TWI791557B - 用於繞射光學元件的多層薄膜堆疊 - Google Patents

用於繞射光學元件的多層薄膜堆疊 Download PDF

Info

Publication number
TWI791557B
TWI791557B TW107124667A TW107124667A TWI791557B TW I791557 B TWI791557 B TW I791557B TW 107124667 A TW107124667 A TW 107124667A TW 107124667 A TW107124667 A TW 107124667A TW I791557 B TWI791557 B TW I791557B
Authority
TW
Taiwan
Prior art keywords
layer
reflection structure
optical element
layers
substrate
Prior art date
Application number
TW107124667A
Other languages
English (en)
Other versions
TW201910816A (zh
Inventor
約翰 麥克 米勒
史蒂芬 貝格納爾德
Original Assignee
美商盧曼頓運作有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商盧曼頓運作有限公司 filed Critical 美商盧曼頓運作有限公司
Publication of TW201910816A publication Critical patent/TW201910816A/zh
Application granted granted Critical
Publication of TWI791557B publication Critical patent/TWI791557B/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/44Grating systems; Zone plate systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1814Diffraction gratings structurally combined with one or more further optical elements, e.g. lenses, mirrors, prisms or other diffraction gratings
    • G02B5/1819Plural gratings positioned on the same surface, e.g. array of gratings
    • G02B5/1823Plural gratings positioned on the same surface, e.g. array of gratings in an overlapping or superposed manner
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1866Transmission gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • G02B5/1871Transmissive phase gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • G02B27/1093Beam splitting or combining systems operating by diffraction only for use with monochromatic radiation only, e.g. devices for splitting a single laser source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/067Construction details

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Integrated Circuits (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

一種光學元件可以包括基板。所述光學元件可以包括形成在基板上的用於特定波長範圍的第一抗反射結構。所述光學元件可包括設置在第一抗反射結構的一部分上的至少一個層。所述光學元件可包括形成在該至少一個層上的用於該特定波長範圍的第二抗反射結構。可以選擇在第一抗反射結構的第一表面和第二抗反射結構的第二表面之間的深度、第一抗反射結構的第一折射率、第二抗反射結構的第二折射率和至少一層的第三折射率,以形成與特定波長的特定相位延遲相關聯的繞射光學元件。

Description

用於繞射光學元件的多層薄膜堆疊
本公開涉及薄膜堆疊。更具體地,本公開的一些態樣涉及一種用於繞射光學元件(diffractive optical element(DOE))的多層薄膜堆疊,該繞射光學元件在多層薄膜堆疊的蝕刻區域和未蝕刻區域之間提供特定相位延遲,並且為特定波長範圍提供抗反射(anti-reflectance)塗層。
繞射光學元件(DOE)可用於引導光束。例如,諸如繞射透鏡、點陣(spot array)照明器、點陣產生器、傅立葉陣列產生器等的DOE可用於分割光束、成形光束、聚焦光束等。DOE可以整合到多播開關、波長選擇開關、手勢識別系統、運動感測系統等中。
可以為表面浮雕DOE選擇多級表面浮雕輪廓(profile)。例如,可以為表面浮雕DOE選擇兩級(有時稱為“二元”)表面浮雕輪廓。可以選擇多級表面浮雕輪廓來近似連續表面浮雕輪廓,並使得能夠使用光微影程序和/或蝕刻程序來製造DOE。兩級薄膜堆疊可用於產生單階(order)二元DOE,例如繞射透鏡。用於DOE的一些材料可能需要大於臨界值的蝕刻深度,從而導致製造DOE的臨界值蝕刻時間。
根據一些可能的實施方式,一種光學元件可以包括基板。光學元件可以包括形成在基板上的用於特定波長範圍的第一抗反射結構。光學元件可包括設置在第一抗反射結構的一部分上的至少一個層。光學元件可包括形成在該至少一個層上的用於特定波長範圍的第二抗反射結構。可以選擇第一抗反射結構的第一表面和第二抗反射結構的第二表面之間的深度、第一抗反射結構的第一折射率、第二抗反射結構的第二折射率和該至少一個層的第三折射率,以形成與特定波長的特定相位延遲相關聯的繞射光學元件。
根據一些可能的實施方式,一種方法可以包括在晶圓上沉積多個層。所述沉積可以在用於特定波長的第二抗反射結構之下形成用於該特定波長的第一抗反射結構。該方法可以包括蝕刻多個層中的層的子集以形成兩級浮雕輪廓。所述蝕刻可以在第一抗反射結構和第二抗反射結構之間形成與特定波長的特定相位延遲相關聯的繞射光學元件。
根據一些可能的實施方式,一種方法可以包括使用薄膜沉積技術將多個薄膜沉積到晶圓上。所述沉積多個薄膜可以包括沉積用於特定波長的第一抗反射結構,以及在沉積第一抗反射結構之後沉積用於特定波長的第二抗反射結構。該方法可包括基於限定晶圓的多個區域的一組確定的轉變點來圖案化遮罩。該方法可包括基於遮罩來蝕刻多個薄膜中的薄膜子集以形成兩級浮雕輪廓。所述蝕刻可以在第一抗反射結構和第二抗反射結構之間形成與特定波長的π相位延遲相關聯的繞射光學元件。該方法可以包括去除遮罩。
100:實現方式
110:入射平面波
120:表面浮雕DOE光柵
130:波前
140:會聚透鏡
150:焦距
160:焦平面
170:波前
200:與DOE相關的特性相關聯的簡圖
202:代號
204:代號
206:代號
208:代號
250:與DOE相關的特性相關聯的簡圖
252:未蝕刻區域
254:蝕刻區域
300:繞射光學元件(DOE)
305:基板
310:AR塗覆
315-1~315-3:矽層
320-1~320-2:二氧化矽層
325-1~325-2:匹配層
330:蝕刻
350:簡圖
400、400’、400”:繞射光學元件(DOE)
405:基板
410:抗反射塗層
415-1~415-3:矽層
420-1~420-2:二氧化矽層
425:蝕刻停止層
430-1~430-2:未蝕刻的堆疊
435-1~435-2:蝕刻的堆疊
440:浮雕深度
445:間距
450:強度階
455-1~455-2:強度階
500:用於配置DOE的示例製程
505~540:方塊
600:實現方式簡圖
605:包括基板和第一對交替的矽和二氧化矽薄膜層的堆疊的第一區域的反射率
610:堆疊的第二區域的反射率
615:優化結果
620:週期
625-1~625-4:轉變點
700:用於製造DOE的示例製程
710~760:方塊
800:實現方式簡圖
810:在基板上沉積一組層
820:將遮罩沉積到該組層中的一層上
830:圖案化遮罩
840:基於圖案化遮罩來蝕刻層的子集以形成浮雕輪廓
850:去除遮罩
圖1是本文描述的示例實現方式的概略圖;圖2A和2B是與本文描述的示例實現方式相關的特性的簡圖;圖3A和3B是與本文描述的示例實現方式相關的特性的簡圖; 圖4A-4C是本文描述的示例實現方式的簡圖;圖5是用於配置本文描述的示例實現方式的示例製程的流程圖;圖6A和6B是與圖5所示的示例製程相關的示例實現方式的簡圖;圖7是用於製造本文描述的示例實現方式的示例製程的流程圖;和圖8A和8B是與圖7所示的示例製程相關的示例實現方式的簡圖。
下面的示例實現方式的詳細描述參考附圖。在不同的附圖中的相同的參考標記可代表相同或相似的元素。
繞射光學元件(DOE)可以使用光微影程序和/或蝕刻程序製造。例如,為了近似連續表面浮雕輪廓,可以為DOE選擇多級表面浮雕輪廓,並且可以蝕刻或圖案化DOE的表面以形成多級表面浮雕輪廓。多級表面浮雕輪廓可用於為通過DOE的光束產生相位延遲。對於單階二元DOE,例如繞射透鏡,使用二元級表面浮雕輪廓可以獲得大約40%的繞射效率。然而,該繞射效率可以小於臨界值,這對於在光學系統中使用DOE是必需的,所述光學系統例如是光學通信系統、手勢識別系統、運動檢測系統等。此外,在一些系統中,降低光學系統的第0階以避免例如在手勢識別系統中引起眼睛損傷可能是有利的。
本文描述的一些實現方式可以提供具有臨界值繞射效率的兩級DOE。例如,本文描述的一些實現方式可以提供具有臨界值特徵尺寸(例如,波長的臨界量)的兩級(也稱為“二元”)DOE,以在DOE的各部分之間提供π相位延 遲。此外,DOE可與蝕刻深度相關聯以製造小於臨界值的選定的表面浮雕輪廓,從而導致(相對於製造DOE的其它技術)DOE的減小的長寬比、減小的蝕刻時間和/或減小的製造成本。此外,DOE的層可以為DOE提供抗反射功能、可以為DOE提供整合蝕刻停止、可以包括為DOE的特定操作波長範圍選擇的材料等。本文描述的一些實現方式可以提供用於配置和/或製造DOE的方法。基於使用薄膜沉積技術,可以以更高的精度控制相位延遲,這可以減少光學系統的第0階。例如,薄膜沉積技術可以與小於1%、小於0.5%、小於0.2%、小於0.1%等的公差相關聯。具有類似受控公差的其它製造技術也可用於建構本文所述的DOE。
圖1是本文描述的示例實現方式的概略圖100。圖1示出了使用表面浮雕DOE光柵和會聚透鏡作為點陣照明器(有時稱為點陣產生器)的點陣產生的示例。
如圖1所示,波長λ0的入射平面波110指向表面浮雕DOE光柵120。在一些實現方式中,表面浮雕DOE光柵120可以是具有多級表面浮雕輪廓的DOE,例如兩級DOE(有時稱為二元DOE)。在一些實現方式中,表面浮雕DOE光柵120可以包括例如矽(Si)和二氧化矽(SiO2)的交替層、氫化矽(Si:H)和二氧化矽的交替層等。在一些實現方式中,表面浮雕DOE光柵120的層可以被配置成在表面浮雕DOE光柵120的蝕刻區域和表面浮雕DOE光柵120的未蝕刻區域中提供抗反射功能。在一些實現方式中,表面浮雕DOE光柵120的層(例如,二氧化矽層)可以在表面浮雕DOE光柵120的製造期間提供蝕刻停止功能。在一些實現方式中,入射平面波110可以具有從大約800奈米(nm)到大約1100奈米、大約800奈米到大約1000奈米、大約830奈米到大約1000奈米、大約850奈米到大約1000奈米、大約915奈米到大約1000奈米、大約940奈米到大約1000奈米等的波長範圍。本文描述了關於表面浮雕DOE光柵120的附加細 節。
如圖1進一步所示,表面浮雕DOE光柵120繞射入射平面波110,並將波前130(例如,入射平面波110的繞射階)導向會聚透鏡140。會聚透鏡140與焦平面160隔開焦距150。在一些實現方式中,示例實現方式100可以用於手勢識別系統,並且焦平面160可以是手勢識別的目標。另外或替代地,焦平面160可以是物件(例如,用於運動感測系統)、通信目標(例如,用於光通信系統)等。
如圖1進一步所示,基於會聚透鏡140改變波前130的定向以形成波前170,波前170被導向焦平面160,從而在焦平面160處形成多點陣圖案。在一些實現方式中,表面浮雕DOE光柵120可用於創建一維點陣。在一些實現方式中,表面浮雕DOE光柵120可用於創建二維點陣。這樣,表面浮雕DOE光柵可用作點陣照明器,以在焦平面160處根據入射平面波110創建點陣,從而實現手勢識別系統、運動感測系統、光學通信系統等。
如上所述,圖1僅作為示例提供。其它示例是可能的,並且可以不同於關於圖1描述的示例。
圖2A和2B分別是與DOE相關的特性相關聯的簡圖200和250。如圖2A所示,且通過簡圖200,可以將連續浮雕輪廓量化為一系列離散級,以使得光刻和/或蝕刻程序能夠用於製造DOE。
如圖2A並且通過代號202進一步示出的,連續浮雕輪廓可以與大約100%的繞射效率相關聯(對於單階配置),並且可以提供相對於第一間距位置0從第二間距位置dx的2π的連續增加的相位延遲。如代號204所示,連續浮雕輪廓可以由兩級浮雕輪廓(有時稱為二元浮雕輪廓)近似。兩級二元浮雕輪廓可以與大約40.5%的繞射效率相關聯(對於單階配置),並且可以提供相對於DOE從間距位置0到間距位置0.5dx的第一區域,在DOE從間距位置0.5dx到間距位置 dx的第二區域處的π相位延遲。
如圖2A並且通過代號206進一步所示,連續浮雕輪廓可以由4級浮雕輪廓近似。4級浮雕輪廓可以與大約81%的繞射效率相關聯(對於單階配置),並且可以提供相對於DOE從00.25dx的第一區域,在DOE從間距位置0.25dx到間距位置0.5dx的第二區域處的π/2相位延遲;相對於DOE的第一區域,在DOE從0.5dx0.75dx的第三區域處的π相位延遲;以及相對於DOE的第一區域,在DOE從0.75dxdx的第四區域處的3π/2相位延遲。
如圖2A並且通過代號208進一步所示,連續浮雕輪廓可以由8級浮雕輪廓近似。8級浮雕輪廓可以與大約95%的繞射效率相關聯(對於單階配置),並且可以在DOE的區域提供π/4增量的相位延遲(例如,相對於DOE從0到0.125dx的第一區域,在從0.125dx0.25dx的第二區域處的π/4;在從0.25dx0.375dx的第三區域的π/2;在從0.375dx0.5dx的第四區域的3π/4;等等)。在一些實現方式中,可以使用具有另一繞射效率的另一配置。例如,相對於單階配置,使用2階、4階、10階、100階、數千階等的配置可以用於增加繞射效率。在這種情況下,例如對於+/-100階,對於兩級浮雕輪廓,可以獲得大約65%至80%的繞射效率。
如圖2B並且通過簡圖250所示,兩級浮雕輪廓可用於具有多個未蝕刻區域252和蝕刻區域254的DOE。在一些實現方式中,未蝕刻區域252可與相對於蝕刻區域254的π相位延遲相關聯。在一些實現方式中,未蝕刻區域252可與用於矽(Si)與空氣介面的薄膜折射率n tf 相關聯。在一些實現方式中,蝕刻區域254可以與無相位延遲相關聯。換句話說,未蝕刻區域252與相對於蝕刻區域254的π相位延遲相關聯。在一些實現方式中,蝕刻區域254與基板(例如矽)到空氣介面的折射率n air 相關聯。在一些實現方式中,蝕刻區域254和未蝕刻區域252的每一組可以共同與寬度dx相關聯,並且DOE可以與N*dx的總寬 度相關聯,其中N是表示蝕刻區域254和未蝕刻區域252的組的數量的整數值(例如,1、2、3、4、5等)。
如上所述,圖2A和2B僅作為示例提供。其它示例是可能的,並且可以不同於關於圖2A和2B描述的示例。
圖3A和3B是與關於DOE的特性相關聯的簡圖。示出DOE 300的圖3A對應於圖2B中的DOE的兩級浮雕輪廓,其可以被配置為提供π相位延遲。
如圖3A所示,DOE 300可以包括基板305。在一些實現方式中,基板305可以是玻璃基板、熔融石英基板等。例如,基板305可以是厚度約為200毫米、且折射率n sub 為1.45的熔融石英基板。在一些實現方式中,抗反射塗層310可以設置在基板305的表面上。例如,如圖3A所示,一組交替的矽和二氧化矽層可設置在基板305的頂表面上,並被圖案化以形成浮雕輪廓,如本文所述,以及抗反射塗層310可覆蓋基板305的底表面。
如圖3A進一步所示,一組矽層315和一組二氧化矽層320可以設置在基板305的頂表面上。例如,矽層315-1可以設置在基板305上,以及二氧化矽層320-1可以設置在矽層315-1上。矽層315-1和二氧化矽層320-1可以形成一對匹配層325-1。類似地,矽層315-2可以設置在二氧化矽層320-2上,並且可以形成一對匹配層325-2。如圖所示,矽層315-3可以設置在匹配層325-1和匹配層325-2之間。
在一些實現方式中,匹配層325-1和匹配層325-2可形成抗反射塗層以增加DOE 300的透射率。在一些實現方式中,DOE 300可以暴露於空中介面。例如,DOE 300的第一表面(例如,匹配層325-1的表面和匹配層325-2的表面)和DOE 300的第二表面(例如,抗反射塗層310的表面)可以暴露於折射率n air 為1.0的空氣介面。浮雕深度h可基於以下等式計算:
Figure 107124667-A0305-02-0009-1
其中λ0是DOE(例如DOE 300)標稱照明波長。為了減小浮雕深度,可以選擇具有相對大折射率的材料,例如矽,在一些實現方式中,這可以導致蝕刻(例如,蝕刻330)的浮雕深度h大約為0.5微米(μm)。在一些實現方式中,浮雕深度可以在大約λ/4和λ/2之間,其中λ表示獲得特定相位延遲的特定波長,例如大約940nm的波長、在840nm和940nm之間的波長等,在這些波長處,例如對於2.0和3.0之間的有效折射率、2.2的有效折射率等獲得π相位延遲。在一些實現方式中,層可以匹配折射率(index)以增加DOE 300的透射率。例如,矽層315和二氧化矽層320可以基於分別在3.1至3.9之間和在1.4至1.5之間的臨界值內的3.5和1.45的相應折射率來選擇。以這種方式,基於相對於其他DOE減小浮雕深度,本文所述的一些實現方式能夠提高製造公差。
如圖3B並且通過簡圖350所示,可以為薄膜塗層材料選擇其它材料,例如五氧化二鉭(Ta2O5)和氮化矽(Si3N4),其可以具有大約2.0的折射率。如簡圖350進一步所示,基於對DOE 300的層使用矽薄膜,相對於其它材料選擇,兩級、4級、8級或連續浮雕輪廓中的每一個的浮雕深度減小。例如,對於標稱照明波長為1550nm的兩級浮雕輪廓中的π相位延遲,二氧化矽可與約1.55μm的浮雕深度相關聯,五氧化二鉭和氮化矽可與約0.78μm的浮雕深度相關聯,並且矽可與約0.31μm的浮雕深度相關聯。
如上所述,圖3A和3B僅作為示例提供。其它示例是可能的,並且可以不同於關於圖3A和3B描述的示例。
圖4A-4C是DOE 400/400’/400”的示例實現方式的簡圖。如圖4A所示,DOE 400包括基板405、抗反射塗層410、一組矽層415-1至415-3和一組二氧化矽層420-1至420-2。
如圖4A以及通過元件符號425進一步所示,二氧化矽層420-1可以是蝕刻停止層,以使蝕刻能夠形成π相位延遲。例如,可以執行蝕刻程序, 使得未蝕刻的堆疊430-1和430-2保持未蝕刻,並且蝕刻的堆疊435-1和435-2被蝕刻到臨界值浮雕深度440,以在蝕刻的堆疊435-1和435-2與未蝕刻的堆疊430-1和430-2之間提供π相位延遲。在一些實現方式中,可以執行使用多個工具的多個蝕刻程序來蝕刻DOE 400。例如,DOE 400可以以二氧化矽層作為蝕刻停止部使用第一矽蝕刻、以矽層作為蝕刻停止部使用第一二氧化矽蝕刻和以另一二氧化矽層作為蝕刻停止部使用第二矽蝕刻(例如,使用深反應離子(DRIE)蝕刻工具)等來製造。
在一些實現方式中,DOE 400的層可以形成一組抗反射結構。例如,層420-1和415-1可形成用於特定波長範圍的第一抗反射結構,層415-2和420-2可形成用於特定波長範圍的第二抗反射結構,從而形成兩級浮雕輪廓。附加地或替代地,層415-2可形成第二抗反射結構。第二抗反射結構可以形成在第一抗反射結構上(例如,在未蝕刻的堆疊430中),並且第一抗反射結構(例如,層420-1)可以是用於蝕刻的蝕刻停止部以形成第二抗反射結構。在一些實現方式中,至少一個層,例如層415-3、層415-3和420-2兩者等,可以在第一抗反射結構和第二抗反射結構之間。這樣,可以對蝕刻區域進行改變,以改變DOE 400的特性,而不改變DOE 400的透射率。在一些實現方式中,第一抗反射結構和第二抗反射結構可以不被層分開。在一些實現方式中,層415-3可以為DOE 400提供另一功能,例如除了特定相位延遲(例如π相位延遲)和抗反射功能之外的另一功能。在一些實現方式中,DOE 400的抗反射結構共同形成DOE。
在一些實現方式中,每個層可以與特定厚度相關聯。例如,層1(例如矽層415-1)可以與大約209奈米(nm)的厚度相關聯;層2(例如,二氧化矽層420-1)可以與162nm的厚度相關聯;層3(例如,矽層415-3)(如果存在)可以與238nm的厚度相關聯;層4(例如,二氧化矽層420-2)(如果存在)可以與 254nm的厚度相關聯;而層5(例如,矽層415-2)(如果存在)可以與20nm的厚度相關聯。在一些實現方式中,DOE 400可以與特定間距445(有時稱為週期)dx相關聯。例如,間距445可以是大約1微米至1000微米。在一些實現方式中,可以在第五層(例如,另一個二氧化矽層)上形成覆蓋層,這可以在切割包括基板405的晶圓期間提高堅固性(robustness)。
在一些實現方式中,可以選擇DOE 400的層的厚度、間距445的尺寸、抗反射結構和/或其層的折射率等,以在抗反射結構提供抗反射功能的特定波長處引起特定相位延遲(例如π相位延遲)。例如,第一抗反射結構可以與1.5的第一(有效)折射率相關聯,第二抗反射結構可以與3.5的第二(有效)折射率相關聯,並且第一抗反射結構和第二抗反射結構之間的一組層(例如,層415-3)可以與3.5的第三(有效)折射率相關聯。附加地或替代地,特定波長可以包括大約1540nm和1560nm之間的波長範圍。如元件符號450所示,基於被引導到基板405的第一側的入射光,一組強度階(例如,強度階-2、-1、0、1、2等)由DOE 400提供。
如圖4B所示,DOE 400’包括形成在基板405的第一側上的第一繞射光學元件和形成在基板405的第二側上的第二繞射光學元件。每個繞射光學元件包括一組矽層415-1至415-3和一組二氧化矽層420-1至420-2。如元件符號455-1和455-2所示,基於朝向DOE 400’的入射光,第二繞射光學元件使得第一組強度階被引導通過基板405到達第一繞射光學元件,這使得從DOE 400’提供第二組強度階。這樣,基板405保持第一繞射光學元件和第二繞射光學元件的對準,從而相對於另一種技術(例如自由空間光學或使用拾取和放置機器)降低了保持對準的困難。
如圖4C所示,DOE 400”包括形成在基板405的表面上的第一抗反射結構和形成在第一抗反射結構的一部分的表面上的第二抗反射結構(例如, 在第一抗反射結構和第二抗反射結構之間沒有形成一個或更多個層)。例如,第一抗反射結構和第二抗反射結構可以為特定波長(例如930nm至950nm之間的波長範圍)提供抗反射功能,並且可以在特定波長提供特定相位延遲(例如π相位延遲)。在一些實現方式中,DOE 400”的層可以與特定厚度相關聯。例如,層1可以與大約121nm的厚度相關聯,層2可以與大約107nm的厚度相關聯,層3可以與大約130nm的厚度相關聯,層4可以與大約258nm的厚度相關聯,等等。
儘管本文描述的一些實現方式是根據特定數量的層來描述的,例如4層或5層,但是其他數量的層也是可能的,例如6層(例如6個交替的矽/二氧化矽層)、7層、10層、20層等。
如上所述,圖4A-4C僅作為示例提供。其它示例是可能的,並且可以不同於關於圖4A-4C描述的示例。
圖5是用於配置DOE的示例製程500的流程圖。在一些實現方式中,圖5的一個或更多個處理方塊可以由用戶端設備執行。在一些實現方式中,圖5的一個或更多個處理方塊可以由與用戶端設備(例如伺服器設備)分離或包括用戶端設備的另一設備或一組設備來執行。圖6A和6B是與圖5所示的示例製程500相關的示例實現方式600的簡圖。
如圖5所示,製程500可包括確定堆疊的材料(方塊505)。例如,用戶端設備可以確定堆疊的材料。在一些實現方式中,用戶端設備可以接收標識用於堆疊的材料的輸入。例如,在DOE的設計期間,設計者可以基於一組設計標準選擇一組塗層材料。在一些實現方式中,該組塗層材料可包括矽、氫化矽、二氧化矽、五氧化二鉭、氮化矽、其組合等。在一些實現方式中,該組設計標準可以包括DOE的波長範圍、材料的折射率、材料的透射率等。在一些實現方式中,堆疊可以是多層堆疊。例如,如圖6A所示,堆疊可以是設置在熔融石英基板、玻璃基板等上的交替的矽和二氧化矽薄膜的5層堆疊。
如圖5進一步所示,製程500可包括確定堆疊的未圖案化薄膜區域的反射率(方塊510)。例如,用戶端設備可以確定堆疊的未圖案化薄膜區域的反射率。在一些實現方式中,用戶端設備可以接收識別第一區域和第二區域的反射率的輸入。例如,設計者可以確定包括基板和第一對交替的矽和二氧化矽薄膜層的堆疊的第一區域的反射率,如圖6A中的元件符號605所示。該第一區域可以被稱為AR 0 。在這種情況下,設計者可以確定堆疊的第二區域的反射率,該第二區域包括基板、第一對交替的矽和二氧化矽薄膜層、矽薄膜層以及第二對交替的矽和二氧化矽薄膜層,如圖6A中的元件符號610所示。這個第二區域可以稱為AR π 。基於AR 0 AR π 作為單獨的未圖案化堆疊,可以使用薄膜理論來確定AR 0 AR π 的反射率、透射率和相位延遲,從而使得能夠以相對於使用繞射理論進行的優化計算而言提高的效率來使用全域優化。這樣,相對於其他技術,可以減少用戶端設備對用於DOE的配置的優化的計算資源的利用率。
如圖5進一步所示,製程500可包括定義用於最小化堆疊的區域的反射率的函數(方塊515)。例如,用戶端設備可以定義用於最小化堆疊的區域的反射率的函數。在一些實現方式中,該函數可以是價值函數、成本函數等。例如,用戶端設備可以接收識別函數的輸入,使得函數的優化(例如,最小化)導致堆疊的區域的反射率降低,π的相位延遲保持在AR 0 AR π 之間。這樣,用戶端設備可以將特定波長範圍的透射率提高到臨界值水準,例如至少大約80%、大約90%、大約95%、大約99%等的透射率。
如圖5進一步所示,製程500可包括選擇用於厚度優化的層(方塊520)。例如,用戶端設備可以選擇至少一個層用於厚度優化。在一些實現方式中,用戶端設備可以接收標識至少一個層的輸入。例如,設計者可以選擇優化圖6A中所示的層3的厚度(例如,夾在匹配層1和2與匹配層4和5之間的矽層),並且可以指定層1、2、4、5的厚度,以便能夠相對於層3的厚度優化DOE的反射 率。在一些實現方式中,層的厚度可以基於一組等式來確定:
Figure 107124667-A0305-02-0015-3
其中,△
Figure 107124667-A0305-02-0015-4
表示所選擇的相位延遲(例如π),k表示(例如層3的)常數值,h i 展示層i的浮雕深度,n i 展示層i的折射率,以及λ0表示DOE的標稱照明波長(nominal illuminating wavelength)。這樣,用戶端設備可以計算例如層3的厚度,以基於DOE的其他層的厚度獲得所選擇的相位延遲。
如圖5進一步所示,製程500可包括選擇用於優化的層厚度(方塊525)。例如,用戶端設備可以選擇用於優化的層厚度。在一些實現方式中,用戶端設備可以隨機選擇厚度。例如,用戶端設備可以利用隨機選擇程式來選擇層1、2、4和5的層厚度,以便能夠確定層3的層厚度。在一些實現方式中,用戶端設備可以利用非隨機選擇程式,例如優化程式來選擇厚度。
如圖5進一步所示,製程500可以包括應用優化程式(方塊530)。例如,用戶端設備可以應用優化程式。在一些實現方式中,用戶端設備可以使用類比退火來優化DOE的反射率。例如,用戶端設備可以執行類比退火程序和最陡下降演算法程序,以優化用於配置層厚度以優化(例如最小化)反射率的成本函數。在一些實現方式中,用戶端設備可以執行優化程序,直到滿足臨界值標準(例如,計算透射率的臨界值水準,諸如大於50%的透射率、大於80%的透射率、大於90%的透射率、大於95%的透射率、大於99%的透射率、大於99.5%的透射率等)。
如圖5進一步所示,製程500可以包括分析優化程序的結果的配置(方塊535)。例如,用戶端設備可以確定DOE的轉變點以確定表面浮雕輪廓。如圖6A並且通過元件符號615所示,優化的結果可以識別DOE的優化特性。在一些實現方式中,用戶端設備可以分析偶數階和零階被抑制的配置(其可以被稱 為偶數階缺失(EOM)配置)。例如,如圖6A和6B所示,客戶設備可以確定繞射理論分析,以確定1x4點陣產生器的DOE的浮雕輪廓。在這種情況下,DOE包括具有一組轉變點625的週期620的浮雕輪廓。例如,轉變點625-1可以位於0dx,625-2位於0.054dx,625-3位於0.277dx,以及625-4位於0.5dx,其中dx表示週期620的寬度。在一些實現方式中,用戶端設備可以基於包括DOE的點陣照明器的配置來接收識別轉變點的資訊。在一些實現方式中,用戶端設備可以基於點陣照明器的配置自動確定轉變點。如進一步參照圖6A和6B所示,每個轉變點對應於浮雕深度最小值和浮雕深度最大值之間的轉變,以及對應於相位延遲最小值(0)和相位延遲最大值(π)之間的轉變。
在一些實現方式中,用戶端設備可以執行電磁繞射理論分析。例如,用戶端設備可以確定光束的橫向電(TE)偏振部分和光束的橫向磁(TM)偏振部分的繞射效率。基於TE偏振的繞射效率和滿足第一臨界值的TM偏振的繞射效率(即大於第一臨界值或在連續浮雕輪廓繞射效率的臨界值內,例如在10%內、在5%內、在2%內等),並且基於滿足第二臨界值的零階繞射效率(即小於第二臨界值,例如小於10%、小於5%、小於2%等),用戶端設備可以確定DOE的配置滿足一組設計標準。
如圖5進一步所示,製程500可以包括提供輸出(方塊540)。例如,用戶端設備可以提供識別DOE的配置(例如,浮雕輪廓)的輸出,以使得能夠製造DOE。在一些實現方式中,用戶端設備可以儲存識別配置的輸出、向伺服器設備提供識別配置的輸出以觸發DOE的製造等。
儘管圖5示出了製程500的示例方塊,但是在一些實現方式中,與圖5中描述的方塊相比,製程500可以包括附加的方塊、更少的方塊、不同的方塊或不同排列的方塊。附加地或替代地,製程500的兩個或更多個方塊可以並存執行。如上所述,圖6A和6B僅作為示例提供。其它示例是可能的,並且可 以不同於關於圖6A和6B描述的示例。
圖7是用於製造DOE的示例製程700的流程圖。圖8A和8B是與圖7所示的示例製程700相關的示例實現方式800的簡圖。
如圖7所示,製程700可包括在基板上沉積一組層(方塊710)。例如,如圖8A並且由元件符號810所示,多個薄膜,例如一組矽層和二氧化矽層,可以沉積在基板上,例如玻璃基板或熔融石英基板上,以沉積用於特定波長的第一抗反射結構和用於特定波長的第二抗反射結構。在一些實現方式中,該組層可以包括沉積在基板上的第一對矽和二氧化矽層、矽層以及第二對矽和二氧化矽層。在一些實現方式中,抗反射塗層可以沉積在基板的另一表面上,使得基板設置在抗反射塗層和交替的矽和二氧化矽層之間。在一些實現方式中,抗反射結構可以沉積在基板的第一側和基板的第二側上。在一些實現方式中,另一組材料可用於至少一層,例如五氧化二鉭基材料、氮化矽基材料等。
如圖7進一步所示,製程700可包括將遮罩沉積到該組層中的一層上(方塊720)。例如,如圖8A所示,並且如元件符號820所示,遮罩層可以沉積在第二對矽和二氧化矽層的矽層上,使得遮罩層覆蓋矽層。在一些實現方式中,可以選擇用於遮罩的材料,使得遮罩選擇性地與臨界值相關或者與矽蝕刻和二氧化矽蝕刻的臨界值電阻率相關聯。
如圖7進一步所示,製程700可包括圖案化遮罩(方塊730)。例如,如圖8A所示,並且通過元件符號830所述,可以基於DOE的配置來圖案化遮罩層。在這種情況下,遮罩層可以被圖案化,使得遮罩覆蓋DOE的相對於圖4將對應於未蝕刻堆疊430的部分,並且遮罩層被去除,使得DOE的相對於圖4將對應於蝕刻堆疊435的部分。在這種情況下,可以基於配置DOE來確定遮罩的圖案,如本文關於圖5所描述的。例如,基於DOE的確定的轉變點來圖案化遮罩。
如圖7進一步所示,製程700可包括基於圖案化遮罩來蝕刻層的子集以形成浮雕輪廓(方塊740)。例如,如圖8B所示,並通過元件符號840所示,可以使用矽蝕刻、二氧化矽蝕刻等去除未被圖案化的遮罩覆蓋的一組層的一部分。在這種情況下,在該一組層的子集中形成浮雕輪廓。在一些實現方式中,執行蝕刻以去除少於該整個一組層(remove less than the entire set of layers)。例如,參照圖4,執行蝕刻以去除層3-5的部分。在這種情況下,(例如,層2的)二氧化矽可以對DOE執行蝕刻停止功能。
如圖7進一步所示,製程700可包括去除遮罩(方塊750)。例如,如圖8B所示,並通過元件符號850所示,可以去除遮罩。在這種情況下,該一組層保留在被圖案化的基板上,以在層的子集被去除的DOE部分和層的子集未被去除的DOE部分之間提供π相位延遲。
如圖7進一步所示,製程700可包括基於去除遮罩來執行晶圓拋光加工(方塊760)。例如,DOE可以被測試,DOE可以被切割成多個離散DOE(例如,其上圖案化了多個DOE的晶圓可以被切割成多個離散DOE),並且DOE可以被封裝以包含在光學設備中。在一些實現方式中,晶圓可以是200毫米(mm)x 0.725mm的晶圓。
這樣,相對於包括蝕刻二氧化矽晶圓以產生表面浮雕輪廓、用抗反射塗層塗覆表面浮雕輪廓等的另外的技術,通過提供塗覆有抗反射薄膜層的晶圓,減少了製造步驟的數量。此外,相對於其他技術,基於減少步驟的數量,可以降低成本、供應鏈難度等。
儘管圖7示出了製程700的示例方塊,但是在一些實現方式中,與圖7中描述的方塊相比,製程700可以包括附加的方塊、更少的方塊、不同的方塊或不同排列的方塊。附加地或替代地,製程700的兩個或更多個方塊可以並存執行。如上所述,圖8A和8B僅作為示例提供。其它示例是可能的,並且可 以不同於關於圖8A和8B描述的示例。
這樣,設計和/或製造具有包括蝕刻成兩級浮雕輪廓的交替的矽層(例如氫化矽層)和二氧化矽層的薄膜堆疊的DOE。此外,DOE的層可設計成提供抗反射特性、整合蝕刻停止特性等。此外,可以使用薄膜製程沉積來執行設計,這可以控制零階功率。在一些實現方式中,可以使用基於非繞射理論的計算技術來設計DOE,從而減少處理資源以確定DOE的設計。此外,基於使用薄膜沉積技術和蝕刻技術,可以減少製造DOE的製造步驟的數量,從而相對於用於製造DOE的其他技術減少時間和成本。
前述公開內容提供的是說明和描述,但並不意欲全面性地或將實現方式限制在所公開的精確形式。根據上面的公開內容,修改和變化是可能的,或可從實現方式的實踐中獲得。
本文描述的一些實現方式結合了臨界值。如本文所使用的,滿足臨界值可指數值大於臨界值、多於臨界值、高於臨界值、大於或等於臨界值、小於臨界值、少於臨界值、低於臨界值、小於或等於臨界值、等於臨界值等。
將明顯的是,本文描述的系統和/或方法可以以硬體、韌體或硬體和軟體的結合的不同形式來實現。用於實現這些系統和/或方法的實際的專用控制硬體或軟體代碼不是對該實現方式的限制。因此,系統和/或方法的操作和行為在本文被描述而未參考專用軟體代碼--應理解的是,軟體和硬體可被設計為基於本文的描述來實現系統和/或方法。
儘管特徵的特定結合在權利要求中被闡述和/或在說明書中被公開,這些結合非用於限制可能的實現方式的公開。事實上,這些特徵中的許多特徵可以以未被具體地闡述於申請專利範圍中及/或揭示於說明書中的各種方式結合。儘管下面列出的每個附屬項可直接僅依附於一個申請專利範圍,但是可 能的實現方式的公開可包括:每個附屬項與申請專利範圍群組中的每個其它申請專利範圍相結合。
本文使用的元件、動作或指令不應被解釋為關鍵或必要的,除非明確地描述為這樣。此外,如本文所使用的,冠詞“一(a)”和“一(an)”旨在包括一個或更多個項,並可與“一個或更多個”交換使用。另外,如本文所使用的,術語“組(set)”旨在包括一個或多個項(如,有關的項、無關的項、有關的項和無關的項的結合等),並可與“一個或更多個”交換使用。當意欲僅有一個項時,用語“一個(one)”或類似語言被使用。此外,如本文所使用的,術語“具有(has)”、“具有(have)”、“具有(having)”等意欲為開放用語。另外,片語“基於”旨在意味著“至少部分地基於”,除非以其它方式明確聲明。
305‧‧‧基板
310‧‧‧AR塗覆
315-1~315-3‧‧‧矽層
320-1~320-2‧‧‧二氧化矽層
325-1、325-2‧‧‧匹配層
330‧‧‧蝕刻

Claims (20)

  1. 一種光學元件,包括:基板;第一抗反射結構,所述第一抗反射結構形成在基板上,用於特定波長範圍;至少一個層,所述至少一個層設置在所述第一抗反射結構的局部部分上;和第二抗反射結構,所述第二抗反射結構形成在所述至少一個層上,用於所述特定波長範圍,其中,選擇在所述第一抗反射結構的第一上表面和所述第二抗反射結構的第二上表面之間的深度、所述第一抗反射結構的第一有效折射率、所述第二抗反射結構的第二有效折射率和所述至少一個層的第三折射率,以形成與包含在所述特定波長範圍中的特定波長的特定相位延遲相關聯的繞射光學元件,其中所述第二有效折射率與所述第三折射率不同,並且其中所述第一抗反射結構包括一對層,並且所述一對層中的每一層具有彼此不同的相應折射率。
  2. 根據請求項1所述的光學元件,其中,所述第一抗反射結構形成在所述基板的第一側上;並且還包括:抗反射塗層,所述抗反射塗層形成在所述基板的第二側上。
  3. 根據請求項1所述的光學元件,其中,所述第一抗反射結構是用於蝕刻所述第二抗反射結構的蝕刻停止部。
  4. 根據請求項1所述的光學元件,其中,所述第一抗反射結構、所述第二抗反射結構或所述至少一個層中的至少一者使用薄膜沉積形成。
  5. 根據請求項1所述的光學元件,其中,所述第一抗反射結構包括第一矽層和第一二氧化矽層;其中,所述至少一個層包括第二矽層;其中,所述第二抗反射結構包括第二二氧化矽層;和其中,所述特定波長範圍在840奈米和860奈米之間。
  6. 根據請求項1所述的光學元件,其中,所述第一抗反射結構、所述第二抗反射結構和所述至少一個層由矽和二氧化矽的交替層形成。
  7. 根據請求項1所述的光學元件,其中,所述第一抗反射結構、所述第二抗反射結構和所述至少一個層由氫化矽和二氧化矽的交替層形成。
  8. 根據請求項1所述的光學元件,其中,所述第一抗反射結構由第一材料的第一層和第二材料的第二層形成;其中,所述至少一個層由所述第一材料的第三層形成;和其中,所述第二抗反射結構由所述第一層、所述第二層、所述第三層、所述第二材料的第四層和所述第一材料的第五層形成。
  9. 根據請求項1所述的光學元件,其中,所述第一抗反射結構形成在所述基板的第一側上;並且所述光學元件還包括:第三抗反射結構,所述第三抗反射結構形成在所述基板的第二側上,用於另一特定波長範圍;另外的至少一個層,所述另外的至少一個層設置在所述第三抗反射結構的局部部分上;和第四抗反射結構,所述第四抗反射結構形成在所述另外的至少一個層上,用於所述另一特定波長範圍。
  10. 根據請求項1所述的光學元件,其中,所述第一抗反射結構和 所述第二抗反射結構形成兩級浮雕輪廓。
  11. 根據請求項1所述的光學元件,其中,所述第一抗反射結構包括第一矽層和第一二氧化矽層;其中,所述至少一個層包括第二矽層;其中,所述第二抗反射結構包括第二二氧化矽層;和其中,所述特定波長範圍在930奈米和950奈米之間。
  12. 根據請求項1所述的光學元件,其中,所述第一抗反射結構包括第一矽層和第一二氧化矽層;其中,所述至少一個層包括第二矽層和第二二氧化矽層;其中,所述第二抗反射結構包括第三矽層;和其中,所述特定波長範圍在1540奈米和1560奈米之間。
  13. 根據請求項1所述的光學元件,其中,所述特定波長範圍在840奈米和940奈米之間。
  14. 根據請求項1所述的光學元件,其中,所述深度在λ/4和λ/2之間,其中λ表示所述特定波長。
  15. 根據請求項1所述的光學元件,其中,所述光學元件的有效折射率在2.0和3.0之間。
  16. 根據請求項1所述的光學元件,其中,所述特定相位延遲是π相位延遲。
  17. 根據請求項1所述的光學元件,其中,所述特定相位延遲是非π相位延遲。
  18. 一種光學元件,包括:基板; 第一層組,其具有第一有效折射率並且由一對層所形成,其中所述一對層中的每一層具有不同第一折射率,所述第一層組被設置在所述基板上;至少一個間隔層,其具有特定折射率,所述至少一個間隔層被設置在所述第一層組的局部部分上;以及第二層組,其具有第二有效折射率並且由具有兩個或更多個不同第二折射率的兩個或更多個層所形成,所述第二層組被設置在所述至少一個間隔層上,其中所述第一層組在所述基板上形成在特定波長為第一抗反射結構,其中所述第一層組、所述至少一個間隔層以及所述第二層組共同地在所述基板上形成在所述特定波長為第二抗反射結構並且在所述基板上形成針對所述特定波長具有特定相位延遲的繞射光學元件,並且其中在所述第二層組的第一上表面和所述第一層組的第二上表面之間的深度形成所述特定相位延遲。
  19. 根據請求項18所述的光學元件,其中,所述第一抗反射結構和所述第二抗反射結構被形成在所述基板的第一側上;並且進一步包括:抗反射塗層,其形成在所述基板的第二側上。
  20. 一種製造繞射光學元件的方法,包括:在晶圓上沉積多個層,其中所述沉積包括:形成用於特定波長的第一抗反射結構,在所述第一抗反射結構的局部部分上形成至少一個層,以及在所述至少一個層上形成用於所述特定波長的第二抗反射結構,其中所述第二抗反射結構的有效折射率與所述至少一個層的折射率不同,以及其中所述第一抗反射結構包括一對層,其中所述一對層中的每一層具 有彼此不同的相應折射率;以及蝕刻所述多個層中的層的子集以形成兩級浮雕輪廓,其中,所述蝕刻在所述第一抗反射結構和所述第二抗反射結構之間形成與所述特定波長的特定相位延遲相關聯的繞射光學元件。
TW107124667A 2017-08-16 2018-07-17 用於繞射光學元件的多層薄膜堆疊 TWI791557B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762546174P 2017-08-16 2017-08-16
US62/546,174 2017-08-16
US15/837,990 2017-12-11
US15/837,990 US10712475B2 (en) 2017-08-16 2017-12-11 Multi-layer thin film stack for diffractive optical elements

Publications (2)

Publication Number Publication Date
TW201910816A TW201910816A (zh) 2019-03-16
TWI791557B true TWI791557B (zh) 2023-02-11

Family

ID=63209238

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107124667A TWI791557B (zh) 2017-08-16 2018-07-17 用於繞射光學元件的多層薄膜堆疊

Country Status (7)

Country Link
US (2) US10712475B2 (zh)
EP (1) EP3444642A1 (zh)
JP (1) JP7383372B2 (zh)
KR (1) KR20190019025A (zh)
CN (2) CN109407190B (zh)
IL (1) IL260918B2 (zh)
TW (1) TWI791557B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10802185B2 (en) 2017-08-16 2020-10-13 Lumentum Operations Llc Multi-level diffractive optical element thin film coating
US10712475B2 (en) 2017-08-16 2020-07-14 Lumentum Operations Llc Multi-layer thin film stack for diffractive optical elements
US11001535B2 (en) * 2019-04-26 2021-05-11 Applied Materials, Inc. Transferring nanostructures from wafers to transparent substrates
US11782195B2 (en) 2019-09-30 2023-10-10 Himax Technologies Limited Diffractive optical element and method for fabricating the diffractive optical element
US11644683B2 (en) 2020-06-17 2023-05-09 Himax Technologies Limited Optical element including at least two diffractive layers
CN113805333A (zh) * 2021-08-23 2021-12-17 中山大学 一种用于双重图案加密的光栅结构设计方法
KR20230114096A (ko) * 2022-01-24 2023-08-01 삼성전자주식회사 메타 광학 소자 및 이를 포함하는 전자 장치
WO2024083751A1 (en) * 2022-10-17 2024-04-25 Essilor International An ophthalmic lens adapted to correct a vision impairment and to slow down the progression thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895790A (en) * 1987-09-21 1990-01-23 Massachusetts Institute Of Technology High-efficiency, multilevel, diffractive optical elements
US5218471A (en) * 1987-09-21 1993-06-08 Massachusetts Institute Of Technology High-efficiency, multilevel, diffractive optical elements
TW531780B (en) * 2001-09-07 2003-05-11 Promos Technologies Inc Method for forming uniform anti-reflection layer
US20040020892A1 (en) * 2002-07-30 2004-02-05 Matthews James Albert Diffractive optical elements and methods of making the same

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245468A (en) 1990-12-14 1993-09-14 Ford Motor Company Anti-reflective transparent coating
JPH0643311A (ja) 1992-07-22 1994-02-18 Nippon Telegr & Teleph Corp <Ntt> 回折光学素子及びその製造方法
US5606434A (en) 1994-06-30 1997-02-25 University Of North Carolina Achromatic optical system including diffractive optical element
US6829091B2 (en) 1997-02-07 2004-12-07 Canon Kabushiki Kaisha Optical system and optical instrument with diffractive optical element
US6055262A (en) 1997-06-11 2000-04-25 Honeywell Inc. Resonant reflector for improved optoelectronic device performance and enhanced applicability
JPH11174217A (ja) 1997-12-16 1999-07-02 Canon Inc 回折光学素子及びその製造方法
US20020171922A1 (en) * 2000-10-20 2002-11-21 Nikon Corporation Multilayer reflective mirrors for EUV, wavefront-aberration-correction methods for same, and EUV optical systems comprising same
JP2004028862A (ja) 2002-06-27 2004-01-29 Harmonic Drive Syst Ind Co Ltd 投影型エンコーダ
KR101162135B1 (ko) 2003-03-13 2012-07-03 아사히 가라스 가부시키가이샤 회절 소자 및 광학 장치
US20040263981A1 (en) 2003-06-27 2004-12-30 Coleman Christopher L. Diffractive optical element with anti-reflection coating
JP2005084485A (ja) * 2003-09-10 2005-03-31 Nikon Corp 回折光学素子
US6947224B2 (en) * 2003-09-19 2005-09-20 Agilent Technologies, Inc. Methods to make diffractive optical elements
FR2861183B1 (fr) 2003-10-15 2006-01-21 Thales Sa Elements d'optique diffractive de type binaire pour une utilisation sur une large bande spectrale
DE102005020944A1 (de) * 2004-05-04 2005-12-01 Friedrich-Schiller-Universität Jena Diffraktive Elemente mit Antireflex-Eigenschaften
US7879209B2 (en) 2004-08-20 2011-02-01 Jds Uniphase Corporation Cathode for sputter coating
JP2007234094A (ja) 2006-02-28 2007-09-13 Epson Toyocom Corp 回折格子体、これを用いた光ヘッド装置及び回折格子体の製造方法
EP1855127A1 (en) 2006-05-12 2007-11-14 Rolic AG Optically effective surface relief microstructures and method of making them
US7848020B2 (en) * 2006-06-02 2010-12-07 Jds Uniphase Corporation Thin-film design for positive and/or negative C-plate
CA2600900A1 (en) * 2006-09-21 2008-03-21 Nippon Sheet Glass Company, Limited Transmissive diffraction grating, and spectral separation element and spectroscope using the same
JP5280654B2 (ja) 2006-09-21 2013-09-04 日本板硝子株式会社 透過型回折格子、並びに、それを用いた分光素子及び分光器
CN101140400A (zh) * 2007-10-19 2008-03-12 中国科学院上海光学精密机械研究所 脉冲压缩光栅用多层介质膜的优化设计方法
US8384997B2 (en) 2008-01-21 2013-02-26 Primesense Ltd Optical pattern projection
JP2011187139A (ja) 2010-03-10 2011-09-22 Hitachi Maxell Ltd グレーティング素子及びその製造方法、並びに、そのグレーティング素子を用いた光ピックアップ装置
JP2012039042A (ja) 2010-08-11 2012-02-23 Sony Corp メモリ素子
TWI648561B (zh) 2012-07-16 2019-01-21 美商唯亞威方案公司 光學濾波器及感測器系統
CN103424995B (zh) 2013-06-05 2015-02-11 上海理工大学 导模共振滤光片光刻胶层的优化方法
DE102015218702A1 (de) 2015-09-29 2017-03-30 Dr. Johannes Heidenhain Gmbh Optisches Schichtsystem
US9960199B2 (en) 2015-12-29 2018-05-01 Viavi Solutions Inc. Dielectric mirror based multispectral filter array
FR3047810B1 (fr) 2016-02-12 2018-05-25 Thales Composant diffractif sub longueur d'onde large bande spectracle
CN106654858B (zh) * 2017-03-08 2021-03-19 长春理工大学 具有双层亚波长光栅反射镜的垂直腔面发射半导体激光器
JP6981074B2 (ja) 2017-07-25 2021-12-15 Agc株式会社 光学素子
DE102017213330A1 (de) 2017-08-02 2019-02-07 Dr. Johannes Heidenhain Gmbh Abtastplatte für eine optische Positionsmesseinrichtung
US10712475B2 (en) 2017-08-16 2020-07-14 Lumentum Operations Llc Multi-layer thin film stack for diffractive optical elements
US10802185B2 (en) 2017-08-16 2020-10-13 Lumentum Operations Llc Multi-level diffractive optical element thin film coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4895790A (en) * 1987-09-21 1990-01-23 Massachusetts Institute Of Technology High-efficiency, multilevel, diffractive optical elements
US5218471A (en) * 1987-09-21 1993-06-08 Massachusetts Institute Of Technology High-efficiency, multilevel, diffractive optical elements
TW531780B (en) * 2001-09-07 2003-05-11 Promos Technologies Inc Method for forming uniform anti-reflection layer
US20040020892A1 (en) * 2002-07-30 2004-02-05 Matthews James Albert Diffractive optical elements and methods of making the same

Also Published As

Publication number Publication date
US11543562B2 (en) 2023-01-03
CN109407190A (zh) 2019-03-01
CN114509829A (zh) 2022-05-17
US20190056531A1 (en) 2019-02-21
TW201910816A (zh) 2019-03-16
JP7383372B2 (ja) 2023-11-20
KR20190019025A (ko) 2019-02-26
US20200400861A1 (en) 2020-12-24
EP3444642A1 (en) 2019-02-20
IL260918A (en) 2019-01-31
JP2019035947A (ja) 2019-03-07
CN109407190B (zh) 2022-02-01
IL260918B2 (en) 2023-06-01
US10712475B2 (en) 2020-07-14

Similar Documents

Publication Publication Date Title
TWI791557B (zh) 用於繞射光學元件的多層薄膜堆疊
US11686890B2 (en) Multi-level diffractive optical element thin film coating
KR102649785B1 (ko) 회절 광학 소자
FI128376B (en) Process for the preparation of a diffractive grating with varying efficiency and a diffraction grating
JP7293352B2 (ja) 角度付き格子の形成
JP2019035947A5 (zh)
US11194081B2 (en) Method of manufacturing a diffractive grating
JP2019035954A5 (zh)
US20210157134A1 (en) Method of manufacturing a height-modulated optical diffractive grating