TWI786384B - 用於波束故障恢復之裝置和方法 - Google Patents

用於波束故障恢復之裝置和方法 Download PDF

Info

Publication number
TWI786384B
TWI786384B TW109110217A TW109110217A TWI786384B TW I786384 B TWI786384 B TW I786384B TW 109110217 A TW109110217 A TW 109110217A TW 109110217 A TW109110217 A TW 109110217A TW I786384 B TWI786384 B TW I786384B
Authority
TW
Taiwan
Prior art keywords
cell
beam failure
cells
failure recovery
electronic device
Prior art date
Application number
TW109110217A
Other languages
English (en)
Other versions
TW202040951A (zh
Inventor
慶奎範
楊維東
周子涵
Original Assignee
新加坡商聯發科技(新加坡)私人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新加坡商聯發科技(新加坡)私人有限公司 filed Critical 新加坡商聯發科技(新加坡)私人有限公司
Publication of TW202040951A publication Critical patent/TW202040951A/zh
Application granted granted Critical
Publication of TWI786384B publication Critical patent/TWI786384B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/36Reselection control by user or terminal equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/305Handover due to radio link failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Abstract

本發明之各方面提供了包括處理電路之電子設備和用於波束故障恢復之方法。所述處理電路可以確定配置服務於所述電子設備之複數個小區中之至少一個小區上是否發生波束故障。當確定在所述複數個小區中之至少一個小區上發生波束故障時,所述處理電路向網路發送包括第一部分和第二部分之上行鏈路消息。使用實體隨機存取通道(PRACH)資源發送指示波束故障之第一部分。第二部分指示複數個小區中之至少一個小區之至少一個小區資訊以及所述複數個小區中之至少一個小區之一個或更多個新候選波束之新波束資訊並且可以使用實體上行鏈路共用通道(PUSCH)資源來發送。

Description

用於波束故障恢復之裝置和方法
本發明係有關包括波束成形(beamformed)發送和接收之無線通訊技術。
提供本先前技術部分是為了大體上呈現本發明之內容,當前所署名發明人之工作、在本先前技術部分中所描述之程度上之工作以及本部分描述在申請時尚不構成先前技術之方面,既非明示地也非暗示地被承認是本發明之現有技術。
第五代(fifth-generation,5G)無線通訊系統採用高頻段(例如,高於6千兆赫(giga-Hertz,GHz))來增加系統容量。波束成形方案可用於將發送和/或接收訊號聚集到期望之方向,以補償高頻訊號之路徑損失。例如,基地台可以使用複數個波束覆蓋5G系統中之服務區域。
本發明之各方面提供了一種包括處理電路之電子設備以及一種用於波束故障恢復(beam failure recovery,BFR)之方法。所述處理電路可以確定配置服務於電子設備之複數個小區中之至少一個小區上是否發生波束故障。 當確定所述複數個小區中之至少一個小區上發生波束故障時,所述處理電路可以向網路發送包括第一部分和第二部分之上行鏈路(uplink,UL)消息。所述第一部分可以指示波束故障並且可以使用實體隨機存取通道(Physical Random Access Channel,PRACH)資源來發送。所述第二部分可以指示複數個小區中之至少一個小區之至少一個小區資訊以及所述複數個小區中之至少一個小區之一個或更多個新候選波束之新波束資訊。可以使用實體上行鏈路共用通道(physical uplink shared channel,PUSCH)資源來發送所述第二部分。在一個實施方式中,所述第二部分包括BFR請求(BFR request,BFRQ)介質存取控制(Media Access Control,MAC)控制元件(control element,CE)。所述處理電路可以使用PRACH上之PRACH前導碼發送所述第一部分並在PUSCH上發送BFRQ MAC CE。
在一個實施方式中,所述小區資訊包括與所述複數個小區中之至少一個小區對應之至少一個小區索引。所述新波束資訊可以包括所述一個或更多個新候選波束之至少一個新波束索引。所述複數個小區中之至少一個小區包括輔小區(secondary cell,SCell)和/或主小區(primary cell,PCell)。
在一個實施方式中,所述處理電路可以從網路接收下行鏈路(downlink,DL)消息。DL可以指示BRF響應。
在一個實施方式中,所述處理電路可以從所述電子設備之一組未保留PRACH資源中隨機選擇PRACH資源。PUSCH資源與PRACH資源相關聯並且未保留。在一個示例中,UL消息包括使用PUSCH資源發送之一個或更多個資料部分。所述處理電路可以基於UL消息之優先級規則來確定BFRQ MAC CE和所述一個或更多個資料部分之傳輸順序。所述處理電路可以基於傳輸順序使用PUSCH資源發送BFRQ MAC CE。在一個示例中,第二部分包括另一BFRQ MAC CE,並且所述處理電路可以在PUSCH上發送另一BFRQ MAC CE。在一個示例中,小區資訊包括與所述複數個小區中之至少一個小區對應之至少一個 小區索引。新波束資訊包括所述複數個小區中之至少一個小區之至少一個新波束索引。BFRQ MAC CE還包括所述電子設備之設備標識(identification,ID)。
在一個實施方式中,所述處理電路可以從網路接收用於指示為所述電子設備保留之PRACH資源之訊號。PUSCH資源與PRACH資源相關聯並且被保留。
在一個實施方式中,所述複數個小區中之至少一個小區包括共用PRACH資源和PUSCH資源之複數個SCell。
本發明提出之用於波束故障恢復之裝置及相關方法可以透過簡化隨機存取過程而減少資源開銷並降低延遲。
100:通訊系統
101:網路
105:鏈路
110:電子設備
111:Rx波束
111A、121A、122A:方向
120:基地台
121、122:Tx波束
125:第一小區
126:第二小區
127:第一TRP
128:第二TRP
130:收發器
132:第一收發器
134:第二收發器
146:記憶體
150:處理電路
200、301、500:進程
S210、S220、S230、S260、S310、S320、S330、S340、S410、S420、S501、S510、S520、S530、S540、S599:步驟
300:4步隨機存取過程
400:2步隨機存取過程
610、610A、611、611A、612、612A、613、613A、614:BFRQ MAC CE格式621:R
623、624、625:E
630:ID欄位
本發明提出一些實施方式以作為示範,以下將參考附圖進行細節描述,其中相同之編號代表相同之組件,其中:第1圖示出了依據本發明實施方式之示例性通訊系統100之框圖;第2圖示出了依據本發明實施方式之示例性進程200之流程圖;第3圖示出了依據本發明實施方式之4步隨機存取過程300之示例;第4圖示出了依據本發明實施方式之2步隨機存取過程400之示例;第5圖示出了依據本發明實施方式之示例性進程500之流程圖;第6A-6E圖示出了依據本發明實施方式之BFRQ MAC CE格式之示例。
第1圖示出了依據本發明實施方式之示例性通訊系統100之框圖。通訊系統100包括網路101以及從網路101接收無線通訊服務之電子設備110。例如,網路101中之基地台120可以配置為形成用於服務電子設備110之 一個或更多個小區。所述一個或更多個小區可以包括具有第一載波之第一小區125和具有第二載波之第二小區126。在載波聚合(carrier aggregation,CA)中,第一載波和第二載波可以聚合並且與電子設備110進行並行傳輸,從而增加頻寬和資料速率。在一個示例中,基地台120可以控制第一發送接收點(transmission reception point,TRP)127以覆蓋第一小區125,並且控制第二TRP 128以覆蓋第二小區126。在一個示例中,網路101包括5G無線電存取網路(radio access network,RAN)(或下一代(Next Generation,NG)RAN)和使用5G行動網路技術之5G核心網路(5G core network,5GC)。基地台120可以是由第三代合作夥伴計劃(3rd Generation Partnership Project,3GPP)開發之5G新無線電(new radio,NR)空中介面標準所規定之下一代節點B(next generation NodeB,gNB)。
在一個實施方式中,在第一小區125中,電子設備110透過無線鏈路105(也稱為鏈路105)與基地台120進行無線通訊,其中鏈路105與基地台120發送之波束121以及電子設備110接收之波束111相關聯。通常,波束分配有包括一組時間和/或頻率資源之無線電資源。在一些實施方式中,波束還與指示所述波束訊號能量之主傳播方向之方向相關聯。例如,在第一小區125中,從基地台120之第一TRP 127發送之波束121-122分別主要沿方向121A-122A傳播,因此稱為基地台120之發送波束(transmission beam,Tx波束)121-122。波束111可以稱為主要沿著方向111A傳播之接收波束(reception beam,Rx波束)111。在一些實施方式中,波束可以指電子設備110或基地台120發送或接收之訊號或通道。
通常而言,實施波束管理(即,獲取和維持一組Tx和Rx波束之一組過程)是為了在基地台120和電子設備110之間形成並維持用於UL和下行鏈路(downlink,DL)發送/接收之合適鏈路。在一些實施方式中,波束管理包括初始波束建立、波束調整(也稱為波束追蹤)以及波束故障恢復。初始建 立過程可以初步地建立基地台120和電子設備110之間之鏈路(或諸如包括Tx波束121和Rx波束111之鏈路105之波束對)。鏈路建立後,包括波束對之定期重新評估和潛在調整(potential adjustment)之波束調整可用於補償電子設備110之行動和旋轉、環境中之逐漸變化等。波束成形通道狀態之反饋速率可以指波束對之定期重新評估之頻率。雖然較高反饋速率可以提供波束對之更多最新資訊,但較高反饋速率也會導致較大之信令開銷。在一些情況中,環境中之運動或其他時間可能導致波束對突然阻塞,因此會發生比反饋速率更快之突然連接丟失,而且沒有足夠時間使波束調整適應,從而導致第一小區125之波束故障。例如,當鏈路被損壞並且沒有足夠時間進行定期波束調整以適應損壞之鏈路時,第一小區125上可能發生波束故障(也稱為波束故障事件)。類似地,服務電子設備110之其他小區可能發生波束故障。因此,可以執行一組過程(也稱為BFR過程)來處理波束故障。
在一個實施方式中,BFR過程包括複數個步驟:波束故障檢測(beam failure detection,BFD)、新波束識別、BFRQ步驟和BFRR接收等。當確定配置為服務電子設備110之一個或更多個小區中之至少一個小區波束故障時,在BFRQ步驟中,向網路101發送指示所述一個或更多個小區中之至少一個小區上之波束故障、所述一個或更多個小區中之至少一個小區之小區資訊、所述一個或更多個小區中之至少一個小區之新波束資訊、所述一個或更多個小區中之至少一個小區之波束測量結果等之BFRQ。
依據本發明之各方面,第一過程(也稱為2步隨機存取過程)包括步驟A和步驟B,例如,當檢測到所述一個或更多個小區中之至少一個小區上之波束故障時,步驟A和步驟B分別實現BFRQ步驟和BFRR接收。
在第一過程之步驟A中,電子設備110可以向網路101發送包括BFRQ之UL消息(例如,消息A或Msg A)。BFRQ可以包括第一部分和第 二部分。可以使用隨機存取前導碼發送BFRQ之部分(例如,第一部分)。第一部分可以指示波束故障。第二部分可以指示小區資訊、新波束資訊等。在一個實施方式中,使用PRACH資源在PRACH上發送第一部分,使用PUSCH資源在PUSCH上發送第二部分。用於發送第二部分之PUSCH資源與用於發送第一部分之PRACH資源相關聯。在一個實施方式中,第一部分是PRACH前導碼並且第二部分是在PUSCH上發送之BFRQ MAC CE。
在一個實施方式中,第一過程是基於競爭的(contention-based,CB),並且稱為CB第一過程(或BFR之CB 2步隨機存取過程)。在CB第一過程之步驟A,第一部分(例如,PRACH前導碼)和第二部分(例如,BFRQ MAC CE)是基於競爭的,例如,沒有為電子設備110分別發送第一部分和第二部分保留PRACH資源和PUSCH資源。例如,電子設備110可以從一組未保留之PRACH資源中隨機選擇用於發送第一部分之PRACH資源。與PRACH資源相關聯之PUSCH資源可用於發送第二部分。例如,可以透過無線電資源控制(Radio Resource Control,RRC)為電子設備110預先配置PRACH資源與相應PUSCH資源之間之關聯。在一個示例中,可以為電子設備110預先配置用於發送第一部分之PRACH資源與用於發送第二部分之PUSCH資源之間之關聯。所述關聯可以存儲於記憶體146中。當一個或更多個小區中之至少一個小區包括複數個小區時,PRACH資源可由電子設備110隨機選擇,並且相應PUSCH資源可由複數個小區共用。在一個示例中,當BFRQ MAC CE之大小不足以包括所述複數個小區之小區資訊、新波束資訊等時,除所述BFRQ MAC CE之外,第二部分還包括附加之BFRQ MAC CE。
所述複數個小區包括SCell、PCell、主輔小區(primary secondary cell,PSCell)等。在一個示例中,所述複數個小區包括SCell和PCell。在一個示例中,所述複數個小區包括SCell。
在一個實施方式中,第一過程是無競爭的(contention-free,CF),並且稱為CF第一過程(或BFR之CF 2步隨機存取過程)。在CF第一過程之步驟A,第一部分(例如,PRACH前導碼)和第二部分(例如,BFRQ MAC CE)是無競爭的,例如,為電子設備110分別發送第一部分和第二部分保留PRACH資源和相應PUSCH資源。例如,網路101可以顯式地向電子設備110指示PRACH資源,並且因此為電子設備110保留所述PRACH資源。當一個或更多個小區中之至少一個小區包括複數個小區時,所保留之PRACH資源和相應PUSCH資源可由所述複數個小區共用。類似地,所述複數個小區包括SCell、PCell、PSCell等。在一個示例中,所述複數個小區包括SCell和PCell。在一個示例中,所述複數個小區包括SCell。
在第一過程(例如,CB第一過程或CF第一過程)之步驟B中,實現BFRR接收。包括BFRR之DL消息(例如,消息B或Msg B)可由網路101發送並由電子設備110接收。
網路101包括各種基地台(例如,基地台120)和使用任何合適網路技術(例如,有線、無線、蜂巢通訊技術、局域網(local area network,LAN)、無線LAN(wireless LAN,WLAN)、光纖(fiber optical)網路、廣域網(wide area network,WAN)、點對點(peer-to-peer)網路、網際網路等)互連之核心節點。在一些實施方式中,網路101使用任何合適之無線通訊技術(例如,第2代(second generation,2G)、第3代(third generation,3G)和第4代(fourth generation,4G)行動網路技術、5G行動網路技術、全球行動通訊系統(global system for mobile communication,GSM)、長期演進(long-term evolution,LTE)、NR技術等)向電子設備(例如,電子設備110)提供無線通訊服務。在一些示例中,網路101使用3GPPP開發之無線通訊技術。在一個示例中,網路101中之基地台形成一個或更多個存取網路,並且核心節點形成一個或更多個核心網路。存取 網路可以是如5G RAN或NG RAN之RAN。核心網路可以是演進封包核心(evolved packet core,EPC)、5GC等。
在各種示例中,基地台120可以指節點B(NodeB)、演進節點B、gNB等。基地台120包括配置為使基地台120和電子設備110之間進行無線通訊之硬體組件和軟體組件。此外,核心節點包括硬體組件和軟體組件,以形成管理和控制網路101所提供服務之主干網(backbone)。
在一些實施方式中,在通訊系統100中使用高頻(也稱為毫米波(millimeter Wave,mm-Wave)頻率)作為載波頻率來增加網路容量。在一個示例中,高頻高於6GHz,例如在24-84GHz之間。在一個示例中,低於6GHz之載波頻率稱為低頻,例如在600兆赫(MHz)到低於6GHz之間。例如,頻率範圍1(FR1)包括低於6GHz之頻率,頻率範圍2(FR2)包括範圍24.25-52.6GHz之間之頻率。以mm-Wave頻率作為載波頻率之訊號(或波束)(稱為高頻(high frequency,HF))訊號可能經歷大傳播損耗並且對阻塞敏感。因此,對於HF訊號,基地台120和電子設備110可以執行波束成形發送和/或接收以補償傳播損耗。在波束成形傳輸中,訊號能量可主要集中於一特定方向,例如和Tx波束121-122相關聯之方向121A-122A。因此,與全向天線發送相比,可提高天線發送增益。類似地,在波束成形接收中,與全向天線接收相比,可以將主要來自特定方向(例如,和電子設備110之Rx波束111相關聯之方向111A)之訊號能量組合在一起以獲得更高天線接收增益。
參照第1圖,基地台120可以控制第一TRP 127形成包括Tx波束121-122之方向性Tx波束以覆蓋第一小區125。Tx波束可同時形成或在不同時間間隔中形成。此外,基地台120可以控制第二TRP 128以覆蓋第二小區126。在一個示例中,基地台120服務複數個電子設備。在一個示例中,電子設備110在第一小區125和第二小區126內,並由第一小區125和第二小區126服務。 第一小區125和第二小區126可以重疊。在一個示例中,如第1圖所示,第一小區125和第二小區126可以部分重疊。在一個示例中,第一小區125在第二小區126內。
如第1圖所示,可以使用使用了不同TRP(例如,第一TRP 127和第二TRP 128)之相同基地台120形成第一小區125和第二小區126。可以使用相同TRP形成第一小區125和第二小區126。可以使用不同基地台形成第一小區125和第二小區126。
電子設備110可以是實現波束故障恢復之任何電子設備。例如,當聲明波束故障時,可以配置電子設備110實現第一過程(例如,CB第一過程、CF第一過程)。可以配置電子設備110與複數個小區(例如第一和第二小區125-126)進行接收和發送。電子設備110可以使用載波聚合與網路101形成複數個鏈路。在一個示例中,電子設備110可以是如手機、智慧型電話、平板電腦、筆記型電腦、智慧型設備、可穿戴設備等用於無線通訊之終端設備(例如,使用者設備)。類似地,電子設備110可以使用一個或更多個天線陣列生成用於發送或接收FR1和FR2等訊號之方向性Tx或Rx波束。電子設備110和/或基地台120還包括發送和接收全向無線訊號(例如,在FR1中)之合適收發器和天線。
在一些實施方式中,電子設備110可以使用雙連接(dual connectivity,DC)透過複數個鏈路(例如,演進通用地面無線電存取(Evolved Universal Terrestrial Radio Access,E-UTRA)和NR DC)連接到複數個基地台。例如,電子設備110可以透過鏈路105連接到基地台120並且透過第二鏈路(未示出)連接到第二基地台(未示出)。在一個示例中,電子設備110可以使用方向性Tx/Rx波束、全向波束等連接到第二基地台。在一個示例中,電子設備110可以使用NR無線電存取連接到基地台120,使用E-UTRA連接到第二基地台。
參照第1圖,電子設備110包括例如使用匯流排結構(未示出)耦接在一起之收發器130、處理電路150和記憶體146。可以配置收發器130接收和發送無線訊號。在一個示例中,收發器130包括發送和接收低頻(low frequency,LF)訊號(例如全向無線訊號)之第一收發器132和發送和接收包括Tx和Rx波束(例如,Rx波束111)之HF訊號(例如,FR2)之第二收發器134。在一個示例中,基於Tx波束121和電子設備110之Rx波束111形成鏈路105,以從基地台120接收DL訊號。在第1圖之示例中,透過調諧電子設備110和/或基地台120之相應天線,Rx波束111之方向111A和Tx波束121之方向121A相匹配。
在一個示例中,可以基於Tx波束121和電子設備110之全向接收波束(未示出)形成鏈路105。在一個示例中,可以基於Rx波束111和基地台120之全向發送波束(未示出)形成鏈路105。
鏈路105還可用於電子設備110透過電子設備110之Tx波束和基地台120之Rx波束向基地台120發送UL訊號。此外,UL訊號之無線電資源(例如,電子設備110之Tx波束)可以與DL訊號之無線電資源不同。在一個示例中,電子設備110配置有波束對應性,並且UL訊號(電子設備110之Tx波束和基地台120之Rx波束)在鏈路105中之方向分別與方向111A和方向121A相反。
在一個示例中,第二收發器134發送或接收HF訊號(例如,FR2),第一收發器132使天線發送或接收LF訊號(例如,FR1)。LF訊號可以包括全向波束、定向波束等。FR1中之定向波束可以比FR2中之定向波束更寬(例如,具有更大角展度)。例如,FR1中之4個定向波束可以覆蓋一個角度範圍,而FR2中之64個定向波束才能覆蓋相同之角度範圍。
在一些實施方式中,可以配置收發器130從網路101接收訊號(例 如,Tx波束和/或全向波束)。訊號可以包括參考訊號(reference signal,RS),這些RS用於估計波束和鏈路品質並促進服務於電子設備110之一個或更多個小區中之BFR。RS可以包括通道狀態資訊參考訊號(channel-state information reference signal,CSI-RS)、同步訊號塊(synchronization signal block,SSB)等。在一些實施方式中,包括時頻資源之SSB由主同步訊號(primary synchronization signal,PSS)、輔同步訊號(secondary synchronization signal,SSS)和實體廣播通道(Physical Broadcast Channel,PBCH)形成。第一小區125中之RS用於檢測第一小區125中之波束故障。在一個示例中,第二小區126中之RS用於檢測第一小區125中之波束故障。在一些示例中,來自另一基地台之RS可用於檢測第一小區125中之波束故障。
收發器130可以在第一小區125、第二小區126等上從網路101(例如,基地台120)接收BFRR和/或新波束報告(例如,指示由網路101為電子設備110分配之新波束)。收發器130可以在PCell、PSCell、SCell等上從網路101(例如,基地台120)接收BFRR和/或新波束報告。
配置收發器130發送各種訊號(諸如,HF訊號和LF訊號)。例如,收發器130可以使用如PRACH(例如,CF PRACH)之UL實體通道、NR-PRACH等向基地台120發送BFRQ,從而指示小區(諸如,第一小區125)上之波束故障。在CF PRACH上發送之BFRQ還包括小區資訊、新波束資訊等。
依據本發明之各方面,可以配置收發器130向網路101發送Msg A,其中Msg A包括BFRQ,收發器130可以使用PRACH資源(例如,PRACH前導碼)發送BFRQ之第一部分(例如,指示波束故障)。收發器130可以使用PUSCH上之PUSCH資源發送BFRQ之第二部分(例如,BFRQ MAC CE),其中第二部分指示小區資訊、新波束資訊等。在一個示例中,PUSCH資源與PRACH資源相關聯。
處理電路150可以實現包括BFD、新波束識別、BFRQ步驟、BFRR接收等之BFR。
在一個實施方式中,電子設備110在第一小區125中配置有一個或更多個服務控制通道(或服務控制通道鏈路)。當所述一個或更多個服務控制通道中之至少一個服務控制通道發生故障時,可以針對第一小區125聲明波束故障。在一個示例中,當所述一個或更多個服務控制通道發生故障時,針對第一小區125聲明波束故障。在一個示例中,當服務控制通道之品質小於門檻值時,確定所述服務控制通道已經發生故障。例如,當PDCCH之誤塊率(block error rate,BLER)大於門檻值(例如,由無線電鏈路監測(Radio Link Monitoring,RLM)設置之預設BLER)時,確定所述PDCCH已經發生故障。
在一個示例中,當一個或更多個服務控制通道之子集發生故障時,對第一小區125聲明波束故障。當一個或更多個服務控制通道之子集之數量少於一個或更多個服務控制通道之數量時,波束故障可以稱為部分波束故障。例如,電子設備110在第一小區125中配置有兩個服務控制通道(例如,第一PDCCH和第二PDCCH)。當第一PDCCH和第二PDCCH發生故障時,可以針對第一小區125聲明波束故障(也稱為完全波束故障)。當第一PDCCH發生故障時,可以針對第一小區125聲明部分波束故障。當第一小區125是PCell或PSCell時,可以聲明部分波束故障。
當確定一個或更多個服務控制通道中之每一個服務控制通道已經發生故障時,波束故障可以稱為完全波束故障。當為電子設備110配置複數個服務控制通道時,檢測部分波束故障可以比檢測完全波束故障更快,並因此可以縮短用於波束故障檢測之持續時間。
處理電路150可以測量一個或更多個訊號(諸如,RS),以獲得包括參考訊號接收功率(Reference Signal Receiving Power,RSRP)、參考訊號接 收品質(reference signal received quality,RSRQ)、BLER等訊號品質。波束故障檢測可以基於訊號品質中之一個或更多個。電子設備110可以將SSB、CSI-RS等用於波束故障檢測(例如,基於預定規則)。在一個示例中,電子設備110由第一小區125服務。當第一小區125中之RS之一個訊號品質或複數個訊號品質比相應門檻值差時,可以聲明波束故障。如上所述,例如,當與服務控制通道相對應之RS之訊號品質比門檻值差時,可以聲明部分波束故障。另選地,例如,當與各個服務控制通道相對應之訊號品質比門檻值差時,可以聲明完全波束故障。另選地,可以聲明第一小區125之波束故障實例(beam failure instance,BFI)。在一個示例中,當第一小區125之連續BFI之數量等於或大於門檻值(諸如,由無線電資源控制(Radio Resource Control,RRC)配置之最大數量)時,檢測或聲明第一小區125中之波束故障。另選地或另外地,來自第二小區126之訊號可以用於第一小區125中之BFD。
可以配置處理電路150識別用於在諸如第一小區125之故障小區中形成新鏈路之新候選波束。新鏈路可以用於與網路101進行通訊。在一個實施方式中,處理電路150可以測量或監測用於波束識別之RS(例如,SSB、週期CSI-RS)以確定新候選波束。RS與候選波束相對應。處理電路150可以測量RS之訊號品質(諸如,RSRP)。此外,處理電路150可以基於候選波束之訊號品質來確定新候選波束。
可以配置處理電路150執行實現BFRQ步驟(例如第二過程之步驟A)和BFRR接收(例如,第二過程之步驟B)之第二過程。第二過程可以是CF RACH BFR過程之一部分。在第二過程之步驟A中,處理電路150可以使用專用RACH資源與每個候選波束RS資源相關聯之基於CF RACH(或PRACH)之BFRQ過程(或CF RACH BFRQ過程)來向網路101(例如,基地台120)發送BFRQ。包括CF RACH BFRQ過程之BFR過程可以稱為CF RACH 過程。例如,第一專用RACH資源與第一候選波束RS資源相關聯,第二專用RACH資源與第二候選波束RS資源相關聯,第N專用RACH資源與第N候選波束RS資源相關聯等,其中N是正整數。識別與候選波束RS資源中之一個候選波束RS資源(諸如,第二候選波束RS資源)相對應之新候選波束。因此,當檢測到波束故障並且識別出新候選波束時,處理電路150可以發送與第二候選波束RS資源相關聯之第二專用RACH資源。當基地台120接收到第二專用RACH資源時,基地台120可以確定所述新候選波束是第二候選波束。
在一個實施方式中,電子設備110配置有一個PCell和複數個SCell。可以將第二過程應用於所述PCell和/或複數個SCell。當第二過程應用於複數個SCell時,使用PCell上之相對大量之專用(或CF)RACH資源,並且PCell之UL開銷可能相對較大。例如,電子設備110配置有32個SCell,並且針對各個SCell配置了與不同波束方向相對應之64個候選波束RS資源。因此,PCell上之2048個專用RACH資源將被保留以用於32個SCell。
在第二過程之步驟B,電子設備110可以接收BFRR。在一個示例中,在預定義持續時間內檢測到BFRR,因此基於BFRR之接收,波束故障恢復成功。
如上所述,可以配置處理電路150執行實現BFRQ步驟和BFRR接收之第一過程。在第一過程之步驟A中,處理電路150可以向網路101發送UL消息(例如,Msg A)。Msg A包括指示波束故障、小區資訊以及新候選波束之相應新波束資訊之BFRQ。在一個示例中,在第一部分中使用隨機存取過程來指示波束故障(例如透過如前導碼之PRACH資源)。在UL通道上之第二部分(例如,有效負載)中指示小區資訊以及新候選波束之相應新波束資訊。有效負載和UL通道可以是PUSCH上之PUSCH資源(例如,BFRQ MAC CE)。小區資訊包括所述複數個小區中之至少一個小區之一個或複數個索引。在一個示 例中,新波束資訊包括與一個新候選波束相對應之一個候選波束資源之一個索引。在一個示例中,新波束資訊包括與複數個新候選波束相對應之複數個候選波束資源之複數個索引。可以在第二部分(例如,BFRQ MAC CE)中指示電子設備110之波束測量結果(例如,RSRP)、設備ID等額外資訊。
如上所述,在CF第一過程中,電子設備110從一組未保留之PRACH資源中隨機選擇用於發送第一部分之PRACH資源,因此PRACH資源未保留。相應地,用於發送第二部分之相應PUSCH資源未保留。當相同PRACH資源和/或PUSCH資源被另一電子設備同時使用時,可能發生衝突。
如上所述,在CF第一過程中,用於發送第一部分之PRACH資源為電子設備110保留。相應地,用於發送第二部分之相應PUSCH資源也保留。當另一電子設備同時使用第二PRACH資源和/或第二PUSCH資源進行發送時,由於所述PRACH資源與第二PRACH資源不同並且所述PUSCH資源與第二PUSCH資源不同,不會發生衝突。
在第一過程之步驟B中,可以配置處理電路150監測對BFRQ之網路響應或BFRR。在一個示例中,處理電路150可以從網路101接收DL消息(例如,Msg B),其中Msg B包括BFRR。在一個實施方式中,發送完BFRQ之後,處理電路150監測BFRR之DL。例如,可以在預定義持續時間內監測BFRR。在一個示例中,處理電路150在預定義持續時間內接收BFRR(例如,包括在Msg B中),因此BFR完成。處理電路150可以基於預定義持續時間內BFRR之接收確定波束故障恢復是否成功。
可以在故障小區或另一小區中發送網路響應或BFRR。在一個示例中,在服務電子設備110中之非故障小區中發送網路響應。當故障小區(例如,第一小區125)是SCell時,在服務電子設備110之PCell或PSCell中發送BFRR。
在一個示例中,電子設備110與基地台120和另一基地台處於DC狀態。可以經由另一基地台將新波束資訊傳送至基地台120。因此,上述BFRQ過程之各種實施方式可以被適當地調整。
可以使用各種技術來實現處理電路150,諸如積體電路、執行軟體指令之一個或更多個處理器等。
記憶體146可以是用於存儲資料和指令以控制電子設備110之操作之任何合適之設備。在一個示例中,記憶體146存儲與波束故障恢復相關聯之資訊(例如,門檻值)和指令以及要由處理器(諸如,處理電路150)執行之軟體指令。記憶體146可以存儲包括訊號品質之各種結果。
在一個實施方式中,記憶體146可以是非易失性記憶體,例如唯讀記憶體、快閃記憶體、磁性電腦存儲設備、硬碟驅動器、固態驅動器、軟碟和磁帶、光碟等。在一個實施方式中,記憶體146可以是隨機存取記憶體(Random Access Memory,RAM)。在一個實施方式中,記憶體146可以是非易失性記憶體和易失性記憶體。
第2圖示出了依據本發明實施方式之示例性進程200之流程圖。進程200可用於實現小區(諸如,PCell、PSCell等)之BFR。
在步驟S210處,諸如電子設備110之UE可以檢測小區上之波束故障。可以為所述小區配置一個或更多個服務控制通道。在一個示例中,當一個或更多個服務控制通道中之每個服務控制通道發生故障時(例如,當一個或更多個服務控制通道中之每個服務控制通道之BLER超過預設BLER時),聲明波束故障。
在步驟S220處,如上所述,可以例如透過監測用於波束識別之RS來識別新候選波束以進行故障小區中之BFR。
在步驟S230處,如上所述,可以在CF RACH上將BFRQ發送 至基地台(base station,BS)(例如,gNB)。在一個示例中,為UE保留專用PRACH資源,並且使用專用PRACH資源在CF RACH上發送BFRQ。在一個實施方式中,BFRQ可以指示故障小區之波束故障以及在步驟S220中識別出之新候選波束。在BFRQ中指示故障小區之小區資訊。步驟S230為上述第二過程之步驟A之示例。
在步驟S260處,BFRR可以從BS發送至UE並由UE接收。在一個示例中,在預定持續時間內檢測到BFRR,並因此波束故障恢復基於BFRR之接收成功。步驟S260為上述第二過程之步驟B之示例。隨後,可以執行波束切換以在小區中形成新鏈路。
進程200是CF RACH BFRQ過程之一個示例,並且步驟S230和S260是第二過程之示例。
可以在BFR、初始存取、建立無線電鏈路等中使用隨機存取過程(也稱為隨機存取進程或隨機存取)。隨機存取過程可以包括任意合適數量之步驟。
在一個實施方式中,隨機存取過程有四個步驟,因此稱為4步隨機存取過程,第3圖示出了依據本發明之一個實施方式之4步隨機存取過程300之示例。4步隨機存取過程300可在任意合適之小區(諸如,PCell、PSCell和Scell等)中實現。
在第一步S310處,可以將消息1(Msg 1)從UE(例如,電子設備110)發送至BS(例如,gNB)。Msg 1可以是在PRACH上發送之隨機存取前導碼(或前導碼序列),因此可以是PRACH前導碼。在一個示例中,為PCell配置PRACH。PCell可以配置有複數個(例如,64)前導碼序列。在一個實施方式中,所述複數個前導碼序列包括用於CB隨機存取之前導碼序列之第一子集以及用於CF隨機存取之前導碼序列之第二子集。
在CB隨機存取中,UE可以在第一子集中隨機選擇前導碼序列。在各種示例中,可由第二UE實現第一步S310。當所述UE和第二UE同時使用相同前導碼序列實現第一步S310時,可能發生衝突(競爭)。當所述UE和第二UE同時使用不同前導碼序列實現第一步S310時,不會發生衝突。
在CF隨機存取中,BS可以顯式地向UE指示第二子集中之前導碼序列並且向第二UE指示不同的前導碼序列,因此不會發生衝突。
在第二步S320處,可以從BS向UE發送消息2(Msg 2)。Msg 2可以是隨機存取響應(random access response,RAR)。RAR可以指示授權給UE之UL資源(例如,PUSCH資源)。在一個示例中,RAR包括檢測到之前導碼ID、臨時小區無線電網路臨時ID(temporary cell radio network temporary ID,TC-RNTI)和用於排程來自UE之稱為消息3(Msg 3)之PUSCH傳輸之UL授權。
在第三步S330處,響應於RAR,可以使用在第二步S320處授權之UL資源從UE向BS發送Msg 3用於競爭解析。例如,UL資源可以是PUSCH上之MAC CE,並且因此Msg 3可以分配給UE之在PUSCH上發送。在一個示例中,Msg 3指示小區內之UE之設備ID,如小區無線電網路臨時ID(cell radio network temporary ID,C-RNTI)、UE-ID等。Msg 3可以包括各種消息,如用於RRC連接請求之初始層3(layer 3,L3)消息等。
在第四步S340處,例如當接收到Msg 3時,可以從BS向UE發送消息4(Msg 4)。Msg 4可用於競爭解析,並且因此稱為競爭解析消息。Msg 4可以包括如RRC連接建立之L3消息響應。Msg 4可以包括競爭解析ID MAC CE。
如上所述,第三步S330和第四步S340可用於解決CB隨機存取中之競爭,4步隨機存取過程300可稱為CB 4步隨機存取過程。對於CF隨機 存取,可以省略第三步S330和第四步S340,因此包括第一步S310和第二步S320之進程301稱為CF隨機存取過程。
CB 4步隨機存取過程300可用於BFR,並且稱為第三過程(或CB 4步隨機存取BFR過程)。例如,Msg 1可以指示使用隨機選擇之PRACH資源之波束故障,並且Msg 3可以指示小區資訊、新波束資訊等。Msg 4包括BFRR。當沒有指定PRACH資源可用時,CB 4步隨機存取過程300可以是後備解決方案。在一些示例中,由於衝突和執行另外兩個步驟(與第一過程或第二過程相比)而導致之延遲可能相對較大,可能不適於用於優先級較高之BFR。
第4圖示出了依據本發明實施方式之2步隨機存取過程400之示例。2步隨機存取過程400可在任意合適之小區(諸如,PCell、PSCell和Scell等)中實現。在一個示例中,2步隨機存取過程400是基於競爭的。
在第一步S410處,可以將UL消息(Msg A)從UE(例如,電子設備110)發送至BS(例如,gNB)。Msg A可以包括如第一步S310中所述之Msg 1和第三步S330中所述之Msg 3。因此,Msg A可以是包括在CB 4步隨機存取過程中之複數個步驟中發送之複數個消息(例如,Msg 1和Msg 3)之組合消息。
在第二步S420處,可以將DL消息(例如,Msg B)從BS發送至UE。如上所述,Msg B包括如第二步S320中所述之Msg 2和第四步S340中所述之Msg 4。因此,Msg B可以是包括在CB 4步隨機存取過程中之複數個步驟中發送之複數個消息(例如,Msg 2和Msg 4)之組合消息。在一個示例中,Msg B包括Msg 2(例如,RAR)。
參照第3圖到第4圖,2步隨機存取過程400可以透過使用更少步驟降低4步隨機存取過程300之延遲。2步隨機存取過程400可用於減少5G NR未授權頻譜(NR in unlicensed spectrum,NR-U)之對話前監聽操作。2步隨機 存取過程400可用於小型封包資料傳輸,其中與小型封包資料傳輸相比,小型封包之RRC連接之開銷可能更大。
如上述第一過程以及下述第5圖所示,2步隨機存取過程400可適用於BFR。
第5圖示出了依據本發明實施方式之示例性進程500之流程圖。進程500可以用於實現小區(諸如,PCell、PSCell或SCell)之BFR。在一個示例中,可以配置諸如電子設備110之電子設備執行進程500。進程500從步驟S501開始並進行到步驟S510。
在步驟S510處,可以檢測到服務電子設備之小區上之波束故障。可以測量訊號(例如,RS)以獲得包括RSRP、RSRP、BLER等訊號品質。參照上述第1圖,可以基於所述訊號品質檢測波束故障。電子設備可以配置有小區中之一組服務控制通道。當該組服務控制通道故障時,可以確定或聲明所述小區波束故障(例如,完全波束故障)。或者,當該組服務控制通道之一個子集故障時,可以確定或聲明所述小區波束故障(例如,部分波束故障)。在一個示例中,當所述小區是PCell或PSCell時,可以聲明部分波束故障。步驟S510可適用於檢測服務電子設備之額外小區上之波束故障。
在步驟S520處,參照上述第1圖,例如,可以基於RS為小區中之波束故障(或故障小區)識別新候選波束。
在步驟S530處,可以將UL消息(例如,Msg A)從電子設備發送到網路(例如,網路101)或網路中之基地台(基地台120)。步驟S530可以改編於步驟S410。
在一個示例中,可以在步驟S530中實現第一過程中之步驟A。如上所述,Msg A包括包含了第一部分和第二部分之BFRQ。可以使用PRACH上之PRACH資源發送指示波束故障之第一部分。第二部分可以指示小區之小區 資訊(例如,小區索引)、步驟S520處識別之新候選波束之新波束資訊(例如,新候選波束索引)、波束測量結果(例如,RSRP)等。可以使用PUSCH上之PUSCH資源發送第二部分。所述PUSCH資源與用於發送第一部分之PRACH資源相關聯。在一個實施方式中,第一部分是PRACH前導碼並且第二部分是在PUSCH上發送之BFRQ MAC CE。
在一個示例中,可以在步驟S510處確定複數個小區之波束故障,所述複數個小區之小區資訊可以包括所述複數個小區之小區索引。可以在步驟S520處識別複數個新候選波束,並且新波束資訊包括所述複數個新候選波束之新候選波束索引。
步驟S530可以是CF第一過程之步驟A之示例。為電子設備保留PRACH資源以發送第一部分。為電子設備保留與PRACH資源相關聯之PUSCH資源以發送第二部分。
步驟S530可以是CB第一過程之步驟A之示例。沒有為電子設備保留PRACH資源和PUSCH資源來分別發送第一部分和第二部分。電子設備可以隨機選擇PRACH資源來發送第一部分。Msg A可以包括要發送之額外資訊(例如,一個或更多個資料部分),例如包括在參照上述第3-4圖所述之Msg 3(例如,初始L3消息、其他MAC CE)中之資訊。
在CB第一過程中,當為PUSCH資源配置之大小小於Msg A之大小時,優先級規則可用於確定Msg A之哪一部分可以在Msg A之剩餘之前發送。優先級規則可以為電子設備預定義或者從網路發訊通知電子設備。在一個示例中,在標準(例如,3GPP開發之標準)中定義優先級規則並且由電子設備(例如,電子設備110)實現。優先級規則可以存儲於記憶體146中。例如,Msg A包括BFRQ MAC CE、初始L3消息和另一MAC CE(非BFRQ MAC CE)。優先級規則以降序指定以下優先級:初始L3消息、BFRQ MAC CE和另一MAC CE。因此,初始L3消息之發送優先級高於BFRQ MAC CE之優先級。當PUSCH之大小小於BFRQ MAC CE和初始L3消息之大小時,在發送完初始L3消息之後之下一機會中發送BFRQ MAC CE。
在一個示例中,確定所述複數個小區發生故障。第一BFRQ MAC CE包括所述複數個小區之第一子集之小區資訊和新波束資訊,第二BFRQ MAC CE包括所述複數個小區之第二子集之小區資訊和新波束資訊,按順序發送第一BFRQ MAC CE和第二BFRQ MAC CE。
在步驟S540處,從網路接收DL消息(例如,Msg B)。Msg B可以包括上述之BFRR。步驟S540可以是第一過程之步驟B之示例。進程500進行到步驟S599並停止。在一個實施方式中,在步驟S540中實現第一過程中之步驟B。
進程500可應用於單個小區或複數個小區。當為電子設備配置之複數個小區發生故障時,所述複數個小區可以共用PRACH資源和PUSCH資源。所述複數個小區包括SCell、PCell、PSCell等。在一個示例中,所述複數個小區包括SCell和PCell。在一個示例中,所述複數個小區包括SCell。
與第三過程相比,CB第一過程(例如,步驟S530和S540所述)可以降低延遲(例如,透過將4個步驟減少到2個步驟)。
第二過程(例如,第2圖中之步驟S230和S260)和CF第一過程比較如下。當應用於複數個小區和/或複數個波束時,在CF第一過程中保留之PRACH資源和相應PUSCH資源可由複數個故障小區和/或複數個波束共用。因此,CF第一過程可以比第二過程使用更少之資源總量,因此具有比第二過程更少之UL開銷。例如,當確定服務電子設備之5個SCell故障時,在CF第一過程(例如,步驟S530)中僅保留1個PRACH資源和1個相應PUSCH來指示所述5個SCell之波束故障和新波束資訊。相反,在第三過程(例如,第2圖中 之步驟S230)中保留5個PRACH資源來指示所述5個SCell之波束故障和新波束資訊。
在一個示例中,僅確定一個PCell故障,第5圖中所述之BFR之CF第一過程(例如,步驟S530)與第2圖中步驟S230中所述之第二過程相同或類似,並且PRACH資源與新PCell波束相關聯。無需報告PCell之新波束。可以報告相應RSRP。
如上所述,BFRQ MAC CE可以指示小區資訊、新波束資訊和波束測量結果等。小區資訊可以包括故障小區之一個或更多個小區索引。新波束資訊可以包括相應一個或更多個新候選波束之一個或更多個新候選波束索引。BFRQ MAC CE還可以指示波束測量結果(諸如,波束報告中使用之RSRP)。BFRQ MAC CE還可以指示(例如,經由1個位元)電子設備110是否可以識別出滿足最小RSRP條件之新候選波束,並因此促進BS(例如,gNB)停用SCell。例如,當SCell發生故障並且針對所述故障SCell沒有識別出新候選波束時,gNB可以停用所述故障SCell。
第6A-6D圖分別示出了依據本發明之實施方式之BFRQ MAC CE格式610至BFRQ MAC CE格式613之示例。使用相應之BFRQ MAC CE格式610A至BFRQ MAC CE格式613A例示了BFRQ MAC CE格式610至BFRQ MAC CE格式613。BFRQ MAC CE格式610至BFRQ MAC CE格式613可以包括指示小區資訊、新波束資訊、波束測量結果等之各種欄位(諸如,「CN」、「R」、「E」、「NBI」、「RSRP」等)。N可以是整數並且指示小區號或小區索引。在一個實施方式中,CN指示新波束資訊在相應之BFRQ MAC CE中是否可用於第N小區。第N小區可以是PCell、PSCell或SCell。1個位元可以用於CN。例如,CN為1指示第N小區發生故障(或確定第N小區已經發生故障),並且新波束資訊可用於第N小區。CN為0指示新波束資訊不可用於第N小區。 在一個示例中,CN為0指示可以停用第N小區,或者針對第N小區,未檢測到波束故障。
「R」可以表示被保留之欄位或保留欄位。在一個示例中,1個位元用於「R」並且將「R」設置為0。「NBI」可以表示與發生故障之小區(例如,第6A-6D圖中所示之小區i、小區j或小區k)相對應之新波束資訊(例如,新候選波束索引)。「E」可以指示對應波束測量結果(例如,RSRP)在相應之BFRQ MAC CE中是否可用。在一個示例中,1個位元用於「E」。「E」為0指示對應RSRP在相應之BFRQ MAC CE中不可用。「E」為1指示對應RSRP在相應之BFRQ MAC CE中可用(例如,在相應之新候選波束索引之後)。
在一個實施方式中,BFRQ MAC CE格式(諸如,BFRQ MAC CE格式610至BFRQ MAC CE格式613中之一者)可以具有可變大小。在一個示例中,BFRQ MAC CE格式可以包括基於例如服務小區索引、新波束索引等之升序。因此,新波束資訊和/或波束測量結果可以按升序排列。參考第6A-6D圖,i小於j並且j小於k。通常,可以在BFRQ MAC CE格式中使用任何合適之順序。順序可以是升序、降序等。對於不同場景,BFRQ MAC CE格式中之各個欄位可以被適當地修改、添加、移除、組合等。
在一個實施方式中,電子設備110可以配置有具有小區索引0之PCell(或PSCell)以及具有小區索引1至31之SCell。在一些示例中,諸如第6A-6B圖所示的,從BFRQ MAC CE(例如,610A、611A)中排除PCell之小區資訊。在一些示例中,諸如第6C-6D圖所示的,PCell之小區資訊被包括在BFRQ MAC CE(例如,612A、613A)中。
參考第6A圖,BFRQ MAC CE格式610包括用於SCell 1至SCell 31之欄位C1至C31。「R」621被保留。在一個示例中,檢測到SCell i、SCell j和SCell k之波束故障,並且分別針對SCell i、SCell j和SCell k識別出了新候 選波束。i、j、k是大於0且小於32之整數,並且i、j和k按升序,其中j大於i且小於k。服務小區(或SCell)i、服務小區j和服務小區k之欄位「NBI」可以分別包括SCell i、SCell j和SCell k之新候選波束索引。欄位「E」623至625可以指示RSRP是否在SCell i、SCell j和SCell k之相應欄位「NBI」之後。例如,當「E」623是1時,RSRP i在SCell i之NBI之後。當「E」623是0時,RSRP i不在SCell i之NBI之後並且可以從BFRQ MAC CE格式610中排除。
除了排除了欄位「E」和「RSRP」外,第6B圖包括與第6A圖中之欄位相同之欄位。從BFRQ MAC CE格式611中排除波束測量結果。因此,BFRQ MAC CE格式611比BFRQ MAC CE格式610更緊湊並且可以節省資源。
除了以下不同外,第6C圖包括與第6A圖中之欄位相同之欄位。對於PCell 0,第6A圖中之「R」621被第6C圖中之欄位C0代替。在一個示例中,C0是1指示PCell 0中之波束故障,並且BFRQ MAC CE格式612中存在NBI欄位。另外,i是大於或等於0之整數。在一個示例中,針對PCell 0聲明部分波束故障,可以使用具有與BFRQ MAC CE格式612相同之格式之BFRQ MAC CE來指示部分波束故障。BFRQ MAC CE可以具有不同邏輯通道ID(logical channel ID,LCID)。在一個示例中,BFRQ MAC CE格式612可以包括附加欄位。附加欄位可以指示部分波束故障。在一個示例中,BFRQ MAC CE指示部分波束故障並且包括RSRP。當網路(例如,網路101、基地台120)接收到BFRQ MAC CE時,當接收到之RSRP大於波束表中之對應RSRP時,網路可以更新電子設備(例如,電子設備110)先前報告之波束表。
除了排除了欄位「E」和「RSRP」外,第6D圖包括與第6C圖中之欄位相同之欄位。從BFRQ MAC CE格式612中排除波束測量結果。因此,BFRQ MAC CE格式613比BFRQ MAC CE格式612更緊湊並且可以節省資源。
在一個示例中,可以在CB第一過程中使用設備ID(例如, C-RNTI或UE-ID),並且因此可以合併到一個BFRQ MAC CE中,例如,為減少開銷。因此,可以調整BFRQ MAC CE格式610-613包括額外之欄位,例如,指示設備ID(例如,C-RNTI或UE-ID)之ID欄位。第6E圖示出了從BFRQ MAC CE格式611修改而來之BFRQ MAC CE格式614之示例。參照第6B圖和第6E圖,BFRQ MAC CE格式614包括ID欄位630。ID欄位630包括相應小區之C-RNTI或UE-ID。ID欄位630可以插入到欄位「CN」和「NBI」之間。ID欄位630還可以插入到BFRQ MAC CE格式614中之其他合適位置。類似地,還可以調整BFRQ MAC CE格式610、612和613包括ID欄位。為簡潔目的省略詳細描述。
可以使用任何合適之技術實施本發明之各種電路、組件、模組等,例如一個積體電路(Integrated Circuit,IC)、複數個IC、數位訊號處理器(Digital Signal Processor,DSP)、微處理器、中央處理器(central processing unit,CPU)、現場可程式化邏輯閘陣列(Field Programmable Gate Array,FPGA)、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)等。在一個示例中,各種電路、組件、模組等還包括執行軟體指令之一個或更多個處理電路。
儘管結合具體之示範性實施方式對本發明之方面進行了描述,但是可以對這些示例進行各種替代、修改和改變。因此,本發明描述之實施方式僅係說明性的而非是限制性的。可以在不偏離本發明申請專利範圍所闡述之範圍內進行改變。
100:通訊系統
101:網路
105:鏈路
110:電子設備
111:Rx波束
111A、121A、122A:方向
120:基地台
121、122:Tx波束
125:第一小區
126:第二小區
127:第一TRP
128:第二TRP
130:收發器
132:第一收發器
134:第二收發器
146:記憶體
150:處理電路

Claims (11)

  1. 一種波束故障恢復方法,所述方法包括:確定配置服務於一電子設備之複數個小區中之至少一個小區上是否發生一波束故障;並且當確定所述複數個小區中之所述至少一個小區上發生所述波束故障時,向一網路發送包括一第一部分和一第二部分之一上行鏈路消息,所述第一部分指示所述波束故障並且使用一實體隨機存取通道資源進行發送,所述第二部分至少指示以下之一:1)所述複數個小區中之所述至少一個小區之一小區資訊;以及2)所述複數個小區中之所述至少一個小區之一個或更多個新候選波束之一新波束資訊;並且使用一實體上行鏈路共用通道資源發送所述第二部分。
  2. 如申請專利範圍第1項所述之波束故障恢復方法,其中:所述第二部分包括一波束故障恢復請求介質存取控制控制元件;並且發送所述上行鏈路消息之步驟包括:使用一實體隨機存取通道資源上之一實體隨機存取通道前導碼發送所述第一部分;並且在一實體上行鏈路共用通道上發送所述波束故障恢復請求介質存取控制控制元件。
  3. 如申請專利範圍第2項所述之波束故障恢復方法,其中:所述小區資訊包括與所述複數個小區中之所述至少一個小區對應之至少一個小區索引;所述新波束資訊包括所述一個或更多個新候選波束之至少一個新波束索引;並且所述複數個小區中之所述至少一個小區包括一輔小區和/或一主小區。
  4. 如申請專利範圍第2項所述之波束故障恢復方法,所述方法還包括:從所述網路接收一下行鏈路消息,所述下行鏈路消息指示一波束故障恢復響應。
  5. 如申請專利範圍第2項所述之波束故障恢復方法,所述方法還包括:從所述電子設備之一組未保留實體隨機存取通道資源中選擇所述實體隨機存取通道資源,所述實體上行鏈路共用通道資源與所述實體隨機存取通道資源相關聯並且未保留。
  6. 如申請專利範圍第5項所述之波束故障恢復方法,其中:所述上行鏈路消息包括使用所述實體上行鏈路共用通道資源發送之一個或更多個資料部分;所述方法包括:基於所述上行鏈路消息之一優先級規則確定所述波束故障恢復請求介質存取控制控制元件和所述一個或更多個資料部分之一傳輸順序;並且發送所述波束故障恢復請求介質存取控制控制元件之步驟包括:基於所述傳輸順序使用所述實體上行鏈路共用通道資源發送所述波束故障恢復請求介質存取控制控制元件。
  7. 如申請專利範圍第5項所述之波束故障恢復方法,其中:所述第二部分包括另一波束故障恢復請求介質存取控制控制元件;並且所述方法還包括:在所述實體上行鏈路共用通道上發送所述另一波束故障恢復請求介質存取控制控制元件。
  8. 如申請專利範圍第5項所述之波束故障恢復方法,其中:所述小區資訊包括與所述複數個小區中之所述至少一個小區對應之至少一 個小區索引;所述新波束資訊包括所述複數個小區中之所述至少一個小區之至少一個新波束索引;並且所述波束故障恢復請求介質存取控制控制元件還包括所述電子設備之一設備標識。
  9. 如申請專利範圍第2項所述之波束故障恢復方法,所述方法還包括:從所述網路接收用於指示為所述電子設備保留之所述實體隨機存取通道資源之一訊號,所述實體上行鏈路共用通道資源與所述實體隨機存取通道資源相關聯並且被保留。
  10. 如申請專利範圍第2項所述之波束故障恢復方法,其中:所述複數個小區之所述至少一個小區包括複數個輔小區,所述複數個輔小區共用所述實體隨機存取通道資源和所述實體上行鏈路共用通道資源。
  11. 一種用於波束故障恢復之裝置,所述裝置包括被配置為執行以下操作之一處理電路:確定配置服務於一電子設備之複數個小區中之至少一個小區上是否發生一波束故障;並且當確定所述複數個小區中之所述至少一個小區上發生所述波束故障時,向一網路發送包括一第一部分和一第二部分之一上行鏈路消息,所述第一部分指示所述波束故障並且使用一實體隨機存取通道資源進行發送,所述第二部分至少指示以下之一:1)所述複數個小區中之所述至少一個小區之小區資訊;以及2)所述複數個小區中之所述至少一個小區之一個或更多個新候選波束之一新波束資訊;並且使用一實體上行鏈路共用通道資源發送所述第二部分。
TW109110217A 2019-03-27 2020-03-26 用於波束故障恢復之裝置和方法 TWI786384B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201962824458P 2019-03-27 2019-03-27
US62/824,458 2019-03-27
US201962841908P 2019-05-02 2019-05-02
US62/841,908 2019-05-02
US201962863948P 2019-06-20 2019-06-20
US62/863,948 2019-06-20
US16/827,140 2020-03-23
US16/827,140 US11382020B2 (en) 2019-03-27 2020-03-23 Electronic device and method for beam failure recovery

Publications (2)

Publication Number Publication Date
TW202040951A TW202040951A (zh) 2020-11-01
TWI786384B true TWI786384B (zh) 2022-12-11

Family

ID=72607901

Family Applications (2)

Application Number Title Priority Date Filing Date
TW109109458A TWI786383B (zh) 2019-03-27 2020-03-20 用於波束故障恢復之電子設備和方法
TW109110217A TWI786384B (zh) 2019-03-27 2020-03-26 用於波束故障恢復之裝置和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW109109458A TWI786383B (zh) 2019-03-27 2020-03-20 用於波束故障恢復之電子設備和方法

Country Status (4)

Country Link
US (2) US11363516B2 (zh)
CN (2) CN112005571A (zh)
TW (2) TWI786383B (zh)
WO (2) WO2020192760A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278032B (zh) * 2019-01-25 2022-02-01 维沃移动通信有限公司 Pucch的发送方法、接收方法、终端和网络侧设备
US11438048B2 (en) * 2019-03-29 2022-09-06 Qualcomm Incorporated Methods and apparatus for new beam information reporting
US11303345B2 (en) * 2019-05-02 2022-04-12 Ofinno, Llc Beam failure recovery procedure in carrier aggregation
EP4270812A3 (en) * 2019-06-28 2024-02-21 LG Electronics Inc. Method and device for transmitting and receiving scheduling request in wireless communication system
US11626918B2 (en) * 2019-07-22 2023-04-11 FG Innovation Company Limited Method of performing beam failure recovery and related device
EP4005141A4 (en) * 2019-07-22 2023-07-26 Fg Innovation Company Limited BEAM FAILURE RECOVERY (BFR) METHODS AND DEVICES
US11778680B2 (en) * 2019-08-26 2023-10-03 Qualcomm Incorporated Beam failure recovery for secondary cell
US11863373B2 (en) * 2019-10-03 2024-01-02 FG Innovation Company Limited Method and user equipment for beam failure recovery procedure
US11152999B2 (en) * 2019-10-11 2021-10-19 Qualcomm Incorporated Physical uplink control channel beam failure recovery configuration
US11705955B2 (en) * 2019-11-15 2023-07-18 Qualcomm Incorporated Beam failure report response
KR20210101002A (ko) * 2020-02-07 2021-08-18 삼성전자주식회사 네트워크 협력 통신을 위한 제어 정보 전송 방법 및 장치
US20220006689A1 (en) * 2020-07-03 2022-01-06 Qualcomm Incorporated Beam failure detection and recovery with carrier aggregation
US20220061117A1 (en) * 2020-08-21 2022-02-24 FG Innovation Company Limited Method of updating spatial parameters and related device
CN114390566A (zh) * 2020-10-22 2022-04-22 索尼公司 电子设备、无线通信方法和非暂态计算机可读存储介质
US20220132517A1 (en) * 2020-10-23 2022-04-28 Samsung Electronics Co., Ltd. Method and apparatus for partial beam failure recovery in a wireless communications system
US11304253B1 (en) * 2021-01-16 2022-04-12 Skylo Technologies, Inc. Coordinated transmissions over a transient roving wireless communication channel
WO2022266965A1 (en) * 2021-06-24 2022-12-29 Nokia Shanghai Bell Co., Ltd. Beam failure recovery
WO2023130299A1 (en) * 2022-01-06 2023-07-13 Qualcomm Incorporated Resource configuration for scheduling requests for multiple node beam failure recovery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130010711A1 (en) * 2011-07-06 2013-01-10 Daniel Larsson Random Access with Primary and Secondary Component Carrier Communications
CN108809580A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 传输上行信号的方法、用户设备及基站

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3241397B1 (en) * 2015-02-06 2020-01-01 Apple Inc. Method and apparatus for time division lte transmission in unlicensed radio frequency bands
US10615862B2 (en) * 2016-04-13 2020-04-07 Qualcomm Incorporated System and method for beam adjustment request
US10708789B2 (en) 2017-03-24 2020-07-07 Mediatek Inc. Apparatuses and methods for beam identification through the physical random access channel (PRACH) and efficient PRACH resource utilization
CN109246732B (zh) 2017-04-28 2020-05-15 维沃移动通信有限公司 波束失败恢复方法和终端
CN111034338A (zh) * 2017-06-23 2020-04-17 华为技术有限公司 统一rlf检测、nr中的多波束rlm和全分集bfr机制
US10893540B2 (en) * 2017-07-28 2021-01-12 Qualcomm Incorporated Random access channel procedures with multiple carriers
JP2020535719A (ja) * 2017-09-27 2020-12-03 日本電気株式会社 端末デバイス、ネットワークデバイス、および方法
EP3713340A4 (en) * 2017-11-17 2021-08-18 Lg Electronics Inc. METHOD OF PERFORMING FAILURE RESTORATION IN A WIRELESS COMMUNICATION SYSTEM AND DEVICE FOR DOING IT
KR102463553B1 (ko) * 2018-01-12 2022-11-04 삼성전자 주식회사 차세대 통신 시스템에서 빔 정보 보고 방법 및 장치
CA3034014A1 (en) * 2018-02-15 2019-08-15 Comcast Cable Communications, Llc Beam failure report
US11284396B2 (en) * 2018-03-19 2022-03-22 Qualcomm Incorporated Techniques for determining beams for beamforming wireless communications
US20210058998A1 (en) * 2018-04-04 2021-02-25 Nec Corporation Methods and apparatus for processing beam failure of a secondary cell
CN110505692B (zh) * 2018-05-16 2022-02-22 维沃移动通信有限公司 一种多载波系统中的波束失败恢复方法及装置
CN109076365A (zh) * 2018-07-20 2018-12-21 北京小米移动软件有限公司 波束故障恢复请求发送方法、响应方法、装置及存储介质
CN114501662A (zh) * 2018-08-17 2022-05-13 北京小米移动软件有限公司 调度请求传输方法、装置及存储介质
EP3648368A1 (en) * 2018-10-31 2020-05-06 Comcast Cable Communications, LLC Beam management for cells in wireless communications
US11283674B2 (en) * 2018-11-01 2022-03-22 Comcast Cable Communications, Llc Beam failure recovery in carrier aggregation
US11240863B2 (en) * 2019-01-11 2022-02-01 Qualcomm Incorporated Autonomous transmission configuration updating
CA3071735A1 (en) * 2019-02-08 2020-08-08 Comcast Cable Communications, Llc Failure recovery in wireless communications
MX2021009683A (es) * 2019-02-15 2021-09-10 Fg innovation co ltd Metodo y aparato para reconocer solicitud de recuperacion de falla de haz de celda secundaria (scell).

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130010711A1 (en) * 2011-07-06 2013-01-10 Daniel Larsson Random Access with Primary and Secondary Component Carrier Communications
CN108809580A (zh) * 2017-05-05 2018-11-13 北京三星通信技术研究有限公司 传输上行信号的方法、用户设备及基站

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
網路文獻 NEC, "Discussion on Beam Failure Recovery", 3GPP TSG RAN WG1 Meeting #95, R1-1812646, Spokane, US, November 12th–16th, 2018, https://www.3gpp.org/DynaReport/TDocExMtg--R1-95--18807.htm *

Also Published As

Publication number Publication date
WO2020192760A1 (en) 2020-10-01
WO2020192751A1 (en) 2020-10-01
CN112005569B (zh) 2022-11-11
CN112005569A (zh) 2020-11-27
TWI786383B (zh) 2022-12-11
US11382020B2 (en) 2022-07-05
TW202042516A (zh) 2020-11-16
CN112005571A (zh) 2020-11-27
US11363516B2 (en) 2022-06-14
US20200314724A1 (en) 2020-10-01
US20200314722A1 (en) 2020-10-01
TW202040951A (zh) 2020-11-01

Similar Documents

Publication Publication Date Title
TWI786384B (zh) 用於波束故障恢復之裝置和方法
US11405929B2 (en) Electronic device and method for beam failure recovery
JP7308932B2 (ja) サービングセル用のビーム障害回復
JP7274624B2 (ja) セカンダリセルビームリカバリ
CN110447254B (zh) 波束故障恢复请求传输的方法及其用户设备
TWI733161B (zh) 用於無線通訊的方法及電子設備
KR102418467B1 (ko) 빔 실패 복구를 수행하기 위한 방법 및 무선 통신 디바이스
US10966205B2 (en) Communication method, and communications apparatus and system
CN110036594B (zh) Rlm和bfr之间的协调操作方法及用户设备
CN111869127A (zh) 在波束恢复过程中利用干扰测量
WO2020038331A1 (zh) 确定上行资源的方法与装置
US20190230714A1 (en) Random access method, apparatus, system, terminal, and base station
JP2021523640A (ja) リンク回復方法および装置
JP2021533662A (ja) ワイヤレス通信におけるリンク回復
US20220264638A1 (en) Systems and methods of enhanced random access procedure
US20220353872A1 (en) Electronic device and method for scheduling restriction
US20210195631A1 (en) A Network Node, a Communications Device and Methods Therein for Transmission of Uplink Grants
CN111479326A (zh) 一种信息发送、检测方法及装置
US20240015793A1 (en) Physical downlink control channel (pdcch) ordered neighbor cell physical random access channel (prach) and beam group based timing
KR20220123665A (ko) 방향 기반 lbt(listen before talk)에 관련된 방법 및 장치
TWI810046B (zh) 波束故障恢復過程的方法和裝置
RU2779149C1 (ru) Пользовательский терминал и способ радиосвязи
TW202315349A (zh) 新波束識別的方法和裝置
JP2023526530A (ja) セカンダリセルアクティブ化におけるビーム失敗リカバリ