TWM624279U - Smart Microalgae Cultivation System - Google Patents
Smart Microalgae Cultivation System Download PDFInfo
- Publication number
- TWM624279U TWM624279U TW110207920U TW110207920U TWM624279U TW M624279 U TWM624279 U TW M624279U TW 110207920 U TW110207920 U TW 110207920U TW 110207920 U TW110207920 U TW 110207920U TW M624279 U TWM624279 U TW M624279U
- Authority
- TW
- Taiwan
- Prior art keywords
- microalgae
- culture container
- nutrient solution
- control computer
- computer system
- Prior art date
Links
Images
Landscapes
- Cultivation Of Seaweed (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
本創作為一種智慧型微藻養殖系統,係包括有一微藻養殖場、一營養液設備、至少一監控設備及一控制電腦系統,主要是係透過裝設於該控制電腦系統內的卷積神經網路(CNN)對該監控設備所攝錄至少一培養容器之影像進行識別,並識別出至少一培養容器之微藻濃度,再由該控制電腦系統根據所識別至少一培養容器之微藻濃度的變化來操作該營養液設備,讓該營養液設備能輸出設定的營養液至該培養容器內,使該培養容器內的微藻具有加速生長或減緩生長的效益,讓微藻養殖能達到規模化之效能。 This creation is an intelligent microalgae cultivation system, which includes a microalgae cultivation farm, a nutrient solution equipment, at least one monitoring equipment and a control computer system, mainly through the convolutional neural network installed in the control computer system. The network (CNN) identifies the image of at least one culture container recorded by the monitoring equipment, and identifies the concentration of microalgae in the at least one culture container, and then the control computer system determines the concentration of microalgae in the at least one culture container according to the identified concentration of microalgae in the at least one culture container. The nutrient solution equipment can be operated by changing the change of the nutrient solution equipment, so that the nutrient solution equipment can output the set nutrient solution into the culture container, so that the microalgae in the culture container have the benefit of accelerating or slowing down the growth, so that the microalgae culture can reach the scale Efficiency of transformation.
Description
本創作係涉及一種智慧型微藻養殖系統,尤指一種具有加速生長或減緩生長的效益,讓微藻養殖能達到規模化之效能,而適用於微藻養殖產業或是類似養殖環境。 This creation relates to an intelligent microalgae cultivation system, especially one that has the benefit of accelerating or slowing down growth, so that microalgae cultivation can achieve large-scale efficiency, and is suitable for the microalgae cultivation industry or similar cultivation environments.
在工業排放的溫室氣體中,以二氧化碳為最大宗。而微藻因光合作用效率高、成長快速,藉由微藻培養的二氧化碳減量效率是一般植物的數十倍以上。透過運用生物科技與工程技術養殖微藻進行二氧化碳減量,特別是直接引用含二氧化碳的工業廢氣來養藻減碳,更是值得發展。 Among the greenhouse gases emitted by industry, carbon dioxide is the largest. Because of the high photosynthesis efficiency and rapid growth of microalgae, the carbon dioxide reduction efficiency of microalgae cultivation is more than ten times that of ordinary plants. Carbon dioxide reduction through the use of biotechnology and engineering technology to cultivate microalgae, especially the direct use of carbon dioxide-containing industrial waste gas to cultivate algae to reduce carbon dioxide, is worth developing.
微藻物質可用於各項生物燃料如生質柴油、生質酒精、氫氣、焦炭等的生產,且微藻可以經光合作用可把二氧化碳轉化為醣類、蛋白質、脂質等細胞組成。因此,在固碳時也能同時生產有用的物質如生理活性物質、色素如葉黃素與類胡蘿蔔素、omega-3脂肪酸如EPA與DHA等的藻種最具經濟效益。此外,微藻也能做為動物或水產養殖飼料,以及用來處理廢水與廢氣。 Microalgae material can be used for the production of various biofuels such as biodiesel, bioethanol, hydrogen, coke, etc., and microalgae can convert carbon dioxide into sugars, proteins, lipids and other cellular components through photosynthesis. Therefore, algae species that can simultaneously produce useful substances such as physiologically active substances, pigments such as lutein and carotenoids, and omega-3 fatty acids such as EPA and DHA during carbon fixation are the most economical. In addition, microalgae can be used as animal or aquaculture feed, as well as for the treatment of wastewater and waste gas.
然而,以減碳為主要目標的微藻養殖,大多採自營生長方式,其生長時所需主要調控條件是光照、溫度、二氧化碳、培養基中的營養成分等。其中許多條件屬於環境因子,因此大都利用微藻養殖系統的設 計來提升微藻的養殖效率。目前,微藻規模化人工培養有開放池和(半)密閉反應器兩種方式,後者因可提供較充足的光線而稱為光生物反應器。此外,利用光生物反應器培養微藻可達到較高的藻細胞密度(微藻產率高),由於通入反應器的二氧化碳在養殖液中有較長的滯留時間,並可充分進行氣液混合,因此二氧化碳溶解於培養液中的效率高,減碳的效果也較佳,但造價和運轉成本較高。如果所生產的微藻無法有較高的經濟價值,大規模養殖就不可行。 However, most of the microalgae cultivation with carbon reduction as the main goal adopts the self-supporting growth method, and the main control conditions required for its growth are light, temperature, carbon dioxide, and nutrients in the medium. Many of these conditions are environmental factors, so most use the design of microalgae culture systems to improve the efficiency of microalgae cultivation. At present, there are two ways of large-scale artificial cultivation of microalgae: open pond and (semi) closed reactor, the latter is called photobioreactor because it can provide sufficient light. In addition, the use of photobioreactor to cultivate microalgae can achieve higher algal cell density (high yield of microalgae), because the carbon dioxide introduced into the reactor has a longer residence time in the culture liquid, and can fully conduct gas-liquid Therefore, the efficiency of dissolving carbon dioxide in the culture medium is high, and the effect of carbon reduction is also better, but the cost of construction and operation is relatively high. Large-scale farming is not feasible if the microalgae produced cannot be of high economic value.
因此,本創作人有鑑於上述缺失,期能提出一種讓微藻養殖能達到規模化之效能的智慧型微藻養殖系統,令使用者可輕易完成操作及安裝,乃潛心研思、設計組製,以提供使用者便利性,為本創作人所欲研發之創作動機者。 Therefore, in view of the above deficiencies, the author hopes to propose an intelligent microalgae cultivation system that enables microalgae cultivation to achieve large-scale efficiency, so that users can easily complete the operation and installation. , in order to provide the convenience of users and the creators of the creative motivation that the creators want to develop.
本創作之主要目的,在於提供一種智慧型微藻養殖系統,係包括有一微藻養殖場、一營養液設備、至少一監控設備及一控制電腦系統,主要是係透過裝設於該控制電腦系統內的卷積神經網路(CNN)對該監控設備所攝錄至少一培養容器之影像進行識別,並識別出至少一培養容器之微藻濃度,再由該控制電腦系統根據所識別至少一培養容器之微藻濃度的變化來操作該營養液設備,讓該營養液設備能輸出設定的營養液至該培養容器內,使該培養容器內的微藻具有加速生長或減緩生長的效益,讓微藻養殖能達到規模化之效能,進而增加整體之實用性。 The main purpose of this creation is to provide an intelligent microalgae cultivation system, which includes a microalgae cultivation farm, a nutrient solution equipment, at least one monitoring equipment and a control computer system, mainly through the installation in the control computer system. The inner convolutional neural network (CNN) identifies the image of at least one culture container recorded by the monitoring equipment, and identifies the microalgae concentration of at least one culture container, and then the control computer system identifies the at least one culture container according to the identification of the microalgae concentration. The nutrient solution equipment can be operated by changing the concentration of microalgae in the container, so that the nutrient solution equipment can output the set nutrient solution into the culture container, so that the microalgae in the culture container have the benefit of accelerating or slowing down the growth, so that the microalgae in the culture container can accelerate or slow down the growth. Algae cultivation can achieve large-scale efficiency, thereby increasing the overall practicability.
本創作之另一目的,在於提供一種智慧型微藻養殖系統,透過該控制電腦係含有機器學習(machine learning)程序,當該卷積神經網路 (CNN)對監控設備所攝錄的培養容器之影像進行識別成微藻濃度後,再將每一次的識別成微藻濃度整合並進行數據分析,並透過機器學習(machine learning)程序來建立出微藻養殖模型,且藉由微藻養殖模型來組成回饋控制架構,以達成建置智慧型微藻養殖系統之效能,進而增加整體之建置性。 Another object of this creation is to provide an intelligent microalgae cultivation system, through which the control computer contains a machine learning program, when the convolutional neural network (CNN) After identifying the image of the culture vessel recorded by the monitoring equipment into the concentration of microalgae, each time the identified as the concentration of microalgae is integrated and data analysis is performed, and a machine learning (machine learning) program is used to establish a The microalgae cultivation model, and the feedback control structure is formed by the microalgae cultivation model, so as to achieve the efficiency of building an intelligent microalgae cultivation system, thereby increasing the overall constructability.
為了能夠更進一步瞭解本創作之特徵、特點和技術內容,請參閱以下有關本創作之詳細說明與附圖,惟所附圖式僅提供參考與說明用,非用以限制本創作。 In order to further understand the features, characteristics and technical content of this creation, please refer to the following detailed descriptions and accompanying drawings of this creation, but the attached drawings are only for reference and description, and are not intended to limit this creation.
10:微藻養殖場 10: Microalgae Farm
11:棚架 11: Shelving
12:培養容器 12: Culture container
121:微藻濃度 121: Microalgae concentration
20:營養液設備 20: Nutrient solution equipment
30:監控設備 30: Monitoring equipment
31:鏡頭 31: Lens
32:影像 32: Video
40:控制電腦系統 40: Control computer system
50:位置感測器 50: Position Sensor
第1圖係為本創作之微藻養殖系統第一示意圖。 Figure 1 is the first schematic diagram of the microalgae cultivation system created by the author.
第2圖係為本創作之微藻養殖系統第二示意圖。 Figure 2 is the second schematic diagram of the microalgae cultivation system created by the author.
請參閱第1~2圖,係為本創作實施例之示意圖,而本創作之智慧型微藻養殖系統及其方法的最佳實施方式係適用於微藻養殖產業或是類似養殖環境,並具有加速生長或減緩生長的效益,讓微藻養殖能達到規模化之效能。 Please refer to Figures 1 to 2, which are schematic diagrams of the creative embodiment, and the best embodiment of the intelligent microalgae cultivation system and method of the present invention is suitable for the microalgae cultivation industry or similar cultivation environment, and has the advantages of The benefits of accelerating growth or slowing down growth allow microalgae farming to achieve large-scale efficiency.
而本創作之智慧型微藻養殖系統,主要係設有一微藻養殖場10、一營養液設備20、至少一監控設備30及一控制電腦系統40(如第1圖及第2圖所示),該微藻養殖場10係設有複數棚架11及至少一培養容器12,而該培養容器12係擺放於該棚架11上(如第1圖所示),其中該培養容器12係放入培養液及微藻,且該培養容器12與該培養容器12係相互連通,使位於該培養容器12內的培養液及微藻能在
培養容器12之間來流動,另該培養容器12皆為透明狀,以增加微藻養殖時光線照射的通透度。
The intelligent microalgae cultivation system of the present creation mainly includes a
而上述的微藻養殖場10內係設有一營養液設備20及至少一監控設備30(如第1圖及第2圖所示),且營養液設備20及該監控設備30係分別與該控制電腦系統40連接,其中該營養液設備20係與該培養容器12連接,以透過該營養液設備20來將營養液輸送至該培養容器12內(如第2圖所示),讓培養容器12內的微藻能獲得營養液,便於增加生長,另該監控設備30係設有鏡頭31,並透過該鏡頭31來攝錄至少一培養容器12之影像32(如第1圖所示),再將攝錄至少一培養容器12之影像32傳遞至該控制電腦系統40中來儲存。
The above-mentioned
另上述之培養容器12係搭配設有位置感測器50,該位置感測器50係裝設於該培養容器12處(如第1圖所示),且該位置感測器50係與該控制電腦系統40連接,使該控制電腦系統40能根據位置感測器50來知道該培養容器12所擺放的位置,以利該控制電腦系統40後續進行作業動作。
In addition, the above-mentioned
再者,該控制電腦系統40係裝設有卷積神經網路(Convolutional Neural Networks,CNN),該卷積神經網路(CNN)係為二維卷積神經網路(圖未示),以透過該二維卷積神經網路進行影像識別,且該卷積神經網路(CNN)主要用來識別位移、縮放及其他形式扭曲不變性的二維圖形,該部分功能主要由池化層實現,而該卷積神經網路(CNN)的基本結構包括兩層,其一為特徵提取層,每個神經元的輸入與前一層的區域性接受域相連,並提取該區域性的特徵。一旦該區域性特徵被提取後,它與其它特
徵間的位置關係也隨之確定下來;其二是特徵對映層,網路的每個計算層由多個特徵對映組成,每個特徵對映是一個平面,平面上所有神經元的權值相等。
Furthermore, the
而上述之控制電腦系統40係透過卷積神經網路(CNN)對該監控設備30所攝錄的至少一培養容器12之影像32進行識別(如第1圖所示),當該培養容器12內的微藻生長一段時間後,由卷積神經網路(CNN)來識別出所攝錄的培養容器12之微藻濃度121(如第1圖所示),並進行紀錄該培養容器12之微藻濃度121,而當該培養容器12之微藻濃度121與設定目標值出現差異時(如第2圖所示),再由該控制電腦系統40根據所識別該培養容器12之微藻濃度121的變化來操作該營養液設備20,讓該營養液設備20能輸出設定的營養液至該培養容器12內(如第2圖所示),使該培養容器12內的微藻具有加速生長或減緩生長的效益。另外,該控制電腦系統40係含有機器學習(machine learning)程序(圖未示),當該卷積神經網路(CNN)對監控設備30所攝錄的培養容器12之影像32進行識別成微藻濃度121後,再將每一次的識別成微藻濃度121整合並進行數據分析,並透過機器學習(machine learning)程序來建立出微藻養殖模型,且藉由微藻養殖模型來組成回饋控制架構,以達成建置智慧型微藻養殖系統之效能,進而增加整體之建置性。
The above-mentioned
由以上詳細說明,可使熟知本項技藝者明瞭本創作的確可達成前述目的,實已符合專利法之規定,爰提出創作專利申請。 From the above detailed description, those skilled in the art can understand that this creation can indeed achieve the above-mentioned purpose, which is in compliance with the provisions of the Patent Law, and can therefore file a patent application for the creation.
惟以上所述者,僅為本創作之較佳實施例而已,當不能以此限定本創作實施之範圍;故,凡依本創作申請專利範圍及創作說明書內容所作之簡單的等效變化與修飾,皆應仍屬本創作專利涵蓋之範圍內。 However, the above are only the preferred embodiments of this creation, and should not limit the scope of implementation of this creation; therefore, any simple equivalent changes and modifications made according to the scope of the patent application for this creation and the content of the creation description , shall still fall within the scope of this creative patent.
10:微藻養殖場 10: Microalgae Farm
11:棚架 11: Shelving
12:培養容器 12: Culture container
121:微藻濃度 121: Microalgae concentration
30:監控設備 30: Monitoring equipment
31:鏡頭 31: Lens
32:影像 32: Video
40:控制電腦系統 40: Control computer system
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110207920U TWM624279U (en) | 2021-07-07 | 2021-07-07 | Smart Microalgae Cultivation System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110207920U TWM624279U (en) | 2021-07-07 | 2021-07-07 | Smart Microalgae Cultivation System |
Publications (1)
Publication Number | Publication Date |
---|---|
TWM624279U true TWM624279U (en) | 2022-03-11 |
Family
ID=81747578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110207920U TWM624279U (en) | 2021-07-07 | 2021-07-07 | Smart Microalgae Cultivation System |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWM624279U (en) |
-
2021
- 2021-07-07 TW TW110207920U patent/TWM624279U/en unknown
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Microalgal bioreactors: challenges and opportunities | |
Barceló-Villalobos et al. | Evaluation of photosynthetic light integration by microalgae in a pilot-scale raceway reactor | |
Koller | Design of closed photobioreactors for algal cultivation | |
Carvalho et al. | Microalgal reactors: a review of enclosed system designs and performances | |
Fuentes et al. | Outdoor large-scale cultivation of the acidophilic microalga Coccomyxa onubensis in a vertical close photobioreactor for lutein production | |
CN103396934A (en) | Algae production and harvesting apparatus | |
Concas et al. | A novel mathematical model to simulate the size-structured growth of microalgae strains dividing by multiple fission | |
Paladino et al. | Scale-up of photo-bioreactors for microalgae cultivation by π-theorem | |
Anyanwu et al. | Evaluation of growth rate and biomass productivity of Scenedesmus quadricauda and Chlorella vulgaris under different LED wavelengths and photoperiods | |
CN203708882U (en) | Multifunctional liquid strain culturing device | |
Jabłońska-Trypuć et al. | Using algae for biofuel production: a review | |
Brzychczyk et al. | The follow-up photobioreactor illumination system for the cultivation of photosynthetic microorganisms | |
Fernández et al. | Microalgae production systems | |
CN103525686A (en) | Composite reinforced microalgae photobioreactor based on hollow light pipes | |
Guieysse et al. | Microalgae cultivation: Closing the yield gap from laboratory to field scale | |
TWM624279U (en) | Smart Microalgae Cultivation System | |
Yang et al. | Detection method of fry feeding status based on yolo lightweight network by shallow underwater images | |
WO2017028018A1 (en) | Stacked sheet photobioreactor | |
TWI786711B (en) | Intelligent microalgae cultivation system and method thereof | |
CN202881248U (en) | Simulation device for large-scale culture of microalgae | |
Nguyen et al. | A low-cost efficient system for monitoring microalgae density using gaussian process | |
Konur | Algal photobioreactors | |
García et al. | Mathematical Model of a Bubble Column for the Increased Growth of Arthrospira platensis and the Formation of Phycocyanin | |
Fei et al. | Modeling Effect of Bubbles on Time-Dependent Radiation Transfer of Microalgae in a Photobioreactor for Carbon Dioxide Fixation | |
Zhou et al. | An automated lightweight approach for detecting dead fish in a recirculating aquaculture system |