε
//和介電常數ε
┴),使其具有可電控的特性。為了改變液晶層LCL在電磁波的電場方向上的有效介電常數(effective dielectric constant),天線電極110與調變電極120可分別被施以不同的電壓,使這兩電極間能產生用來驅使液晶層LCL的多個液晶分子轉動的電場。不同大小的電場會讓這些液晶分子以不同的指向(例如分子長軸的方向)分布進行排列,進而在電磁波的電場方向上產生不同的有效介電常數,且此有效介電常數會落在介電常數ε
//與介電常數ε
┴之間的範圍。
舉例來說,在本實施例中,所有的天線電極110都具有相同的第一電壓V1,而所有的調變電極120都具有相同的第二電壓V2,且第一電壓V1不同於第二電壓V2。詳細而言,電性連接多個電極串110S的多條第一導線WR1可選擇性地電性連接第一電壓源210而具有第一電壓V1,電性連接多個電極串120S的多條第二導線WR2可選擇性地電性連接第二電壓源220而具有第二電壓V2。
換句話說,在本實施例中,這些天線電極110與這些調變電極120的上述驅動方式能讓所有的天線結構對電磁波的共振頻率(即中心頻率)產生相同的調變量。從另一觀點來說,這樣的驅動方式能調整這些天線結構對特定頻率的電磁波的反射效率。
進一步而言,本實施例的天線電極110例如是導體貼片(patch),且其在第一基板SUB1上的正投影輪廓為方形。然而,本發明不限於此。在另一實施例中,天線電極110A在第一基板SUB1上的正投影輪廓也可以是圓形(如圖4A所示)。為了讓電磁波經由天線結構反射後具有不同的特性(例如更好的指向性),在又一些實施例中,天線電極的構型也可以是其他的態樣,例如:天線電極可包括多個導體貼片,且這些導體貼片各自在第一基板SUB1上的正投影輪廓可以是矩形、圓環形、凹字形、L字形或其他能讓反射信號的相位延遲與物理尺寸/電子尺寸呈對射關係(bijection)的形狀。
舉例來說,天線電極可以是間隔排列的一個方形的導體貼片111和兩個矩形的導體貼片112所組成(如圖4B所示)。天線電極可以是同心且間隔排列的兩個圓形導體貼片111C、112C所組成(如圖4C所示)。天線電極可以是一個方形的導體貼片111D被一個方形環狀的導體貼片112D環繞的實施態樣(如圖4D所示)。天線電極可以是一個方形的導體貼片111E被一個凹字形的導體貼片112E和兩個L字形的導體貼片所圍繞的實施態樣(如圖4E所示)。天線電極可以是間隔排列的兩個矩形的導體貼片111F被兩個凹字形的導體貼片112F所圍繞的實施態樣(如圖4F所示)。
另一方面,為了讓天線結構適用於各種可能的電磁波偏振方向,前述配向層的配向方向也可根據天線電極的構型進行調整。舉例來說,對於採用圖4A的天線電極110A的電磁波反射結構來說,其配向層AL1-A的配向方向AD1-A和配向層AL2-A的配向方向AD2-A可呈現輻射狀(如圖5B所示)。對於採用圖4C的天線電極110C的電磁波反射結構來說,其配向層AL1-B的配向方向AD1-B和配向層AL2-B的配向方向AD2-B可呈現同心圓狀(如圖5C所示)。特別注意的是,圖5B及圖5C的配向層可以是輪廓與調變電極或天線電極相似的多個配向圖案所組成,但不以此為限。
特別說明的是,基於導電性的考量,導體貼片一般是使用金屬材料製作而成。然而,本發明不限於此。為了滿足不同使用情境的需求,導體貼片也可選用透明導電材料製作而成。透明導電材料例如包括銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、或其它合適的金屬氧化物、或者是上述至少兩者之堆疊層。舉例來說,若天線電極選用透明導電材料製作,則本公開的電磁波反射結構可直接整合在建物的玻璃窗上。亦即,第一基板SUB1和第二基板SUB2除了是陶瓷層壓板或低介電損耗基板(例如Rogers基板),也可以是玻璃基板。
以下將列舉另一些實施例以詳細說明本揭露,其中相同的構件將標示相同的符號,並且省略相同技術內容的說明,省略部分請參考前述實施例,以下不再贅述。
圖6是本發明的第二實施例的電磁波反射結構的俯視示意圖。圖7A及圖7B分別是圖6的電磁波反射結構沿著剖線B1-B1’和剖線B2-B2’的剖視示意圖。為清楚呈現起見,圖6省略了圖7A中第一基板SUB1、液晶層LCL、間隔物SP、配向層AL1和配向層AL2的繪示。請參照圖6至圖7B,不同於圖1的電磁波反射結構10,本實施例的電磁波反射結構10A的天線電極110A和調變電極120A都具有多種尺寸。
詳細而言,天線電極110A沿著多條第一導線WR1的排列方向(例如方向D1)具有寬度W3,且天線電極110A的寬度W3由這些天線電極110A在該排列方向上的一側往另一側漸減或漸增。舉例來說,在本實施例中,朝著方向D1依序排列的電極串110S1、電極串110S2、電極串110S3和電極串110S4各自的天線電極110A的尺寸由第二基板SUB2設有電極串110S1的一側往設有電極串110S4的另一側漸減。對應地,同一電極串120S的多個調變電極120A各自的尺寸也是由第二基板SUB2設有電極串110S1的一側往設有電極串110S4的另一側漸減。
然而,本發明不限於此。在另一未繪示的實施例中,天線電極和調變電極的尺寸也可沿著多條第二導線WR2的排列方向(例如方向D2)漸減或漸增。亦即,天線電極和調變電極的尺寸的變化可沿著方向D1或方向D2。
由於本實施例的天線電極110A的尺寸是沿著方向D1變化,電磁波經由這些不同尺寸的天線電極110A反射後的相位也會不同。也就是說,透過這樣的尺寸關係配置,能改變電磁波經由電磁波反射結構10A反射後的主要出射方向。另一方面,透過調變液晶層LCL的有效介電常數,能讓電磁波經由每一個天線結構反射的相位被個別地被控制,並且在上述的主要出射方向附近進行波束掃瞄,以增加電磁波訊號的覆蓋率。
圖8是本發明的第三實施例的電磁波反射結構的俯視示意圖。圖9A及圖9B分別是圖8的電磁波反射結構沿著剖線C1-C1’和剖線C2-C2’的剖視示意圖。為清楚呈現起見,圖8省略了圖9A中第一基板SUB1、液晶層LCL、間隔物SP、配向層AL1和配向層AL2的繪示。請參照圖8至圖9B,不同於圖6的電磁波反射結構10A,本實施例的電磁波反射結構10B的多個天線電極110B和多個調變電極120B各自的尺寸可沿著多個方向漸減或漸增。
在本實施例中,天線電極110B和調變電極120B的尺寸除了可沿著方向D1改變外,還會沿著方向D2改變。例如:朝著方向D2依序排列的電極串120S1、電極串120S2、電極串120S3和電極串120S4各自所重疊的天線電極110B的尺寸由第二基板SUB2設有電極串120S1的一側往設有電極串120S4的另一側漸減。也因此,本實施例的天線電極110B的尺寸在不平行於方向D1和方向D2的方向上的變化(例如天線電極110B在方向D4上的寬度W4變化)會較圖6的電磁波反射結構10A明顯。
由於本實施例的天線電極110A的尺寸是沿著方向D1變化,電磁波經由這些不同尺寸的天線電極110A反射後的相位也會不同。也就是說,透過這樣的尺寸關係配置,能改變電磁波經由電磁波反射結構10B反射後的預設出射方向。另一方面,透過調變液晶層LCL的有效介電常數,能讓電磁波經由每一個天線結構反射的相位被個別地被控制,因此得以在上述的預設出射方向附近的特定角度範圍內進行出射方向的微調,從而實現電磁波訊號的覆蓋範圍的調整。
圖10是本發明的第四實施例的電磁波反射結構的俯視示意圖。圖11A及圖11B分別是圖10的電磁波反射結構沿著剖線D1-D1’和剖線D2-D2’的剖視示意圖。為清楚呈現起見,圖10省略了圖11A中第一基板SUB1、液晶層LCL、間隔物SP、配向層AL、絕緣層INS1和絕緣層INS2的繪示。請參照圖10至圖11B,本實施例的電磁波反射結構10C與圖1的電磁波反射結構10的主要差異在於:調變電極的構型不同。
在本實施例中,天線電極110C和第一導線WR1-A是改設置在第一基板SUB1朝向第二基板SUB2的一側表面上,且液晶層LCL可區分為彼此分離的多個部分。調變電極120C具有平行於第二基板SUB2的底部120bp以及彎折地延伸自底部120bp的側壁部120sp,其中側壁部120sp圍繞天線電極110C和液晶層LCL的一部分。
由於每一個調變電極120C的側壁部120sp可有效降低其所圍繞的部分液晶層LCL受鄰設的天線電極110C和另一調變電極120C所生成的外來電場的影響,每一個天線電極110C對電磁波的等效電子尺寸得以被更好地控制。也因此,這些天線結構能更緊密地排列,並且讓任兩相鄰的天線電極110C的等效電子尺寸的差異更大,進而實現反射電磁波的多波紋效果。
特別注意的是,基於製程考量和液晶層LCL的膜厚設計,本實施例的電磁波反射結構10C僅在第一基板SUB1接觸液晶層LCL的表面設置配向層AL。另一方面,為了確保第一導線WR1-A與調變電極120C的電性分離,調變電極120C與第一基板SUB1之間還設有絕緣層INS1,且此絕緣層INS1會覆蓋第一導線WR1-A。任兩相鄰的調變電極120C之間可設有絕緣層INS2,使彼此電性分離。
特別說明的是,在本實施例的另一變型實施態樣中,天線電極110C也可如圖2A的天線電極110設置在第一基板SUB1背離第二基板SUB2的一側表面上。
圖12是本發明的第五實施例的電磁波反射結構的俯視示意圖。請參照圖12,本實施例的電磁波反射結構10D與圖1的電磁波反射結構10的差異僅在於:天線電極和調變電極的驅動方式不同。具體而言,電磁波反射結構10D的多條第一導線WR1-B各自具有多個第一電阻器R1,而多條第二導線WR2-B各自具有多個第二電阻器R2。
特別注意的是,這些第一電阻器R1各自電性連接對應的電極串中的任兩個天線電極110,而這些第二電阻器R2各自電性連接對應的電極串中的任兩個調變電極120。另一方面,不同於圖1的電磁波反射結構10,本實施例的第一導線WR1-B的相對兩端部電性連接第一電壓源210和第三電壓源230而分別具有第一電壓V1和第三電壓V3,第二導線WR2-B的相對兩端部電性連接第二電壓源220和第四電壓源240而分別具有第二電壓V2和第四電壓V4。
電性連接同一條第一導線WR1-B的多個天線電極110可透過多個第一電阻器R1的設置而具有不同的電壓,而電性連接同一條第二導線WR2-B的多個調變電極120可透過多個第二電阻器R2的設置而具有不同的電壓。據此,可增加這些電極的操作彈性,讓各個天線結構對電磁波的反射相位能夠被個別地控制,進而改變電磁波經由多個天線結構反射後的出射方向。
舉例來說,第一電壓V1可大於第三電壓V3,且串接在同一條第一導線WR1-B上的多個第一電阻器R1的阻值都相同。因此,同一個電極串的多個天線電極110各自的電壓由第一電壓源210的一側往第三電壓源230的一側遞減,且任兩相鄰的天線電極110的電壓差值為(V3-V1)/N,其中N為第一導線WR1-B上所串接的第一電阻器R1數量(例如本實施例的3個)。
相似地,第二電壓V2可大於第四電壓V4,且串接在同一條第二導線WR2-B上的多個第二電阻器R2的阻值都相同。因此,同一個電極串的多個調變電極120各自的電壓由第二電壓源220的一側往第四電壓源240的一側遞減,且任兩相鄰的調變電極120的電壓差值為(V4-V2)/M,其中M為第二導線WR2-B上所串接的第二電阻器R2數量(例如本實施例的3個)。
在本實施例中,第一電阻器R1和第二電組器R2可以是阻值固定的電阻器,但不以此為限。在另一未繪示的實施例中,導線上的電阻器也可以是阻值可調的可變電阻器,多個可變電阻器可電性耦接至一控制電路,其中控制電路可依據多個天線結構所需的反射相位分布來決定這些可變電阻器的電阻值。
圖13是本發明的第六實施例的電磁波反射結構的俯視示意圖。請參照圖13,本實施例的電磁波反射結構10E與圖1的電磁波反射結構10的差異在於:天線電極和調變電極的驅動方式不同。在本實施例中,電磁波反射結構10E可個別地控制多條第一導線WR1和多條第二導線WR2的電壓。更具體地說,每一條導線的電壓可經由對應的一個數位類比轉換器來控制。因此,可增加與這些導線電性連接的天線電極110和調變電極120的操作彈性,讓各個天線結構對電磁波的反射相位能夠被個別地控制,進而改變電磁波經由多個天線結構反射後的出射方向。
詳細而言,多條第一導線WR1可電性連接多個數位類比轉換器(digital-to-analog converter,DAC)310所組成的第一數位類比轉換器陣列,且各自的電壓由這些第一導線WR1在排列方向(例如方向D1)上的一側往另一側漸增或漸減。例如:沿著方向D1依序排列的四條第一導線WR1(或四個電極串110S1~110S4)電性連接多個數位類比轉換器310而分別具有第一電壓V1、第二電壓V2、第三電壓V3和第四電壓V4,且這些電壓可沿著方向D1以等差值或不等差值進行單向性的增加(或減少)。
相似地,多條第二導線WR2可電性連接由多個數位類比轉換器320所組成的第二數位類比轉換器陣列,且各自的電壓由這些第二導線WR2在排列方向(例如方向D2)上的一側往另一側漸增或漸減。例如:沿著方向D2依序排列的四條第二導線WR2(或四個電極串120S1~120S4)電性連接多個數位類比轉換器320而分別具有第五電壓V5、第六電壓V6、第七電壓V7和第八電壓V8,且這些電壓可沿著方向D2以等差值或不等差值進行單向性的增加(或減少)。
特別說明的是,圖1、圖12及圖13所揭露的電極驅動方式都可套用至其他實施態樣的電磁波反射結構。因此,在本公開的部分實施例中,並未繪示出電壓源、電阻器或數位類比轉換器。
圖14是本發明的第七實施例的電磁波反射結構的俯視示意圖。圖15A及圖15B分別是圖14的電磁波反射結構沿著剖線E1-E1’和剖線E2-E2’的剖視示意圖。請參照圖14至圖15B,本實施例的電磁波反射結構10F與圖1的電磁波反射結構10的差異僅在於:導線的配置方式不同。在本實施例中,電磁波反射結構10F的導線是設置在多個電極之間,且沿著方向D3不重疊於這些電極。
舉例來說,電性連接多個電極串110S的多條第一導線WR1-B可分別設置在這些電極串110S在排列方向上的一側(例如圖14中的右側),電性連接多個電極串120S的多條第二導線WR2-B可分別設置在這些電極串120S在排列方向上的一側(例如圖14中的下側)。更具體地說,這些第一導線WR1-B與這些電極串110S可沿著方向D1交替排列,這些第二導線WR2-B與這些電極串120S可沿著方向D2交替排列。
圖16是本發明的第八實施例的電磁波反射結構的俯視示意圖。請參照圖16,本實施例的電磁波反射結構10G與圖6的電磁波反射結構10A的差異在於:調變電極的配置方式不同。具體而言,多個天線電極110A可具有相同於圖6中多個天線電極110A的尺寸漸變的配置方式,但多個調變電極120的尺寸配置並沒有對應不同大小的天線電極110A進行調整。舉例來說,在本實施例中,這些調變電極120僅具有單一尺寸,且其尺寸都大於多個天線電極110A各自的尺寸。
綜上所述,在本發明的一實施例的電磁波反射結構中,陣列排列的多個天線結構各自具有天線電極、調變電極以及位在這兩電極之間的液晶層。透過調整液晶層在這些天線結構的有效介電常數的分布,可改變電磁波經由這些天線結構反射後的輻射場型或電磁波的反射效率。
10、10A、10B、10C、10D、10E、10F、10G:電磁波反射結構
110、110A、110B、110C:天線電極
111、112、111C、112C、111D、112D、111E、112E、111F、112F:導體貼片
110S、120S、110S1~110S4、120S1~120S4:電極串
120、120A、120B、120C:調變電極
120bp:底部
120sp:側壁部
210、220、230、240:電壓源
310、320:數位類比轉換器
AD1、AD2、AD1-A、AD2-A、AD1-B、AD2-B:配向方向
AL、AL1、AL2、AL1-A、AL2-A、AL1-B、AL2-B:配向層
D1、D2、D3、D4:方向
INS1、INS2:絕緣層
LCL:液晶層
R1、R2:電阻器
SP:間隔物
SUB1:第一基板
SUB2:第二基板
V1~V8:第一電壓~第八電壓
W1、W2、W3、W4:寬度
WR1、WR1-A、WR1-B、WR1-C:第一導線
WR2、WR2-B、WR2-C:第二導線
A1-A1’、A2-A2’、B1-B1’、B2-B2’、C1-C1’、C2-C2’、D1-D1’、D2-D2’、E1-E1’、E2-E2’:剖線
圖1是本發明的第一實施例的電磁波反射結構的俯視示意圖。
圖2A及圖2B分別是圖1的電磁波反射結構的剖視示意圖。
圖3是圖1的電磁波反射結構的部分膜層的分解示意圖。
圖4A至圖4F是本發明的另一些變形實施例的天線電極的俯視示意圖。
圖5A是圖2A的配向層的配向方向示意圖。
圖5B及圖5C是本發明另一些變形實施例的配向層的配向方向示意圖。
圖6是本發明的第二實施例的電磁波反射結構的俯視示意圖。
圖7A及圖7B分別是圖6的電磁波反射結構的剖視示意圖。
圖8是本發明的第三實施例的電磁波反射結構的俯視示意圖。
圖9A及圖9B分別是圖8的電磁波反射結構的剖視示意圖。
圖10是本發明的第四實施例的電磁波反射結構的俯視示意圖。
圖11A及圖11B分別是圖10的電磁波反射結構的剖視示意圖。
圖12是本發明的第五實施例的電磁波反射結構的俯視示意圖。
圖13是本發明的第六實施例的電磁波反射結構的俯視示意圖。
圖14是本發明的第七實施例的電磁波反射結構的俯視示意圖。
圖15A及圖15B分別是圖14的電磁波反射結構的剖視示意圖。
圖16是本發明的第八實施例的電磁波反射結構的俯視示意圖。
10:電磁波反射結構
110:天線電極
120:調變電極
AL1、AL2:配向層
D1、D2、D3:方向
LCL:液晶層
SP:間隔物
SUB1:第一基板
SUB2:第二基板
WR1:第一導線
A1-A1’:剖線
Claims (23)
- 一種電磁波反射結構,包括:一第一基板;一第二基板,與該第一基板對向設置;多條第一導線,沿著一第一方向排列於該第一基板上,並且延伸於一第二方向上,該第一方向與該第二方向相交;多條第二導線,沿著該第二方向排列於該第二基板上,並且延伸於該第一方向上;多個天線電極,設置在該第一基板上,該些天線電極分別沿著該第二方向排成多個第一電極串,且該些第一電極串分別電性連接該些第一導線;多個調變電極,設置在該第二基板上,且分別重疊並完全覆蓋該些天線電極於該第二基板上的正投影,該些調變電極分別沿著該第一方向排成多個第二電極串,該些第二電極串分別電性連接該些第二導線;以及一液晶層,設置在該第一基板與該第二基板之間,其中該些第一導線電性連接一第一電壓源而具有一第一電壓,該些第二導線電性連接一第二電壓源而具有一第二電壓,各該些第一導線具有位在該些天線電極之間的多個第一電阻器,且該些第一電阻器各自電性連接一該第一電極串中的任兩該天線電極。
- 如請求項1所述的電磁波反射結構,其中各該些第二導線具有位在該些天線電極之間的多個第二電阻器,且該些第二電阻器各自電性連接一該第二電極串中的任兩該調變電極。
- 一種電磁波反射結構,包括:一第一基板;一第二基板,與該第一基板對向設置;多條第一導線,沿著一第一方向排列於該第一基板上,並且延伸於一第二方向上,該第一方向與該第二方向相交;多條第二導線,沿著該第二方向排列於該第二基板上,並且延伸於該第一方向上;多個天線電極,設置在該第一基板上,該些天線電極分別沿著該第二方向排成多個第一電極串,且該些第一電極串分別電性連接該些第一導線;多個調變電極,設置在該第二基板上,且分別重疊並完全覆蓋該些天線電極於該第二基板上的正投影,該些調變電極分別沿著該第一方向排成多個第二電極串,該些第二電極串分別電性連接該些第二導線;以及一液晶層,設置在該第一基板與該第二基板之間,其中各該些天線電極沿著一第三方向的寬度由該些天線電極在該第三方向上的一側往另一側漸增或漸減。
- 如請求項3所述的電磁波反射結構,其中該第三方向平行於該第一方向和該第二方向的其中一者。
- 如請求項3所述的電磁波反射結構,其中各該些天線電極沿著一第四方向的寬度由該些天線電極在該第四方向上的一側往另一側漸增或漸減,且該第四方向不平行於該第一方向和該第二方向。
- 如請求項3所述的電磁波反射結構,其中各該些調變電極沿著該第三方向的寬度都相同。
- 一種電磁波反射結構,包括:一第一基板;一第二基板,與該第一基板對向設置;多條第一導線,沿著一第一方向排列於該第一基板上,並且延伸於一第二方向上,該第一方向與該第二方向相交;多條第二導線,沿著該第二方向排列於該第二基板上,並且延伸於該第一方向上;多個天線電極,設置在該第一基板上,該些天線電極分別沿著該第二方向排成多個第一電極串,且該些第一電極串分別電性連接該些第一導線;多個調變電極,設置在該第二基板上,且分別重疊並完全覆蓋該些天線電極於該第二基板上的正投影,該些調變電極分別沿著該第一方向排成多個第二電極串,該些第二電極串分別電性連接該些第二導線;以及一液晶層,設置在該第一基板與該第二基板之間,其中各該些調變電極具有平行於該第二基板的一底部以及彎 折地延伸自該底部的一側壁部,該液晶層區分為彼此分離的多個部分,且各該些調變電極的該側壁部圍繞該液晶層的一該部分和一該天線電極。
- 一種電磁波反射結構,包括:一第一基板;一第二基板,與該第一基板對向設置;多條第一導線,沿著一第一方向排列於該第一基板上,並且延伸於一第二方向上,該第一方向與該第二方向相交;多條第二導線,沿著該第二方向排列於該第二基板上,並且延伸於該第一方向上;多個天線電極,設置在該第一基板上,該些天線電極分別沿著該第二方向排成多個第一電極串,且該些第一電極串分別電性連接該些第一導線;多個調變電極,設置在該第二基板上,且分別重疊並完全覆蓋該些天線電極於該第二基板上的正投影,該些調變電極分別沿著該第一方向排成多個第二電極串,該些第二電極串分別電性連接該些第二導線;一液晶層,設置在該第一基板與該第二基板之間;以及至少一配向層,設置在該第一基板與該第二基板的至少一者與該液晶層之間,其中該至少一配向層為對應該些調變電極設置的多個配向圖案,各該些配向圖案與各該些調變電極在該第一基板上的正投影輪廓都相同,且各該些配向圖案的配向方向呈輻射 狀或同心圓狀。
- 如請求項3至請求項8中任一項所述的電磁波反射結構,其中該些第一導線電性連接一第一電壓源而具有一第一電壓,該些第二導線電性連接一第二電壓源而具有一第二電壓。
- 如請求項9所述的電磁波反射結構,其中各該些第一導線具有位在該些天線電極之間的多個第一電阻器,且該些第一電阻器各自電性連接一該第一電極串中的任兩該天線電極。
- 如請求項10所述的電磁波反射結構,其中各該些第二導線具有位在該些天線電極之間的多個第二電阻器,且該些第二電阻器各自電性連接一該第二電極串中的任兩該調變電極。
- 如請求項1、請求項2、請求項7和請求項8中任一項所述的電磁波反射結構,其中各該些天線電極沿著一第三方向的寬度由該些天線電極在該第三方向上的一側往另一側漸增或漸減。
- 如請求項12所述的電磁波反射結構,其中該第三方向平行於該第一方向和該第二方向的其中一者。
- 如請求項12所述的電磁波反射結構,其中各該些天線電極沿著一第四方向的寬度由該些天線電極在該第四方向上的一側往另一側漸增或漸減,且該第四方向不平行於該第一方向和該第二方向。
- 如請求項12所述的電磁波反射結構,其中各該些調變電極沿著該第三方向的寬度都相同。
- 如請求項1至請求項6和請求項8中任一項所述的電磁波反射結構,其中各該些調變電極具有平行於該第二基板的一底部以及彎折地延伸自該底部的一側壁部,該液晶層區分為彼此分離的多個部分,且各該些調變電極的該側壁部圍繞該液晶層的一該部分和一該天線電極。
- 如請求項1至請求項7中任一項所述的電磁波反射結構,更包括至少一配向層,設置在該第一基板與該第二基板的至少一者與該液晶層之間,其中該至少一配向層為對應該些調變電極設置的多個配向圖案,各該些配向圖案與各該些調變電極在該第一基板上的正投影輪廓都相同,且各該些配向圖案的配向方向呈輻射狀或同心圓狀。
- 如請求項1至請求項8中任一項所述的電磁波反射結構,其中該些第一導線或該些第二導線分別具有不同的電壓。
- 如請求項18所述的電磁波反射結構,其中該些第一導線電性連接一第一數位類比轉換器陣列而分別具有不同的電壓,該些第二導線電性連接一第二數位類比轉換器陣列而分別具有不同的電壓。
- 如請求項19所述的電磁波反射結構,其中各該些第一導線的電壓由該些第一導線在該第一方向上的一側往另一側漸增或漸減,各該些第二導線的電壓由該些第二導線在該第二方向上的一側往另一側漸增或漸減。
- 如請求項1至請求項8中任一項所述的電磁波反射結構,其中各該些天線電極沿著該第一方向和該第二方向分別具有一第一寬度和一第二寬度,各該些天線電極的該第一寬度都相同,且各該些天線電極的該第二寬度都相同。
- 如請求項1至請求項8中任一項所述的電磁波反射結構,其中各該些天線電極包括至少一導體貼片,且該至少一導體貼片在該第一基板上的正投影輪廓係圓形、矩形、圓環形、凹字形或L字形。
- 如請求項1至請求項8中任一項所述的電磁波反射結構,其中各該些天線電極於該第二基板上的正投影完全被一該調變電極於該第二基板上的正投影所覆蓋。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22156028.7A EP4167382A1 (en) | 2021-10-12 | 2022-02-10 | Electromagnetic wave reflectarray |
CN202210822156.2A CN115966914A (zh) | 2021-10-12 | 2022-07-12 | 电磁波反射结构 |
US17/885,558 US12107332B2 (en) | 2020-07-24 | 2022-08-11 | Electromagnetic wave reflectarray |
JP2022159555A JP7431300B2 (ja) | 2021-10-12 | 2022-10-03 | 電磁波リフレクトアレイ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163254537P | 2021-10-12 | 2021-10-12 | |
US63/254,537 | 2021-10-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI795151B true TWI795151B (zh) | 2023-03-01 |
TW202316742A TW202316742A (zh) | 2023-04-16 |
Family
ID=85888476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110149202A TWI795151B (zh) | 2020-07-24 | 2021-12-28 | 電磁波反射結構 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI795151B (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201522074A (zh) * | 2011-04-13 | 2015-06-16 | Lg Chemical Ltd | 光學薄膜 |
US20190146248A1 (en) * | 2017-05-09 | 2019-05-16 | Boe Technology Group Co., Ltd. | Liquid crystal antenna and manufacturing method thereof |
US20200381824A1 (en) * | 2019-05-29 | 2020-12-03 | Hon Hai Precision Industry Co., Ltd. | Antenna array and liquid crystal display using the same |
CN113131224A (zh) * | 2020-01-16 | 2021-07-16 | 华为技术有限公司 | 天线波束传播方向调节系统 |
-
2021
- 2021-12-28 TW TW110149202A patent/TWI795151B/zh active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201522074A (zh) * | 2011-04-13 | 2015-06-16 | Lg Chemical Ltd | 光學薄膜 |
US20190146248A1 (en) * | 2017-05-09 | 2019-05-16 | Boe Technology Group Co., Ltd. | Liquid crystal antenna and manufacturing method thereof |
US20200381824A1 (en) * | 2019-05-29 | 2020-12-03 | Hon Hai Precision Industry Co., Ltd. | Antenna array and liquid crystal display using the same |
CN113131224A (zh) * | 2020-01-16 | 2021-07-16 | 华为技术有限公司 | 天线波束传播方向调节系统 |
Also Published As
Publication number | Publication date |
---|---|
TW202316742A (zh) | 2023-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7431300B2 (ja) | 電磁波リフレクトアレイ | |
CN106299627B (zh) | 一种液晶天线及通信设备 | |
US12107332B2 (en) | Electromagnetic wave reflectarray | |
JP3535423B2 (ja) | レドーム | |
CN110635242B (zh) | 天线装置及电子设备 | |
KR20040035802A (ko) | 슬롯 커플링형 편광 방사기 | |
US6919854B2 (en) | Variable inclination continuous transverse stub array | |
US20180212325A1 (en) | Phased-array antenna and multi-face array antenna device | |
WO2019177144A1 (ja) | アンテナユニット、アンテナユニット付き窓ガラス及び整合体 | |
US20220140491A1 (en) | Reconfigurable antenna and method for manufacturing the same | |
CN112701480B (zh) | 天线装置及电子设备 | |
CN117293557A (zh) | 反射式智能超表面单元、反射式智能超表面及通信设备 | |
Trampler et al. | Phase-agile dual-resonance single linearly polarized antenna element for reconfigurable reflectarray applications | |
TWI795151B (zh) | 電磁波反射結構 | |
Li et al. | Design and analysis of terahertz transmitarray using 1-bit liquid crystal phase shifter | |
CN115917870A (zh) | 透明天线及通信系统 | |
WO2023140243A1 (ja) | リフレクトアレイ | |
US20230071974A1 (en) | Antenna and manufacturing method thereof | |
CN112928489A (zh) | 一种宽带高效率透射型极化转换器 | |
JP7371184B2 (ja) | 電磁波伝送構造体 | |
CN115349199A (zh) | 天线及其制备方法 | |
TWI788156B (zh) | 電磁波傳輸結構 | |
TWI763460B (zh) | 天線單元組與天線陣列 | |
WO2024004595A1 (ja) | 電波反射装置 | |
CN218300242U (zh) | 基于二维电调材料的可编码四波束天线、超表面模块及复合天线结构 |