TWI795068B - Electrostatic discharge protection circuit - Google Patents

Electrostatic discharge protection circuit Download PDF

Info

Publication number
TWI795068B
TWI795068B TW110141984A TW110141984A TWI795068B TW I795068 B TWI795068 B TW I795068B TW 110141984 A TW110141984 A TW 110141984A TW 110141984 A TW110141984 A TW 110141984A TW I795068 B TWI795068 B TW I795068B
Authority
TW
Taiwan
Prior art keywords
transistor
coupled
power line
drain
voltage
Prior art date
Application number
TW110141984A
Other languages
Chinese (zh)
Other versions
TW202320288A (en
Inventor
周業甯
莊介堯
廖顯峰
張廷瑜
林志軒
林昌民
黃紹璋
李慶和
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW110141984A priority Critical patent/TWI795068B/en
Application granted granted Critical
Publication of TWI795068B publication Critical patent/TWI795068B/en
Publication of TW202320288A publication Critical patent/TW202320288A/en

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

An electrostatic discharge (ESD) protection circuit including a detection circuit, a voltage divider, and a discharge element is provided. The detection circuit is coupled between a first power line and a second power line. When an ESD event occurs, the detection circuit enables a turning-on signal. The voltage divider is coupled between the first power line and a third power line and receives the turning-on signal. The discharge element is coupled between the second and third power lines. When the turning-on signal is enabled, the discharge element releases an ESD current.

Description

靜電放電保護電路Electrostatic discharge protection circuit

本發明係有關於一種保護電路,特別是有關於一種靜電放電保護電路。The invention relates to a protection circuit, in particular to an electrostatic discharge protection circuit.

因靜電放電(Electrostatic discharge;ESD)所造成之元件損害對積體電路產品來說已經成為最主要的可靠度問題之一。尤其是隨著尺寸不斷地縮小至深次微米之程度,金氧半導體之閘極氧化層也越來越薄,積體電路更容易因靜電放電現象而遭受破壞。Component damage caused by Electrostatic discharge (ESD) has become one of the most important reliability issues for integrated circuit products. Especially as the size continues to shrink down to the sub-micron level, the gate oxide layer of the metal oxide semiconductor is getting thinner and thinner, and the integrated circuit is more likely to be damaged by electrostatic discharge.

本發明之一實施例提供一種靜電放電保護電路,包括一偵測電路(110)、一分壓元件(120)以及一釋放元件(130)。偵測電路耦接於一第一電源線(PL1)以及一第二電源線(PL2)之間。分壓元件耦接於第一電源線(PL1)與第三電源線(PL3)之間,並接收導通信號。釋放元件耦接於第二及第三電源線之間。當一靜電放電事件在第三電源線發生時,透由分壓元件啟動偵測電路,偵測電路致能一導通信號。當導通信號被致能時,釋放元件釋放一靜電放電電流。An embodiment of the present invention provides an electrostatic discharge protection circuit, which includes a detection circuit (110), a voltage dividing element (120) and a release element (130). The detection circuit is coupled between a first power line (PL1) and a second power line (PL2). The voltage dividing element is coupled between the first power line ( PL1 ) and the third power line ( PL3 ), and receives the conduction signal. The release element is coupled between the second and third power lines. When an electrostatic discharge event occurs on the third power line, the detection circuit is activated by the voltage dividing element, and the detection circuit enables a conduction signal. When the conduction signal is enabled, the release element releases an electrostatic discharge current.

在另一實施例中,靜電放電保護電路包括一偵測電路(110)、一分壓元件(120)、一第一電晶體(130)以及一第二電晶體(140)。偵測電路耦接於一第一電源線(PL1)以及一第二電源線(PL2)之間。當一靜電放電事件在第三電源線發生時,透由分壓元件啟動偵測電路,偵測電路致能一導通信號。當導通信號被致能時,第一電晶體(130)釋放一靜電放電電流。當一靜電放電事件在第一電源線發生時,偵測電路致能一導通信號。當導通信號被致能時,第二電晶體(140)釋放一靜電放電電流。第一電晶體包括一第一基極、一第一閘極、一第一汲極以及一第一源極。第一閘極接收導通信號。第一汲極耦接一第三電源線。第一源極及第一基極耦接第二電源線。第二電晶體包括一第二基極、一第二閘極、一第二汲極以及一第二源極。第二閘極接收導通信號。第二汲極耦接第一電源線。第二源極及第二基極耦接第二電源線。當導通信號被致能時,第一及第二電晶體導通,用以釋放一靜電放電電流。In another embodiment, the electrostatic discharge protection circuit includes a detection circuit (110), a voltage dividing element (120), a first transistor (130) and a second transistor (140). The detection circuit is coupled between a first power line (PL1) and a second power line (PL2). When an electrostatic discharge event occurs on the third power line, the detection circuit is activated by the voltage dividing element, and the detection circuit enables a conduction signal. When the conduction signal is enabled, the first transistor (130) discharges an electrostatic discharge current. When an electrostatic discharge event occurs on the first power line, the detection circuit enables a conduction signal. When the conduction signal is enabled, the second transistor (140) discharges an electrostatic discharge current. The first transistor includes a first base, a first gate, a first drain and a first source. The first gate receives the conduction signal. The first drain is coupled to a third power line. The first source and the first base are coupled to the second power line. The second transistor includes a second base, a second gate, a second drain and a second source. The second gate receives the conduction signal. The second drain is coupled to the first power line. The second source and the second base are coupled to the second power line. When the conduction signal is enabled, the first and second transistors are conducted to release an electrostatic discharge current.

為讓本發明之目的、特徵和優點能更明顯易懂,下文特舉出實施例,並配合所附圖式,做詳細之說明。本發明說明書提供不同的實施例來說明本發明不同實施方式的技術特徵。其中,實施例中的各元件之配置係為說明之用,並非用以限制本發明。另外,實施例中圖式標號之部分重覆,係為了簡化說明,並非意指不同實施例之間的關聯性。In order to make the purpose, features and advantages of the present invention more comprehensible, the following specifically cites the embodiments, together with the accompanying drawings, for a detailed description. The description of the present invention provides different examples to illustrate the technical features of different implementations of the present invention. Wherein, the arrangement of each element in the embodiment is for illustration, not for limiting the present invention. In addition, the partial repetition of the symbols in the figures in the embodiments is for the purpose of simplifying the description, and does not imply the relationship between different embodiments.

第1圖為本發明之靜電放電保護電路的一可能實施例。如圖所示,靜電放電保護電路100包括一偵測電路110、一分壓元件120以及一釋放元件130。偵測電路110耦接於電源線PL1與PL2之間,並偵測一靜電放電事件是否發生。在發生靜電放電事件時,偵測電路110致能一導通信號SON。如果未發生靜電放電事件時,偵測電路110不致能導通信號SON。在一可能實施例中,未發生靜電放電事件時,電源線PL1接收一低操作電壓VDD,而電源線PL2接收一接地電壓VSS。在此例中,低操作電壓VDD大於接地電壓VSS。在一可能實施例中,低操作電壓VDD約為5V,而接地電壓VSS約為0V。Figure 1 is a possible embodiment of the electrostatic discharge protection circuit of the present invention. As shown in the figure, the ESD protection circuit 100 includes a detection circuit 110 , a voltage dividing element 120 and a release element 130 . The detection circuit 110 is coupled between the power lines PL1 and PL2 and detects whether an electrostatic discharge event occurs. When an ESD event occurs, the detection circuit 110 enables a turn-on signal SON. If the ESD event does not occur, the detection circuit 110 cannot turn on the signal SON. In a possible embodiment, when no electrostatic discharge event occurs, the power line PL1 receives a low operating voltage VDD, and the power line PL2 receives a ground voltage VSS. In this example, the low operating voltage VDD is greater than the ground voltage VSS. In one possible embodiment, the low operating voltage VDD is about 5V, and the ground voltage VSS is about 0V.

分壓元件120耦接於電源線PL1與PL3之間,並接收導通信號SON。在本實施例中,分壓元件120係為高操作電壓VCC及低操作電壓VDD之間的橋樑。舉例而言,在一正常模式下(即無靜電放電事件),電源線PL1接收一低操作電壓VDD,而電源線PL3接收一高操作電壓VCC。在一可能實施例中,低操作電壓VDD小於高操作電壓VCC。舉例而言,低操作電壓VDD約為1.8V、3.3V或是5V,而高操作電壓VCC約為30V。由於分壓元件120係為一高壓元件,故可承受高操作電壓VCC。The voltage dividing element 120 is coupled between the power lines PL1 and PL3 and receives the turn-on signal SON. In this embodiment, the voltage dividing element 120 is a bridge between the high operating voltage VCC and the low operating voltage VDD. For example, in a normal mode (ie, no ESD event), the power line PL1 receives a low operating voltage VDD, and the power line PL3 receives a high operating voltage VCC. In a possible embodiment, the low operating voltage VDD is smaller than the high operating voltage VCC. For example, the low operating voltage VDD is about 1.8V, 3.3V or 5V, and the high operating voltage VCC is about 30V. Since the voltage dividing element 120 is a high voltage element, it can withstand a high operating voltage VCC.

在本實施例中,分壓元件120係為一高壓電晶體HVN2。高壓電晶體HVN2的閘極(gate)121接收導通信號SON。高壓電晶體HVN2的汲極(drain)122耦接電源線PL3。高壓電晶體HVN2的源極(source)123耦接電源線PL1。高壓電晶體HVN2的基極 (bulk)124耦接電源線PL2。In this embodiment, the voltage dividing element 120 is a high voltage transistor HVN2. A gate 121 of the high voltage transistor HVN2 receives the turn-on signal SON. The drain 122 of the high voltage transistor HVN2 is coupled to the power line PL3. A source 123 of the high voltage transistor HVN2 is coupled to the power line PL1. A bulk 124 of the high voltage transistor HVN2 is coupled to the power line PL2.

本發明並不限定高壓電晶體HVN2的種類。在本實施例中,高壓電晶體HVN2係為一N型電晶體,但並非用以限制本發明。在其它實施例中,高壓電晶體HVN2係為一P型電晶體。在一些實施例中,高壓電晶體HVN2的汲極122與基極124之間的接面(junction)電壓高於源極123與基極124之間的接面電壓。在一可能實施例中,高壓電晶體HVN2的汲極係形成在一擴散區(diffused region)之中。由於擴散區的雜質濃度較低,故可承受高電壓。在一可能實施例中,高壓電晶體HVN2是一橫向擴散金屬氧化物半導體場效電晶體(Lateral Diffused Metal-Oxide-Semiconductor Field-Effect Transistor;LDMOSFET)或是一雙擴散金屬氧化物半導體場效電晶體(Double Diffused Metal-Oxide-Semiconductor Field-Effect Transistor;DDMOSFET)。The present invention does not limit the type of the high voltage transistor HVN2. In this embodiment, the high voltage transistor HVN2 is an N-type transistor, but it is not intended to limit the invention. In other embodiments, the high voltage transistor HVN2 is a P-type transistor. In some embodiments, the junction voltage between the drain 122 and the base 124 of the high voltage transistor HVN2 is higher than the junction voltage between the source 123 and the base 124 . In a possible embodiment, the drain of the high voltage transistor HVN2 is formed in a diffused region. Due to the low impurity concentration in the diffusion region, it can withstand high voltage. In a possible embodiment, the high voltage transistor HVN2 is a Lateral Diffused Metal-Oxide-Semiconductor Field-Effect Transistor (LDMOSFET) or a double-diffused Metal-Oxide-Semiconductor Field-Effect Transistor. Transistor (Double Diffused Metal-Oxide-Semiconductor Field-Effect Transistor; DDMOSFET).

釋放元件130耦接於電源線PL2與PL3之間。當導通信號SON被致能時,釋放元件130釋放一靜電放電電流。在本實施例中,釋放元件130係為一高壓電晶體HVN1。高壓電晶體HVN1的閘極131接收導通信號SON。高壓電晶體HVN1的汲極132耦接電源線PL3。高壓電晶體HVN1的源極133及基極134耦接電源線PL2。本發明並不限定高壓電晶體HVN1的種類。在本實施例中,高壓電晶體HVN1係為一N型電晶體,但並非用以限制本發明。在其它實施例中,高壓電晶體HVN1係為一P型電晶體。在一些實施例中,高壓電晶體HVN1的汲極132與基極134之間的接面電壓高於源極133與基極134之間的接面電壓。在一可能實施例中,高壓電晶體HVN1係為LDMOSFET或是DDMOSFET。The release element 130 is coupled between the power lines PL2 and PL3. When the turn-on signal SON is enabled, the release element 130 releases an electrostatic discharge current. In this embodiment, the releasing element 130 is a high voltage transistor HVN1. The gate 131 of the high voltage transistor HVN1 receives the turn-on signal SON. The drain 132 of the high voltage transistor HVN1 is coupled to the power line PL3. The source 133 and the base 134 of the high voltage transistor HVN1 are coupled to the power line PL2. The present invention does not limit the type of the high voltage transistor HVN1. In this embodiment, the high voltage transistor HVN1 is an N-type transistor, but it is not intended to limit the invention. In other embodiments, the high voltage transistor HVN1 is a P-type transistor. In some embodiments, the junction voltage between the drain 132 and the base 134 of the high voltage transistor HVN1 is higher than the junction voltage between the source 133 and the base 134 . In a possible embodiment, the high voltage transistor HVN1 is an LDMOSFET or a DDMOSFET.

當一靜電放電事件發生於電源線PL3並且電源線PL1為一浮動位準(floating)時,由於高壓電晶體HVN2未完全關閉,故部分靜電放電電流由電源線PL3,經過高壓電晶體HVN2,進入偵測電路110。此時,偵測電路110致能導通信號SON。因此,高壓電晶體HVN1被導通。此時,大部分的靜電放電電流由電源線PL3,經過高壓電晶體HVN1,進入電源線PL2。When an electrostatic discharge event occurs on the power line PL3 and the power line PL1 is at a floating level, since the high voltage transistor HVN2 is not completely closed, part of the electrostatic discharge current flows from the power line PL3 through the high voltage transistor HVN2 , into the detection circuit 110 . At this time, the detection circuit 110 is enabled to turn on the signal SON. Therefore, the high voltage transistor HVN1 is turned on. At this time, most of the electrostatic discharge current enters the power line PL2 from the power line PL3 through the high voltage transistor HVN1.

當靜電放電事件未發生時,電源線PL1及PL3分別接收一低操作電壓VDD以及一高操作電壓VCC,並且電源線PL2接收一接地電壓VSS。此時,偵測電路110不致能導通信號SON。因此,高壓電晶體HVN1及HVN2均不導通。由於高壓電晶體HVN2阻擋高操作電壓VCC進入偵測電路110,故可避免偵測電路110裡的元件(如電晶體)受到傷害。When the ESD event does not occur, the power lines PL1 and PL3 respectively receive a low operating voltage VDD and a high operating voltage VCC, and the power line PL2 receives a ground voltage VSS. At this time, the detection circuit 110 is disabled to turn on the signal SON. Therefore, neither the high voltage transistors HVN1 nor HVN2 are turned on. Since the high-voltage transistor HVN2 blocks the high operating voltage VCC from entering the detection circuit 110 , damage to components (such as transistors) in the detection circuit 110 can be prevented.

第2圖為本發明之靜電放電保護電路的另一實施例。第2圖相似第1圖,不同之處在於,第2圖多了一釋放元件140。釋放元件140耦接於電源線PL1與PL2之間。當導通信號SON被致能時,釋放元件140釋放一靜電放電電流。在本實施例中,釋放元件140係為一低壓電晶體LVN1。低壓電晶體LVN1的閘極141接收導通信號SON。低壓電晶體LVN1的汲極142耦接電源線PL1。低壓電晶體LVN1的源極143及基極144耦接電源線PL2。Fig. 2 is another embodiment of the electrostatic discharge protection circuit of the present invention. Figure 2 is similar to Figure 1, the difference is that there is an additional release element 140 in Figure 2 . The release element 140 is coupled between the power lines PL1 and PL2. When the turn-on signal SON is enabled, the release element 140 releases an electrostatic discharge current. In this embodiment, the releasing element 140 is a low voltage transistor LVN1. The gate 141 of the low-voltage transistor LVN1 receives the turn-on signal SON. The drain 142 of the low voltage transistor LVN1 is coupled to the power line PL1. The source 143 and the base 144 of the low voltage transistor LVN1 are coupled to the power line PL2.

本發明並不限定低壓電晶體LVN1的種類。在本實施例中,低壓電晶體LVN1係為一N型電晶體,但並非用以限制本發明。在其它實施例中,低壓電晶體LVN1係為一P型電晶體。在一些實施例中,高壓電晶體HVN2的汲極122與基極124之間的接面電壓高於低壓電晶體LVN1的汲極142與基極144之間的接面電壓。在另一可能實施例中,高壓電晶體HVN1的汲極132與基極134之間的接面電壓也高於低壓電晶體LVN1的汲極142與基極144之間的接面電壓。在一可能實施例中,低壓電晶體LVN1的汲極142與源極143係形成於同一井區(如P井)之間。The present invention does not limit the type of the low voltage transistor LVN1. In this embodiment, the low-voltage transistor LVN1 is an N-type transistor, but it is not intended to limit the invention. In other embodiments, the low voltage transistor LVN1 is a P-type transistor. In some embodiments, the junction voltage between the drain 122 and the base 124 of the high voltage transistor HVN2 is higher than the junction voltage between the drain 142 and the base 144 of the low voltage transistor LVN1 . In another possible embodiment, the junction voltage between the drain 132 and the base 134 of the high voltage transistor HVN1 is also higher than the junction voltage between the drain 142 and the base 144 of the low voltage transistor LVN1 . In a possible embodiment, the drain 142 and the source 143 of the low voltage transistor LVN1 are formed between the same well region (such as P well).

第3圖為本發明之偵測電路的一可能示意圖。如圖所示,偵測電路110包括一電阻R、一電容C、低壓電晶體LVP以及LVN2。電阻R耦接於電源線PL1與節點A之間。電容C耦接於節點A與電源線PL2之間。在其它實施例中,電容C係由一電晶體所構成。在此例,該電晶體的閘極耦接節點A,並且該電晶體的汲極、源極與基極均耦接電源線PL2。Fig. 3 is a possible schematic diagram of the detection circuit of the present invention. As shown in the figure, the detection circuit 110 includes a resistor R, a capacitor C, low voltage transistors LVP and LVN2. The resistor R is coupled between the power line PL1 and the node A. The capacitor C is coupled between the node A and the power line PL2. In other embodiments, the capacitor C is formed by a transistor. In this example, the gate of the transistor is coupled to the node A, and the drain, source and base of the transistor are all coupled to the power line PL2.

低壓電晶體LVP的閘極311耦接節點A,其源極312耦接電源線PL1,其汲極313耦接節點B。電晶體LVN2的閘極315耦接節點A,其源極317耦接電源線PL2,其汲極316耦接節點B。在本實施例中,低壓電晶體LVP與LVN2均為低壓電晶體。在一可能實施例中,低壓電晶體LVP係為一P型電晶體,而電晶體LVN2係為一N型電晶體。在此例中,低壓電晶體LVP與LVN2構成一反相器(inverter),用以反相節點A的位準。舉例而言,當一靜電放電事件發生時,節點A為一低位準。因此,節點B為一高位準。當一靜電放電事件未發生時,節點A為一高位準。因此,節點B為一低位準。The gate 311 of the low voltage transistor LVP is coupled to the node A, the source 312 thereof is coupled to the power line PL1 , and the drain 313 thereof is coupled to the node B. The gate 315 of the transistor LVN2 is coupled to the node A, the source 317 thereof is coupled to the power line PL2 , and the drain 316 thereof is coupled to the node B. In this embodiment, both the low voltage transistors LVP and LVN2 are low voltage transistors. In a possible embodiment, the low voltage transistor LVP is a P-type transistor, and the transistor LVN2 is an N-type transistor. In this example, the low-voltage transistors LVP and LVN2 constitute an inverter for inverting the level of the node A. For example, when an ESD event occurs, the node A is at a low level. Therefore, node B is at a high level. When an ESD event does not occur, node A is at a high level. Therefore, node B is at a low level.

在本實施例中,低壓電晶體LVP的源極312與基極314之間的接面電壓或是汲極313與基極314之間的接面電壓均小於高壓電晶體HVN2的汲極122與基極124之間的接面電壓。在此例中,低壓電晶體LVP的源極312與基極314之間的接面電壓或是汲極313與基極314之間的接面電壓均小於高壓電晶體HVN1的汲極132與基極134之間的接面電壓。In this embodiment, the junction voltage between the source 312 and the base 314 of the low-voltage transistor LVP or the junction voltage between the drain 313 and the base 314 is smaller than that of the drain of the high-voltage transistor HVN2 The junction voltage between 122 and base 124. In this example, the junction voltage between the source 312 and the base 314 of the low voltage transistor LVP or the junction voltage between the drain 313 and the base 314 are smaller than the drain 132 of the high voltage transistor HVN1 The junction voltage with the base 134.

在另一可能實施例中,低壓電晶體LVN2的汲極316與基極318之間的接面電壓或是源極317與基極318之間的接面電壓均小於高壓電晶體HVN2的汲極122與基極124之間的接面電壓。在此例中,低壓電晶體LVN2的汲極316與基極318之間的接面電壓或是源極317與基極318之間的接面電壓均小於高壓電晶體HVN1的汲極132與基極134之間的接面電壓。In another possible embodiment, the junction voltage between the drain 316 and the base 318 of the low voltage transistor LVN2 or the junction voltage between the source 317 and the base 318 is smaller than that of the high voltage transistor HVN2 The junction voltage between the drain 122 and the base 124 . In this example, the junction voltage between the drain 316 and the base 318 of the low voltage transistor LVN2 or the junction voltage between the source 317 and the base 318 are smaller than the drain 132 of the high voltage transistor HVN1 The junction voltage with the base 134.

第4圖為本發明之低壓電晶體的示意圖。如圖所示,低壓電晶體400包括一井區410、摻雜區421~423以及一閘極結構424。摻雜區421~423設置於井區410之中。在本實施例中,井區410及摻雜區421具有第一導電型態,其中摻雜區421的摻雜濃度高於井區410的摻雜濃度。摻雜區422及423具有第二導電型態。在本實施例中,摻雜區423與井區410之間的接面電壓相似於摻雜區422與井區410之間的接面電壓。在一可能實施例中,第一導電型態為P型,並且第二導電型態為N型。閘極結構424形成於井區410之上。Fig. 4 is a schematic diagram of the low voltage transistor of the present invention. As shown in the figure, the low voltage transistor 400 includes a well region 410 , doped regions 421 - 423 and a gate structure 424 . The doped regions 421 - 423 are disposed in the well region 410 . In this embodiment, the well region 410 and the doped region 421 have the first conductivity type, wherein the doping concentration of the doped region 421 is higher than that of the well region 410 . The doped regions 422 and 423 have the second conductivity type. In this embodiment, the junction voltage between the doped region 423 and the well region 410 is similar to the junction voltage between the doped region 422 and the well region 410 . In a possible embodiment, the first conductivity type is P-type, and the second conductivity type is N-type. A gate structure 424 is formed over the well region 410 .

在一些實施例中,摻雜區421電性連接一基極接觸墊431。摻雜區422電性連接一源極接觸墊432。閘極結構424電性連接一閘極接觸墊433。摻雜區423電性連接一汲極接觸墊434。在此例中,基極接觸墊431作為電晶體400的基極,源極接觸墊432作為電晶體400的源極,閘極接觸墊433作為電晶體400的閘極,汲極接觸墊434作為電晶體400的汲極。In some embodiments, the doped region 421 is electrically connected to a base contact pad 431 . The doped region 422 is electrically connected to a source contact pad 432 . The gate structure 424 is electrically connected to a gate contact pad 433 . The doped region 423 is electrically connected to a drain contact pad 434 . In this example, the base contact pad 431 serves as the base of the transistor 400, the source contact pad 432 serves as the source of the transistor 400, the gate contact pad 433 serves as the gate of the transistor 400, and the drain contact pad 434 serves as the gate of the transistor 400. Drain of transistor 400 .

第5圖為本發明之高壓電晶體的示意圖。如圖所示,高壓電晶體500包括一井區510、一擴散區520、摻雜區531~533以及一閘極結構534。摻雜區531及532設置於井區510之中。在本實施例中,井區510及摻雜區531具有第一導電型態,其中摻雜區531的摻雜濃度高於井區510的摻雜濃度。摻雜區532具有第二導電型態。第二導電型態相對於第一導電型態。舉例而言,當第一導電型態為P型時,第二導電型態為N型。Fig. 5 is a schematic diagram of the high voltage transistor of the present invention. As shown in the figure, the high voltage transistor 500 includes a well region 510 , a diffusion region 520 , doped regions 531 - 533 and a gate structure 534 . The doped regions 531 and 532 are disposed in the well region 510 . In this embodiment, the well region 510 and the doped region 531 have the first conductivity type, wherein the doping concentration of the doped region 531 is higher than that of the well region 510 . The doped region 532 has a second conductivity type. The second conductivity type is relative to the first conductivity type. For example, when the first conductivity type is P type, the second conductivity type is N type.

擴散區520設置於井區510之中。摻雜區533設置於擴散區520之中。擴散區520及摻雜區533具有第二導電型態,其中擴散區520的摻雜濃度低於摻雜區533的摻雜濃度。在一可能實施例,擴散區520係為一高壓N型擴散區(HVNDD)。在本實施例中,擴散區520與井區510之間的接面電壓高於摻雜區532與井區510之間的接面電壓。在一可能實施例中,摻雜區532與井區510之間的接面電壓相似於第4圖的摻雜區423與井區410之間的接面電壓以及摻雜區422與井區410之間的接面電壓。在本實施例中,閘極結構534形成於井區510之上,並重疊部分擴散區520。The diffusion region 520 is disposed in the well region 510 . The doping region 533 is disposed in the diffusion region 520 . The diffusion region 520 and the doped region 533 have the second conductivity type, wherein the doping concentration of the diffusion region 520 is lower than that of the doping region 533 . In one possible embodiment, the diffusion region 520 is a high voltage N-type diffusion region (HVNDD). In this embodiment, the junction voltage between the diffusion region 520 and the well region 510 is higher than the junction voltage between the doped region 532 and the well region 510 . In a possible embodiment, the junction voltage between the doped region 532 and the well region 510 is similar to the junction voltage between the doped region 423 and the well region 410 and the doped region 422 and the well region 410 in FIG. 4 the junction voltage between them. In this embodiment, the gate structure 534 is formed above the well region 510 and overlaps part of the diffusion region 520 .

在一些實施例中,摻雜區531電性連接一基極接觸墊541。摻雜區532電性連接一源極接觸墊542。閘極結構534電性連接一閘極接觸墊543。摻雜區533電性連接一汲極接觸墊544。在此例中,基極接觸墊541作為電晶體500的基極,源極接觸墊542作為電晶體500的源極,閘極接觸墊543作為電晶體500的閘極,汲極接觸墊544作為電晶體500的汲極。In some embodiments, the doped region 531 is electrically connected to a base contact pad 541 . The doped region 532 is electrically connected to a source contact pad 542 . The gate structure 534 is electrically connected to a gate contact pad 543 . The doped region 533 is electrically connected to a drain contact pad 544 . In this example, base contact pad 541 serves as the base of transistor 500, source contact pad 542 serves as the source of transistor 500, gate contact pad 543 serves as the gate of transistor 500, and drain contact pad 544 serves as the gate of transistor 500. Drain of transistor 500 .

由於擴散區520具有較低的摻雜濃度,故可提高摻雜區533與基極510之間的接面電壓,使得摻雜區533可承受高操作電壓(如VCC)。在第1圖中,當高壓電晶體500作為分壓元件120時,不但可承受高操作電壓VCC,也可避免高操作電壓VCC傷害偵測電路110內部的元件。Since the diffusion region 520 has a lower doping concentration, the junction voltage between the doped region 533 and the base 510 can be increased, so that the doped region 533 can withstand a high operating voltage (such as VCC). In FIG. 1 , when the high voltage transistor 500 is used as the voltage dividing element 120 , it can not only withstand the high operating voltage VCC, but also prevent the components inside the detection circuit 110 from being damaged by the high operating voltage VCC.

必須瞭解的是,當一個元件或層被提及與另一元件或層「耦接」時,係可直接耦接或連接至其它元件或層,或具有其它元件或層介於其中。反之,若一元件或層「連接」至其它元件或層時,將不具有其它元件或層介於其中。It should be understood that when an element or layer is referred to as being "coupled" to another element or layer, it can be directly coupled or connected to the other element or layer or have the other element or layer interposed. Conversely, when an element or layer is "connected" to other elements or layers, there will be no intervening elements or layers.

除非另作定義,在此所有詞彙(包含技術與科學詞彙)均屬本發明所屬技術領域中具有通常知識者之一般理解。此外,除非明白表示,詞彙於一般字典中之定義應解釋為與其相關技術領域之文章中意義一致,而不應解釋為理想狀態或過分正式之語態。雖然“第一”、“第二”等術語可用於描述各種元件,但這些元件不應受這些術語的限制。這些術語只是用以區分一個元件和另一個元件。Unless otherwise defined, all terms (including technical and scientific terms) used herein are to be understood by those of ordinary skill in the art to which this invention belongs. In addition, unless expressly stated, the definition of a word in a general dictionary should be interpreted as consistent with the meaning in the article in its related technical field, and should not be interpreted as an ideal state or an overly formal voice. Although terms such as 'first' and 'second' may be used to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾。舉例來說,本發明實施例所述之系統、裝置或是方法可以硬體、軟體或硬體以及軟體的組合的實體實施例加以實現。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. . For example, the system, device or method described in the embodiments of the present invention can be implemented in physical embodiments of hardware, software, or a combination of hardware and software. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

100:靜電放電保護電路 110:偵測電路 120:分壓元件 130、140:釋放元件 PL1~PL3:電源線 SON:導通信號 VDD:低操作電壓 VCC:高操作電壓 VSS:接地電壓 HVN1、HVN2、500:高壓電晶體 LVP、LVN1、LVN2、400:低壓電晶體 121、131、141、311、315:閘極 122、132、142、313、316:汲極 123、133、143、312、317:源極 124、134、144、314、318:基極 R:電阻 C:電容 A、B:節點 410、510、520:井區 421~423、531~533:摻雜區 424、534:閘極結構 431~434、541~544:接觸墊 100: Electrostatic discharge protection circuit 110: detection circuit 120: Voltage divider element 130, 140: release element PL1~PL3: Power cord SON: ON signal VDD: Low operating voltage VCC: High operating voltage VSS: ground voltage HVN1, HVN2, 500: High voltage transistor LVP, LVN1, LVN2, 400: low voltage transistor 121, 131, 141, 311, 315: gate 122, 132, 142, 313, 316: drain 123, 133, 143, 312, 317: source 124, 134, 144, 314, 318: base R: resistance C: Capacitance A, B: node 410, 510, 520: well area 421~423, 531~533: doping area 424, 534: gate structure 431~434, 541~544: contact pad

第1圖為本發明之靜電放電保護電路的一可能實施例。 第2圖為本發明之靜電放電保護電路的另一實施例。 第3圖為本發明之偵測電路的一可能示意圖。 第4圖為本發明之低壓電晶體的示意圖。 第5圖為本發明之高壓電晶體的示意圖。 Figure 1 is a possible embodiment of the electrostatic discharge protection circuit of the present invention. Fig. 2 is another embodiment of the electrostatic discharge protection circuit of the present invention. Fig. 3 is a possible schematic diagram of the detection circuit of the present invention. Fig. 4 is a schematic diagram of the low voltage transistor of the present invention. Fig. 5 is a schematic diagram of the high voltage transistor of the present invention.

100:靜電放電保護電路 100: Electrostatic discharge protection circuit

110:偵測電路 110: detection circuit

120:分壓元件 120: Voltage divider element

130:釋放元件 130: release element

PL1~PL3:電源線 PL1~PL3: Power cord

SON:導通信號 SON: ON signal

VDD:低操作電壓 VDD: Low operating voltage

VCC:高操作電壓 VCC: High operating voltage

VSS:接地電壓 VSS: ground voltage

HVN1、HVN2:高壓電晶體 HVN1, HVN2: high voltage transistor

121、131:閘極 121, 131: gate

122、132:汲極 122, 132: drain

123、133:源極 123, 133: source

124、134:基極 124, 134: base

Claims (16)

一種靜電放電保護電路,包括:一偵測電路,耦接於一第一電源線以及一第二電源線之間,當一靜電放電事件發生時,致能一導通信號;一分壓元件,耦接於該第一電源線與一第三電源線之間,並接收該導通信號;以及一第一釋放元件,耦接於該第二及第三電源線之間,當該導通信號被致能時,釋放一靜電放電電流;其中當該靜電放電事件未發生時,該第一電源線接收一第一電壓,該第二電源線接收一第二電壓,該第三電源線接收一第三電壓,該第一電壓大於該第二電壓,該第三電壓大於該第一電壓。 An electrostatic discharge protection circuit, comprising: a detection circuit coupled between a first power line and a second power line, enabling a conduction signal when an electrostatic discharge event occurs; a voltage divider, coupled between the first power line and a third power line, and receive the conduction signal; and a first release element, coupled between the second and third power lines, when the conduction signal When enabled, an electrostatic discharge current is released; wherein when the electrostatic discharge event does not occur, the first power line receives a first voltage, the second power line receives a second voltage, and the third power line receives a A third voltage, the first voltage is greater than the second voltage, the third voltage is greater than the first voltage. 如請求項1之靜電放電保護電路,其中該第一釋放元件包括一第一電晶體,該第一電晶體的閘極接收該導通信號,該第一電晶體的汲極耦接該第三電源線,該第一電晶體的源極及基極耦接該第二電源線。 The electrostatic discharge protection circuit according to claim 1, wherein the first release element includes a first transistor, the gate of the first transistor receives the conduction signal, and the drain of the first transistor is coupled to the third A power line, the source and base of the first transistor are coupled to the second power line. 如請求項2之靜電放電保護電路,其中該分壓元件包括一第二電晶體,該第二電晶體的閘極接收該導通信號,該第二電晶體的汲極耦接該第三電源線,該第二電晶體的源極耦接該第一電源線,該第二電晶體的基極耦接該第二電源線。 The electrostatic discharge protection circuit according to claim 2, wherein the voltage dividing element includes a second transistor, the gate of the second transistor receives the conduction signal, and the drain of the second transistor is coupled to the third power supply line, the source of the second transistor is coupled to the first power line, and the base of the second transistor is coupled to the second power line. 如請求項3之靜電放電保護電路,其中該第一及第二電晶體均為橫向擴散電晶體。 The electrostatic discharge protection circuit according to claim 3, wherein the first and second transistors are both laterally diffused transistors. 如請求項2之靜電放電保護電路,其中該偵測電路包括: 一電阻,耦接於該第一電源線與一第一節點之間;一電容,耦接於該第一節點與該第二電源線之間;一第三電晶體,其閘極耦接該第一節點,其源極耦接該第一電源線,其汲極耦接一第二節點;以及一第四電晶體,其閘極耦接該第一節點,其源極耦接該第二電源線,其汲極耦接該第二節點;其中該第三電晶體的汲極與基極之間的接面電壓小於該第一電晶體的汲極與基極之間的接面電壓。 The electrostatic discharge protection circuit according to claim 2, wherein the detection circuit includes: a resistor, coupled between the first power line and a first node; a capacitor, coupled between the first node and the second power line; a third transistor, the gate of which is coupled to the A first node, its source is coupled to the first power line, its drain is coupled to a second node; and a fourth transistor, its gate is coupled to the first node, its source is coupled to the second A power line, the drain of which is coupled to the second node; wherein the junction voltage between the drain and base of the third transistor is lower than the junction voltage between the drain and base of the first transistor. 如請求項1之靜電放電保護電路,更包括:一第二釋放元件,耦接於該第一及第二電源線之間,當該導通信號被致能時,釋放該靜電放電電流。 The electrostatic discharge protection circuit according to claim 1 further includes: a second discharge element coupled between the first and second power lines, and discharges the electrostatic discharge current when the conduction signal is enabled. 如請求項6之靜電放電保護電路,其中:該第一釋放元件包括一第一電晶體,該第一電晶體的閘極接收該導通信號,該第一電晶體的汲極耦接該第三電源線,該第一電晶體的源極及基極耦接該第二電源線;以及該第二釋放元件包括一第二電晶體,該第二電晶體的閘極接收該導通信號,該第二電晶體的汲極耦接該第一電源線,該第二電晶體的源極及基極耦接該第二電源線。 The electrostatic discharge protection circuit according to claim 6, wherein: the first release element includes a first transistor, the gate of the first transistor receives the conduction signal, and the drain of the first transistor is coupled to the first transistor three power lines, the source and base of the first transistor are coupled to the second power line; and the second release element includes a second transistor, the gate of the second transistor receives the conduction signal, The drain of the second transistor is coupled to the first power line, and the source and base of the second transistor are coupled to the second power line. 如請求項7之靜電放電保護電路,其中該第二電晶體的汲極與基極之間的接面電壓小於該第一電晶體的汲極與基極之間的接面電壓。 The electrostatic discharge protection circuit according to claim 7, wherein the junction voltage between the drain and base of the second transistor is lower than the junction voltage between the drain and base of the first transistor. 如請求項1之靜電放電保護電路,其中當該靜電放電事件發生於該第三電源線,部分靜電放電電流經過該分壓元件進入該偵測電路,使得該偵測電路致能該導通信號。 The electrostatic discharge protection circuit according to claim 1, wherein when the electrostatic discharge event occurs on the third power line, part of the electrostatic discharge current enters the detection circuit through the voltage dividing element, so that the detection circuit enables the conduction signal . 一種靜電放電保護電路,包括:一偵測電路,耦接於一第一電源線以及一第二電源線之間,當一靜電放電事件發生時,致能一導通信號;一第一電晶體,包括一第一基極、一第一閘極、一第一汲極以及一第一源極,該第一閘極接收該導通信號,該第一汲極耦接一第三電源線,該第一源極耦該第二電源線;以及一第二電晶體,包括一第二基極、一第二閘極、一第二汲極以及一第二源極,該第二閘極接收該導通信號,該第二汲極耦接該第三電源線,該第二源極耦接該第一電源線;其中:當該導通信號被致能時,該第一及第二電晶體導通,用以釋放一靜電放電電流;該第一汲極與該第一基極之間的接面電壓高於該第一源極與該第一基極之間的接面電壓;該第二汲極與該第二基極之間的接面電壓高於該第二源極與該第二基極之間的接面電壓。 An electrostatic discharge protection circuit, comprising: a detection circuit coupled between a first power line and a second power line, enabling a conduction signal when an electrostatic discharge event occurs; a first transistor , including a first base, a first gate, a first drain and a first source, the first gate receives the conduction signal, the first drain is coupled to a third power line, The first source is coupled to the second power line; and a second transistor includes a second base, a second gate, a second drain and a second source, the second gate receives The conduction signal, the second drain is coupled to the third power line, and the second source is coupled to the first power line; wherein: when the conduction signal is enabled, the first and second power The crystal is turned on to release an electrostatic discharge current; the junction voltage between the first drain and the first base is higher than the junction voltage between the first source and the first base; the first The junction voltage between the second drain and the second base is higher than the junction voltage between the second source and the second base. 如請求項10之靜電放電保護電路,更包括:一第三電晶體,包括一第三基極、一第三閘極、一第三汲極以及一第三源極,該第三閘極接收該導通信號,該第三汲極耦接該第一電源線,該第三源極及該第三基極耦該第二電源線;其中:當該導通信號被致能時,該第三電晶體導通,用以釋放該靜電放電電流。 Such as the electrostatic discharge protection circuit of claim 10, further comprising: a third transistor, including a third base, a third gate, a third drain and a third source, the third gate receives The conduction signal, the third drain is coupled to the first power line, the third source and the third base are coupled to the second power line; wherein: when the conduction signal is enabled, the first The tri-transistor is turned on to discharge the electrostatic discharge current. 如請求項11之靜電放電保護電路,其中該第一汲極 與該第一基極之間的接面電壓高於該第三汲極與該第三基極之間的接面電壓,該第二汲極與該第二基極之間的接面電壓高於該第三汲極與該第三基極之間的接面電壓。 The electrostatic discharge protection circuit according to claim 11, wherein the first drain The junction voltage between the first base and the third drain is higher than the junction voltage between the third drain and the third base, and the junction voltage between the second drain and the second base is higher The junction voltage between the third drain and the third base. 如請求項10之靜電放電保護電路,其中該偵測電路包括:一電阻,耦接於該第一電源線與一第一節點之間;一電容,耦接於該第一節點與該第二電源線之間;一第四電晶體,包括一第四基極、一第四閘極、一第四汲極以及一第四源極,該第四閘極耦接該第一節點,該第四源極耦接該第一電源線,該第四汲極耦接一第二節點;以及一第五電晶體,包括一第五基極、一第五閘極、一第五汲極以及一第五源極,該第五閘極耦接該第一節點,該第五源極耦接該第二電源線,該第五汲極耦接該第二節點;其中:該第一汲極與該第一基極之間的接面電壓高於該第四汲極與該第四基極之間的接面電壓;該第一汲極與該第一基極之間的接面電壓高於該第五汲極與該第五基極之間的接面電壓。 The electrostatic discharge protection circuit according to claim 10, wherein the detection circuit includes: a resistor coupled between the first power line and a first node; a capacitor coupled between the first node and the second Between the power lines; a fourth transistor, including a fourth base, a fourth gate, a fourth drain and a fourth source, the fourth gate is coupled to the first node, the first Four sources are coupled to the first power line, the fourth drain is coupled to a second node; and a fifth transistor includes a fifth base, a fifth gate, a fifth drain and a fifth transistor. a fifth source, the fifth gate is coupled to the first node, the fifth source is coupled to the second power line, and the fifth drain is coupled to the second node; wherein: the first drain and The junction voltage between the first base is higher than the junction voltage between the fourth drain and the fourth base; the junction voltage between the first drain and the first base is higher than The junction voltage between the fifth drain and the fifth base. 如請求項13之靜電放電保護電路,其中該第一、第二、第三及第五電晶體為N型電晶體,該第四電晶體為P型電晶體。 The electrostatic discharge protection circuit according to claim 13, wherein the first, second, third and fifth transistors are N-type transistors, and the fourth transistor is a P-type transistor. 如請求項10之靜電放電保護電路,其中該第二基極耦接該第二電源線。 The electrostatic discharge protection circuit according to claim 10, wherein the second base is coupled to the second power line. 如請求項10之靜電放電保護電路,其中當該靜電放電事件未發生時,該第一電源線接收一第一電壓,該第二電源線接收 一第二電壓,該第三電源線接收一第三電壓,該第一電壓大於該第二電壓,該第三電壓大於該第一電壓。 The electrostatic discharge protection circuit according to claim 10, wherein when the electrostatic discharge event does not occur, the first power line receives a first voltage, and the second power line receives A second voltage, the third power line receives a third voltage, the first voltage is greater than the second voltage, the third voltage is greater than the first voltage.
TW110141984A 2021-11-11 2021-11-11 Electrostatic discharge protection circuit TWI795068B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110141984A TWI795068B (en) 2021-11-11 2021-11-11 Electrostatic discharge protection circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110141984A TWI795068B (en) 2021-11-11 2021-11-11 Electrostatic discharge protection circuit

Publications (2)

Publication Number Publication Date
TWI795068B true TWI795068B (en) 2023-03-01
TW202320288A TW202320288A (en) 2023-05-16

Family

ID=86692167

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110141984A TWI795068B (en) 2021-11-11 2021-11-11 Electrostatic discharge protection circuit

Country Status (1)

Country Link
TW (1) TWI795068B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200731500A (en) * 2006-02-15 2007-08-16 Realtek Semiconductor Corp Electrostatic discharge protection circuit for avoiding circuit latch-up and method thereof
TW200840016A (en) * 2007-03-28 2008-10-01 Ememory Technology Inc Electrostatic discharge protection device
TW200929505A (en) * 2007-12-28 2009-07-01 Raydium Semiconductor Corp ESD protection device
TW201042748A (en) * 2009-05-26 2010-12-01 Faraday Tech Corp ESD protection circuit with merged triggering mechanism
US20160352098A1 (en) * 2015-05-29 2016-12-01 Rf Micro Devices, Inc. Trigger circuitry for electrostatic discharge (esd) protection
US20180287377A1 (en) * 2015-09-29 2018-10-04 Tdk Corporation Electrostatic Discharge Protection Device and Circuit Apparatus
US20200083705A1 (en) * 2018-09-12 2020-03-12 CoolStar Technology, Inc. Electrostatic discharge transient power clamp
TW202105873A (en) * 2019-07-23 2021-02-01 世界先進積體電路股份有限公司 Operation circuit
US20210242677A1 (en) * 2020-01-30 2021-08-05 Infineon Technologies Ag System and method for temperature compensated esd protection
TW202139415A (en) * 2020-03-31 2021-10-16 台灣積體電路製造股份有限公司 Clamp circuit, electrostatic discharge protection circuit and method of operating the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200731500A (en) * 2006-02-15 2007-08-16 Realtek Semiconductor Corp Electrostatic discharge protection circuit for avoiding circuit latch-up and method thereof
TW200840016A (en) * 2007-03-28 2008-10-01 Ememory Technology Inc Electrostatic discharge protection device
TW200929505A (en) * 2007-12-28 2009-07-01 Raydium Semiconductor Corp ESD protection device
TW201042748A (en) * 2009-05-26 2010-12-01 Faraday Tech Corp ESD protection circuit with merged triggering mechanism
US20160352098A1 (en) * 2015-05-29 2016-12-01 Rf Micro Devices, Inc. Trigger circuitry for electrostatic discharge (esd) protection
US20180287377A1 (en) * 2015-09-29 2018-10-04 Tdk Corporation Electrostatic Discharge Protection Device and Circuit Apparatus
US20200083705A1 (en) * 2018-09-12 2020-03-12 CoolStar Technology, Inc. Electrostatic discharge transient power clamp
TW202105873A (en) * 2019-07-23 2021-02-01 世界先進積體電路股份有限公司 Operation circuit
US20210242677A1 (en) * 2020-01-30 2021-08-05 Infineon Technologies Ag System and method for temperature compensated esd protection
TW202139415A (en) * 2020-03-31 2021-10-16 台灣積體電路製造股份有限公司 Clamp circuit, electrostatic discharge protection circuit and method of operating the same

Also Published As

Publication number Publication date
TW202320288A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
USRE38319E1 (en) Dual-node capacitor coupled MOSFET for improving ESD performance
JP4401500B2 (en) Semiconductor device and method for reducing parasitic bipolar effect in electrostatic discharge
US8498085B2 (en) ESD protection circuit
US5246872A (en) Electrostatic discharge protection device and a method for simultaneously forming MOS devices with both lightly doped and non lightly doped source and drain regions
JP3992855B2 (en) Circuit for electrostatic discharge protection
US20130342941A1 (en) Sige based gate driven pmos trigger circuit
JP2007531284A (en) Method and apparatus for protecting gate oxide using source / bulk pumping
JP2008524857A (en) Device having a low voltage trigger element
TW200531255A (en) Device for electrostatic discharge protection and circuit thereof
US10181721B2 (en) Area-efficient active-FET ESD protection circuit
US6351364B1 (en) Electrostatic discharge protection circuit
JP2009524248A (en) Floating gate structure with high electrostatic discharge performance
WO2017157117A1 (en) Electrostatic discharge (esd) protective circuit for integrated circuit
US5208475A (en) Electrostatic discharge protection device and a method for simultaneously forming MOS devices with both lightly doped and non lightly doped source and drain regions
US6323523B1 (en) N-type structure for n-type pull-up and down I/O protection circuit
JP3345296B2 (en) Protection circuit and circuit for semiconductor element on insulator
KR101164109B1 (en) Electrostatic discaharge Protection Circuit
US6317306B1 (en) Electrostatic discharge protection circuit
TWI795068B (en) Electrostatic discharge protection circuit
TW202406262A (en) Esd protection circuit and operating method thereof
US11811222B2 (en) Electrostatic discharge protection circuit
CN116137267A (en) Electrostatic discharge protection circuit
TWI840989B (en) Electrostatic discharge protection circuit and electronic circuit
US6573778B2 (en) Electrostatic discharge protection device for an integrated transistor
JP2001308200A (en) Semiconductor integrated circuit