TWI791408B - 半導體裝置 - Google Patents

半導體裝置 Download PDF

Info

Publication number
TWI791408B
TWI791408B TW111121412A TW111121412A TWI791408B TW I791408 B TWI791408 B TW I791408B TW 111121412 A TW111121412 A TW 111121412A TW 111121412 A TW111121412 A TW 111121412A TW I791408 B TWI791408 B TW I791408B
Authority
TW
Taiwan
Prior art keywords
region
buried layer
well region
semiconductor device
conductivity type
Prior art date
Application number
TW111121412A
Other languages
English (en)
Other versions
TW202349718A (zh
Inventor
席德 內亞茲 依曼
潘欽寒
陳柏安
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW111121412A priority Critical patent/TWI791408B/zh
Priority to CN202210992571.2A priority patent/CN117253919A/zh
Application granted granted Critical
Publication of TWI791408B publication Critical patent/TWI791408B/zh
Publication of TW202349718A publication Critical patent/TW202349718A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors

Landscapes

  • Microelectronics & Electronic Packaging (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Bipolar Transistors (AREA)
  • Noodles (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一種半導體裝置,包括:基底,具有第一導電類型;磊晶層,設置於基底上,其中磊晶層具有與第一導電類型不同的第二導電類型;以及第一高壓井區,設置於磊晶層中,其中第一高壓井區具有第一導電類型。半導體裝置更包括:源極區和汲極區,設置於磊晶層中,其中源極區和汲極區具有第一導電類型;以及埋層結構,設置於基底內且具有第二導電類型。埋層結構包括:第一埋層,位於源極區下方;以及第二埋層,位於汲極區下方。第一埋層橫向地鄰接第二埋層,且第二埋層的底面低於第一埋層的底面。

Description

半導體裝置
本發明是關於半導體裝置,特別是關於埋層結構。
高壓半導體裝置的技術適用於微波∕射頻的功率放大器(power amplifier)。傳統高壓半導體裝置,例如垂直擴散金屬氧化物半導體(vertically diffused metal-oxide semiconductor, VDMOS)電晶體和橫向擴散金屬氧化物半導體(laterally diffused metal-oxide semiconductor, LDMOS)電晶體,主要用於12V以上的裝置應用領域。高壓半導體裝置的優點在於符合成本效益,且易相容於其它製程,已廣泛應用於顯示器驅動積體電路裝置、電源供應器、電力管理、通訊、車用電子、或工業控制等領域中。
雖然在現有的高壓半導體裝置已大致滿足它們原有的用途,但它們並非在各方面皆令人滿意。舉例來說,崩潰電壓(breakdown voltage)、垂直衝穿電壓(vertical punch-through voltage)、以及導通電阻(on-state resistance)需要進一步的改善。因此,關於高壓半導體裝置和製造技術仍有一些問題需要克服。
一種半導體裝置,包括:基底,具有第一導電類型;磊晶層,設置於基底上,其中磊晶層具有與第一導電類型不同的第二導電類型;以及第一高壓井區,設置於磊晶層中,其中第一高壓井區具有第一導電類型。半導體裝置更包括:源極區和汲極區,設置於磊晶層中,其中源極區和汲極區具有第一導電類型;以及埋層結構,設置於基底內且具有第二導電類型。埋層結構包括:第一埋層,位於源極區下方;以及第二埋層,位於汲極區下方。第一埋層橫向地鄰接第二埋層,且第二埋層的底面低於第一埋層的底面。
以下揭露提供了許多不同的實施例或範例,用於實施本發明實施例的不同部件。組件和配置的具體範例描述如下,以簡化本發明實施例。當然,這些僅僅是範例,並非用以限定本發明實施例。舉例來說,敘述中提及第一部件形成於第二部件之上,可包括形成第一和第二部件直接接觸的實施例,也可包括額外的部件形成於第一和第二部件之間,使得第一和第二部件不直接接觸的實施例。另外,本發明可在各種範例中重複元件符號及∕或字母。這樣重複是為了簡化和清楚的目的,其本身並非主導所討論各種實施例及∕或配置之間的關係。
此外,在本發明的一些實施例中,關於接合、連接之用語例如「連接」、「互連」等,除非特別定義,否則可指兩個結構係直接接觸,或者亦可指兩個結構並非直接接觸,其中有其它結構設於此兩個結構之間。
再者,此處可使用空間上相關的用語,如「在…之下」、「下方的」、「低於」、「在…上方」、「上方的」和類似用語可用於此,以便描述如圖所示一元件或部件和其他元件或部件之間的關係。這些空間用語企圖包括使用或操作中的裝置的不同方位,以及圖式所述的方位。當裝置被轉至其他方位(旋轉90°或其他方位),則在此所使用的空間相對描述可同樣依旋轉後的方位來解讀。
此處所使用的「約」、「大約」、「大抵」之用語通常表示在一給定值的±20%之內,較佳是±10%之內,且更佳是±5%之內、或±3%之內、或±2%之內、或±1%之內、或0.5%之內。在此給定的數值為大約的數值,亦即在沒有特定說明「約」、「大約」、「大抵」的情況下,此給定的數值仍可隱含「約」、「大約」、「大抵」之含義。
以下敘述一些本發明實施例,在這些實施例中所述的多個階段之前、期間及∕或之後,可提供額外的步驟。半導體裝置結構可增加額外部件。一些所述部件在不同實施例中可被替換或省略。儘管所討論的一些實施例以特定順序的步驟執行,這些步驟仍可以另一合乎邏輯的順序執行。
除非另外定義,在此使用的全部用語(包括技術及科學用語)具有與本發明所屬技術領域中具有通常知識者所通常理解的相同涵義。能理解的是,這些用語,例如在通用字典中定義的用語,應被解讀成具有與相關技術及本發明的背景或上下文一致的意思,而不應以一理想化或過度正式的方式解讀,除非在本發明實施例有特別定義。
本發明的半導體裝置繪示高壓積體電路的實施例,特別是橫向擴散金屬氧化物半導體(laterally diffused metal oxide semiconductor, LDMOS)電晶體的實施例。在現有的技術中,通常藉由在製程中調整橫向擴散金屬氧化物半導體之每個半導體區的摻雜濃度和結構輪廓,使得橫向擴散金屬氧化物半導體產生足夠高的崩潰電壓(breakdown voltage)和垂直衝穿電壓(vertical punch-through voltage)、以及足夠低的導通電阻(on-state resistance),以進一步優化整體性能。然而,在實際的製程中,例如整合式的雙載子-互補式金屬氧化物半導體-雙擴散式金屬氧化物半導體(bipolar complementary metal oxide semiconductor - double diffused metal oxide semiconductor, BCD)的製程中,調整半導體區的摻雜濃度或結構輪廓可能會需要使用到額外的光罩,使得整體的製作成本也跟著提高。
為了改善橫向擴散金屬氧化物半導體電晶體的崩潰電壓、垂直衝穿電壓、以及導通電阻,本發明的實施例在擴散金屬氧化物半導體電晶體中,加入具有階梯輪廓的雙重擴散埋層結構。本發明的埋層結構除了橫越電晶體的源極區和汲極區,也包括向下延伸至不同接面深度的部件。換言之,埋層結構可同時增加垂直輔助空乏層(vertically assisted depletion layer, VADL)和橫向輔助空乏層(laterally assisted depletion layer, LADL),進而改善整體裝置的崩潰電壓、垂直衝穿電壓、以及導通電阻。擁有高崩潰電壓和垂直衝穿電壓、以及低導通電阻的橫向擴散金屬氧化物半導體電晶體還可被廣泛地應用於照明、平板顯示、音響、開關模式電源、動力控制等領域中。
第1圖是根據本發明的一些實施例,繪示出半導體裝置10的剖面示意圖。在一些實施例中,半導體裝置可包括任何數量的主動組件和被動組件。主動組件包括金屬氧化物半導體(metal-oxide semiconductor, MOS)電晶體、互補式金屬氧化物半導體(complementary metal-oxide semiconductor, CMOS)電晶體、橫向擴散金屬氧化物半導體(lateral-diffused metal-oxide semiconductor, LDMOS)電晶體、雙載子-互補式金屬氧化物半導體-雙擴散式金屬氧化物半導體(bipolar complementary metal oxide semiconductor - double diffused metal oxide semiconductor, BCD)電晶體、平坦(planar)電晶體、鰭式場效電晶體(fin field-effect transistor, FinFET)、全繞式閘極場效電晶體(gate-all-around field-effect transistor, GAA FET)、其他類似裝置、或其組合。被動組件包括金屬走線、電容、電感、電阻、二極體、接合墊、或其他類似結構。為了簡化起見,第1圖僅繪示例示性的橫向擴散金屬氧化物半導體。
參照第1圖,半導體裝置10可包括基底100、磊晶層102、埋層結構104、第一隔離結構132a、第二隔離結構132b、第三隔離結構132c、第四隔離結構132d、閘極結構136、層間介電層140、第一導孔142、第二導孔144、第三導孔146、基底電極152、源極電極154、以及汲極電極156。在一些實施例中,磊晶層102可包括第一高壓井區110、第二高壓井區112、以及第三高壓井區114。第一高壓井區110可包括井區116和漂移區118。第三高壓井區114可包括摻雜區122。井區116可包括重摻雜區124和源極區126。漂移區118可包括汲極區128。再者,埋層結構104可包括第一埋層106和第二埋層108。
參照第1圖,基底100可為例如晶圓或晶粒,但本發明實施例並不以此為限。在一些實施例中,基底100可為半導體基底,例如矽基底。此外,在一些實施例中,半導體基底亦可為:元素半導體(elemental semiconductor),包括鍺(germanium);化合物半導體(compound semiconductor),包含氮化鎵(gallium nitride, GaN)、碳化矽(silicon carbide, SiC)、砷化鎵(gallium arsenide, GaAs)、磷化鎵(gallium phosphide, GaP)、磷化銦(indium phosphide, InP)、砷化銦(indium arsenide, InAs)、及∕或銻化銦(indium antimonide, InSb);合金半導體(alloy semiconductor),包含矽鍺(silicon germanium, SiGe)合金、磷砷鎵(gallium arsenide phosphide, GaAsP)合金、砷鋁銦(aluminum indium arsenide, AlInAs)合金、砷鋁鎵(aluminum gallium arsenide, AlGaAs)合金、砷鎵銦(gallium indium arsenide, GaInAs)合金、磷鎵銦(gallium indium phosphide, GaInP)合金、及∕或砷磷鎵銦(gallium indium arsenide phosphide, GaInAsP)合金、或其組合。
在其他實施例中,基底100也可以是絕緣層上半導體(semiconductor on insulator, SOI)基底。絕緣層上半導體基底可包含底板、設置於底板上之埋入式氧化物(buried oxide, BOX)層、以及設置於埋入式氧化物層上之半導體層。此外,基底100可為第一導電類型或與第一導電類型不同的第二導電類型。在下述實施例中,第一導電類型和第二導電類型可分別代表P型和N型。第一導電類型(P型)和第二導電類型(N型)可個別以合適的摻質(或雜質)摻雜。P型摻質可包括硼(boron, B)、銦(indium, In)、鋁(aluminum, Al)、以及鎵(gallium, Ga),而N型摻質可包括磷(phosphorus, P)和砷(arsenic, As)。在本發明的特定實施例中,基底100可為第一導電類型(P型),其摻雜濃度大約介於1×10 19cm -3和3×10 19cm -3之間。
在其他實施例中,基底100可包括隔離結構(未繪示)以定義主動區並電性隔離基底100之內或之上的主動區部件,但本發明實施例並不以此為限。隔離結構可包括深溝槽隔離(deep trench isolation, DTI)結構、淺溝槽隔離(shallow trench isolation, STI)結構、或局部矽氧化(local oxidation of silicon, LOCOS)結構。在一些實施例中,形成隔離結構可包括例如在基底100上形成絕緣層,選擇性地蝕刻絕緣層和基底100以形成由基底100頂面延伸至基底100內一位置的溝槽,其中溝槽位於相鄰的主動區之間。接著,形成隔離結構可包括沿著溝槽成長富含氮(如氧氮化矽(silicon oxynitride, SiON)或其他類似材料)的襯層,再以沉積製程將絕緣材料(如二氧化矽(silicon dioxide, SiO 2)、氮化矽(silicon nitride, SiN)、氮氧化矽、或其他類似材料)填入溝槽中。之後,對溝槽中的絕緣材料進行退火製程,並對基底100進行平坦化製程以移除多餘的絕緣材料,使溝槽中的絕緣材料與基底100的頂面齊平。
繼續參照第1圖,在基底100上形成磊晶層102。根據本發明的一些實施例,磊晶層102具有第二導電類型(N型),其摻雜濃度大約介於1.13×10 15cm -3和 2.30×10 15cm -3之間。在本發明的一特定實施例中,基底100與磊晶層102可具有不同的導電類型,而基底100的摻雜濃度大於磊晶層102的摻雜濃度。磊晶層102的材料可包括矽、矽鍺、碳化矽、其他類似材料、或其組合。磊晶層102的厚度可大約介於3μm和7μm之間。可藉由磊晶製程形成磊晶層102,其磊晶製程可包括金屬有機化學氣相沉積(metal organic chemical vapor deposition,MOCVD)、氫化物氣相磊晶(hydride vapor phase epitaxy,HVPE)、分子束磊晶(molecular beam epitaxy,MBE)、其他合適的方法、或其組合。
參照第1圖,半導體裝置10包括設置在基底100內和磊晶層102內的埋層結構104,其包括第一埋層106和第二埋層108。由於第二埋層108和後續形成的漂移區118可由同一塊光罩所形成,因此即便埋層結構104具有兩個不同的部件,半導體裝置10整體所需的光罩數量不會增加,故不會增加顯著的製作成本或週期。在一些實施例中,第一埋層106和第二埋層108具有第二導電類型(N型)。根據本發明的一些實施例,第一埋層106橫向地鄰接第二埋層108,且第二埋層108的底面低於第一埋層106的底面。在一些替代實施例中,第一埋層106和第二埋層108可被橫向地分隔開,取決於應用和設計需求。
第一埋層106和第二埋層108的形成方法可包括在形成磊晶層102之前,在基底100內離子佈植N型摻質(例如磷或砷),進行熱處理將佈植的離子驅入(drive in)基底100內,然後才在基底100上形成磊晶層102。在一些實施例中,由於磊晶層102係在高溫的條件下形成,故被植入的離子會擴散進入磊晶層102內。如第1圖所示,第一埋層106和第二埋層108位於基底100和磊晶層102的界面附近,且具有一部分在基底100內,以及另一部分在磊晶層102內。由於第一埋層106和第二埋層108是在相同的磊晶製程中發生擴散,因此埋層結構104的整體頂部可具有平坦化的表面。
第一埋層106的功用是在源極區下方提供較完整的隔離,有助於防止漏電流,以進一步提升整體裝置的崩潰電壓。第一埋層106的位置可被視為半導體裝置10的高壓區域(high-side region)。在一些實施例中,第一埋層106的摻雜濃度可大約介於1×10 15cm -3和5×10 15cm -3之間。根據本發明的一些實施例,第一埋層106的摻雜濃度高於第二埋層108的摻雜濃度。經設計,第一埋層106除了具有相對高的摻雜濃度以外,其摻質的分佈較為密集。因此,第一埋層106的垂直尺寸小於第二埋層108的垂直尺寸。第一埋層106的垂直尺寸大約介於4μm和5μm之間。第一埋層106的橫向尺寸可由後續於磊晶層102中形成的第一高壓井區110延伸至第二高壓井區112。橫向的延伸程度取決於空乏區(depletion region)隔離的需求。根據一些實施例,完整的空乏區可降低漏電流,而改善整體裝置的崩潰電壓、垂直衝穿電壓、以及導通電阻。
第二埋層108的功用是在漂移區下方提供較大的接面深度(junction depth),使得空乏區可往垂直的方向擴展,以提升垂直衝穿電壓。第二埋層108的位置可被視為半導體裝置10的低壓區域(low-side region)。再者,接面深度可為磊晶層102至基底100的銜接區域,也就是由埋層結構104所定義。在一些實施例中,第二埋層108的摻雜濃度可大約介於1.5×10 15cm -3和 4.5×10 15cm -3之間。如前述,第一埋層106的摻雜濃度高於第二埋層108的摻雜濃度。經設計,第二埋層108除了具有相對低的摻雜濃度以外,其摻質的分佈較為分散。因此,第二埋層108的垂直尺寸為第一埋層106的垂直尺寸約兩倍大,也就是具有較寬的接面,可更有效地防止漂移區與下方的基底之間的漏電流。值得注意的是,由於後續形成於第二埋層108上的第一高壓井區110具有很高的摻雜濃度,第二埋層108的摻質不會往上擴散,而是往下方具有較低摻雜濃度的基底100中擴散。也就是說,第一埋層106的頂面和第二埋層108的頂面可維持實質上彼此共平面。
根據本發明的一些實施例,埋層結構104的第一埋層106和第二埋層108,由於具有不同的摻質分佈,因此在底部形成階梯狀的輪廓。埋層結構104可同時保有連續性結構和雙重擴散的特徵。第二埋層108的接面深度大於第一埋層106的接面深度,使得空乏區位在漂移區118下方的部分可進一步往下擴展。在一些實施例中,漂移區118可被視為閘極端和汲極端之間的區域,因而對於整體裝置性能有很關鍵的影響。當漂移區118下方的空乏區往下擴展時,漂移區118與其下方的空乏區之間的區域變大,也因此創造出更大的電場。在磊晶層102上的減少表面電場(reduced surface field, RESURF)效應也可提升。本發明的埋層結構104實現了連續性結構、摻雜濃度的漸變、以及空乏區的擴展。當摻雜濃度和電場可被控制的更加平衡時,能使得空乏區可被「耗盡」的更完整,有助於優化整體裝置的特性。
繼續參照第1圖,可在磊晶層102內形成第一高壓井區110、第二高壓井區112、以及第三高壓井區114。第一高壓井區110、第二高壓井區112、以及第三高壓井區114由磊晶層102的頂面垂直地延伸至磊晶層102與基底100的界面或磊晶層102與埋層結構104的界面。根據本發明的一些實施例,第一高壓井區110和第三高壓井區114可為第一導電類型(P型),而第二高壓井區112可為第二導電類型(N型)。由於具有第一導電類型的高壓井區和具有第二導電類型的高壓井區在水平方向上交錯配置,因而構成雙極性(PNP)接面,可進一步提高電荷平衡的狀態,使得預期的空乏區將會被「空乏」的更加完整。
可藉由例如離子佈植(ion implantation)及∕或擴散製程(diffusion process)形成第一高壓井區110、第二高壓井區112、以及第三高壓井區114。在替代實施例中,不使用離子佈植及∕或擴散製程,而是可在磊晶層102的成長期間原位(in situ)摻雜第一高壓井區110、第二高壓井區112、以及第三高壓井區114。在其他實施例中,可一起使用原位和佈植摻雜。
第一高壓井區110可位於部分的第一埋層106和全部的第二埋層108上方。在一些實施例中,第一高壓井區110的摻雜濃度可介於約7×10 15cm -3和9×10 15cm -3之間。第一高壓井區110可包括後續形成的井區116和漂移區118,其分別進一步包括源極區126和汲極區128。再者,後續形成的閘極結構136亦設置於磊晶層102的第一高壓井區110的表面上,並橫向地位於源極區126和汲極區128之間。
第二高壓井區112可橫向地鄰接第一高壓井區110。如第1圖所示,第二高壓井區112係在水平方向上設置於第一高壓井區110和第三高壓井區114之間。在一些實施例中,第二高壓井區112的摻雜濃度可介於約1×10 16cm -3和3×10 16cm -3之間。第一埋層106可部分延伸至第二高壓井區112下方。如先前所提及,第一埋層106的延伸可提供較完整的隔離,有助於防止漏電流。
第三高壓井區114可橫向地鄰接第二高壓井區112。在一些實施例中,第三高壓井區114的摻雜濃度可介於約-5×10 17cm -3和-1×10 17cm -3之間。第三高壓井區114可包括後續形成的摻雜區122。由於基底100、磊晶層102中的第三高壓井區114、以及摻雜區122均為第一導電類型(P型),後續形成的基底電極152可允許半導體裝置10由頂部或由底部接地。
參照第1圖,可在第一高壓井區110內形成井區116和漂移區118,其可由第一高壓井區110的頂面延伸。根據本發明的一些實施例,井區116可為第二導電類型(N型),而漂移區118可為第一導電類型(P型)。井區116和漂移區118被橫向地分隔開。井區116和漂移區118的形成方法可與第一高壓井區110、第二高壓井區112、以及第三高壓井區114的形成方法類似,其細節將不於此重複贅述。
井區116可位於第一埋層106上方。在一些實施例中,井區116的摻雜濃度可介於約1×10 16cm -3和2×10 16cm -3之間。井區116可包括後續形成的重摻雜區124和源極區126。井區116的厚度可大約介於2.0μm和2.5μm之間。
漂移區118可位於第二埋層108上方。如先前所提及,漂移區118和第二埋層108可具有相同的橫向尺寸,因此在製作過程中可使用相同的光罩,以進一步減少製作成本。漂移區118可使半導體裝置10在高壓操作下能產生很長的空乏區,進而降低電場過度集中的現象,以提高崩潰電壓。此外,漂移區118的摻雜也會決定半導體裝置10的導通電阻。在一些實施例中,漂移區118的摻雜濃度可介於約-8×10 15cm -3和-7×10 15cm -3之間。漂移區118可包括後續形成的汲極區128。漂移區118的厚度可大約介於2μm和4μm之間。
繼續參照第1圖,可在井區116內形成重摻雜區124和源極區126,其可由井區116的頂面延伸。根據本發明的一些實施例,重摻雜區124可為第二導電類型(N型),而源極區126可為第一導電類型(P型)。重摻雜區124和源極區126橫向地彼此鄰接。重摻雜區124和源極區126的形成方法可與第一高壓井區110、第二高壓井區112、以及第三高壓井區114的形成方法類似,其細節將不於此重複贅述。
在一些實施例中,重摻雜區124的摻雜濃度可介於約1.0×10 19cm -3和1.5×10 19cm -3之間。重摻雜區124可與源極區126同時耦合至後續形成的源極電極154。重摻雜區124的厚度可大約介於0.2μm和0.5μm之間。具有第二導電類型的重摻雜區124可與具有第一導電類型的源極區126達到電荷平衡,且針對源極電極154提供第二導電類型的歐姆接觸(ohmic contact)。
在一些實施例中,源極區126的摻雜濃度可介於約-2×10 19cm -3和-2×10 18cm -3之間。源極區126的厚度可大約介於0.2μm和0.5μm之間。
參照第1圖,可在漂移區118內形成汲極區128,其可由漂移區118的頂面延伸。根據本發明的一些實施例,汲極區128可為第一導電類型(P型)。在一些實施例中,汲極區128的摻雜濃度可介於約-2×10 19cm -3和-2×10 18cm -3之間。汲極區128的厚度可大約介於0.3μm和0.6μm之間。汲極區128可耦合至後續形成的汲極電極156。汲極區128的形成方法可與第一高壓井區110、第二高壓井區112、以及第三高壓井區114的形成方法類似,其細節將不於此重複贅述。
繼續參照第1圖,可在磊晶層102上形成第一隔離結構132a、第二隔離結構132b、第三隔離結構132c、以及第四隔離結構132d。具體而言,由於其製作過程涉及高溫處理,第一隔離結構132a、第二隔離結構132b、第三隔離結構132c、以及第四隔離結構132d部分嵌入於磊晶層102內。根據本發明的一些實施例,第一隔離結構132a、第二隔離結構132b、第三隔離結構132c、以及第四隔離結構132d可將各種具有導電性的部件隔絕開,以避免半導體裝置10在操作時發生電性短路。
如第1圖所示,第三高壓井區114中的摻雜區122可橫向地位於第一隔離結構132a和第二隔離結構132b之間。第二隔離結構132b可將摻雜區122與第一高壓井區110的井區116橫向地隔絕開。井區116的重摻雜區124和源極區126、以及後續形成的閘極結構136可橫向地位於第二隔離結構132b和第三隔離結構132c之間。應注意的是,閘極結構136可延伸於第三隔離結構132c的部分表面上。漂移區118的汲極區128可橫向地位於第三隔離結構132c和第四隔離結構132d之間。
在一些實施例中,可以氧化矽(silicon oxide, SiO)形成第一隔離結構132a、第二隔離結構132b、第三隔離結構132c、以及第四隔離結構132d,其可為藉由熱氧化法所形成的矽局部氧化隔離結構。在其他實施例中,第一隔離結構132a、第二隔離結構132b、第三隔離結構132c、以及第四隔離結構132d可為藉由蝕刻、氧化、和沉積製程所形成的淺溝槽隔離結構。
參照第1圖,在形成第一隔離結構132a、第二隔離結構132b、第三隔離結構132c、以及第四隔離結構132d之後,可在磊晶層102上形成閘極結構136。閘極結構136可在水平方向上由井區116上延伸經過第一高壓井區110上,並達到漂移區118上。閘極結構136所接觸的部分磊晶層102可被視為半導體裝置10的通道區,且閘極結構136可作為主動組件的閘極端。根據本發明的一些實施例,源極區126 、汲極區128、以及閘極結構136形成第一導電類型(P型)的電晶體,例如橫向擴散金屬氧化物半導體。電晶體具有第二導電類型(N型)的通道區。閘極結構136的厚度可大約介於0.25μm和0.30μm之間。在一些實施例中,閘極結構136可包括閘極介電層(未繪示)以及設置於閘極介電層上的閘極電極(未繪示)。在其他實施例中,半導體裝置10可具有第二導電類型(N型)的電晶體與第一導電類型(P型)的通道區,並搭配第一導電類型(P型)的埋層結構,但這樣的配置於業界較為少見。
閘極介電層的材料可包括高介電常數(high-k)介電材料(例如具有K值大於7的材料),其可包括氧化鉿(hafnium oxide, HfO 2)、鉿矽酸鹽、矽氧氮化鉿(hafnium silicon oxynitride, HfSiON)、氧化鉿鋁(hafnium aluminum oxide, HfAlO)、氧化鉿鑭(hafnium lanthanum oxide, HfLaO)、氧化鉿鋯(hafnium zirconium oxide, HfZrO)、氧化鉿鉭(hafnium tantalum oxide, HfTaO)、氧化鉿鈦(hafnium titanium oxide, HfTiO)、氧化鑭(lanthanum oxide, LaO)、氧化鋁、矽氧化鋁(aluminum silicon oxide, AlSiO)、氧化鋯、氧化鈦(titanium oxide, TiO)、氧化鉭(tantalum oxide, Ta 2O 5)、氧化釔(yttrium oxide, Y 2O 3)、氧氮化矽、或其他合適的高介電常數材料。可藉由化學氣相沉積(chemical vapor deposition, CVD)、原子層沉積(atomic layer deposition, ALD)、其他類似方法、或其組合形成閘極結構136的閘極介電層。
閘極電極的材料可包括非晶矽、多晶矽(polysilicon)、多晶矽鍺(poly-SiGe)、金屬氮化物(如氮化鈦(titanium nitride, TiN)、氮化鉭(tantalum nitride, TaN)、氮化鎢(tungsten nitride, WN)、氮化鈦鋁(titanium aluminum nitride, TiAlN)、或其他類似材料)、金屬矽化物(如矽化鎳(nickel silicide, NiSi)、矽化鈷(cobalt silicide, CoSi)、矽氮化鉭(tantalum silicon nitride, TaSiN)、或其他類似材料)、金屬碳化物(如碳化鉭(tantalum carbide, TaC)、碳氮化鉭(tantalum carbonitride, TaCN)、或其他類似材料)、金屬氧化物、和金屬。金屬可包括鈷(cobalt, Co)、釕(ruthenium, Ru)、鋁(aluminum, Al)、鈀(palladium, Pd)、鉑(platinum, Pt)、鎢(tungsten, W)、銅(copper, Cu)、鈦(titanium, Ti)、鉭(tantalum, Ta)、銀(silver, Ag)、金(gold, Au)、鎳(nickel, Ni)、其他類似材料、其組合、或其多膜層。可藉由物理氣相沉積(physical vapor deposition, PVD)、原子層沉積、電鍍法(plating)、其他合適的製程、或其組合形成閘極結構136的閘極電極。
繼續參照第1圖,可在磊晶層102上形成層間介電層140。在一些實施例中,層間介電層140可覆蓋第一隔離結構132a、第二隔離結構132b、第三隔離結構132c、第四隔離結構132d、以及閘極結構136。層間介電層140除了可對下方的部件提供機械保護和絕緣,也可將不同水平的導電材料隔絕開。層間介電層140的材料可包括氧化矽、氮化矽、碳化矽、氧氮化矽、氧氮碳化矽(silicon oxynitrocarbide, SiO xN yC 1-x-y,其中x和y係在0至1的範圍)、四乙氧基矽烷(tetraethylorthosilicate, TEOS)、未摻雜矽酸玻璃、摻雜氧化矽(如硼摻雜磷矽酸玻璃(boron-doped phospho-silicate glass, BPSG)、熔矽石玻璃(fused silica glass, FSG)、磷矽酸玻璃(phospho-silicate glass, PSG)、硼摻雜矽酸玻璃(boron-doped silicate glass, BSG)、或其他類似材料)、低介電常數(low-k)介電材料、或其他合適的介電材料。
層間介電層140的厚度可大約介於6000Å和8000Å之間。可藉由化學氣相沉積、高密度電漿化學氣相沉積(high-density plasma chemical vapor deposition, HDP-CVD)、電漿輔助化學氣相沉積(plasma-enhanced chemical vapor deposition, PECVD)、低壓化學氣相沉積(low-pressure chemical vapor deposition, LPCVD)、流動性化學氣相沉積(flowable chemical vapor deposition, FCVD)、次大氣壓化學氣相沉積(sub-atmospheric chemical vapor deposition, SACVD)、其他類似方法、或其組合形成層間介電層140。
參照第1圖,可形成第一導孔142、第二導孔144、以及第三導孔146穿過層間介電層140。第一導孔142、第二導孔144、以及第三導孔146可分別物理接觸摻雜區122、重摻雜區124和源極區126、以及汲極區128。此外,可在層間介電層140上形成基底電極152、源極電極154、以及汲極電極156。在一些實施例中,基底電極152透過第一導孔142與摻雜區122電性耦合,源極電極154透過第二導孔144與重摻雜區124和源極區126電性耦合,且汲極電極156透過第三導孔146與汲極區128電性耦合。如先前所提及,基底電極152可作為半導體裝置10的電性接地。源極電極154和汲極電極156可分別作為主動組件的源極端和汲極端。
第一導孔142、第二導孔144、第三導孔146、基底電極152、源極電極154、以及汲極電極156可為一體成形,因而包括相同的材料,所述材料可與閘極結構136的閘極電極的材料類似,其細節將不於此重複贅述。首先,可在層間介電層140中形成複數個開口,分別對應摻雜區122、重摻雜區124和源極區126、以及汲極區128。接著,可透過合適的沉積製程在層間介電層140上毯覆性沈積上述材料。上述材料除了形成於層間介電層140的表面上,也填入所有的開口中,以形成第一導孔142、第二導孔144、以及第三導孔146。可藉由微影製程,接著進行蝕刻製程來圖案化沉積的膜層,以形成基底電極152、源極電極154、以及汲極電極156。微影製程可包括塗佈光阻、軟烤(soft baking)、曝光、曝光後烘烤、顯影、其他類似技術、或其組合。蝕刻製程可包括乾蝕刻、濕蝕刻、其他類似方法、或其組合。基於一體成形的製程,基底電極152、源極電極154、以及汲極電極156可具有實質上相同的厚度,其可大約介於4000Å和5000Å之間。
第2圖是根據本發明的一些實施例,繪示出半導體裝置的汲極電流-電壓曲線圖20。根據本發明的一些實施例,汲極電流-電壓曲線圖20比較兩種半導體裝置的設置。傳統設計(以虛線代表)可為具有單一埋層的埋層結構,例如以第一埋層106由第二高壓井區112延伸至漂移區118下方。新設計(以實線代表)可為本發明所揭示的半導體裝置10,其具有雙重擴散的階梯狀輪廓的埋層結構104。由於埋層結構104實現了連續性結構、摻雜濃度的漸變、以及空乏區的擴展,新設計(例如半導體裝置10)可顯著地提高崩潰電壓至160V以上。
第3圖是根據本發明的一些實施例,繪示出半導體裝置的汲極電流-電壓曲線圖30。根據本發明的一些實施例,汲極電流-電壓曲線圖30包括三種不同的傳統設計與本發明的新設計(例如半導體裝置10)在導通狀態下的汲極電流-電壓的分佈。與三種傳統設計相比,由於埋層結構104實現了連續性結構、摻雜濃度的漸變、以及空乏區的擴展,新設計可具有更高的汲極飽和電流及∕或更大的耐高壓特性。
在一特定實施例中,比較三種傳統設計和新設計。列出設計特徵並量測電性參數。相關數據整理於表1中。 表1
結構 第1傳統設計 第2傳統設計 第3傳統設計 新設計
埋層 第一埋層 第一埋層 第一埋層 第一埋層+ 第二埋層
摻質
濃度 1.3×10 13cm -3 4.0×10 12cm -3 1.3×10 13cm -3 1.3×10 13cm -3+ 4.0×10 12cm -3
崩潰電壓 -115V -162V -81V -158V
垂直衝穿電壓 278V 336V 301V 280V
導通電阻 3015 mΩ-mm 2 1315 mΩ-mm 2 1012 mΩ-mm 2 973 mΩ-mm 2
在三種傳統的設計中,第1傳統設計和第2傳統設計具有相同的摻質,但具有不同的摻雜濃度。第1傳統設計和第3傳統設計具有相同的摻雜濃度,但具有不同的摻質。本發明的新設計(例如半導體裝置10)可展現出相對高的崩潰電壓。儘管第2傳統設計所得的崩潰電壓可能些微地高於新設計的崩潰電壓,但第2傳統設計卻也具有過高的導通電阻,可能會直接衝擊裝置的性能。除了足夠的崩潰電壓以外,新設計也能維持夠低的導通電阻,且垂直衝穿電壓也在可接受的範圍。
本發明的埋層結構具有不同的摻質分佈的第一埋層和第二埋層。由於具有不同的摻質分佈,在埋層結構的底部形成階梯狀的輪廓。埋層結構可同時保有連續性結構和雙重擴散的特徵。第二埋層的接面深度大於第一埋層的接面深度,使得空乏區位在漂移區下方的部分可進一步往下擴展。當漂移區下方的空乏區往下擴展時,漂移區與其下方的空乏區之間的區域變大,也因此創造出更大的電場。在磊晶層上的減少表面電場效應也可提升。本發明的埋層結構實現了連續性結構、摻雜濃度的漸變、以及空乏區的擴展。當摻雜濃度和電場可被控制的更加平衡時,使得空乏區可被「耗盡」的更完整,有助於優化整體裝置的特性。
以上概述數個實施例之特徵,以使所屬技術領域中具有通常知識者可以更加理解本發明實施例的觀點。所屬技術領域中具有通常知識者應理解,可輕易地以本發明實施例為基礎,設計或修改其他製程和結構,以達到與在此介紹的實施例相同之目的及∕或優勢。所屬技術領域中具有通常知識者也應理解,此類等效的結構並無悖離本發明的精神與範圍,且可在不違背本發明之精神和範圍下,做各式各樣的改變、取代和替換。
10:半導體裝置
20:汲極電流-電壓曲線圖
30:汲極電流-電壓曲線圖
100:基底
102:磊晶層
104:埋層結構
106:第一埋層
108:第二埋層
110:第一高壓井區
112:第二高壓井區
114:第三高壓井區
116:井區
118:漂移區
122:摻雜區
124:重摻雜區
126:源極區
128:汲極區
132a:第一隔離結構
132b:第二隔離結構
132c:第三隔離結構
132d:第四隔離結構
136:閘極結構
140:層間介電層
142:第一導孔
144:第二導孔
146:第三導孔
152:基底電極
154:源極電極
156:汲極電極
以下將配合所附圖式詳述本發明實施例之各面向。應注意的是,依據在業界的標準做法,各種特徵並未按照比例繪製。事實上,可任意地放大或縮小各種元件的尺寸,以清楚地表現出本發明實施例的特徵。 第1圖是根據本發明的一些實施例,繪示出半導體裝置的剖面示意圖。 第2圖是根據本發明的一些實施例,繪示出半導體裝置的汲極電流-電壓曲線圖。 第3圖是根據本發明的一些實施例,繪示出半導體裝置的汲極電流-電壓曲線圖。
10:半導體裝置
100:基底
102:磊晶層
104:埋層結構
106:第一埋層
108:第二埋層
110:第一高壓井區
112:第二高壓井區
114:第三高壓井區
116:井區
118:漂移區
122:摻雜區
124:重摻雜區
126:源極區
128:汲極區
132a:第一隔離結構
132b:第二隔離結構
132c:第三隔離結構
132d:第四隔離結構
136:閘極結構
140:層間介電層
142:第一導孔
144:第二導孔
146:第三導孔
152:基底電極
154:源極電極
156:汲極電極

Claims (12)

  1. 一種半導體裝置,包括:一基底,具有一第一導電類型;一磊晶層,設置於該基底上,其中該磊晶層具有與該第一導電類型不同的一第二導電類型;一第一高壓井區,設置於該磊晶層中,其中該第一高壓井區具有該第一導電類型;一源極區和一汲極區,設置於該磊晶層中,其中該源極區和該汲極區具有該第一導電類型;以及一埋層結構,設置於該基底內且具有該第二導電類型,其中該埋層結構的底部具有階梯狀,其中該埋層結構包括:一第一埋層,位於該源極區下方;以及一第二埋層,位於該汲極區下方,其中該第一埋層橫向地鄰接該第二埋層,該第二埋層的底面低於該第一埋層的底面。
  2. 如請求項1之半導體裝置,其中該埋層結構的頂部具有平坦化表面。
  3. 如請求項1之半導體裝置,其中該第一埋層的摻雜濃度高於該第二埋層的摻雜濃度。
  4. 如請求項1之半導體裝置,更包括:一第二高壓井區,設置於該磊晶層中且具有該第二導電類型,其中該第二高壓井區鄰接該第一高壓井區;以及一第三高壓井區,設置於該磊晶層中且具有該第一導電類型,其中該第三高壓井區鄰接該第二高壓井區。
  5. 如請求項4之半導體裝置,其中該第一埋層橫向地由該第一高壓井區下方延伸至該第二高壓井區下方。
  6. 如請求項1之半導體裝置,更包括一重摻雜區,橫向地鄰接該源極區。
  7. 如請求項6之半導體裝置,其中該重摻雜區和該源極區位於一井區內,其中該井區具有該第二導電類型。
  8. 如請求項7之半導體裝置,更包括一閘極結構,橫向地位於該源極區和該汲極區之間。
  9. 如請求項8之半導體裝置,更包括一漂移區,設置於該閘極結構下方且具有該第一導電類型,其中該汲極區位於該漂移區內。
  10. 如請求項9之半導體裝置,其中該閘極結構橫向地由該井區上延伸至該漂移區上,其中一層間介電層覆蓋該閘極結構。
  11. 如請求項9之半導體裝置,其中該井區和該漂移區位於該第一高壓井區內。
  12. 如請求項9之半導體裝置,其中該第二埋層的橫向尺寸等於該漂移區的橫向尺寸。
TW111121412A 2022-06-09 2022-06-09 半導體裝置 TWI791408B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW111121412A TWI791408B (zh) 2022-06-09 2022-06-09 半導體裝置
CN202210992571.2A CN117253919A (zh) 2022-06-09 2022-08-18 半导体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111121412A TWI791408B (zh) 2022-06-09 2022-06-09 半導體裝置

Publications (2)

Publication Number Publication Date
TWI791408B true TWI791408B (zh) 2023-02-01
TW202349718A TW202349718A (zh) 2023-12-16

Family

ID=86689066

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111121412A TWI791408B (zh) 2022-06-09 2022-06-09 半導體裝置

Country Status (2)

Country Link
CN (1) CN117253919A (zh)
TW (1) TWI791408B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201631765A (zh) * 2015-02-18 2016-09-01 旺宏電子股份有限公司 具有內埋層之半導體裝置及其製造方法
TW201946277A (zh) * 2018-04-25 2019-12-01 新唐科技股份有限公司 高壓半導體裝置
TW202018942A (zh) * 2018-11-12 2020-05-16 新唐科技股份有限公司 電晶體結構及其製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201631765A (zh) * 2015-02-18 2016-09-01 旺宏電子股份有限公司 具有內埋層之半導體裝置及其製造方法
TW201946277A (zh) * 2018-04-25 2019-12-01 新唐科技股份有限公司 高壓半導體裝置
TW202018942A (zh) * 2018-11-12 2020-05-16 新唐科技股份有限公司 電晶體結構及其製造方法

Also Published As

Publication number Publication date
CN117253919A (zh) 2023-12-19
TW202349718A (zh) 2023-12-16

Similar Documents

Publication Publication Date Title
US9704755B2 (en) Multi-gate device structure including a fin-embedded isolation region and methods thereof
US20200126871A1 (en) FinFET Doping Methods and Structures Thereof
US9837358B2 (en) Source-gate region architecture in a vertical power semiconductor device
US11948936B2 (en) Forming ESD devices using multi-gate compatible processess
US11024732B2 (en) Lateral MOSFET with dielectric isolation trench
TW201730976A (zh) 金屬氧化物半導體電晶體
US8823099B2 (en) Semiconductor device having gradient doping profile
US20230387240A1 (en) Source/drain silicide for multigate device performance and method of fabricating thereof
US11450751B2 (en) Integrated circuit structure with backside via rail
TWI791408B (zh) 半導體裝置
US10388758B2 (en) Semiconductor structure having a high voltage well region
US11784226B2 (en) Semiconductor gate-all-around device having an anti-punch-through (APT) layer including carbon
US20230016468A1 (en) Semiconductor devices and methods of manufacturing thereof
TWI684209B (zh) 半導體結構及其製造方法
US20210320061A1 (en) Contact formation method and related structure
TWI544639B (zh) 高壓半導體裝置及其製造方法
TWI559531B (zh) 絕緣閘極雙極性電晶體及其製造方法
CN118016711A (zh) 半导体装置及其形成方法