TWI786711B - Intelligent microalgae cultivation system and method thereof - Google Patents
Intelligent microalgae cultivation system and method thereof Download PDFInfo
- Publication number
- TWI786711B TWI786711B TW110124924A TW110124924A TWI786711B TW I786711 B TWI786711 B TW I786711B TW 110124924 A TW110124924 A TW 110124924A TW 110124924 A TW110124924 A TW 110124924A TW I786711 B TWI786711 B TW I786711B
- Authority
- TW
- Taiwan
- Prior art keywords
- microalgae
- culture container
- nutrient solution
- computer system
- control computer
- Prior art date
Links
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本發明為一種智慧型微藻養殖系統及其方法,係包括有一微藻養殖場、一營養液設備、至少一監控設備及一控制電腦系統,主要是係透過裝設於該控制電腦系統內的卷積神經網路(CNN)對該監控設備所攝錄至少一培養容器之影像進行識別,並識別出至少一培養容器之微藻濃度,再由該控制電腦系統根據所識別至少一培養容器之微藻濃度的變化來操作該營養液設備,讓該營養液設備能輸出設定的營養液至該培養容器內,使該培養容器內的微藻具有加速生長或減緩生長的效益,讓微藻養殖能達到規模化之效能。 The present invention is an intelligent microalgae breeding system and its method, comprising a microalgae breeding farm, a nutrient solution device, at least one monitoring device and a control computer system, mainly through the system installed in the control computer system The convolutional neural network (CNN) recognizes the image of at least one culture container recorded by the monitoring equipment, and recognizes the concentration of microalgae in at least one culture container, and then the control computer system according to the identified at least one culture container Changes in the concentration of microalgae are used to operate the nutrient solution equipment, so that the nutrient solution equipment can output the set nutrient solution into the culture container, so that the microalgae in the culture container have the benefit of accelerating or slowing down the growth, allowing microalgae culture Can achieve large-scale performance.
Description
本發明係有關於一種智慧型微藻養殖系統及其方法,尤指一種具有加速生長或減緩生長的效益,讓微藻養殖能達到規模化之效能,而適用於微藻養殖產業或是類似養殖環境。 The present invention relates to an intelligent microalgae cultivation system and its method, especially a kind of benefit of accelerating growth or slowing down growth, so that microalgae cultivation can achieve large-scale performance, and is suitable for microalgae cultivation industry or similar cultivation environment.
在工業排放的溫室氣體中,以二氧化碳為最大宗。而微藻因光合作用效率高、成長快速,藉由微藻培養的二氧化碳減量效率是一般植物的數十倍以上。透過運用生物科技與工程技術養殖微藻進行二氧化碳減量,特別是直接引用含二氧化碳的工業廢氣來養藻減碳,更是值得發展。 Among the greenhouse gases emitted by industry, carbon dioxide is the largest. Microalgae have high photosynthetic efficiency and rapid growth, and the carbon dioxide reduction efficiency of microalgae cultivation is more than ten times that of ordinary plants. It is worth developing to grow microalgae to reduce carbon dioxide through the use of biotechnology and engineering technology, especially to directly use industrial waste gas containing carbon dioxide to grow algae and reduce carbon dioxide.
微藻物質可用於各項生物燃料如生質柴油、生質酒精、氫氣、焦炭等的生產,且微藻可以經光合作用可把二氧化碳轉化為醣類、蛋白質、脂質等細胞組成。因此,在固碳時也能同時生產有用的物質如生理活性物質、色素如葉黃素與類胡蘿蔔素、omega-3脂肪酸如EPA與DHA等的藻種最具經濟效益。此外,微藻也能做為動物或水產養殖飼料,以及用來處理廢水與廢氣。 Microalgal matter can be used in the production of various biofuels such as biodiesel, bioalcohol, hydrogen, coke, etc., and microalgae can convert carbon dioxide into carbohydrates, proteins, lipids and other cell components through photosynthesis. Therefore, algal species that can simultaneously produce useful substances such as physiologically active substances, pigments such as lutein and carotenoids, and omega-3 fatty acids such as EPA and DHA during carbon fixation are most economically beneficial. In addition, microalgae can also be used as animal or aquaculture feed, and used to treat waste water and waste gas.
然而,以減碳為主要目標的微藻養殖,大多採自營生長方式,其生長時所需主要調控條件是光照、溫度、二氧化碳、培養基中的營養成分等。其中許多條件屬於環境因子,因此大都利用微藻養殖系統的設計來提升微藻的養殖效率。目前,微藻規模化人工培養有開放池和(半) 密閉反應器兩種方式,後者因可提供較充足的光線而稱為光生物反應器。此外,利用光生物反應器培養微藻可達到較高的藻細胞密度(微藻產率高),由於通入反應器的二氧化碳在養殖液中有較長的滯留時間,並可充分進行氣液混合,因此二氧化碳溶解於培養液中的效率高,減碳的效果也較佳,但造價和運轉成本較高。如果所生產的微藻無法有較高的經濟價值,大規模養殖就不可行。 However, most of the microalgae cultures with the main goal of carbon reduction adopt self-supporting growth methods, and the main control conditions required for their growth are light, temperature, carbon dioxide, and nutrients in the medium. Many of these conditions are environmental factors, so most of them use the design of the microalgae cultivation system to improve the efficiency of microalgae cultivation. At present, the large-scale artificial culture of microalgae has open ponds and (semi) There are two ways to close the reactor, and the latter is called a photobioreactor because it can provide sufficient light. In addition, the use of photobioreactors to cultivate microalgae can achieve higher algae cell density (high microalgae yield), because the carbon dioxide passed into the reactor has a longer residence time in the culture solution, and can fully carry out gas-liquid Mixing, so the efficiency of dissolving carbon dioxide in the culture medium is high, and the effect of carbon reduction is also better, but the cost and operating cost are higher. Large-scale farming is not feasible if the microalgae produced are not of high economic value.
因此,本發明人有鑑於上述缺失,期能提出一種讓微藻養殖能達到規模化之效能的智慧型微藻養殖系統及其方法,令使用者可輕易完成操作及安裝,乃潛心研思、設計組製,以提供使用者便利性,為本發明人所欲研發之發明動機者。 Therefore, in view of the above deficiencies, the inventor expects to propose a smart microalgae cultivation system and its method that allow microalgae cultivation to achieve large-scale performance, so that users can easily complete the operation and installation. Design and organization to provide user convenience is the motivation for the invention that the inventor wants to develop.
本發明之主要目的,在於提供一種智慧型微藻養殖系統及其方法,係包括有一微藻養殖場、一營養液設備、至少一監控設備及一控制電腦系統,主要是係透過裝設於該控制電腦系統內的卷積神經網路(CNN)對該監控設備所攝錄至少一培養容器之影像進行識別,並識別出至少一培養容器之微藻濃度,再由該控制電腦系統根據所識別至少一培養容器之微藻濃度的變化來操作該營養液設備,讓該營養液設備能輸出設定的營養液至該培養容器內,使該培養容器內的微藻具有加速生長或減緩生長的效益,讓微藻養殖能達到規模化之效能,進而增加整體之實用性。 The main purpose of the present invention is to provide an intelligent microalgae culture system and its method, which includes a microalgae farm, a nutrient solution device, at least one monitoring device and a control computer system, mainly through the The convolutional neural network (CNN) in the control computer system recognizes the image of at least one culture container recorded by the monitoring equipment, and recognizes the concentration of microalgae in at least one culture container, and then the control computer system according to the identified Operate the nutrient solution device by changing the concentration of microalgae in at least one culture container, so that the nutrient solution device can output the set nutrient solution into the culture container, so that the microalgae in the culture container have the benefit of accelerating growth or slowing down growth , so that microalgae cultivation can achieve large-scale performance, thereby increasing the overall practicality.
本發明之另一目的,在於提供一種智慧型微藻養殖系統及其方法,透過該控制電腦係含有機器學習(machine learning)程序,當該卷積神經網路(CNN)對監控設備所攝錄的培養容器之影像進行識別成微藻濃 度後,再將每一次的識別成微藻濃度整合並進行數據分析,並透過機器學習(machine learning)程序來建立出微藻養殖模型,且藉由微藻養殖模型來組成回饋控制架構,以達成建置智慧型微藻養殖系統之效能,進而增加整體之建置性。 Another object of the present invention is to provide an intelligent microalgae cultivation system and its method, through which the control computer system contains a machine learning (machine learning) program, when the convolutional neural network (CNN) records the monitoring equipment The image of the culture container is identified as the concentration of microalgae After the degree, each identification is integrated into the concentration of microalgae and the data is analyzed, and the microalgae cultivation model is established through the machine learning program, and the feedback control framework is formed by the microalgae cultivation model, so as to Achieve the effectiveness of building a smart microalgae cultivation system, thereby increasing the overall constructability.
為了能夠更進一步瞭解本發明之特徵、特點和技術內容,請參閱以下有關本發明之詳細說明與附圖,惟所附圖式僅提供參考與說明用,非用以限制本發明。 In order to further understand the features, characteristics and technical content of the present invention, please refer to the following detailed description and drawings related to the present invention, but the attached drawings are only for reference and illustration, and are not intended to limit the present invention.
10:微藻養殖場 10:Microalgae farm
11:棚架 11: Scaffolding
12:培養容器 12: Culture container
121:微藻濃度 121: microalgae concentration
20:營養液設備 20: Nutrient solution equipment
30:監控設備 30: Monitoring equipment
31:鏡頭 31: Lens
32:影像 32: Image
40:控制電腦系統 40:Control computer system
50:位置感測器 50: Position sensor
S100:放入培養液及微藻 S100: Put culture solution and microalgae
S110:攝錄培養容器影像 S110: Video recording of culture container
S120:影像識別微藻濃度 S120: Image identification of microalgae concentration
S130:操作營養液設備 S130: Operate nutrient solution equipment
S140:輸出設定營養液 S140: output setting nutrient solution
第1圖係為本發明之微藻養殖系統第一示意圖。 Figure 1 is the first schematic diagram of the microalgae culture system of the present invention.
第2圖係為本發明之微藻養殖系統第二示意圖。 Figure 2 is the second schematic diagram of the microalgae culture system of the present invention.
第3圖係為本發明之主要步驟流程示意圖。 Fig. 3 is a schematic flow chart of the main steps of the present invention.
請參閱第1~3圖,係為本發明實施例之示意圖,而本發明之智慧型微藻養殖系統及其方法的最佳實施方式係適用於微藻養殖產業或是類似養殖環境,並具有加速生長或減緩生長的效益,讓微藻養殖能達到規模化之效能。 Please refer to Figures 1 to 3, which are schematic diagrams of embodiments of the present invention, and the best implementation of the intelligent microalgae cultivation system and method thereof of the present invention is applicable to the microalgae cultivation industry or similar cultivation environments, and has The benefits of accelerating growth or slowing down growth allow microalgae cultivation to achieve large-scale performance.
而本發明之智慧型微藻養殖系統,主要係設有一微藻養殖場10、一營養液設備20、至少一監控設備30及一控制電腦系統40(如第1圖及第2圖所示),該微藻養殖場10係設有複數棚架11及至少一培養容器12,而該培養容器12係擺放於該棚架11上(如第1圖所示),其中該培養容器12係放入培養液及微藻,且該培養容器12與該培養容
器12係相互連通,使位於該培養容器12內的培養液及微藻能在培養容器12之間來流動,另該培養容器12皆為透明狀,以增加微藻養殖時光線照射的通透度。
And the intelligent microalgae culture system of the present invention is mainly provided with a
而上述的微藻養殖場10內係設有一營養液設備20及至少一監控設備30(如第1圖及第2圖所示),且營養液設備20及該監控設備30係分別與該控制電腦系統40連接,其中該營養液設備20係與該培養容器12連接,以透過該營養液設備20來將營養液輸送至該培養容器12內(如第2圖所示),讓培養容器12內的微藻能獲得營養液,便於增加生長,另該監控設備30係設有鏡頭31,並透過該鏡頭31來攝錄至少一培養容器12之影像32(如第1圖所示),再將攝錄至少一培養容器12之影像32傳遞至該控制電腦系統40中來儲存。
And the above-mentioned
另上述之培養容器12係搭配設有位置感測器50,該位置感測器50係裝設於該培養容器12處(如第1圖所示),且該位置感測器50係與該控制電腦系統40連接,使該控制電腦系統40能根據位置感測器50來知道該培養容器12所擺放的位置,以利該控制電腦系統40後續進行作業動作。
In addition, the above-mentioned
再者,該控制電腦系統40係裝設有卷積神經網路(Convolutional Neural Networks,CNN),該卷積神經網路(CNN)係為二維卷積神經網路(圖未示),以透過該二維卷積神經網路進行影像識別,且該卷積神經網路(CNN)主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形,該部分功能主要由池化層實現,而該卷積神經網路(CNN)的基本結構包括兩層,其一為特徵提取層,每個神經元的輸入與前一層的區域性接受域
相連,並提取該區域性的特徵。一旦該區域性特徵被提取後,它與其它特徵間的位置關係也隨之確定下來;其二是特徵對映層,網路的每個計算層由多個特徵對映組成,每個特徵對映是一個平面,平面上所有神經元的權值相等。
Furthermore, the
而上述之控制電腦系統40係透過卷積神經網路(CNN)對該監控設備30所攝錄的至少一培養容器12之影像32進行識別(如第1圖所示),當該培養容器12內的微藻生長一段時間後,由卷積神經網路(CNN)來識別出所攝錄的培養容器12之微藻濃度121(如第1圖所示),並進行紀錄該培養容器12之微藻濃度121,而當該培養容器12之微藻濃度121與設定目標值出現差異時(如第2圖所示),再由該控制電腦系統40根據所識別該培養容器12之微藻濃度121的變化來操作該營養液設備20,讓該營養液設備20能輸出設定的營養液至該培養容器12內(如第2圖所示),使該培養容器12內的微藻具有加速生長或減緩生長的效益。另外,該控制電腦系統40係含有機器學習(machine learning)程序(圖未示),當該卷積神經網路(CNN)對監控設備30所攝錄的培養容器12之影像32進行識別成微藻濃度121後,再將每一次的識別成微藻濃度121整合並進行數據分析,並透過機器學習(machine learning)程序來建立出微藻養殖模型,且藉由微藻養殖模型來組成回饋控制架構,以達成建置智慧型微藻養殖系統之效能,進而增加整體之建置性。
The above-mentioned
另本發明之智慧型微藻養殖方法,主要係用於微藻養殖,係包括有一微藻養殖場10、一營養液設備20、至少一監控設備30及一控制電腦系統40(如第1圖及第2圖所示),該微藻養殖場10係裝設有
至少一培養容器12,該營養液設備20係設於該微藻養殖場10,該監控設備30係裝於該微藻養殖場10,該控制電腦系統40係分別與該監控設備30及該營養液設備20進行連接,該控制電腦系統40係裝設有卷積神經網路(CNN)。
In addition, the intelligent microalgae culture method of the present invention is mainly used for microalgae culture, and includes a
而其微藻養殖方法,首先進行(如第3圖所示)的步驟S100放入培養液及微藻:於該微藻養殖場10所裝設的至少一培養容器12中放入培養液及微藻,以進行微藻培養。而完成上述步驟S100後即進行下一步驟S110。
And its microalgae cultivation method, first carry out (as shown in Fig. 3) step S100 and put into nutrient solution and microalgae: in at least one
而上述之步驟S100中該微藻養殖場10係設有複數棚架11及至少一培養容器12,而該培養容器12係擺放於該棚架11上(如第1圖所示),其中該培養容器12係放入培養液及微藻,且該培養容器12與該培養容器12係相互連通,使位於該培養容器12內的培養液及微藻能在培養容器12之間來流動,另該培養容器12皆為透明狀,以增加微藻養殖時光線照射的通透度。另該培養容器12係搭配設有位置感測器50,該位置感測器50係裝設於該培養容器12處(如第1圖所示),且該位置感測器50係與該控制電腦系統40連接,使該控制電腦系統40能根據位置感測器50來知道該培養容器12所擺放的位置,以利該控制電腦系統40後續進行作業動作。
In the above-mentioned step S100, the
另,下一步進行的步驟S110攝錄培養容器影像:透過裝設於該微藻養殖場10的監控設備30來對至少一培養容器12進行監控,並透過該監控設備30之鏡頭31攝錄至少一培養容器12之影像32。而完成上述步驟S110後即進行下一步驟S120。
In addition, the next step S110 is to record the image of the culture container: monitor at least one
而上述之步驟S110中該微藻養殖場10內係設有一營養液設備20及至少一監控設備30(如第1圖及第2圖所示),且營養液設備20及該監控設備30係分別與該控制電腦系統40連接,其中該營養液設備20係與該培養容器12連接,以透過該營養液設備20來將營養液輸送至該培養容器12內(如第2圖所示),讓培養容器12內的微藻能獲得營養液,便於增加生長,另該監控設備30係設有鏡頭31,並透過該鏡頭31來攝錄至少一培養容器12之影像32(如第1圖所示),再將攝錄至少一培養容器12之影像32傳遞至該控制電腦系統40中來儲存。
In the above-mentioned step S110, the
另,下一步進行的步驟S120影像識別微藻濃度:該控制電腦系統40係透過卷積神經網路(CNN)對監控設備30所攝錄至少一培養容器12之影像32進行識別,並識別出至少一培養容器12之微藻濃度121。而完成上述步驟S120後即進行下一步驟S130。
In addition, in the next step S120 image recognition of microalgae concentration: the
而上述之步驟S120中該控制電腦系統40係裝設有卷積神經網路(Convolutional Neural Networks,CNN),該卷積神經網路(CNN)係為二維卷積神經網路(圖未示),以透過該二維卷積神經網路進行影像識別,且該卷積神經網路(CNN)主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形,該部分功能主要由池化層實現,而該卷積神經網路(CNN)的基本結構包括兩層,其一為特徵提取層,每個神經元的輸入與前一層的區域性接受域相連,並提取該區域性的特徵。一旦該區域性特徵被提取後,它與其它特徵間的位置關係也隨之確定下來;其二是特徵對映層,網路的每個計算層由多個特徵對映組成,每個特徵對映是一個平面,平面上所有
神經元的權值相等。而控制電腦系統40係透過卷積神經網路(CNN)對該監控設備30所攝錄的至少一培養容器12之影像32進行識別(如第1圖所示),當該培養容器12內的微藻生長一段時間後,由卷積神經網路(CNN)來識別出所攝錄的培養容器12之微藻濃度121(如第1圖所示),並進行紀錄該培養容器12之微藻濃度121。
In the above-mentioned step S120, the
另,下一步進行的步驟S130操作營養液設備:該控制電腦系統40根據所識別至少一培養容器12之微藻濃度121的變化來操作該營養液設備20。而完成上述步驟S130後即進行下一步驟S140。
In addition, the next step S130 is to operate the nutrient solution equipment: the
另,下一步進行的步驟S140輸出設定營養液:讓該營養液設備20能輸出設定的營養液至該培養容器12內。
In addition, the next step S140 is to output the set nutrient solution: to enable the
而上述之步驟S130及步驟S140中當該培養容器12之微藻濃度121與設定目標值出現差異時(如第2圖所示),再由該控制電腦系統40根據所識別該培養容器12之微藻濃度121的變化來操作該營養液設備20,讓該營養液設備20能輸出設定的營養液至該培養容器12內(如第2圖所示),使該培養容器12內的微藻具有加速生長或減緩生長的效益。
And above-mentioned step S130 and step S140 when the
另外,該控制電腦系統40係含有機器學習(machine learning)程序(圖未示),當該卷積神經網路(CNN)對監控設備30所攝錄的培養容器12之影像32進行識別成微藻濃度121後,再將每一次的識別成微藻濃度121整合並進行數據分析,並透過機器學習(machine learning)程序來建立出微藻養殖模型,且藉由微藻養殖模型來組成回饋控
制架構,以達成建置智慧型微藻養殖系統之效能,進而增加整體之建置性。
In addition, the
由以上詳細說明,可使熟知本項技藝者明瞭本發明的確可達成前述目的,實已符合專利法之規定,爰提出發明專利申請。 From the above detailed description, those who are familiar with this art can understand that the present invention can indeed achieve the aforementioned purpose, and have actually met the provisions of the Patent Law, so they should file an application for a patent for invention.
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍;故,凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。 But the above-mentioned ones are only preferred embodiments of the present invention, and should not limit the scope of the present invention; therefore, all simple equivalent changes and modifications made according to the patent scope of the present invention and the contents of the description of the invention , should still fall within the scope covered by the patent of the present invention.
10:微藻養殖場 10:Microalgae farm
11:棚架 11: Scaffolding
12:培養容器 12: Culture container
121:微藻濃度 121: microalgae concentration
30:監控設備 30: Monitoring equipment
31:鏡頭 31: Lens
32:影像 32: Image
40:控制電腦系統 40:Control computer system
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110124924A TWI786711B (en) | 2021-07-07 | 2021-07-07 | Intelligent microalgae cultivation system and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110124924A TWI786711B (en) | 2021-07-07 | 2021-07-07 | Intelligent microalgae cultivation system and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI786711B true TWI786711B (en) | 2022-12-11 |
TW202303468A TW202303468A (en) | 2023-01-16 |
Family
ID=85794888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110124924A TWI786711B (en) | 2021-07-07 | 2021-07-07 | Intelligent microalgae cultivation system and method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI786711B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101186880A (en) * | 2007-11-29 | 2008-05-28 | 上海交通大学 | Feeding optimizing method for heterotrophically culturing chlorella |
CN101639690A (en) * | 2009-06-19 | 2010-02-03 | 新奥科技发展有限公司 | System and method for controlling reaction of alga |
CN103031249A (en) * | 2012-12-10 | 2013-04-10 | 北京农业智能装备技术研究中心 | Parameter monitoring and controlling system for biological microalgae reaction vessel |
CN103756886A (en) * | 2014-01-26 | 2014-04-30 | 武汉凯迪工程技术研究总院有限公司 | High-density continuous culture method and device for microalgae |
TWM496335U (en) * | 2014-10-23 | 2015-03-01 | China Steel Corp | Automatic microalgae culturing equipment |
CN109711066A (en) * | 2018-12-28 | 2019-05-03 | 南开大学 | A kind of small-sized lake and reservoir wawter bloom prediction technique of shallow water type and prediction model |
CN110245562A (en) * | 2019-05-13 | 2019-09-17 | 中国水产科学研究院东海水产研究所 | Ocean based on deep learning produces malicious microalgae type automatic identifying method |
CN110532646A (en) * | 2019-08-09 | 2019-12-03 | 北京工商大学 | Lake and reservoir cyanobacterial bloom prediction technique based on adaptive Dynamic Programming |
CN112784748A (en) * | 2021-01-22 | 2021-05-11 | 大连海事大学 | Microalgae identification method based on improved YOLOv3 |
-
2021
- 2021-07-07 TW TW110124924A patent/TWI786711B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101186880A (en) * | 2007-11-29 | 2008-05-28 | 上海交通大学 | Feeding optimizing method for heterotrophically culturing chlorella |
CN101639690A (en) * | 2009-06-19 | 2010-02-03 | 新奥科技发展有限公司 | System and method for controlling reaction of alga |
CN103031249A (en) * | 2012-12-10 | 2013-04-10 | 北京农业智能装备技术研究中心 | Parameter monitoring and controlling system for biological microalgae reaction vessel |
CN103756886A (en) * | 2014-01-26 | 2014-04-30 | 武汉凯迪工程技术研究总院有限公司 | High-density continuous culture method and device for microalgae |
TWM496335U (en) * | 2014-10-23 | 2015-03-01 | China Steel Corp | Automatic microalgae culturing equipment |
CN109711066A (en) * | 2018-12-28 | 2019-05-03 | 南开大学 | A kind of small-sized lake and reservoir wawter bloom prediction technique of shallow water type and prediction model |
CN110245562A (en) * | 2019-05-13 | 2019-09-17 | 中国水产科学研究院东海水产研究所 | Ocean based on deep learning produces malicious microalgae type automatic identifying method |
CN110532646A (en) * | 2019-08-09 | 2019-12-03 | 北京工商大学 | Lake and reservoir cyanobacterial bloom prediction technique based on adaptive Dynamic Programming |
CN112784748A (en) * | 2021-01-22 | 2021-05-11 | 大连海事大学 | Microalgae identification method based on improved YOLOv3 |
Also Published As
Publication number | Publication date |
---|---|
TW202303468A (en) | 2023-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Medipally et al. | Microalgae as sustainable renewable energy feedstock for biofuel production | |
Koller | Design of closed photobioreactors for algal cultivation | |
Xu et al. | Microalgal bioreactors: challenges and opportunities | |
Sonmez et al. | Convolutional neural network-Support vector machine based approach for classification of cyanobacteria and chlorophyta microalgae groups | |
CN101914431B (en) | Device and method for cultivating microalgae by utilizing all plastic modular photobioreactor system | |
Paladino et al. | Scale-up of photo-bioreactors for microalgae cultivation by π-theorem | |
CN203708882U (en) | Multifunctional liquid strain culturing device | |
CN201501861U (en) | Photobioreactor for systematically cultivating microalgae | |
Huo et al. | Available resources for algal biofuel development in China | |
Syaichurrozi et al. | Effect of Tofu Wastewater Addition on the Growth and Carbohydrate-Protein-Lipid Content of Spirulina platensis (RESEARCH NOTE) | |
Brzychczyk et al. | The follow-up photobioreactor illumination system for the cultivation of photosynthetic microorganisms | |
TWI786711B (en) | Intelligent microalgae cultivation system and method thereof | |
CN205954009U (en) | Algae aeration culture device | |
Fernández et al. | Microalgae production systems | |
CN202881248U (en) | Simulation device for large-scale culture of microalgae | |
WO2017028018A1 (en) | Stacked sheet photobioreactor | |
CN202730113U (en) | Microalgae high-density culture plant | |
Hawrot-Paw et al. | Optimization of Microalgal Biomass Production in Vertical Tubular Photobioreactors | |
TWM624279U (en) | Smart Microalgae Cultivation System | |
Konur | Algal photobioreactors | |
Nguyen et al. | A low-cost efficient system for monitoring microalgae density using gaussian process | |
CN106867890A (en) | A kind of microdisk electrode Optimal Control System and method | |
CN206666503U (en) | A kind of automation culture casing of high density oil-rich microalgae | |
Cosenza et al. | Advanced Simulation Model for Studying Biofuel-producing Microalgae Populations | |
CN203683552U (en) | Plate cover structure of cell culture plate |