TWI786510B - Familiarity analysis device for customers - Google Patents
Familiarity analysis device for customers Download PDFInfo
- Publication number
- TWI786510B TWI786510B TW110100803A TW110100803A TWI786510B TW I786510 B TWI786510 B TW I786510B TW 110100803 A TW110100803 A TW 110100803A TW 110100803 A TW110100803 A TW 110100803A TW I786510 B TWI786510 B TW I786510B
- Authority
- TW
- Taiwan
- Prior art keywords
- service
- branch
- customer
- familiarity
- customer code
- Prior art date
Links
Images
Landscapes
- Vending Machines For Individual Products (AREA)
- Control Of Vending Devices And Auxiliary Devices For Vending Devices (AREA)
- Cash Registers Or Receiving Machines (AREA)
- Electrically Operated Instructional Devices (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
一種對客戶的熟識度分析裝置包含客戶狀態資料庫、資料收集模組、分析模組、處理模組。基於該第一互動訊息或該第二互動訊息的該客戶互動日期,獲取該客戶代碼相對的複數個服務需求及每個服務需求的個別服務次數,並基於服務需求權重及每個服務需求的個別服務次數,以分析出該客戶代碼相對的熟識程度,並將已分析的該客戶代碼所屬的該熟識程度傳送給該等分店端裝置。 A familiarity analysis device for customers includes a customer status database, a data collection module, an analysis module, and a processing module. Based on the customer interaction date of the first interaction message or the second interaction message, obtain the plurality of service requirements corresponding to the customer code and the individual service times of each service requirement, and based on the service requirement weight and the individual service requirements of each service requirement service times, to analyze the relative familiarity of the customer code, and transmit the analyzed familiarity of the customer code to the branch end devices.
Description
本發明是有關於一種電子裝置,特別是指一種對客戶的熟識度分析裝置。 The invention relates to an electronic device, in particular to a familiarity analysis device for customers.
現有的較具規模的房屋仲介公司均設置有提供多個房屋物件的買賣資料的網站,使用者能經由操作電腦或行動裝置來瀏覽該網站中的房屋物件的基本資料,包括房屋物件的所在位置、格局、建坪大小、年份、屋內照片等等。 Existing relatively large-scale housing agency companies have set up websites that provide information on the sale of multiple housing objects. Users can browse the basic information of the housing objects on the website, including the location of the housing objects, by operating computers or mobile devices. , layout, building size, year, house photos, etc.
現今,網路普及,因此民眾習慣於上網搜尋所欲的資訊。對於房地產物件的供給,有些房地產物件提供者會在網站上呈現物件的照片、格局與房屋資訊。有些房地產物件提供者會利用統計圖呈現該物件之周邊的學區、租屋等線下服務。因此,對業者來說,可以透過觀察民眾在房仲網站上的活動狀態來推斷客戶狀態。只是,在安排經紀人連絡民眾之前,尤其是之前不曾服務過的陌生 經紀人,如何讓經紀人對即將服務的民眾有個初步認識,是個需要解決的課題。 Nowadays, with the popularity of the Internet, people are used to searching for the information they want online. For the supply of real estate objects, some real estate object providers will present photos, layouts and housing information of the objects on their websites. Some real estate property providers will use statistical maps to present offline services such as school districts and rental houses around the property. Therefore, for the industry, it is possible to infer the customer status by observing the activity status of the public on the real estate agency website. However, before arranging brokers to contact the public, especially strangers who have never served before Brokers, how to let brokers have a preliminary understanding of the people they will serve is a problem that needs to be solved.
因此,本發明之目的,即在提供一種對客戶的熟識度分析裝置。 Therefore, the object of the present invention is to provide a familiarity analysis device for customers.
一種對客戶的熟識度分析裝置包含客戶狀態資料庫、資料收集模組、分析模組、處理模組。基於該第一互動訊息或該第二互動訊息的該客戶互動日期,獲取該客戶代碼相對的複數個服務需求及每個服務需求的個別服務次數,並基於服務需求權重及每個服務需求的個別服務次數,以分析出該客戶代碼相對的熟識程度,並將已分析的該客戶代碼所屬的該熟識程度傳送給該等分店端裝置。 A familiarity analysis device for customers includes a customer status database, a data collection module, an analysis module, and a processing module. Based on the customer interaction date of the first interaction message or the second interaction message, obtain the plurality of service requirements corresponding to the customer code and the individual service times of each service requirement, and based on the service requirement weight and the individual service requirements of each service requirement service times, to analyze the relative familiarity of the customer code, and transmit the analyzed familiarity of the customer code to the branch end devices.
本發明之功效在於:能有效地將服務需求分配給適合支援的服務分店。 The effect of the present invention is that the service demand can be effectively allocated to the service branches suitable for support.
1:對客戶的熟識度分析裝置 1: Familiarity analysis device for customers
11:記憶單元 11: Memory unit
12:通訊單元 12: Communication unit
13:處理單元 13: Processing unit
2:分析模組 2: Analysis module
7:資料收集模組 7: Data collection module
8:客戶狀態資料庫 8: Customer status database
A~F:服務分店 A~F: Service branch
A1~F1:分店端裝置 A1~F1: branch end device
A2~B2:服務地理範圍的邊 A2~B2: edges of the service geographical range
111、112、113、114:線上服務 111, 112, 113, 114: online service
111P、112P、113P、114P:第一服務功能 111P, 112P, 113P, 114P: the first service function
15:客戶代碼 15: Customer Code
121:額外物件 121: Additional Objects
131:推薦物件 131: Recommended Items
D111、D112、D113、D114:物件資料 D111, D112, D113, D114: object data
D121:額外物件資料 D121: Additional object information
D131:推薦物件資料 D131: Recommended object information
D5:地理資訊 D5: Geographic Information
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: Other features and effects of the present invention will be clearly presented in the implementation manner with reference to the drawings, wherein:
圖1是一方塊圖,說明本發明對客戶的熟識度分析裝置經由通訊網路連接多個分店端裝置,其中每一分店端裝置對應一各別的服務分店; Fig. 1 is a block diagram illustrating that the present invention's familiarity analysis device for customers is connected to a plurality of branch end devices via a communication network, wherein each branch end device corresponds to a respective service branch;
圖2是一示意圖,說明每一服務分店所對應的服務地理範圍在地理座標平面上為一多邊形; Fig. 2 is a schematic diagram illustrating that the service geographic range corresponding to each service branch is a polygon on the geographic coordinate plane;
圖3是一示意圖,說明「中正路一段」的第一側與第二側分別包含於服務分店A與服務分店B所對應的服務地理範圍中;
Figure 3 is a schematic diagram illustrating that the first side and the second side of "Zhongzheng Road
圖4是一示意圖,說明一對應「中正路一段」的目標區域;及
Figure 4 is a schematic diagram illustrating a target area corresponding to "Zhongzheng Road
圖5是一示意圖,說明對應「中正路一段」的目標區域與多個服務分店的其中每一者所對應的服務地理範圍均有重疊的情況,及對應「中興街」的目標區域僅與服務分店D所對應的服務地理範圍有重疊的情況。
Figure 5 is a schematic diagram illustrating the situation that the target area corresponding to "
參閱圖1,本發明對客戶的熟識度分析裝置1的實施態樣為伺服器,其中包含記憶單元11、通訊單元12、處理單元13、分析模組2、資料收集模組7、客戶狀態資料庫8。客戶狀態資料庫8儲存複數筆客戶狀態資料,每筆客戶狀態資料主要包含一客戶代碼、以及一第一活動訊息或一第二活動訊息,其中該第一活動訊息包含該客戶代碼、一客戶互動日期以及該客戶代碼的複數個服務需求及每個服務需求的個別服務次數,而該服務需求主
要是針對一線下服務所使用,該第二活動訊息指示該客戶代碼、一客戶互動日期以及該客戶代碼的一第二服務功能,該線下服務至少包含帶看、斡旋、成交或其他與交易有關的行為。
Referring to Fig. 1, the embodiment of the present invention's
當分析模組2基於該第一活動訊息或該第二活動訊息的該客戶互動日期,獲取該客戶代碼相對的複數個服務需求及每個服務需求的個別服務次數,並基於服務需求權重及每個服務需求的個別服務次數,以分析出該客戶代碼相對的熟識程度,並將已分析的該客戶代碼所屬的該熟識程度傳送給該等分店端裝置,以讓確認接收的經紀人去專屬服務這位客戶,同時讓經紀人依據熟識程度對即將服務的客戶有個初步認識。
When the
該服務需求權重是依據該線下服務對於達成交易可能性高低,針對帶看、斡旋、成交或其他與交易有關的行為進行評價。基於這個原則,由於該熟識程度的評分越高達成交易可能性越高,舉例來說,在熟識程度中,依序為成交過1次,大於斡旋2次、1次、大於帶看2、1次。除了該熟識程度,還可以進一步提供客戶輪廓給經紀人作參考。 The weight of the service demand is based on the possibility of the offline service to conclude a transaction, and evaluates the conduct of watching, mediation, transaction or other transaction-related behaviors. Based on this principle, the higher the score of the familiarity level, the higher the possibility of closing a deal. For example, in the familiarity level, the order is 1 transaction, greater than 2 times of mediation, 1 time, greater than 2, 1 Second-rate. In addition to the degree of familiarity, the profile of the client can be further provided to the broker for reference.
當分析模組2發現該第一服務功能或該第二服務功能的被使用頻率提高到超過門檻值,則判定該客戶代碼為已活躍,並且針對已分析的該客戶代碼所使用的該第活動訊息中該複數個線下服務的該第一服務功能或該第二活動訊息中的該第二服務功能,計算出該客戶代碼相對的該第一服務功能、該第二服務功能之間所展現的一客戶輪廓。為了進行上述的分析作業,還需要利用資料收集模組7透過通訊單元12接收來自該客戶端裝置的該第一活動訊息或該第二活動訊息,並將該第一活動訊息或該第二活動訊息儲存至該客戶狀態資料庫8,然後分析模組2基於該第一活動訊息的該客戶互動日期或該第二活動訊息的該客戶互動日期進行分析。
When the
換言之,真正觸發上述分析流程,可以僅針對判定該客戶代碼為已活躍,然後再將已分析的該客戶代碼所屬的該熟識程度、客戶輪廓傳送給該等分店端裝置,以讓確認接收的經紀人去專屬服務這位客戶。底下進一步說明如何將資訊傳給該等分店端裝置。 In other words, to really trigger the above-mentioned analysis process, it can only be determined that the customer code is active, and then the familiarity degree and customer profile of the analyzed customer code are transmitted to the branch devices, so that the broker who confirms the receipt People go to serve this customer exclusively. The following further explains how to transmit information to these branch end devices.
由於每個分店、經紀人能夠服務的對象經常都受到地理位置限制,因此將該資訊傳給該等分店端裝置時,還需要額外考慮該服務責任。該服務責任是以該客戶代
的經常活動區域以及該等分店所在位置而決定。處理單元13從分析模組2接收已分析的該客戶代碼,並將相關於該已分析的該客戶代碼的服務需求分配給多個服務分店的其中一服務分店,並在該服務分店無法負責提供針對該服務需求的服務時,將該服務需求分配給其他可支援的服務分店。在本實施例中以六個服務分店A~F來說明。
Since the objects that each branch and broker can serve are often limited by geographical location, when the information is transmitted to the devices at the branch, additional consideration should be given to the service responsibility. The service responsibility is on behalf of the customer
It depends on the frequent activity area and the location of such branches. The
如第2圖所示,該線下服務系統包含複數個線下服務。例如,該線下服務系統可能更包含至少一額外線下服務121、一推薦線下服務131和一客戶代碼15。客戶代碼15和該複數個線下服務之間分別具有複數個互動關係。該複數個線下服務分別具有複數個第一服務功能
As shown in FIG. 2, the offline service system includes a plurality of offline services. For example, the offline service system may further include at least one additional
該複數個線上服務分別屬於複數個線上服務類別H111、H112、H113與H114,該複數個線上服務類別H111、H112、H113與H114的每一類別是複數個線上服務類別HA1與HA2。該額外線上服務121屬於一額外線上服務類別HB1,該額外線上服務類別HB1不同於該複數個線上服務類別HA1與HA2的任何一個。該推薦線上服務121屬於一推薦線上服務類別HC1。例如,該複數個線上服務類別HA1與HA2分別是租屋類別與購屋類別,且該額
外線上服務類別HB1是貸款類別。例如,二個線上服務112與113分別屬於該租屋類別與該購屋類別。
The plurality of online services respectively belong to the plurality of online service categories H111, H112, H113 and H114, and each of the plurality of online service categories H111, H112, H113 and H114 is a plurality of online service categories HA1 and HA2. The additional
在第1圖中,該資料收集模組7接收來自使用者的一第一互動訊息S11或一第二互動訊息S12。該第一請求訊息S11包含該客戶代碼、客戶互動日期以及該客戶代碼的複數個線上服務,而該服務需求主要是針對該線上服務所使用,該第二請求訊息指示該客戶代碼、客戶互動日期以及該客戶代碼的一第二服務功能。
In Figure 1, the
舉例來說,使用者為了要進行物件搜尋,他將會在其所使用的第一互動訊息S11中,至少提到相對的線上服務、以及他所想要的物件、客戶互動日期。其中,在客戶狀態資料庫中,相對的客戶代碼的第一互動訊息S11所提到的客戶互動時間有較高的重複性者則定義為客戶互動日期。 For example, in order to search for an object, the user will at least mention the relative online service, the object he wants, and the customer interaction date in the first interaction message S11 he uses. Among them, in the customer state database, the customer interaction time mentioned in the first interaction message S11 of the corresponding customer code is defined as the customer interaction date with higher repeatability.
為了收集更多有關於使用者活動資訊,系統亦可以在特定的實體位置中放置特殊裝置,而可以發現使用者所使用的裝置的存在,例如在業者的實體門市放置該特殊裝置,一但偵測到手機WIFI訊號即進行記錄,也就是說,使用者也有可能在進入實體門市時被動的狀態下發出第二互動訊息S12。該第二請求訊息S12指示客戶代 碼、客戶互動日期以及該客戶代碼的一第二服務功能(也就是上述特殊裝置所在位置)。 In order to collect more information about user activities, the system can also place a special device in a specific physical location to detect the existence of the device used by the user. For example, the special device is placed in the physical store of the operator. Once detected The mobile phone WIFI signal is detected and recorded, that is to say, the user may also send the second interactive message S12 in a passive state when entering the physical store. The second request message S12 instructs the client to Code, customer interaction date and a second service function of the customer code (that is, the location of the above-mentioned special device).
如第3圖所示,該複數個線上服務資料分別包含代表該第一服務功能的複數個第一服務功能資訊、分別指示該複數個線上服務類別的複數個線上服務類別指示符,該線上服務名稱包含代表一第一圖符的圖符資料、和代表一統計圖的一統計圖資料區塊,該統計圖具有與該第一服務功能資訊分別對應的複數個標示圖示。簡單講,該統計圖主要是以統計圖的方式展現複數筆互動訊息,其中以X軸客戶互動日期對應至Y軸線上服務。 As shown in Figure 3, the plurality of online service data respectively include a plurality of first service function information representing the first service function, a plurality of online service category indicators respectively indicating the plurality of online service categories, the online service The name includes icon data representing a first icon, and a statistical graph data block representing a statistical graph, and the statistical graph has a plurality of marked icons respectively corresponding to the first service function information. To put it simply, the statistical graph mainly presents multiple interactive messages in the form of a statistical graph, in which the date of customer interaction on the X-axis corresponds to the service on the Y-axis.
如此一來,基於該第一互動訊息的該客戶互動日期或該第二互動訊息的該客戶互動日期,而發現該第一服務功能或該第二服務功能的被使用頻率提到到超過門檻值,則判斷該客戶代碼為已分析,並透過通訊單元12針對該分析模組2提示該客戶代碼為已分析客戶。
In this way, based on the customer interaction date of the first interaction message or the customer interaction date of the second interaction message, it is found that the usage frequency of the first service function or the second service function is mentioned to exceed a threshold value , then it is judged that the client code is analyzed, and the
更具體來說,該客戶已於2018年12月至2019年2月之間,明顯的不再產生互動訊息之後,裝置自動地每日持續觀測,一直到2月中旬在客戶活躍的頭幾天,就能通知經紀人已經發現到有活躍客戶的存在,讓經紀人能掌握聯繫客戶黃金時刻提升帶看率,降低潛買流失率。 More specifically, after the customer had obviously stopped generating interactive messages between December 2018 and February 2019, the device automatically continued to observe daily until mid-February in the first few days when the customer was active , you can notify the broker that there are active customers, so that the broker can grasp the golden moment of contacting customers to increase the rate of viewing and reduce the churn rate of potential buyers.
除了判定該客戶代碼為已分析,為了讓經紀人在接獲通知的同時,就能初步掌握該客戶的輪廓,還針對已分析的該客戶代碼所使用的該第一互動訊息中該複數個線上服務的該第一服務功能或該第二互動訊息中的該第二服務功能,計算出該客戶代碼相對的該第一服務功能、該第二服務功能之間所展現的客戶輪廓,如第4圖所示。 In addition to determining that the customer code has been analyzed, in order to allow the broker to initially grasp the profile of the customer when receiving the notification, the plurality of online information in the first interactive message used for the customer code that has been analyzed The first service function of the service or the second service function in the second interactive message calculates the customer profile displayed between the first service function and the second service function relative to the customer code, as shown in Section 4 As shown in the figure.
在得知已分析的該客戶代碼與客戶輪廓之後,處理單元13將相關於該已分析的該客戶代碼的服務需求分配給多個服務分店的其中一服務分店。
After knowing the analyzed customer code and customer profile, the
請參閱第5圖,該記憶單元11預存了每一服務分店的一地理座標、每一服務分店所對應的一服務地理範圍與一廣播區域的資訊,及每一住宅社區所涵蓋的地理範圍的資訊。每一服務地理範圍在地理座標平面上為一多邊形並涵蓋所對應服務分店的地理坐標,且該多邊形的每一邊對應一道路且該道路對應該多邊形的至少一邊,而使得該多邊形是根據路廓劃分出來的地理範圍;其中,特別地,因為該道路並不一定是完全筆直的,所以當該道路不是完全筆直的情況下,該道路對應該多邊形中二
個以上相鄰的邊。每一住宅社區所涵蓋的地理範圍在地理座標平面上也用一多邊形來表示。
Please refer to Fig. 5, the
對於每一服務地理範圍的每一邊,該邊所對應的道路的兩側的其中一側包含於該服務地理範圍中,且另一側不包含於該服務地理範圍中。此外,對於每一服務地理範圍的每一邊,該邊所對應的道路滿足道路寬度大於一門檻值及交通流量大於另一門檻值的其中之一,也就是說,該邊所對應的道路是一大馬路或一主要幹道,以減少分店業務人員跨過大馬路進行服務所產生的額外等待時間。舉例來說,「中正路一段」同時對應服務分店A所對應的服務地理範圍的兩相鄰邊A2與服務分店B所對應的服務地理範圍的兩相鄰邊B2,且「中正路一段」的第一側包含於服務分店A所對應的服務地理範圍中,位於該第一側的房屋物件的買賣服務由服務分店A負責;而該第二側包含於服務分店B所對應的服務地理範圍中,位於該第二側的房屋物件的買賣服務由服務分店B負責。雖然位於該第一側的房屋物件與位於該第二側的房屋物件在地理位置上相當接近,但上述的服務分店的服務地理範圍的劃分方式可讓服務分店A的業務人員不用跨越「中正路一段」(大馬
路)到該第二側進行服務,也讓服務分店B的業務人員不用跨越「中正路一段」到該第一側進行服務。
For each side of each geographic service range, one of the two sides of the road corresponding to the side is included in the geographic service range, and the other side is not included in the geographic service range. In addition, for each side of each service geographic range, the road corresponding to the side satisfies one of the road width greater than a threshold and the traffic flow greater than another threshold, that is, the road corresponding to the side is a Main road or a main road, in order to reduce the extra waiting time caused by branch business personnel crossing the main road for service. For example, "
每一服務分店所對應的廣播區域包含與該服務分店所對應的服務地理範圍相鄰的其他服務地理範圍,其中若一道路的部分路段對應一服務地理範圍的一邊且對應另一服務地理範圍的一邊,則該服務地理範圍與該另一服務地理範圍相鄰。舉例來說,服務分店A所對應的廣播區域包含服務分店B所對應的服務地理範圍、服務分店C所對應的服務地理範圍、服務分店D所對應的服務地理範圍,及服務分店F所對應的服務地理範圍;服務分店B所對應的廣播區域包含服務分店A所對應的服務地理範圍、服務分店C所對應的服務地理範圍、服務分店D所對應的服務地理範圍,及服務分店E所對應的服務地理範圍等等。 The broadcast area corresponding to each service branch includes other service geographical areas adjacent to the service geographical area corresponding to the service branch, wherein if a part of a road corresponds to one side of a service geographical area and corresponds to another service geographical area On one side, the service geographic area is adjacent to the other service geographic area. For example, the broadcast area corresponding to service branch A includes the service geographic range corresponding to service branch B, the service geographic range corresponding to service branch C, the service geographic range corresponding to service branch D, and the service geographic range corresponding to service branch F Service geographic scope; the broadcast area corresponding to service branch B includes the service geographic scope corresponding to service branch A, the service geographic scope corresponding to service branch C, the service geographic scope corresponding to service branch D, and the service geographic scope corresponding to service branch E Service geography, etc.
該記憶單元11還預存每一服務分店的一值班資訊,該值班資訊記錄了在該服務分店從業的各個業務人員的當班時段與其所持用的行動裝置的聯絡資料。
The
該通訊單元12經由通訊網路連接該分析模組2與多個分別對應該等服務分店A~F的分店端裝置A1~F1,其中每一分店端裝置為其所對應的服務分店的當班業務人員所持用的行動裝置。
The
當該處理單元13藉由該通訊單元12從該分析模組2接收到該已分析的該客戶代碼時,該處理單元13根據該已分析的該客戶代碼產生一在地理座標平面上對應該已分析的該客戶代碼的目標區域。當該已分析的該客戶代碼為一道路名稱與其段、巷、弄數值時,由於不可能會有房屋物件所在位置座落在段、巷、弄的道路上,而是在道路的兩側,因此該目標區域為在地理座標平面上以該道路為中心並朝該道路的兩側向外延伸一預定距離所獲得的區域。再以「中正路一段」為例來說明。在實施上,該記憶單元11可預存一地圖資料庫,當該已分析的該客戶代碼為「中正路一段」時,該處理單元13先根據該地圖資料庫查詢出「中正路一段」的地理位置資訊,再根據該地理位置資訊計算出一在地理座標平面上分隔出「中正路一段」的第一側與第二側的軸線,接著再由該軸線朝該第一側與該第二側向外延伸該預定距離而獲得該目標區域。
When the
而當該已分析的該客戶代碼為一住宅社區名稱時,該目標區域為在地理座標平面上該住宅社區所涵蓋的地理範圍。例如,如圖2所示,若該已分析的該客戶代碼為「信義社區」,該目標區域為存於該記憶單元11的對應「信義社區」所屬的多邊形所圍繞出的區域。
And when the analyzed customer code is the name of a residential community, the target area is the geographical range covered by the residential community on the geographic coordinate plane. For example, as shown in FIG. 2 , if the analyzed customer code is "Xinyi Community", the target area is the area surrounded by the polygon corresponding to "Xinyi Community" stored in the
該處理單元13在將該已分析的該客戶代碼及其該熟識程度傳送給該第二分店端裝置之後,假若在一預定的第二時間期間內經由該通訊單元12從該第二分店端裝置接收到了一對應該已分析的該客戶代碼並用於回覆可負責處理該服務需求的回覆訊息,則該處理單元13不進一步處理;否則,該處理單元13藉由該通訊單元12將該已分析的該客戶代碼及其該熟識程度傳送至該第二分店端裝置所對應的廣播區域中的每一服務地理範圍所對應的分店端裝置,以進一步向其他服務分店請求支援。
After the
綜上所述,本發明對客戶的熟識度分析裝置,藉由在該記憶單元預存各個服務分店所對應的服務地理範圍與廣播區域,並使該處理單元在接收到該已分析的該客戶代碼之後,根據該已分析的該客戶代碼將該已分析的該客戶代碼及其該熟識程度傳送至該第一分店端裝置以向該第一分店端裝置所對應的服務分店請求支援,且當判斷出在該第一時間期間內沒有從該第一分店端裝置接收到該回覆訊息時,進一步根據該等服務分店的地理座標,將該已分析的該客戶代碼及其該熟識程度傳送至該等分店端裝置中的一第二分店端裝置以向該第二分店端裝置所對應的服務分店請求支援,且當判斷出在該第二時間期 間內沒有從該第二分店端裝置接收到該回覆訊息時,進一步將該已分析的該客戶代碼及其該熟識程度傳送至該第二分店端裝置所對應的廣播區域中的每一服務地理範圍所對應的分店端裝置,以進一步向其他服務分店請求支援,如此,能有效地將該服務需求分配給適合支援的服務分店,故確實能達成本發明之目的。 To sum up, the present invention’s familiarity analysis device for customers pre-stores the service geographical range and broadcast area corresponding to each service branch in the memory unit, and makes the processing unit receive the analyzed customer code Afterwards, according to the analyzed customer code, the analyzed customer code and the degree of familiarity thereof are sent to the first branch end device to request support from the service branch corresponding to the first branch end device, and when it is judged If the reply message is not received from the device at the first branch within the first time period, further transmit the analyzed customer code and the familiarity level to the service branch according to the geographical coordinates of the service branch A second branch-end device in the branch-end device requests support from the service branch corresponding to the second branch-end device, and when it is determined that within the second time period When the reply message is not received from the second branch device within a certain period of time, further transmit the analyzed customer code and its familiarity level to each service geographic location in the broadcast area corresponding to the second branch device The branch end device corresponding to the range can further request support from other service branches, so that the service demand can be effectively allocated to the service branch suitable for support, so the purpose of the present invention can indeed be achieved.
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 But what is described above is only an embodiment of the present invention, and should not limit the scope of the present invention. All simple equivalent changes and modifications made according to the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. Within the scope covered by the patent of the present invention.
1:對客戶的熟識度分析裝置 1: Familiarity analysis device for customers
11:記憶單元 11: Memory unit
12:通訊單元 12: Communication unit
13:處理單元 13: Processing unit
2:分析模組 2: Analysis module
7:資料收集模組 7: Data collection module
8:客戶狀態資料庫 8: Customer status database
A~F:服務分店 A~F: Service branch
A1~F1:分店端裝置 A1~F1: branch end device
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110100803A TWI786510B (en) | 2021-01-08 | 2021-01-08 | Familiarity analysis device for customers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110100803A TWI786510B (en) | 2021-01-08 | 2021-01-08 | Familiarity analysis device for customers |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202228051A TW202228051A (en) | 2022-07-16 |
TWI786510B true TWI786510B (en) | 2022-12-11 |
Family
ID=83436923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110100803A TWI786510B (en) | 2021-01-08 | 2021-01-08 | Familiarity analysis device for customers |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI786510B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017035970A1 (en) * | 2015-08-31 | 2017-03-09 | 北京百度网讯科技有限公司 | Information pushing method and apparatus |
CN110570251A (en) * | 2019-09-11 | 2019-12-13 | 瞿秋昱 | Big data-based user purchase intention prediction system and method |
TW202008286A (en) * | 2018-07-20 | 2020-02-16 | 信義房屋股份有限公司 | Transmission device and method featuring contact person recommendation including an object database, an area database, a service staff database, a search module and a transmission module |
TW202009853A (en) * | 2018-08-14 | 2020-03-01 | 張耕鳴 | Real-estate sale-associating system and its operating method |
TWM592574U (en) * | 2019-06-11 | 2020-03-21 | 林淑貞 | Management system for joint sale |
CN111626783A (en) * | 2020-04-30 | 2020-09-04 | 贝壳技术有限公司 | Offline information setting method and device for realizing event conversion probability prediction |
CN112131485A (en) * | 2020-08-19 | 2020-12-25 | 贝壳技术有限公司 | House resource recommendation method and device |
-
2021
- 2021-01-08 TW TW110100803A patent/TWI786510B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017035970A1 (en) * | 2015-08-31 | 2017-03-09 | 北京百度网讯科技有限公司 | Information pushing method and apparatus |
TW202008286A (en) * | 2018-07-20 | 2020-02-16 | 信義房屋股份有限公司 | Transmission device and method featuring contact person recommendation including an object database, an area database, a service staff database, a search module and a transmission module |
TW202009853A (en) * | 2018-08-14 | 2020-03-01 | 張耕鳴 | Real-estate sale-associating system and its operating method |
TWM592574U (en) * | 2019-06-11 | 2020-03-21 | 林淑貞 | Management system for joint sale |
CN110570251A (en) * | 2019-09-11 | 2019-12-13 | 瞿秋昱 | Big data-based user purchase intention prediction system and method |
CN111626783A (en) * | 2020-04-30 | 2020-09-04 | 贝壳技术有限公司 | Offline information setting method and device for realizing event conversion probability prediction |
CN112131485A (en) * | 2020-08-19 | 2020-12-25 | 贝壳技术有限公司 | House resource recommendation method and device |
Also Published As
Publication number | Publication date |
---|---|
TW202228051A (en) | 2022-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8046258B2 (en) | Method, system, and software for geographically focused network advertising | |
US20180007169A1 (en) | Personalized real estate event feed | |
CN107292511A (en) | ERP method and system based on cloud computing and big data technology | |
TWM614592U (en) | Familiarity analysis device for customers | |
KR20120087321A (en) | System and method for managment cupon | |
TWI786510B (en) | Familiarity analysis device for customers | |
JP7280421B1 (en) | Information processing device, information processing method and information processing program | |
KR100975724B1 (en) | Server for providing realtime marketing service | |
TWM617143U (en) | Customer status notification device | |
TWM600439U (en) | Real estate valuation system | |
TWI793449B (en) | Notification device of customer status | |
KR101798186B1 (en) | System for trading apartment houses | |
TWI855265B (en) | Customer understanding analysis device | |
TW202307756A (en) | Analysis device of recognizing customer level effectively distributes service demands to service branches suitable for support | |
TWM630892U (en) | Analytical device for understanding customer levels | |
KR101437651B1 (en) | Method for processing membership according to affiliated store registration request of client and apparatus for the same and system for the same | |
TWI821739B (en) | Inductive analysis device for multiple information sources | |
TWI826823B (en) | Analytical device to estimate customer needs based on region | |
TWI759710B (en) | Warming customer reminder device | |
TWI816179B (en) | Inductive analysis device of key factors | |
KR102160107B1 (en) | System for providing auction information | |
TW202307749A (en) | Electronic devices of automatically caring customers distributes hosing transaction demands to proper service branches | |
KR102061801B1 (en) | Method and apparatus for providing real estate information | |
TW202228046A (en) | Processing device for missing data including an online service database, a customer behavior database, a data collection module, a processing module, and a transmission module | |
TWM622343U (en) | Processing device with data vacancies |