TWI785763B - Composite substrate and manufacture method thereof - Google Patents

Composite substrate and manufacture method thereof Download PDF

Info

Publication number
TWI785763B
TWI785763B TW110131892A TW110131892A TWI785763B TW I785763 B TWI785763 B TW I785763B TW 110131892 A TW110131892 A TW 110131892A TW 110131892 A TW110131892 A TW 110131892A TW I785763 B TWI785763 B TW I785763B
Authority
TW
Taiwan
Prior art keywords
substrate
layer
aluminum
aluminum oxide
oxide layer
Prior art date
Application number
TW110131892A
Other languages
Chinese (zh)
Other versions
TW202309979A (en
Inventor
曾頎堯
吳建毅
Original Assignee
合晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合晶科技股份有限公司 filed Critical 合晶科技股份有限公司
Priority to TW110131892A priority Critical patent/TWI785763B/en
Application granted granted Critical
Publication of TWI785763B publication Critical patent/TWI785763B/en
Publication of TW202309979A publication Critical patent/TW202309979A/en

Links

Images

Abstract

A composite substrate is provided in some embodiments of the present disclosure, including a first substrate, an aluminum oxide layer, a second substrate and a gallium nitride epitaxial layer. The aluminum oxide layer is disposed on the first substrate. The second substrate is disposed on the aluminum oxide layer. The gallium nitride epitaxial layer is disposed on the second substrate. A method of manufacturing a composite substrate is also provided in some embodiments of the present disclosure.

Description

複合基板及其製造方法Composite substrate and manufacturing method thereof

本揭示內容涉及複合基板及其製造方法。The present disclosure relates to composite substrates and methods of making the same.

近來,基於消費性電子產品與車用元件的需求,元件尺寸微型化和功率不斷提升的需求日漸增加。然而,隨著元件功率密度的增加 (例如包含氮化鎵磊晶層的高頻元件),熱積累效應迅速增加,降低元件效率的表現,使得元件的可靠性和穩定性受到嚴重挑戰。Recently, based on the demand for consumer electronics and automotive components, the demand for component size miniaturization and power improvement is increasing. However, as the power density of components increases (such as high-frequency components containing gallium nitride epitaxial layers), the heat accumulation effect increases rapidly, reducing the performance of component efficiency, and severely challenging the reliability and stability of components.

因此,如何改善承載元件的複合基板的散熱效果,是所欲解決的問題。Therefore, how to improve the heat dissipation effect of the composite substrate carrying components is a problem to be solved.

本揭示內容之一實施方式的目的在於,提供複合基板,包含第一基板;氧化鋁層設置於第一基板上;第二基板設置於氧化鋁層上;以及氮化鎵磊晶結構設置於第二基板上。An object of an embodiment of the present disclosure is to provide a composite substrate, including a first substrate; an aluminum oxide layer is disposed on the first substrate; a second substrate is disposed on the aluminum oxide layer; and a gallium nitride epitaxial structure is disposed on the second substrate. on the second substrate.

在一些實施方式中,第一基板或第二基板為矽基板、絕緣層上覆矽基板、藍寶石基板、碳化矽基板、鑽石基板、前述材料之任意兩者或兩者以上之組合。In some embodiments, the first substrate or the second substrate is a silicon substrate, a silicon-on-insulator substrate, a sapphire substrate, a silicon carbide substrate, a diamond substrate, any two or a combination of the foregoing materials.

在一些實施方式中,更包含鋁層設置於第一基板以及氧化鋁層之間。In some embodiments, an aluminum layer is disposed between the first substrate and the aluminum oxide layer.

在一些實施方式中,鋁層與氧化鋁層接觸的表面具有規律性的複數凹槽,其中規律性的此些凹槽包含此些凹槽的直徑誤差於20%以內,並且此些凹槽具有一致的孔洞形狀。In some embodiments, the surface of the aluminum layer in contact with the aluminum oxide layer has a plurality of regular grooves, wherein the regular grooves include a diameter error of the grooves within 20%, and the grooves have Consistent hole shape.

在一些實施方式中,氧化鋁層包含複數孔洞分布於氧化鋁之間。In some embodiments, the aluminum oxide layer includes a plurality of holes distributed between the aluminum oxide.

本揭示內容之一實施方式的目的在於,提供製造複合基板的方法,包含:提供第一基板;沉積第一鋁層於第一基板上、第二鋁層於第一鋁層上、以及第三鋁層於第二鋁層上;對第三鋁層執行第一陽極處理,以氧化第三鋁層從而形成第一氧化鋁層於第二鋁層上;移除第一氧化鋁層;對第一鋁層以及第二鋁層執行第二陽極處理,以氧化第二鋁層,從而形成第二氧化鋁層於第一鋁層上,其中第二氧化鋁層包含氧化鋁本體及複數孔洞分布於氧化鋁本體之間;對第二氧化鋁層執行擴孔處理,以提升第二氧化鋁層中的孔洞的均一性;提供第二基板;以及鍵合第二氧化鋁層與第二基板,獲得第一複合基板,其中第二氧化鋁層位於第一基板與第二基板之間。An object of an embodiment of the present disclosure is to provide a method for manufacturing a composite substrate, comprising: providing a first substrate; depositing a first aluminum layer on the first substrate, a second aluminum layer on the first aluminum layer, and a third an aluminum layer on the second aluminum layer; performing a first anodic treatment on the third aluminum layer to oxidize the third aluminum layer to form a first aluminum oxide layer on the second aluminum layer; removing the first aluminum oxide layer; An aluminum layer and the second aluminum layer perform a second anodic treatment to oxidize the second aluminum layer, thereby forming a second aluminum oxide layer on the first aluminum layer, wherein the second aluminum oxide layer includes an aluminum oxide body and a plurality of holes distributed in the Between the alumina bodies; performing hole expansion treatment on the second alumina layer to improve the uniformity of holes in the second alumina layer; providing a second substrate; and bonding the second alumina layer and the second substrate to obtain The first composite substrate, wherein the second aluminum oxide layer is located between the first substrate and the second substrate.

在一些實施方式中,對第三鋁層執行第一陽極處理包含:使用第一酸性溶液作為電解液,並將鋁層設置於陽極,執行陽極氧化反應,以成長氧化鋁於第二鋁層上,而形成第一氧化鋁層。In some embodiments, performing the first anodic treatment on the third aluminum layer includes: using the first acidic solution as the electrolyte, and disposing the aluminum layer on the anode, performing an anodic oxidation reaction to grow aluminum oxide on the second aluminum layer , to form the first aluminum oxide layer.

在一些實施方式中,對第二氧化鋁層執行擴孔處理的步驟包含將第二氧化鋁層浸泡於第二酸性溶液中。In some embodiments, the step of performing hole expansion on the second alumina layer includes soaking the second alumina layer in a second acidic solution.

在一些實施方式中,在鍵合第一基板與第二基板的步驟之後,更包含:移除第一複合基板中的第一基板以及第一鋁層;提供第三基板;以及鍵合第二氧化鋁層與第三基板,獲得第二複合基板,其中第二氧化鋁層位於第二基板與第三基板之間。In some embodiments, after the step of bonding the first substrate and the second substrate, further comprising: removing the first substrate and the first aluminum layer in the first composite substrate; providing a third substrate; and bonding the second substrate. an aluminum oxide layer and a third substrate to obtain a second composite substrate, wherein the second aluminum oxide layer is located between the second substrate and the third substrate.

在一些實施方式中,在鍵合第二氧化鋁層與第二基板的步驟之後,更包含形成氮化鎵磊晶結構於第二基板上。In some embodiments, after the step of bonding the second aluminum oxide layer and the second substrate, further comprising forming a GaN epitaxial structure on the second substrate.

可以理解的是,下述內容提供的不同實施方式或實施例可實施本揭露之標的不同特徵。特定構件與排列的實施例係用以簡化本揭露而非侷限本揭露。當然,這些僅是實施例,並且不旨在限制。舉例來說,以下所述之第一特徵形成於第二特徵上的敘述包含兩者直接接觸,或兩者之間隔有其他額外特徵而非直接接觸。此外,本揭露在複數個實施例中可重複參考數字及/或符號。這樣的重複是為了簡化和清楚,而並不代表所討論的各實施例及/或配置之間的關係。It can be understood that different implementations or examples provided in the following content can implement different features of the subject matter of the present disclosure. The examples of specific components and arrangements are used to simplify the present disclosure and not to limit the present disclosure. Of course, these are examples only and are not intended to be limiting. For example, the description below that a first feature is formed on a second feature includes that the two are in direct contact, or that there are other additional features between the two instead of direct contact. In addition, the present disclosure may repeat reference numerals and/or symbols in several embodiments. Such repetition is for simplicity and clarity and does not imply a relationship between the various embodiments and/or configurations discussed.

本說明書中所用之術語一般在本領域以及所使用之上下文中具有通常性的意義。本說明書中所使用的實施例,包括本文中所討論的任何術語的例子僅是說明性的,而不限制本揭示內容或任何示例性術語的範圍和意義。同樣地,本揭示內容不限於本說明書中所提供的一些實施方式。The terms used in this specification generally have their ordinary meanings in the art and the context in which they are used. The examples used in this specification, including examples of any term discussed herein, are illustrative only and do not limit the scope and meaning of the disclosure or any exemplified term. Likewise, the disclosure is not limited to some of the embodiments provided in this specification.

另外,空間相對用語,如「下」、「上」等,是用以方便描述一元件或特徵與其他元件或特徵在圖式中的相對關係。這些空間相對用語旨在包含除了圖式中所示之方位以外,裝置在使用或操作時的不同方位。裝置可被另外定位(例如旋轉90度或其他方位),而本文所使用的空間相對敘述亦可相對應地進行解釋。In addition, relative terms in space, such as "below" and "upper", are used to conveniently describe the relative relationship between one element or feature and other elements or features in the drawings. These spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the drawings. The device may be otherwise positioned (eg, rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.

於本文中,除非內文中對於冠詞有所特別限定,否則『一』與『該』可泛指單一個或多個。將進一步理解的是,本文中所使用之『包含』、『包括』、『具有』及相似詞彙,指明其所記載的特徵、區域、整數、步驟、操作、元件與/或組件,但不排除其它的特徵、區域、整數、步驟、操作、元件、組件,與/或其中之群組。In this article, "a" and "the" can generally refer to one or more, unless the article is specifically limited in the context. It will be further understood that the terms "comprising", "comprising", "having" and similar words used herein indicate the features, regions, integers, steps, operations, elements and/or components described therein, but do not exclude Other features, regions, integers, steps, operations, elements, components, and/or groups thereof.

將理解的是,儘管本文可以使用術語第一、第二等來描述各種元件,但是這些元件不應受到這些術語的限制。這些術語用於區分一個元件和另一個元件。舉例來說,在不脫離本實施方式的範圍的情況下,第一元件可以被稱為第二元件,並且類似地,第二元件可以被稱為第一元件。It will be understood that, although the terms first, second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present embodiments.

於本文中,術語“和/或”包含一個或複數個相關聯的所列項目的任何和所有組合。As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

以下列舉數個實施方式以更詳盡闡述本發明之觸碰裝置,然其僅為例示說明之用,並非用以限定本發明,本發明之保護範圍當以後附之申請專利範圍所界定者為準。需注意的是,圖式中之各元件之間的比例關係僅為示意。Several implementations are listed below to describe the touch device of the present invention in more detail, but they are only for illustrative purposes and are not intended to limit the present invention. The scope of protection of the present invention shall prevail as defined by the scope of the appended patent application . It should be noted that the proportional relationship among the elements in the drawings is only for illustration.

第1A圖至第1H圖示例性地描述本揭示內容的一些實施方式中製造複合基板的各製程階段的示意圖。Figures 1A-1H exemplarily depict schematic diagrams of various process stages for manufacturing a composite substrate in accordance with some embodiments of the present disclosure.

首先,請見第1A圖,提供第一基板110。First, please refer to FIG. 1A , a first substrate 110 is provided.

在一些實施方式中,第一基板110為矽基板、絕緣層上覆矽(Silicon On Insulator;SOI)基板、藍寶石基板、碳化矽基板、鑽石基板、前述材料之任意兩者或兩者以上之組合。在一些實施方式中,第一基板110厚度範圍為300微米至1000微米,例如300微米、400微米、500微米、600微米、700微米、800微米、900微米、1000微米或前述任意區間的數值。在一些實施方式中,可以先在矽基板的上表面以及相對於上表面的下表面形成二氧化矽層,接著,移除上表面上的二氧化矽,形成絕緣層上覆矽基板,製備而得第一基板110,其中第一基板110的第二表面114為二氧化矽,並於第一基板110的第一表面112(矽)上執行後續製程。In some embodiments, the first substrate 110 is a silicon substrate, a silicon-on-insulator (Silicon On Insulator; SOI) substrate, a sapphire substrate, a silicon carbide substrate, a diamond substrate, any two of the foregoing materials, or a combination of more than two . In some embodiments, the thickness of the first substrate 110 ranges from 300 microns to 1000 microns, such as 300 microns, 400 microns, 500 microns, 600 microns, 700 microns, 800 microns, 900 microns, 1000 microns, or any value in the aforementioned range. In some embodiments, a silicon dioxide layer can be first formed on the upper surface of the silicon substrate and the lower surface relative to the upper surface, and then the silicon dioxide on the upper surface is removed to form an insulating layer on the silicon substrate, and the prepared A first substrate 110 is obtained, wherein the second surface 114 of the first substrate 110 is silicon dioxide, and subsequent processes are performed on the first surface 112 (silicon) of the first substrate 110 .

接著,請見第1B圖,沉積鋁層120於第一基板110的第一表面112上。具體而言,沉積鋁層120包含沉積第一鋁層於第一基板110上、第二鋁層於第一鋁層上、以及第三鋁層於第二鋁層上,其中第一鋁層、第二鋁層、以及第三鋁層圖未示。Next, please refer to FIG. 1B , an aluminum layer 120 is deposited on the first surface 112 of the first substrate 110 . Specifically, depositing the aluminum layer 120 includes depositing a first aluminum layer on the first substrate 110, a second aluminum layer on the first aluminum layer, and a third aluminum layer on the second aluminum layer, wherein the first aluminum layer, The second aluminum layer and the third aluminum layer are not shown.

在一些實施方式中,可以在通有氬氣的環境中,使用濺鍍機在第一基板110上生長鋁層120。在一些實施方式中,鋁層120的厚度為100奈米至400奈米,例如100奈米、150奈米、200奈米、250奈米、300奈米、350奈米、400奈米或前述任意區間的數值。In some embodiments, the aluminum layer 120 can be grown on the first substrate 110 by using a sputtering machine in an environment filled with argon gas. In some embodiments, the thickness of the aluminum layer 120 is 100 nm to 400 nm, such as 100 nm, 150 nm, 200 nm, 250 nm, 300 nm, 350 nm, 400 nm or the aforementioned Numeric values in any interval.

在一些實施方式中,在沉積鋁層120於第一基板110的步驟之後,更包含平坦化鋁層120。舉例而言,可以先將沉積有鋁層120的第一基板110以砂紙研磨,機械拋光後,再將第一基板110浸於包含過氯酸(HClO 4)、乙二醇丁醚(CH 3(CH 2) 3OCH 2CH 2OH)及乙醇(C 2H 6O)的混合溶液中,進行電解拋光,以平坦化鋁層120,並提升鋁層120的光澤。值得注意的是,因隨著鋁層120的表面粗糙度提升,後續陽極氧化處理所形成的陽極氧化鋁(anodic aluminum oxide;AAO)孔洞排列的規律性將降低。因此,經由預先針對鋁層120的平坦化,降低鋁層120的表面粗糙度,提升後續所形成的陽極氧化鋁的孔洞的規律性。 In some embodiments, after the step of depositing the aluminum layer 120 on the first substrate 110 , planarizing the aluminum layer 120 is further included. For example, the first substrate 110 on which the aluminum layer 120 is deposited can be firstly ground with sandpaper, and after mechanical polishing, the first substrate 110 is immersed in a solution containing perchloric acid (HClO 4 ), ethylene glycol butyl ether (CH 3 (CH 2 ) 3 OCH 2 CH 2 OH) and ethanol (C 2 H 6 O), electrolytic polishing is performed to planarize the aluminum layer 120 and improve the gloss of the aluminum layer 120 . It should be noted that, as the surface roughness of the aluminum layer 120 increases, the regularity of the hole arrangement of anodic aluminum oxide (AAO) formed by the subsequent anodic oxidation treatment will decrease. Therefore, through the pre-planarization of the aluminum layer 120 , the surface roughness of the aluminum layer 120 is reduced, and the regularity of the pores of the anodized aluminum formed subsequently is improved.

接著,請見第1C圖,對鋁層120執行第一陽極處理,以氧化鋁層120中的第三鋁層從而形成第一氧化鋁層130於第二鋁層上(第1C圖中所保留之鋁層120,自上而下依序為第二鋁層以及第一鋁層(圖未示)),第一氧化鋁層130即為陽極氧化鋁,於俯視視角下,具有複數凹槽A1分布於第一氧化鋁本體132之間(需注意的是,此處雖示為凹槽A1,然而,在一些實施方式中,凹槽A1亦可為孔洞)。Next, see FIG. 1C, the aluminum layer 120 is subjected to a first anodic treatment to form a first aluminum oxide layer 130 on the second aluminum layer (retained in FIG. 1C) with the third aluminum layer in the aluminum layer 120. The aluminum layer 120 is the second aluminum layer and the first aluminum layer (not shown) from top to bottom), the first aluminum oxide layer 130 is anodized aluminum, and has a plurality of grooves A1 in the top view Distributed between the first alumina bodies 132 (it should be noted that although the groove A1 is shown here, however, in some embodiments, the groove A1 can also be a hole).

在一些實施方式中,對鋁層120執行第一陽極處理包含:使用第一酸性溶液作為電解液,並將鋁層120設置於陽極,執行陽極氧化反應,以成長第一氧化鋁本體132(Al 2O 3)於鋁層120上。在一些實施方式中,第一酸性溶液包括硫酸、草酸、磷酸、前述材料之任意兩者或兩者以上之組合。可以經由搭配適當的外加電壓、電解液種類(例如具有不同導電性)、濃度、溫度、時間,調整陽極氧化鋁的凹槽A1(或孔洞)大小、形狀、厚度以及規律性。舉例而言,隨著外加電壓提升,將造成第一氧化鋁本體132的融解速度提升,形成更大的凹槽A1(或孔洞)。而在低溫時(例如10°C以下),可以提升凹槽A1(或孔洞)排序上的規律性,並且所形成的第一氧化鋁本體132具有較好的硬度以及耐磨性。 In some embodiments, performing the first anodic treatment on the aluminum layer 120 includes: using the first acidic solution as the electrolyte, and disposing the aluminum layer 120 on the anode, and performing an anodic oxidation reaction to grow the first alumina body 132 (Al 2 O 3 ) on the aluminum layer 120 . In some embodiments, the first acidic solution includes sulfuric acid, oxalic acid, phosphoric acid, any two or a combination of the foregoing materials. The size, shape, thickness and regularity of the groove A1 (or hole) of anodized aluminum can be adjusted by matching the appropriate applied voltage, electrolyte type (for example, with different conductivity), concentration, temperature, and time. For example, as the applied voltage increases, the melting speed of the first alumina body 132 will increase, forming larger grooves A1 (or holes). However, at low temperature (for example, below 10° C.), the order regularity of the grooves A1 (or holes) can be improved, and the formed first alumina body 132 has better hardness and wear resistance.

在一實施方式中,可以將鋁層120接在陽極,鉑金屬接在陰極,使用濃度為0.3M的硫酸作為電解液,在溫度為10°C,外加電壓為25V,作用時間為1小時的條件下,成長出第一氧化鋁層130,具有於俯視下呈圓形的凹槽A1(或孔洞),其中凹槽A1(或孔洞) 的厚度約為150奈米,直徑約為10奈米至70奈米,例如10奈米、20奈米、30奈米、40奈米、50奈米、60奈米、70奈米或前述任意區間的數值。In one embodiment, the aluminum layer 120 can be connected to the anode, the platinum metal can be connected to the cathode, and sulfuric acid with a concentration of 0.3M is used as the electrolyte at a temperature of 10°C, an applied voltage of 25V, and an action time of 1 hour. Under these conditions, the first aluminum oxide layer 130 is grown to have a circular groove A1 (or hole) in plan view, wherein the groove A1 (or hole) has a thickness of about 150 nm and a diameter of about 10 nm to 70 nanometers, such as 10 nanometers, 20 nanometers, 30 nanometers, 40 nanometers, 50 nanometers, 60 nanometers, 70 nanometers, or a value in any interval of the foregoing.

在另一實施方式中,可以使用濃度為0.3M的草酸作為電解液,在溫度為1°C,外加電壓為40V,作用時間為1小時的條件下,成長出第一氧化鋁層130,其中第一氧化鋁層130具有六邊形或趨近圓形的凹槽A1(或孔洞),其中凹槽A1(或孔洞)的厚度約為150奈米,直徑約為30奈米至100奈米,例如30奈米、40奈米、50奈米、60奈米、70奈米、80奈米、90奈米、100奈米或前述任意區間的數值。In another embodiment, the first aluminum oxide layer 130 can be grown by using oxalic acid with a concentration of 0.3M as the electrolyte at a temperature of 1°C, an applied voltage of 40V, and an action time of 1 hour, wherein The first aluminum oxide layer 130 has a hexagonal or nearly circular groove A1 (or hole), wherein the thickness of the groove A1 (or hole) is about 150 nm, and the diameter is about 30 nm to 100 nm , such as 30 nanometers, 40 nanometers, 50 nanometers, 60 nanometers, 70 nanometers, 80 nanometers, 90 nanometers, 100 nanometers, or a value in any range of the foregoing.

在又一實施方式中,可以使用濃度為0.3M的磷酸作為電解液,在溫度為3°C,外加電壓為160V,作用時間為1小時的條件下,成長出第一氧化鋁層130,其中第一氧化鋁層130具有圓形的凹槽A1(或孔洞),其中凹槽A1(或孔洞)的厚度約為150奈米,直徑約為50奈米至130奈米,例如50奈米、60奈米、70奈米、80奈米、90奈米、100奈米、110奈米、120奈米、130奈米或前述任意區間的數值。In yet another embodiment, phosphoric acid with a concentration of 0.3M can be used as the electrolyte, and the first aluminum oxide layer 130 can be grown under the conditions of a temperature of 3°C, an applied voltage of 160V, and an action time of 1 hour, wherein The first aluminum oxide layer 130 has a circular groove A1 (or hole), wherein the thickness of the groove A1 (or hole) is about 150 nm, and the diameter is about 50 nm to 130 nm, such as 50 nm, 60 nanometers, 70 nanometers, 80 nanometers, 90 nanometers, 100 nanometers, 110 nanometers, 120 nanometers, 130 nanometers or a value in any range of the foregoing.

接著,請見第1D圖(並同參第1C圖),移除第一氧化鋁層130。在一些實施方式中,可以將第一氧化鋁層130浸泡於酸性溶液中,移除第一氧化鋁層130,例如使用重量百分比(weight percentage;wt %)為2%的鉻酸,並以重量百分比為6%的磷酸做為溶質,製備作用溶液,在60°C中,將第一氧化鋁層130浸泡於作用溶液中約30分鐘至60分鐘,移除第一氧化鋁層130。Next, see FIG. 1D (and also refer to FIG. 1C ), the first aluminum oxide layer 130 is removed. In some embodiments, the first aluminum oxide layer 130 can be soaked in an acidic solution to remove the first aluminum oxide layer 130, for example, using chromic acid with a weight percentage (weight percentage; wt %) of 2%, and Phosphoric acid with a percentage of 6% is used as a solute to prepare a working solution, and the first aluminum oxide layer 130 is soaked in the working solution for about 30 minutes to 60 minutes at 60° C., and the first aluminum oxide layer 130 is removed.

接著,請見第1E圖(並同參第1C圖),對第1D圖中所保留之鋁層120(即第一鋁層以及第二鋁層(圖未示))執行第二陽極處理,以氧化第二鋁層,從而形成第二氧化鋁層140於第一鋁層(即,第1E圖中所保留的鋁層120)上,其中第二氧化鋁層140包含複數孔洞A2分布於第二氧化鋁本體142之間。具體而言,於俯視視角下,第二氧化鋁層140呈具有規律性孔洞A2的蜂窩狀立體結構,此處規律性包含,但不限於孔洞A2之間的直徑一致或相近(例如誤差於20%以內)、或是孔洞形狀一致或相近(例如六邊形或圓形)、或同時包含孔洞直徑一致或相近以及孔洞形狀一致或相近的情形。Next, please refer to FIG. 1E (also refer to FIG. 1C), perform a second anodic treatment on the aluminum layer 120 (ie, the first aluminum layer and the second aluminum layer (not shown)) retained in the 1D figure, Oxidize the second aluminum layer to form a second aluminum oxide layer 140 on the first aluminum layer (that is, the aluminum layer 120 retained in Figure 1E), wherein the second aluminum oxide layer 140 includes a plurality of holes A2 distributed in the first aluminum layer between the alumina bodies 142 . Specifically, in a top view, the second aluminum oxide layer 140 has a honeycomb three-dimensional structure with regular holes A2, where the regularity includes, but is not limited to, the diameters of the holes A2 are consistent or similar (for example, the error is within 20 %), or the holes have the same or similar shape (such as hexagonal or circular), or the hole diameters are the same or similar, and the hole shapes are the same or similar.

需說明的是(請同參第1C圖至第1E圖),由於經第一陽極處理所形成的第一氧化鋁層130,易因鋁層120表面的粗糙度,生成具有不規律性的凹槽A1(或孔洞)結構(例如孔洞形狀不一、凹槽A1(或孔洞)的直徑誤差大於20%)。為提升氧化鋁之間的孔洞的規律性,因此,經由前述移除第一氧化鋁層130的步驟後,接著,利用鋁層120的表面122因第一陽極處理,而存在的規律性的凹槽B(俯視下呈波浪狀結構,例如,但不限於波浪狀結構中的相鄰的波峰至波谷的高度、距離、或兩者均為一致或相近(舉例而言誤差為20%以內))作為後續第二氧化鋁本體142的形成基底,形成具有更好的孔洞規律性的第二氧化鋁層140,提升第二氧化鋁層140的抗彎曲性。It should be noted that (please also refer to FIG. 1C to FIG. 1E ), due to the first aluminum oxide layer 130 formed by the first anodic treatment, the surface roughness of the aluminum layer 120 is prone to produce irregular concaves. Groove A1 (or hole) structure (for example, the shape of the hole is different, the diameter error of the groove A1 (or hole) is greater than 20%). In order to improve the regularity of the pores between the aluminum oxides, after the aforementioned step of removing the first aluminum oxide layer 130, then use the regular concave holes that exist on the surface 122 of the aluminum layer 120 due to the first anodic treatment. Groove B (wavy structure in plan view, such as, but not limited to, the height, distance, or both of adjacent crests to troughs in the wavy structure are consistent or similar (for example, the error is within 20%)) As the base for forming the subsequent second alumina body 142 , the second alumina layer 140 with better hole regularity is formed to improve the bending resistance of the second alumina layer 140 .

第二陽極處理的條件可以基本上與第一陽極處理相同或相似,在另一些實施方式中,第一陽極處理以及第二陽極處理可以採用不同的酸性溶液作為電解液。在一些實施方式中,第二氧化鋁層140的厚度為100奈米至400奈米,例如100奈米、200奈米、300奈米、400奈米、或前述任意區間中的數值。在一些實施方式中,相較於第一陽極處理,為取得更高的第二氧化鋁層140的厚度,可以進一步提升處理時間,例如將處理時間由1小時(厚度為約40至100奈米)提升至3小時,形成厚度為300奈米至400奈米的第二氧化鋁層140。The conditions of the second anodic treatment may be basically the same or similar to those of the first anodic treatment. In other embodiments, different acidic solutions may be used as electrolytes for the first anodic treatment and the second anodic treatment. In some embodiments, the thickness of the second aluminum oxide layer 140 is 100 nm to 400 nm, such as 100 nm, 200 nm, 300 nm, 400 nm, or any value in the aforementioned range. In some embodiments, compared with the first anodic treatment, in order to obtain a higher thickness of the second aluminum oxide layer 140, the treatment time can be further increased, for example, the treatment time can be increased from 1 hour (thickness is about 40 to 100 nm ) to 3 hours to form a second aluminum oxide layer 140 with a thickness of 300 nm to 400 nm.

接著,請見第1F圖,對第二氧化鋁層140執行擴孔處理,以提升第二氧化鋁層140中的孔洞A2的直徑大小以及均一性(例如藉由侵蝕第二氧化鋁層140的側壁,使得孔洞A2中的各個孔洞A2的形狀以及直徑趨向一致或相近(舉例而言孔洞A2之間直徑的誤差為20%內))。在一些實施方式中,對第二氧化鋁層140執行擴孔處理的步驟包含將第二氧化鋁層140浸泡於酸性溶液(例如硫酸、草酸、磷酸或鉻酸等)中,侵蝕第二氧化鋁層140。例如在25°C下,將第二氧化鋁層140置於重量百分比為5%的磷酸溶液中進行擴孔,其中第二氧化鋁層140的孔洞A2直徑為10奈米至150奈米之間,例如10奈米、20奈米、30奈米、40奈米、50奈米、60奈米、70奈米、80奈米、90奈米、100奈米、110奈米、120奈米、130奈米、140奈米、150奈米、或前述任意區間中的數值。然而,本領域技術人員可以依孔洞A2的需求,選用不同的酸性溶液擴孔。Next, see FIG. 1F, the second aluminum oxide layer 140 is subjected to a hole expansion process to improve the diameter and uniformity of the holes A2 in the second aluminum oxide layer 140 (for example, by corroding the second aluminum oxide layer 140 The sidewalls make the shapes and diameters of the holes A2 tend to be consistent or similar (for example, the diameter error between the holes A2 is within 20%)). In some embodiments, the step of performing hole expansion on the second alumina layer 140 includes soaking the second alumina layer 140 in an acidic solution (such as sulfuric acid, oxalic acid, phosphoric acid, or chromic acid, etc.) to corrode the second alumina layer 140. Layer 140. For example, at 25°C, the second aluminum oxide layer 140 is placed in a 5% by weight phosphoric acid solution for hole expansion, wherein the diameter of the hole A2 of the second aluminum oxide layer 140 is between 10 nm and 150 nm , such as 10nm, 20nm, 30nm, 40nm, 50nm, 60nm, 70nm, 80nm, 90nm, 100nm, 110nm, 120nm, 130 nanometers, 140 nanometers, 150 nanometers, or a value in any of the aforementioned intervals. However, those skilled in the art can choose different acidic solutions to expand the hole according to the requirements of the hole A2.

接著,請見第1G圖,提供第二基板150,接著,鍵合第二氧化鋁層140與第二基板150,其中第二氧化鋁層140位於第一基板110與第二基板150之間。具體而言,複合基板100包含鋁層120(第一鋁層)設置於第一基板110上,第二氧化鋁層140設置於鋁層120(第一鋁層)上,以及第二基板150設置於第二氧化鋁層140上(即,第二氧化鋁層140位於第一基板110以及第二基板150之間)。Next, please refer to FIG. 1G , providing the second substrate 150 , and then bonding the second aluminum oxide layer 140 and the second substrate 150 , wherein the second aluminum oxide layer 140 is located between the first substrate 110 and the second substrate 150 . Specifically, the composite substrate 100 includes an aluminum layer 120 (first aluminum layer) disposed on the first substrate 110, a second aluminum oxide layer 140 disposed on the aluminum layer 120 (first aluminum layer), and a second substrate 150 disposed on the first substrate 110. on the second aluminum oxide layer 140 (that is, the second aluminum oxide layer 140 is located between the first substrate 110 and the second substrate 150 ).

第二基板150的材料以及厚度可以與第一基板110相同或相似,於此不另贅述。The material and thickness of the second substrate 150 may be the same as or similar to that of the first substrate 110 , which will not be repeated here.

在一些實施方式中,可以透過在含氮基的氣體條件(例如氫氣以及氮氣、氫氣以及氨氣、或氮氣以及氨氣)中,加熱第一基板110、第二氧化鋁層140以及第二基板150(即,退火處理),鍵合第二氧化鋁層140與第二基板150。在另一實施方式中,可以先對第一基板110、第二氧化鋁層140以及第二基板150進行初步加熱,鍵合第二氧化鋁層140與第二基板150後,再於含氮基的氣體條件中執行退火處理,提升鍵合的強度。In some embodiments, the first substrate 110, the second aluminum oxide layer 140, and the second substrate may be heated in a nitrogen-containing gas condition (such as hydrogen and nitrogen, hydrogen and ammonia, or nitrogen and ammonia). 150 (ie, annealing treatment), bonding the second aluminum oxide layer 140 and the second substrate 150 . In another embodiment, the first substrate 110, the second aluminum oxide layer 140, and the second substrate 150 can be preliminarily heated, and after the second aluminum oxide layer 140 and the second substrate 150 are bonded, the nitrogen-containing base Perform annealing treatment in the gas condition to improve the strength of the bond.

接著,請見第1H圖,形成氮化鎵磊晶結構E(屬於高電子移動率晶體電晶體(High electron mobility transistor;HEMT)於第二基板150上,獲得高頻複合基板200。例如可使用有機金屬化學氣相沉積(Metal-organic Chemical Vapor Deposition;MOCVD)形成厚度為1至10微米的氮化鎵磊晶結構E。Next, see FIG. 1H, a GaN epitaxial structure E (belonging to a high electron mobility transistor (High electron mobility transistor; HEMT)) is formed on the second substrate 150 to obtain a high-frequency composite substrate 200. For example, it can be used Metal-organic Chemical Vapor Deposition (MOCVD) forms the GaN epitaxial structure E with a thickness of 1 to 10 micrometers.

在一些實施方式中,氮化鎵磊晶結構E依序包含成核層設置於第二基板150上、緩衝層設置於成核層上、阻抗層設置於緩衝層上、通道層設置於阻抗層上、屏障層設置於通道層上、以及覆蓋層設置於屏障層上。在一些實施方式中,成核層可以包含氮化鋁,厚度在30奈米至300奈米之間。在一些實施方式中,緩衝層可以包含氮化鋁鎵、氮化鎵、或前述材料之組合,例如梯式氮化鋁鎵或超晶格氮化鋁鎵/氮化鎵,厚度為300奈米至1000奈米之間。在一些實施方式中,阻抗層為氮化鎵,厚度可以為0.5微米至2.5微米之間。在一些實施方式中,通道層為氮化鎵,厚度為0.05微米至1微米之間。在一些實施方式中,屏障層包含氮化鋁鎵,厚度為10奈米至50奈米之間。在一些實施方式中,覆蓋層為氮化鎵,厚度為0.5奈米至150奈米。In some embodiments, the GaN epitaxial structure E sequentially includes a nucleation layer disposed on the second substrate 150, a buffer layer disposed on the nucleation layer, a resistive layer disposed on the buffer layer, and a channel layer disposed on the resistive layer. On, the barrier layer is disposed on the channel layer, and the covering layer is disposed on the barrier layer. In some embodiments, the nucleation layer may comprise aluminum nitride and have a thickness between 30 nm and 300 nm. In some embodiments, the buffer layer may comprise AlGaN, GaN, or a combination of the foregoing, such as ladder AlGaN or superlattice AlGaN/GaN, with a thickness of 300 nm to 1000 nm. In some embodiments, the resistance layer is gallium nitride, and its thickness may be between 0.5 microns and 2.5 microns. In some embodiments, the channel layer is GaN with a thickness between 0.05 micron and 1 micron. In some embodiments, the barrier layer comprises aluminum gallium nitride and has a thickness between 10 nm and 50 nm. In some embodiments, the capping layer is GaN with a thickness of 0.5 nm to 150 nm.

在一些實施方式中,在形成氮化鎵磊晶結構E於第二基板150上的步驟之前,更包含減薄第二基板150至合適的厚度,例如減薄第二基板150至1微米至10微米之間。In some embodiments, before the step of forming the GaN epitaxial structure E on the second substrate 150, it further includes thinning the second substrate 150 to an appropriate thickness, for example, thinning the second substrate 150 to 1 μm to 10 μm. between microns.

在另一些實施方式中,可以利用金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor;MOSFET)取代氮化鎵磊晶結構E,也就是,形成金屬氧化物半導體場效電晶體於第二基板150上(圖未示)。In some other embodiments, metal-oxide-semiconductor field-effect transistors (Metal-Oxide-Semiconductor Field-Effect Transistor; MOSFET) can be used to replace the gallium nitride epitaxial structure E, that is, to form a metal-oxide-semiconductor field-effect transistor The crystal is on the second substrate 150 (not shown).

值得強調的是,高頻複合基板200使用第二氧化鋁層140連接第一基板110以及第二基板150,陽極氧化鋁(第二氧化鋁本體142)具有高散熱係數(散熱係數為二氧化矽的9至25倍),相較於習知的複合基板(例如以二氧化矽作為第一基板以及第二基板之間的連接層),可賦予高頻複合基板200更好的散熱性。因此,當設置高頻元件(例如氮化鎵磊晶結構E)於複合基板100上,形成高頻複合基板200時,相較於設置於習知的複合基板上,因具有更好的散熱性,而可避免因熱積累而效率降低的問題,使得高頻元件具有更好的作用效率。It is worth emphasizing that the high-frequency composite substrate 200 uses the second alumina layer 140 to connect the first substrate 110 and the second substrate 150, and anodized aluminum (the second alumina body 142) has a high heat dissipation coefficient (the heat dissipation coefficient is that of silicon dioxide 9 to 25 times of that), compared with the conventional composite substrate (for example, silicon dioxide is used as the connection layer between the first substrate and the second substrate), the high-frequency composite substrate 200 can be endowed with better heat dissipation. Therefore, when a high-frequency component (such as a gallium nitride epitaxial structure E) is arranged on the composite substrate 100 to form the high-frequency composite substrate 200, it has better heat dissipation compared with the conventional composite substrate. , so that the problem of efficiency reduction due to heat accumulation can be avoided, so that the high-frequency components have better efficiency.

此外,經陽極氧化處理而生成的第二氧化鋁層140,具有規律性孔洞A2的蜂窩狀立體結構(例如六邊形或圓形),此立體結構賦予第二氧化鋁層140良好的抗彎曲性,有助於高頻複合基板200的抗彎曲性。In addition, the second aluminum oxide layer 140 produced by anodic oxidation has a honeycomb three-dimensional structure (such as hexagonal or circular) with regular holes A2, and this three-dimensional structure endows the second aluminum oxide layer 140 with good bending resistance. properties, contributing to the bending resistance of the high-frequency composite substrate 200.

第2A圖至第2C圖示例性地描述本揭示內容的另一些實施方式中製造複合基板的各製程階段的示意圖,其中第2A圖至第2C圖為接續第1G圖(取代第1H圖)之另一後續製程,目的在於獲得僅以氧化鋁層(不具有鋁層)作為基板之間的連接層的複合基板。Figures 2A to 2C exemplarily depict schematic diagrams of various process stages of manufacturing composite substrates in other embodiments of the present disclosure, wherein Figures 2A to 2C are continuation of Figure 1G (replacing Figure 1H) Another follow-up process aims to obtain a composite substrate in which only the alumina layer (without the aluminum layer) is used as the connection layer between the substrates.

具體而言,請見第2A圖(同參第1G圖),移除複合基板100中的第一基板110以及鋁層120(即,經陽極氧化處理後,保留下來的第一鋁層)。在一些實施方式中,可以利用研磨(grinding)或是化學機械研磨(Chemical Mechanical Polishing)移除第一基板110以及鋁層120。Specifically, referring to FIG. 2A (see also FIG. 1G ), the first substrate 110 and the aluminum layer 120 in the composite substrate 100 are removed (that is, the first aluminum layer remaining after the anodic oxidation treatment). In some embodiments, the first substrate 110 and the aluminum layer 120 may be removed by grinding or chemical mechanical polishing.

接著,請見第2B圖,提供第三基板310,接著,鍵合第二氧化鋁層140與第三基板310,獲得複合基板300(即,與第1F圖至第1G圖相似之步驟),其中第二氧化鋁層140位於第二基板150與第三基板310之間。複合基板300與複合基板100(以下同參第1G圖)的差異在於,複合基板100包含鋁層120設置於第一基板110以及第二氧化鋁層140之間,複合基板300在第二基板150(或第三基板310)以及第二氧化鋁層140之間,則不具有鋁層120。Next, please see FIG. 2B, providing a third substrate 310, and then bonding the second aluminum oxide layer 140 and the third substrate 310 to obtain a composite substrate 300 (that is, steps similar to those in FIG. 1F to FIG. 1G ), The second aluminum oxide layer 140 is located between the second substrate 150 and the third substrate 310 . The difference between the composite substrate 300 and the composite substrate 100 (see also FIG. 1G below) is that the composite substrate 100 includes an aluminum layer 120 disposed between the first substrate 110 and the second aluminum oxide layer 140, and the composite substrate 300 is on the second substrate 150 There is no aluminum layer 120 between (or the third substrate 310 ) and the second aluminum oxide layer 140 .

第三基板310的材料以及厚度可以與第一基板110(同參第1G圖)或第二基板150相同或相似,至於鍵合之反應條件。可與第1G圖之討論相同或相似,於此均不另贅述。The material and thickness of the third substrate 310 can be the same or similar to that of the first substrate 110 (see also FIG. 1G ) or the second substrate 150 , as for the bonding reaction conditions. It may be the same or similar to the discussion in FIG. 1G , and will not be repeated here.

接著,請見第2C圖,形成氮化鎵磊晶結構E於第三基板310上,獲得高頻複合基板400,此處步驟以及氮化鎵磊晶結構E之組成可參第1H圖之討論,於此不另贅述。在一些實施方式中,在形成氮化鎵磊晶結構E於第三基板310上的步驟之前,更包含減薄第三基板310至合適的厚度。在另一些實施方式中,可以利用金屬氧化物半導體場效電晶體(MOSFET)取代氮化鎵磊晶結構E,也就是,形成金屬氧化物半導體場效電晶體於第三基板310上(圖未示)。在一些實施方式中,亦可以形成氮化鎵磊晶結構E於第二基板150上(即,取代原本的形成於第三基板310上)。Next, please see Figure 2C, forming the gallium nitride epitaxy structure E on the third substrate 310 to obtain a high-frequency composite substrate 400, the steps here and the composition of the gallium nitride epitaxy structure E can be referred to the discussion in Figure 1H , which will not be described further here. In some embodiments, before the step of forming the GaN epitaxial structure E on the third substrate 310, thinning the third substrate 310 to an appropriate thickness is further included. In other embodiments, the gallium nitride epitaxial structure E may be replaced by a metal oxide semiconductor field effect transistor (MOSFET), that is, a metal oxide semiconductor field effect transistor is formed on the third substrate 310 (not shown in the figure). Show). In some embodiments, the GaN epitaxial structure E can also be formed on the second substrate 150 (ie, instead of being originally formed on the third substrate 310 ).

綜上所述,本揭示內容的一些實施方式提供的複合基板及其製造方法,透過將具有高散熱性的氧化鋁層設置於基板之間(例如第一基板以及第二基板之間,或是第二基板以及第三基板之間),提升複合基板的散熱性,可避免高頻元件因熱積累而效率降低,從而達到較好的作用效率;此外,氧化鋁層具有規律性的孔洞結構,可賦予複合基板良好的抗彎曲性,避免複合基板因過薄而捲曲,提升製程上的方便性。In summary, some embodiments of the present disclosure provide a composite substrate and a manufacturing method thereof, by arranging an aluminum oxide layer with high heat dissipation between the substrates (for example, between the first substrate and the second substrate, or Between the second substrate and the third substrate) to improve the heat dissipation of the composite substrate, which can avoid the efficiency reduction of high-frequency components due to heat accumulation, thereby achieving better efficiency; in addition, the aluminum oxide layer has a regular hole structure, It can endow the composite substrate with good bending resistance, prevent the composite substrate from curling due to being too thin, and improve the convenience of the manufacturing process.

儘管本揭示內容已根據某些實施方式具體描述細節,其他實施方式也是可行的。因此,所附請求項的精神和範圍不應限於本文所記載的實施方式。While this disclosure has described details in terms of certain implementations, other implementations are possible. Therefore, the spirit and scope of the appended claims should not be limited to the implementations described herein.

100、300:複合基板100, 300: composite substrate

110:第一基板110: the first substrate

112:第一表面112: first surface

114:第二表面114: second surface

120:鋁層120: aluminum layer

130:第一氧化鋁層130: the first aluminum oxide layer

132:第一氧化鋁本體132: the first alumina body

140:第二氧化鋁層140: second aluminum oxide layer

142:第二氧化鋁本體142: the second alumina body

150:第二基板150: second substrate

200、400:高頻複合基板200, 400: high frequency composite substrate

310:第三基板310: the third substrate

A1:凹槽A1: Groove

A2:孔洞A2: hole

B:凹槽B: Groove

E:氮化鎵磊晶結構E: GaN epitaxial structure

通過閱讀以下參考附圖對實施方式的詳細描述,可以更完整地理解本揭示內容。 第1A圖至第1H圖示例性地描述本揭示內容的一些實施方式中製造複合基板的各製程階段的示意圖。 第2A圖至第2C圖示例性地描述本揭示內容的另一些實施方式中製造複合基板的各製程階段的示意圖,其中第2A圖至第2C圖為接續第1G圖之另一後續製程。 A more complete understanding of the present disclosure can be obtained by reading the following detailed description of the embodiments with reference to the accompanying drawings. Figures 1A-1H exemplarily depict schematic diagrams of various process stages for manufacturing a composite substrate in accordance with some embodiments of the present disclosure. FIG. 2A to FIG. 2C exemplarily depict schematic diagrams of various process stages of manufacturing a composite substrate in other embodiments of the present disclosure, wherein FIG. 2A to FIG. 2C are another subsequent process following FIG. 1G .

100:複合基板 100: composite substrate

110:第一基板 110: the first substrate

120:鋁層 120: aluminum layer

140:第二氧化鋁層 140: second aluminum oxide layer

150:第二基板 150: second substrate

200:高頻複合基板 200: High frequency composite substrate

A2:孔洞 A2: hole

E:氮化鎵磊晶結構 E: GaN epitaxial structure

Claims (9)

一種複合基板,包含:一第一基板;包含複數孔洞分布於氧化鋁之間的一氧化鋁層設置於該第一基板上;一第二基板設置於該氧化鋁層上;以及一氮化鎵磊晶結構設置於該第二基板上。 A composite substrate, comprising: a first substrate; an aluminum oxide layer comprising a plurality of holes distributed between aluminum oxides is disposed on the first substrate; a second substrate is disposed on the aluminum oxide layer; and a gallium nitride The epitaxial structure is disposed on the second substrate. 如請求項1所述的複合基板,其中該第一基板或該第二基板為一矽基板、一絕緣層上覆矽基板、一藍寶石基板、一碳化矽基板、一鑽石基板、前述材料之任意兩者或兩者以上之組合。 The composite substrate as described in Claim 1, wherein the first substrate or the second substrate is a silicon substrate, a silicon-on-insulator substrate, a sapphire substrate, a silicon carbide substrate, a diamond substrate, any of the aforementioned materials A combination of two or more. 如請求項1所述的複合基板,更包含一鋁層設置於該第一基板以及該氧化鋁層之間。 The composite substrate as claimed in claim 1 further comprises an aluminum layer disposed between the first substrate and the aluminum oxide layer. 如請求項3所述的複合基板,其中該鋁層與該氧化鋁層接觸的一表面具有規律性的複數凹槽,其中規律性的該些凹槽包含該些凹槽的直徑誤差於20%以內,並且該些凹槽具有一致的孔洞形狀。 The composite substrate as claimed in claim 3, wherein a surface of the aluminum layer in contact with the aluminum oxide layer has a plurality of regular grooves, wherein the regular grooves include a diameter error of 20% of the grooves Within, and the grooves have a consistent hole shape. 一種製造複合基板的方法,包含:提供一第一基板;沉積一第一鋁層於該第一基板上、一第二鋁層於該第一 鋁層上、以及一第三鋁層於該第二鋁層上;對該第三鋁層執行一第一陽極處理,以氧化該第三鋁層從而形成一第一氧化鋁層於該第二鋁層上;移除該第一氧化鋁層;對該第一鋁層以及該第二鋁層執行一第二陽極處理,以氧化該第二鋁層,從而形成一第二氧化鋁層於該第一鋁層上,其中該第二氧化鋁層包含一氧化鋁本體及複數孔洞分布於該氧化鋁本體之間;對該第二氧化鋁層執行一擴孔處理,以提升該第二氧化鋁層中的該些孔洞的均一性;提供一第二基板;以及鍵合該第二氧化鋁層與該第二基板,獲得一第一複合基板,其中該第二氧化鋁層位於該第一基板與該第二基板之間。 A method of manufacturing a composite substrate, comprising: providing a first substrate; depositing a first aluminum layer on the first substrate, a second aluminum layer on the first On the aluminum layer, and a third aluminum layer on the second aluminum layer; a first anodic treatment is performed on the third aluminum layer to oxidize the third aluminum layer to form a first aluminum oxide layer on the second on the aluminum layer; removing the first aluminum oxide layer; performing a second anodic treatment on the first aluminum layer and the second aluminum layer to oxidize the second aluminum layer, thereby forming a second aluminum oxide layer on the On the first aluminum layer, wherein the second alumina layer includes an alumina body and a plurality of holes distributed between the alumina bodies; performing a hole expansion process on the second alumina layer to enhance the second alumina uniformity of the holes in the layer; providing a second substrate; and bonding the second aluminum oxide layer and the second substrate to obtain a first composite substrate, wherein the second aluminum oxide layer is located on the first substrate and the second substrate. 如請求項5所述的方法,其中對該第三鋁層執行該第一陽極處理包含:使用一第一酸性溶液作為電解液,並將該鋁層設置於陽極,執行一陽極氧化反應,以成長氧化鋁於該第二鋁層上,而形成該第一氧化鋁層。 The method according to claim 5, wherein performing the first anodic treatment on the third aluminum layer comprises: using a first acidic solution as an electrolyte, and disposing the aluminum layer on an anode, performing an anodic oxidation reaction, to growing alumina on the second aluminum layer to form the first alumina layer. 如請求項5所述的方法,其中對該第二氧化鋁層執行該擴孔處理的步驟包含將該第二氧化鋁層浸泡於一第二酸性溶液中。 The method as claimed in claim 5, wherein the step of performing the hole-enlarging treatment on the second alumina layer comprises soaking the second alumina layer in a second acidic solution. 如請求項5所述的方法,其中在鍵合該第一基板與該第二基板的步驟之後,更包含:移除該第一複合基板中的該第一基板以及該第一鋁層;提供一第三基板;以及鍵合該第二氧化鋁層與該第三基板,獲得一第二複合基板,其中該第二氧化鋁層位於該第二基板與該第三基板之間。 The method according to claim 5, wherein after the step of bonding the first substrate and the second substrate, further comprising: removing the first substrate and the first aluminum layer in the first composite substrate; providing a third substrate; and bonding the second aluminum oxide layer and the third substrate to obtain a second composite substrate, wherein the second aluminum oxide layer is located between the second substrate and the third substrate. 如請求項5所述的方法,其中在鍵合該第二氧化鋁層與該第二基板的步驟之後,更包含形成一氮化鎵磊晶結構於該第二基板上。The method according to claim 5, further comprising forming a GaN epitaxial structure on the second substrate after the step of bonding the second aluminum oxide layer and the second substrate.
TW110131892A 2021-08-27 2021-08-27 Composite substrate and manufacture method thereof TWI785763B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110131892A TWI785763B (en) 2021-08-27 2021-08-27 Composite substrate and manufacture method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110131892A TWI785763B (en) 2021-08-27 2021-08-27 Composite substrate and manufacture method thereof

Publications (2)

Publication Number Publication Date
TWI785763B true TWI785763B (en) 2022-12-01
TW202309979A TW202309979A (en) 2023-03-01

Family

ID=85794733

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110131892A TWI785763B (en) 2021-08-27 2021-08-27 Composite substrate and manufacture method thereof

Country Status (1)

Country Link
TW (1) TWI785763B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060076559A1 (en) * 2003-07-24 2006-04-13 Bruce Faure Method of fabricating an epitaxially grown layer
US20060255341A1 (en) * 2005-04-21 2006-11-16 Aonex Technologies, Inc. Bonded intermediate substrate and method of making same
US20180040764A1 (en) * 2016-08-02 2018-02-08 QMAT, Inc. SEED WAFER FOR GaN THICKENING USING GAS- OR LIQUID-PHASE EPITAXY

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060076559A1 (en) * 2003-07-24 2006-04-13 Bruce Faure Method of fabricating an epitaxially grown layer
US20060255341A1 (en) * 2005-04-21 2006-11-16 Aonex Technologies, Inc. Bonded intermediate substrate and method of making same
US20180040764A1 (en) * 2016-08-02 2018-02-08 QMAT, Inc. SEED WAFER FOR GaN THICKENING USING GAS- OR LIQUID-PHASE EPITAXY

Also Published As

Publication number Publication date
TW202309979A (en) 2023-03-01

Similar Documents

Publication Publication Date Title
CN104641453B (en) Group III nitride composite substrate and its manufacture method and the method for manufacturing Group III nitride semiconductor device
CN1271766C (en) Nitride series semiconductor component and its mfg. method
JP5307381B2 (en) Semiconductor device and semiconductor device manufacturing method
JP4786223B2 (en) Epitaxial silicon carbide single crystal substrate and manufacturing method thereof
US20090078943A1 (en) Nitride semiconductor device and manufacturing method thereof
WO2013073216A1 (en) Silicon carbide substrate, semiconductor device and methods for producing same
JP5803979B2 (en) Silicon carbide substrate and silicon carbide semiconductor device, and method for manufacturing silicon carbide substrate and silicon carbide semiconductor device
CN113690298A (en) Semiconductor composite substrate, semiconductor device and preparation method
EP1523032A2 (en) Silicon carbide-oxide layered structure, production method thereof, and semiconductor device
KR20120023710A (en) Semiconductor device
JP2007115875A (en) Silicon carbide semiconductor device and manufacturing method thereof
WO2015072214A1 (en) Group iii-nitride composite substrate and manufacturing method for same, layered group iii-nitride composite substrate, and group iii-nitride semiconductor device and manufacturing method for same
TW201142091A (en) Method for producing silicon carbide substrate
JP2005136386A (en) Silicon carbide-oxide laminate, manufacturing method therefor, and semiconductor device
JP6232853B2 (en) Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, group III nitride semiconductor device and method for manufacturing the same
JP2005136386A5 (en)
TWI785763B (en) Composite substrate and manufacture method thereof
TW201131756A (en) Silicon carbide substrate
WO2015053127A1 (en) Group-iii-nitride composite substrate, production method therefor, laminated group-iii-nitride composite substrate, and group-iii-nitride semiconductor device and production method therefor
JP2000150792A (en) Semiconductor device and its manufacture
JP2010062348A (en) Silicon carbide semiconductor substrate and method of manufacturing the same
TWI792857B (en) Composite substrate and manufacture method thereof
EP4187576A1 (en) Heteroepitaxial structure with a diamond heat sink
TW201201284A (en) Method for manufacturing silicon carbide substrate, method for manufacturing semiconductor device, silicon carbide substrate and semiconductor device
JP6248395B2 (en) Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, group III nitride semiconductor device and method for manufacturing the same