TWI785545B - Manufacturing Method of Transparent Thin Film Transistor with Simplified Process - Google Patents

Manufacturing Method of Transparent Thin Film Transistor with Simplified Process Download PDF

Info

Publication number
TWI785545B
TWI785545B TW110109938A TW110109938A TWI785545B TW I785545 B TWI785545 B TW I785545B TW 110109938 A TW110109938 A TW 110109938A TW 110109938 A TW110109938 A TW 110109938A TW I785545 B TWI785545 B TW I785545B
Authority
TW
Taiwan
Prior art keywords
layer
patterned
sputtering
transparent
holes
Prior art date
Application number
TW110109938A
Other languages
Chinese (zh)
Other versions
TW202238732A (en
Inventor
姜志宏
張晃崇
林勇國
吳宜玲
Original Assignee
優貝克科技股份有限公司
立勇發科技股份有限公司
吳宜玲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 優貝克科技股份有限公司, 立勇發科技股份有限公司, 吳宜玲 filed Critical 優貝克科技股份有限公司
Priority to TW110109938A priority Critical patent/TWI785545B/en
Publication of TW202238732A publication Critical patent/TW202238732A/en
Application granted granted Critical
Publication of TWI785545B publication Critical patent/TWI785545B/en

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

一種工序簡化的透明薄膜電晶體的製法,包括:(a)在透明基板上濺鍍圖案化閘極線路層;(b)在圖案化閘極線路層上濺鍍閘極介電層以全面覆蓋圖案化閘極線路層;(c)在閘極介電層上濺鍍摻雜有載子的氧化銦鎵鋅的圖案化通道層;(d)在圖案化通道層上濺鍍連接圖案化通道層的圖案化源極、汲極線路層;(e)在圖案化源極、汲極線路層上濺鍍鈍化層以全面覆蓋步驟(a)至(d)的各層;(f)於鈍化層與閘極介電層形成複數穿孔,部分穿孔露出圖案化閘極線路層,剩餘穿孔露出圖案化源極線路層與圖案化汲極線路層其中一者;及(g)濺鍍彼此分開的第一、第二圖案化透明線路層以填充該等穿孔。A method for manufacturing a transparent thin film transistor with simplified procedures, comprising: (a) sputtering a patterned gate circuit layer on a transparent substrate; (b) sputtering a gate dielectric layer on the patterned gate circuit layer to fully cover Patterning the gate circuit layer; (c) sputtering a patterned channel layer of indium gallium zinc oxide doped with carriers on the gate dielectric layer; (d) sputtering and connecting the patterned channel layer on the patterned channel layer Layer patterned source, drain line layer; (e) sputtering passivation layer on the patterned source, drain line layer to fully cover each layer of steps (a) to (d); (f) on the passivation layer Forming a plurality of through holes with the gate dielectric layer, some of the through holes expose the patterned gate wiring layer, and the remaining through holes expose one of the patterned source wiring layer and the patterned drain wiring layer; 1. A second patterned transparent circuit layer to fill the through holes.

Description

工序簡化的透明薄膜電晶體的製法Manufacturing Method of Transparent Thin Film Transistor with Simplified Process

本發明是有關於一種薄膜電晶體的製法,特別是指一種工序簡化的透明薄膜電晶體的製法。The invention relates to a method for manufacturing a thin film transistor, in particular to a method for manufacturing a transparent thin film transistor with simplified procedures.

薄膜電晶體(thin film transistor,以下簡稱TFT)是常見的一種金屬氧化物半導體場效電晶體(MOSFET),其可經由各種半導體材料所製成;其中,最常見者為矽(Si),如,非晶矽(a-Si)或多晶矽(poly-Si)。基於構成TFT之源極(source)、汲極(drain)的外部信號線路(data line)是由透明半導體或透明電極(如,ITO)所製成時,可使得TFT完全透明;因此,TFT也已慣用於主動式的顯示器上。TFT相關技術領域的研發人員皆知,構成TFT裝置的製程相當繁瑣。基於其製程步驟甚多,導致整體製程中所需執行的黃光微影程序(photolithography process)多,也因此所需使用到的光罩數量多。Thin film transistor (thin film transistor, hereinafter referred to as TFT) is a common metal oxide semiconductor field effect transistor (MOSFET), which can be made of various semiconductor materials; among them, the most common one is silicon (Si), such as , amorphous silicon (a-Si) or polycrystalline silicon (poly-Si). When the external signal line (data line) based on the source (source) and drain (drain) of the TFT is made of a transparent semiconductor or a transparent electrode (such as ITO), the TFT can be completely transparent; therefore, the TFT is also Has been used in active display. As is well known to researchers in the field of TFT-related technologies, the manufacturing process for forming a TFT device is quite cumbersome. Due to the many steps in the manufacturing process, many photolithography processes are required to be executed in the overall manufacturing process, and therefore a large number of photomasks are required to be used.

如Duk Young Jeong等人於Adv. Eng. Mater. 2020, 22, 1901497所發表的Low-Temperature Polysiliscon oxide Thin-Film Transistors with Coplanar Structure Using Six Photomask Steps Demonstrating High Inverter Gain of 264 VV -1一文(以下稱前案1)中,便公開一種現有的共平面的互補式金氧半(CMOS)之TFT裝置1(見圖4)的製法。 For example, Low-Temperature Polysiliscon oxide Thin-Film Transistors with Coplanar Structure Using Six Photomask Steps Demonstrating High Inverter Gain of 264 VV -1 published by Duk Young Jeong et al. in Adv. Eng. Mater. 2020, 22, 1901497 (hereinafter referred to as In the previous application 1), a method for manufacturing a conventional coplanar complementary metal-oxide-semiconductor (CMOS) TFT device 1 (see FIG. 4 ) is disclosed.

前案1所公開的CMOS之TFT裝置1的製法,其包括如下各段所述的步驟。The manufacturing method of the CMOS TFT device 1 disclosed in the previous application 1 includes the steps described in the following paragraphs.

參閱圖1所示之該前案1之製法的一步驟(A)、一步驟(B)與一步驟(C)。該步驟(A)是經由電漿輔助化學氣相沉積法(以下簡稱PECVD)在一透明玻璃基板10的一表面上沉積一圖案化低溫多晶矽(以下簡稱LTPS)層1110,以作為如圖4所示之COMS之TFT裝置1的一p型TFT單元11之一p型通道層111。詳細來說,該步驟(A)是利用PECVD依序在該透明玻璃基板10表面上沉積一400 nm的SiO 2緩衝層與一100 nm之氫化非晶矽(a-Si:H)層後,並在450 ˚C的條件下對該氫化非晶矽層依序施予1小時的脫氫處理與藍光飛秒雷射退火(BLA)處理,以使該氫化非晶矽層結晶化成一LTPS層;然後,經由濕蝕刻(wet etching)以對該LTPS層施予圖案化從而得到該圖案化LTPS層1110。該步驟(B)是利用PECVD在該圖案化LTPS層1110上沉積一100 nm的SiO 2,以做為如圖4所示之COMS之TFT裝置1的一高溫閘極絕緣(high temperature gate dielectric insulation;以下簡稱HT-GI)層13。該步驟(C)是利用直流濺鍍(dc sputtering)法在該HT-GI層13上濺鍍一25 nm的圖案化非晶型氧化銦鎵鋅(以下簡稱a-IGZO)層1210,以做為如圖4所示之COMS之TFT裝置1的一n型TFT單元12之一n型通道層121;其中,該圖案化a-IGZO層1210是經由乾蝕刻法來圖案化一a-IGZO層所得到。 Refer to a step (A), a step (B) and a step (C) of the method for making the previous case 1 shown in FIG. 1 . The step (A) is to deposit a patterned low-temperature polysilicon (hereinafter referred to as LTPS) layer 1110 on a surface of a transparent glass substrate 10 by plasma-assisted chemical vapor deposition (hereinafter referred to as PECVD), as shown in FIG. A p-type channel layer 111 of a p-type TFT unit 11 of a CMOS TFT device 1 is shown. In detail, the step (A) is to sequentially deposit a 400 nm SiO2 buffer layer and a 100 nm hydrogenated amorphous silicon (a-Si:H) layer on the surface of the transparent glass substrate 10 by PECVD, And under the condition of 450 °C, the hydrogenated amorphous silicon layer was subjected to dehydrogenation treatment and blue femtosecond laser annealing (BLA) treatment for 1 hour in sequence, so that the hydrogenated amorphous silicon layer was crystallized into an LTPS layer and then, patterning the LTPS layer through wet etching (wet etching) to obtain the patterned LTPS layer 1110 . The step (B) is to use PECVD to deposit a 100 nm SiO 2 on the patterned LTPS layer 1110 as a high temperature gate dielectric insulation of the COMS TFT device 1 shown in FIG. 4 . ; Hereinafter referred to as HT-GI) layer 13. In this step (C), a 25 nm patterned amorphous indium gallium zinc oxide (hereinafter referred to as a-IGZO) layer 1210 is sputtered on the HT-GI layer 13 by a dc sputtering method, so that It is an n-type channel layer 121 of an n-type TFT unit 12 of a COMS TFT device 1 as shown in FIG. 4; wherein, the patterned a-IGZO layer 1210 is a patterned a-IGZO layer by dry etching get.

參閱圖2所示之該前案1之製法的一步驟(D)、一步驟(E)與一步驟(F)。該步驟(D)是利用PECVD在該HT-GI層13與該圖案化a-IGZO層1210上沉積一100 nm的SiO 2,以做為如圖4所示之COMS之TFT裝置1的一低溫閘極絕緣(以下簡稱LT-GI)層14。該步驟(E)是利用濺鍍法並配合使用黃光微影與蝕刻等程序在如圖4所示之COMS之TFT裝置1的p型TFT單元11之p型通道層111與n型TFT單元12之n型通道層121上的LT-GI層14上分別沉積一150 nm的圖案化Mo層15,以藉此在該n型通道層121上的LT-GI層14上定義出該n型TFT單元12的一n型閘極層122,並使該n型通道層121的相反兩側(即,該圖案化a-IGZO層1210的相反兩側)自其所對應的LT-GI層14處裸露出來。該步驟(F)是利用自我對準程序(self-align process)在該圖案化a-IGZO層1210的該相反兩側上摻雜高濃度的n型載子,以令裸露於外的該圖案化a-IGZO層1210之該兩側分別構成該n型通道層121的一n型源極接觸區1211與一n型汲極接觸區1212。 Referring to a step (D), a step (E) and a step (F) of the method for making the previous case 1 shown in FIG. 2 . The step (D) is to use PECVD to deposit a 100 nm SiO 2 on the HT-GI layer 13 and the patterned a-IGZO layer 1210, as a low temperature for the COMS TFT device 1 shown in FIG. 4 Gate insulating (hereinafter referred to as LT-GI) layer 14 . This step (E) is to use the sputtering method in conjunction with the use of yellow light lithography and etching procedures between the p-type channel layer 111 and the n-type TFT unit 12 of the p-type TFT unit 11 of the TFT device 1 of COMS as shown in FIG. 4 A 150 nm patterned Mo layer 15 is respectively deposited on the LT-GI layer 14 on the n-type channel layer 121, thereby defining the n-type TFT unit on the LT-GI layer 14 on the n-type channel layer 121 An n-type gate layer 122 of 12, and the opposite sides of the n-type channel layer 121 (that is, the opposite sides of the patterned a-IGZO layer 1210) are exposed from the corresponding LT-GI layer 14 come out. The step (F) is to dope the opposite sides of the patterned a-IGZO layer 1210 with high-concentration n-type carriers using a self-alignment process, so that the exposed pattern The two sides of the Fa-IGZO layer 1210 form an n-type source contact region 1211 and an n-type drain contact region 1212 of the n-type channel layer 121 respectively.

參閱圖3所示之該前案1之製法的一步驟(G)、一步驟(H)與一步驟(I)。該步驟(G)是在如圖4所示之COMS之TFT裝置1的該n型TFT單元12處與該p型TFT單元11的一部份處覆蓋上一圖案化光阻(PR)層(圖未示)後,對裸露於該圖案化光阻層外的該圖案化Mo層15與HT-GI層13及LT-GI層14疊層分別依序施予濕蝕刻與乾蝕刻,從而依序定義出如圖4所示之COMS之TFT裝置1的p型TFT單元11的一p型閘極層112,並使該p型通道層111的相反兩側(即,該圖案化LTPS層1110的相反兩側)自其所對應的HT-GI層13及LT-GI層14疊層處裸露出來。該步驟(H)是經由離子佈植系統在該圖案化LTPS層1110的該相反兩側上施予自我對準程序以摻雜入p型載子,令裸露於外的該圖案化LTPS層1110之該兩側分別構成該p型通道層111的一p型源極接觸區1111與一p型汲極接觸區1112。該步驟(I)是在300 ˚C的條件下於該p型閘極層112與該n型閘極層122上依序堆疊SiO 2與SiNx以構成一覆蓋該透明玻璃基板10的中間層16。 Referring to a step (G), a step (H) and a step (I) of the method for making the previous case 1 shown in FIG. 3 . This step (G) is to cover a patterned photoresist (PR) layer ( (not shown), wet etching and dry etching are applied to the patterned Mo layer 15 exposed outside the patterned photoresist layer, and the HT-GI layer 13 and LT-GI layer 14 laminated layers respectively in sequence, thereby according to Sequentially define a p-type gate layer 112 of the p-type TFT unit 11 of the TFT device 1 of COMS as shown in FIG. opposite sides) are exposed from the corresponding lamination of the HT-GI layer 13 and the LT-GI layer 14. The step (H) is to apply a self-alignment process on the opposite sides of the patterned LTPS layer 1110 via an ion implantation system to dope p-type carriers, so that the exposed patterned LTPS layer 1110 The two sides respectively form a p-type source contact region 1111 and a p-type drain contact region 1112 of the p-type channel layer 111 . The step (I) is to sequentially stack SiO 2 and SiNx on the p-type gate layer 112 and the n-type gate layer 122 under the condition of 300 °C to form an intermediate layer 16 covering the transparent glass substrate 10 .

參閱圖4所示之該前案1之製法的一步驟(J)、一步驟(K)與一步驟(L)。該步驟(J)是利用乾蝕刻法對該中間層16施予圖案化處理,以在該p型源極接觸區1111、p型汲極接觸區1112、n型源極接觸區1211與n型汲極接觸區1212等處各自對應形成一穿孔(via hole)160。該步驟(K)是在圖案化後的該中間層16上濺鍍一Mo層17以填滿該等穿孔160。該步驟(L)是圖案化該步驟(K)的Mo層17,以藉此在該p型源極接觸區1111、p型汲極接觸區1112、n型源極接觸區1211與n型汲極接觸區1212等處,分別定義出該p型TFT單元11之一p型源極113與一p型汲極114,及該n型TFT單元12之一n型源極123與一n型汲極124,並製得該CMOS之TFT裝置1。Referring to a step (J), a step (K) and a step (L) of the method for making the previous case 1 shown in FIG. 4 . This step (J) is to apply a patterning process to the intermediate layer 16 by dry etching, so that the p-type source contact region 1111, the p-type drain contact region 1112, the n-type source contact region 1211 and the n-type A via hole 160 is correspondingly formed in the drain contact region 1212 and the like. The step (K) is sputtering a Mo layer 17 on the patterned intermediate layer 16 to fill the through holes 160 . The step (L) is to pattern the Mo layer 17 of the step (K), so that the p-type source contact region 1111, the p-type drain contact region 1112, the n-type source contact region 1211 and the n-type drain contact region 1111 are patterned. A p-type source 113 and a p-type drain 114 of the p-type TFT unit 11, and an n-type source 123 and an n-type drain of the n-type TFT unit 12 are respectively defined at the pole contact region 1212 and the like. electrode 124, and make the CMOS TFT device 1.

由上面各段所述可知,該前案1之製法雖然可在六道圖案化程序(即,僅採用六道光罩)中完成該CMOS之TFT裝置1。然而,該前案1的製法在實施各個PECVD程序以沉積SiO 2或SiNx時,皆需使用到甲矽烷(SiH 4)來做為其沉積SiO 2或SiNx時的反應氣體源。SiH 4屬於易燃氣體,其在空氣中爆炸性極高,只要1%的SiH 4與純氮氣(N 2)混合在一起就能引發爆炸。因此,前述SiH 4對於該前案1之製法整體製程上無疑是造成一定的危險性。再者,前案1之製法還需對該p型通道層111與該n型通道層121分別施予p型載子與n型載子的離子佈植程序,以完成各自所對應的p型源極接觸區1111及p型汲極接觸區1112與n型源極接觸區1211及n型汲極接觸區1212,才能各自與其所對應之p型源極113及p型汲極114與n型源極123及n型汲極124完成歐姆接觸,製程甚為繁瑣。 It can be known from the above paragraphs that the manufacturing method of the previous case 1 can complete the CMOS TFT device 1 in six patterning procedures (that is, only six photomasks are used). However, in the method of the previous document 1, monosilane (SiH 4 ) is required to be used as a reactive gas source for depositing SiO 2 or SiNx when performing various PECVD processes to deposit SiO 2 or SiNx. SiH 4 is a flammable gas, which is highly explosive in air, as long as 1% SiH 4 is mixed with pure nitrogen (N 2 ) to cause an explosion. Therefore, the aforementioned SiH 4 undoubtedly poses a certain risk to the overall process of the method of the previous case 1. Furthermore, the manufacturing method of the previous case 1 also needs to perform an ion implantation procedure of p-type carriers and n-type carriers on the p-type channel layer 111 and the n-type channel layer 121, respectively, so as to complete the corresponding p-type channels. The source contact region 1111 and the p-type drain contact region 1112 and the n-type source contact region 1211 and the n-type drain contact region 1212 can respectively correspond to the p-type source 113 and the p-type drain 114 and the n-type The source electrode 123 and the n-type drain electrode 124 complete the ohmic contact, and the manufacturing process is very complicated.

經上述說明可知,減少TFT裝置製程上的危險性並簡化其製法上的繁瑣步驟,是所屬技術領域中的相關技術人員有待改善的課題。From the above description, it can be seen that reducing the risk in the TFT device manufacturing process and simplifying the tedious steps in its manufacturing method is a subject to be improved by those skilled in the art.

因此,本發明的目的,即在提供一種能避免使用到易燃性氣體並解決製程繁瑣問題之工序簡化的透明薄膜電晶體的製法。Therefore, the object of the present invention is to provide a transparent thin film transistor manufacturing method which avoids the use of flammable gas and solves the problem of cumbersome manufacturing process.

於是,本發明工序簡化的透明薄膜電晶體的製法,其包括以下步驟:一步驟(a)、一步驟(b)、一步驟(c)、一步驟(d)、一步驟(f),及一步驟(g)。Then, the preparation method of the transparent thin film transistor of the present invention process simplification, it comprises the following steps: a step (a), a step (b), a step (c), a step (d), a step (f), and a step (g).

該步驟(a)是在一透明基板上濺鍍一圖案化閘極線路層。The step (a) is sputtering a patterned gate circuit layer on a transparent substrate.

該步驟(b)是在該圖案化閘極線路層上濺鍍一閘極介電層,以全面覆蓋該圖案化閘極線路層。The step (b) is sputtering a gate dielectric layer on the patterned gate circuit layer to fully cover the patterned gate circuit layer.

該步驟(c)是在該閘極介電層上濺鍍一由一經摻雜有載子的氧化銦鎵鋅所製成的圖案化通道層。The step (c) is sputtering a patterned channel layer made of carrier-doped InGaZnO on the gate dielectric layer.

該步驟(d)是在該圖案化通道層上濺鍍連接該圖案化通道層的一圖案化源極線路層與一圖案化汲極線路層。The step (d) is sputtering a patterned source line layer and a patterned drain line layer connecting the patterned channel layer on the patterned channel layer.

該步驟(e)是在該圖案化源極線路層與圖案化汲極線路層上濺鍍一鈍化層,以全面覆蓋該步驟(a)至步驟(d)的各層。The step (e) is sputtering a passivation layer on the patterned source wiring layer and the patterned drain wiring layer, so as to completely cover each layer of the step (a) to the step (d).

該步驟(f)是於該鈍化層與閘極介電層形成複數穿孔,該等穿孔中的部分穿孔裸露出該圖案化閘極線路層,且該等穿孔中的剩餘穿孔裸露出該圖案化源極線路層與該圖案化汲極線路層兩者中的其中一者。The step (f) is to form a plurality of through holes in the passivation layer and the gate dielectric layer, part of the through holes expose the patterned gate wiring layer, and the rest of the through holes expose the patterned One of the source wiring layer and the patterned drain wiring layer.

該步驟(g)是濺鍍彼此分開的一第一圖案化透明線路層與一第二圖案化透明線路層以填充該等穿孔。The step (g) is sputtering a first patterned transparent circuit layer and a second patterned transparent circuit layer which are separated from each other to fill the through holes.

本發明的功效在於:該閘極介電層、圖案化通道層與鈍化層皆是由濺鍍所實施完成,基於整體製程中無須使用到易燃氣體因而具有安全性,且該圖案化通道層是由經摻雜有載子的氧化銦鎵鋅所製成,因而無須進行額外的離子佈植程序,整體製程更為簡化。The effect of the present invention is that: the gate dielectric layer, the patterned channel layer and the passivation layer are all completed by sputtering, which is safe because no flammable gas is used in the overall manufacturing process, and the patterned channel layer It is made of InGaZnO doped with carriers, so there is no need for additional ion implantation procedures, and the overall manufacturing process is simplified.

參閱圖5與圖6,本發明工序簡化的透明薄膜電晶體的製法的一實施例,其實質上是由以下步驟所構成:一步驟(a)、一步驟(b)、一步驟(c)、一步驟(d)、一步驟(f),及一步驟(g)。Referring to Fig. 5 and Fig. 6, an embodiment of the manufacturing method of the transparent thin film transistor of the present invention process simplification, it is made up of following steps substantially: a step (a), a step (b), a step (c) , a step (d), a step (f), and a step (g).

如圖5所示,該步驟(a)是在一透明基板2上濺鍍一圖案化閘極線路層3。具體來說,本發明該實施例之步驟(a)是使用一直流濺鍍系統(圖未示)來實施,其是先將該透明基板2設置在該濺鍍系統的一反應室內的一載台上,並在該透明基板2上間隔水平設置一具有該圖案化閘極線路層3之圖案輪廓的光罩後,控制該反應室的一底壓(base pressure)達~1×10 -6torr且該載台溫度達300℃時,以10 sccm的條件於該反應室內引入氬氣(Ar),並對該反應室內的一直徑為2吋且與該透明基板2間的一工作距離為7.5 cm的Mo靶材提供 70 W的功率,使該濺鍍系統之反應室內的工作壓力(working pressure)維持在9×10 -3torr的條件下,令經Ar經解離後以轟擊該Mo靶材達15分鐘,從而在該透明基板2上濺鍍出200 nm至220 nm的圖案化閘極線路層3。須說明的是,本發明該實施例之步驟(a)之圖案化閘極線路層3雖然是在濺鍍過程中同時使用光罩一起實施;然而,所屬技術領域中的相關研發人員皆知,其也可以是未使用該光罩,在成膜之後採用黃光微影與蝕刻等程序來達成。 As shown in FIG. 5 , the step (a) is sputtering a patterned gate circuit layer 3 on a transparent substrate 2 . Specifically, the step (a) of this embodiment of the present invention is implemented using a direct current sputtering system (not shown), which is to first place the transparent substrate 2 in a reaction chamber of the sputtering system on the stage, and horizontally arrange a photomask having the pattern outline of the patterned gate circuit layer 3 on the transparent substrate 2, and then control a base pressure of the reaction chamber to ~1×10 -6 torr and when the stage temperature reached 300°C, argon (Ar) was introduced into the reaction chamber at a rate of 10 sccm, and a diameter in the reaction chamber was 2 inches and a working distance between the transparent substrate 2 was The 7.5 cm Mo target provides a power of 70 W, so that the working pressure in the reaction chamber of the sputtering system is maintained at 9×10 -3 torr, and the Mo target is bombarded after the dissociation of Ar The material lasted for 15 minutes, so that a patterned gate circuit layer 3 with a thickness of 200 nm to 220 nm was sputtered on the transparent substrate 2 . It should be noted that, although the patterned gate circuit layer 3 in step (a) of this embodiment of the present invention is implemented by using a photomask at the same time during the sputtering process; It can also be achieved without using the photomask, and after the film is formed, processes such as lithography and etching are used.

該步驟(b)是在該圖案化閘極線路層3上濺鍍一閘極介電層4,以全面覆蓋該圖案化閘極線路層3(見圖5)。本發明該實施例之步驟(b)的製程條件大致上是相同於該步驟(a),其不同處是在於,該步驟(b)是採用一射頻磁控(r.f. magnetron)濺鍍系統來實施。詳細來說,該步驟(b)之射頻磁控濺鍍系統的一Al 2O 3靶材是由58 at%的Al 2O 3粉末與42 at%的Al粉末經熱壓並燒結而成,且該步驟(b)的氬氣與氧氣流量皆為5 sccm,提供於該Al 2O 3靶材的功率為80 W,且濺鍍時間是50分鐘,該閘極介電層4的成膜厚度約40 nm至50 nm。經前述說明可知,本發明該實施例之閘極介電層4是由氧化鋁所製成。 The step (b) is sputtering a gate dielectric layer 4 on the patterned gate circuit layer 3 to completely cover the patterned gate circuit layer 3 (see FIG. 5 ). The process conditions of the step (b) of this embodiment of the present invention are substantially the same as the step (a), the difference is that the step (b) is implemented by using a radio frequency magnetron (rf magnetron) sputtering system . In detail, an Al 2 O 3 target of the RF magnetron sputtering system in step (b) is formed by hot pressing and sintering 58 at% Al 2 O 3 powder and 42 at% Al powder, And the argon and oxygen flow rates in step (b) are both 5 sccm, the power provided to the Al 2 O 3 target is 80 W, and the sputtering time is 50 minutes, the film formation of the gate dielectric layer 4 The thickness is about 40 nm to 50 nm. It can be seen from the foregoing description that the gate dielectric layer 4 in this embodiment of the present invention is made of aluminum oxide.

再參閱圖5,該步驟(c)是在該閘極介電層4上濺鍍一由一經摻雜有載子的氧化銦鎵鋅(IGZO)所製成的圖案化通道層5。較佳地,該經摻雜有載子的氧化銦鎵鋅是摻雜有複數p型載子。更佳地,該等p型載子是選自N 3+,或Sb 3+。在本發明該實施例中,該等p型載子是N 3+。詳細來說,本發明該實施例之步驟(c)之實施條件大致上是相同於該步驟(b),其不同處是在於,實施該步驟(c)時所使用的一光罩具有該圖案化通道層5的圖案輪廓,且該步驟(c)之射頻磁控濺鍍系統的一摻雜有載子的氧化銦鎵鋅(IGZO)靶材是由21 at%的In 2O 3粉末、10 at%的In粉末、12 at%的Ga粉末、35 at%的GaN粉末、6 at%的Zn粉末與7 at%的Sn粉末經熱壓並燒結而成,該步驟(c)的氬氣與氧氣流量皆為10 sccm,濺鍍時間是15分鐘,且該圖案化通道層5的成膜厚度約50 nm至65 nm。 Referring to FIG. 5 again, the step (c) is sputtering a patterned channel layer 5 made of carrier-doped indium gallium zinc oxide (IGZO) on the gate dielectric layer 4 . Preferably, the carrier-doped InGaZnO is doped with a plurality of p-type carriers. More preferably, the p-type carriers are selected from N 3+ or Sb 3+ . In this embodiment of the invention, the p-type carriers are N 3+ . In detail, the implementation conditions of the step (c) of this embodiment of the present invention are substantially the same as the step (b), the difference is that a photomask used when implementing the step (c) has the pattern The pattern outline of the channel layer 5, and a carrier-doped indium gallium zinc oxide (IGZO) target material of the radio frequency magnetron sputtering system of the step (c) is made of 21 at% In 2 O 3 powder, 10 at% In powder, 12 at% Ga powder, 35 at% GaN powder, 6 at% Zn powder and 7 at% Sn powder are hot pressed and sintered, and the argon gas in step (c) The oxygen flow rate is 10 sccm, the sputtering time is 15 minutes, and the film thickness of the patterned channel layer 5 is about 50 nm to 65 nm.

同樣參閱圖5,該步驟(d)是在該圖案化通道層5上濺鍍連接該圖案化通道層5的一圖案化源極線路層61與一圖案化汲極線路層62。本發明該實施例之步驟(d)之實施條件大致上是相同於該步驟(a),其不同處是在於,實施該步驟(d)時所使用的一光罩具有該圖案化源極線路層61與該圖案化汲極線路層62的圖案輪廓。Referring also to FIG. 5 , the step (d) is sputtering a patterned source line layer 61 and a patterned drain line layer 62 connected to the patterned channel layer 5 on the patterned channel layer 5 . The implementation conditions of the step (d) of this embodiment of the present invention are substantially the same as the step (a), the difference is that a photomask used when implementing the step (d) has the patterned source circuit Layer 61 and the pattern profile of the patterned drain line layer 62 .

參閱圖6,該步驟(e)是在該圖案化源極線路層61與圖案化汲極線路層62上濺鍍一鈍化層7,以全面覆蓋該步驟(a)至步驟(d)的各層3、4、5、61、62。本發明該實施例之步驟(e)之實施條件大致上是相同於該步驟(b),其不同處是在於,該步驟(e)的濺鍍時間是55分鐘至60分鐘,該鈍化層7的成膜厚度約200 nm。同樣地,經前述說明可知,本發明該實施例之鈍化層7也是由氧化鋁所製成。Referring to FIG. 6, the step (e) is sputtering a passivation layer 7 on the patterned source wiring layer 61 and the patterned drain wiring layer 62, so as to fully cover each layer of the step (a) to the step (d) 3, 4, 5, 61, 62. The implementation conditions of the step (e) of this embodiment of the present invention are substantially the same as the step (b), and the difference is that the sputtering time of the step (e) is 55 minutes to 60 minutes, and the passivation layer 7 The film thickness is about 200 nm. Likewise, it can be seen from the foregoing description that the passivation layer 7 in this embodiment of the present invention is also made of aluminum oxide.

該步驟(f)是於該鈍化層7與閘極介電層4形成複數穿孔70,該等穿孔70中的部分穿孔70裸露出該圖案化閘極線路層3(請見圖6右側穿孔70),且該等穿孔70中的剩餘穿孔70裸露出該圖案化源極線路層61與該圖案化汲極線路層62兩者中的其中一者(請見圖6左側穿孔70)。在本發明該實施例中,是利用已知的黃光微影與蝕刻等程序來形成該等穿孔70,且剩餘穿孔70是如圖6所示,裸露出該圖案化汲極線路層62。The step (f) is to form a plurality of through holes 70 in the passivation layer 7 and the gate dielectric layer 4, and part of the through holes 70 in the through holes 70 expose the patterned gate circuit layer 3 (please refer to the through holes 70 on the right side of FIG. 6 . ), and the remaining through holes 70 of the through holes 70 expose one of the patterned source wiring layer 61 and the patterned drain wiring layer 62 (see the left through hole 70 in FIG. 6 ). In this embodiment of the present invention, the through-holes 70 are formed by known procedures such as lithography and etching, and the remaining through-holes 70 are exposed to the patterned drain circuit layer 62 as shown in FIG. 6 .

再參閱圖6,該步驟(g)是濺鍍彼此分開的一第一圖案化透明線路層81與一第二圖案化透明線路層82以填充該等穿孔70。本發明該實施例之步驟(g)的實施條件大致上是相同於該步驟(c),其不同處是在於,實施該步驟(g)時所使用的一光罩具有該第一圖案化透明線路層81與該第二圖案化透明線路層82的圖案輪廓,且該步驟(g)之射頻磁控濺鍍系統的一氧化銦錫(ITO)靶材是由90 at%的In 2O 3粉末與10 at%的SnO 2粉末經熱壓並燒結而成,濺鍍時間是20分鐘至25分鐘,且該等該圖案化透明線路層81、82的成膜厚度約40 nm至50 nm。 Referring to FIG. 6 again, the step (g) is sputtering a first patterned transparent wiring layer 81 and a second patterned transparent wiring layer 82 separated from each other to fill the through holes 70 . The implementation conditions of the step (g) of this embodiment of the present invention are substantially the same as the step (c), the difference is that a photomask used in the implementation of the step (g) has the first patterned transparent The pattern profile of the circuit layer 81 and the second patterned transparent circuit layer 82, and the indium tin oxide (ITO) target of the RF magnetron sputtering system in step (g) is made of 90 at% In 2 O 3 The powder and 10 at% SnO 2 powder are hot-pressed and sintered, the sputtering time is 20 minutes to 25 minutes, and the film thickness of the patterned transparent circuit layers 81 and 82 is about 40 nm to 50 nm.

經本發明該實施例之製法的詳細說明可知,本發明該實施例是一p型MOS結構的透明薄膜電晶體,其整體製作過程中雖然只使用到五道光罩,且實質上是由前述步驟(a)、步驟(b)、步驟(c)、步驟(d)、步驟(f),及步驟(g)所構成;然而,可以知道的是,若所屬技術領域中的相關研發人員欲製作出同時具有p型MOS結構與n型MOS結構的CMOSFET,只需多加一道光罩與一個濺鍍步驟(即,濺鍍一由一經摻雜有n型載子的IGZO所製成的圖案化通道層),即可在六道光罩下完成CMOSFET之透明薄膜電晶體。此處更須說明的是,本發明之透明薄膜電晶體的整體製作過程中,其閘極介電層4、圖案化通道層5與鈍化層7皆無需使用到易燃氣體(SiH 4),相較於先前技術所提到的前案1更為安全外,且在濺鍍該圖案化通道層5時所使用的該摻雜有載子的氧化銦鎵鋅(IGZO)靶材基於其本身已混有GaN,因而使該圖案化通道層5本質上便摻雜有p型載子,無須如該前案1般進行額外的離子佈植程序,整體製程相對該前案1更為簡化。 It can be seen from the detailed description of the manufacturing method of this embodiment of the present invention that this embodiment of the present invention is a transparent thin film transistor with a p-type MOS structure. Although only five photomasks are used in the overall manufacturing process, it is essentially composed of the aforementioned steps ( a), step (b), step (c), step (d), step (f), and step (g); however, it can be known that if the relevant research and development personnel in the technical field want to make For CMOSFETs with p-type MOS structure and n-type MOS structure at the same time, only one more photomask and one sputtering step (that is, sputtering a patterned channel layer made of IGZO doped with n-type carriers ), the transparent thin film transistor of CMOSFET can be completed under six masks. What needs to be explained here is that in the overall manufacturing process of the transparent thin film transistor of the present invention, the gate dielectric layer 4 , the patterned channel layer 5 and the passivation layer 7 do not need to use flammable gas (SiH 4 ), Compared with the previous case 1 mentioned in the prior art, it is safer, and the carrier-doped indium gallium zinc oxide (IGZO) target used in sputtering the patterned channel layer 5 is based on its own GaN is already mixed, so that the patterned channel layer 5 is essentially doped with p-type carriers, and there is no need to perform an additional ion implantation procedure as in the previous case 1, and the overall manufacturing process is more simplified compared with the previous case 1.

綜上所述,本發明工序簡化的透明薄膜電晶體的製法不僅因整體製程中無須使用到易燃氣體而具有安全性外,也無須額外實施離子佈植程序,故確實能達成本發明的目的。To sum up, the manufacturing method of the transparent thin film transistor with simplified process of the present invention is not only safe because no flammable gas is used in the overall manufacturing process, but also does not require additional ion implantation procedures, so the purpose of the present invention can indeed be achieved .

惟以上所述者,僅為本發明的實施例而已,當不能以此限定本發明實施的範圍,凡是依本發明申請專利範圍及專利說明書內容所作的簡單的等效變化與修飾,皆仍屬本發明專利涵蓋的範圍內。But the above-mentioned ones are only embodiments of the present invention, and should not limit the scope of the present invention. All simple equivalent changes and modifications made according to the patent scope of the present invention and the content of the patent specification are still within the scope of the present invention. Within the scope covered by the patent of the present invention.

2          透明基板 3          圖案化閘極線路層 4          閘極介電層 5          圖案化通道層 61        圖案化源極線路層 62        圖案化汲極線路層 7          鈍化層 81        第一圖案化透明線路層 82        第二圖案化透明線路層 2 Transparent substrate 3 Patterned gate line layer 4 Gate dielectric layer 5 patterned channel layer 61 Patterned source line layer 62 patterned drain line layer 7 passivation layer 81 The first patterned transparent circuit layer 82 Second patterned transparent circuit layer

本發明的其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一元件製作流程的正視示意圖,說明一種現有的共平面的互補式金氧半(COMS)之TFT裝置的製法的一步驟(A)、一步驟(B)與一步驟(C); 圖2是一 元件製作流程的正視示意圖,說明該現有之TFT裝置的製法的一步驟(D)、一步驟(E)與一步驟(F); 圖3是一 元件製作流程的正視示意圖,說明該現有之TFT裝置的製法的一步驟(G)、一步驟(H)與一步驟(I); 圖4是一 元件製作流程的正視示意圖,說明該現有之TFT裝置的製法的一步驟(J)、一步驟(K)與一步驟(L); 圖5是一元件製作流程的正視示意圖,說明本發明之工序簡化的透明薄膜電晶體的製法的一實施例的一步驟(a)、一步驟(b)、一步驟(c),及一步驟(d);及 圖6是一 元件製作流程的正視示意圖,說明本發明該實施例之製法的一步驟(e)、一步驟(f),及一步驟(g)。 Other features and effects of the present invention will be clearly presented in the implementation manner with reference to the drawings, wherein: 1 is a schematic front view of an element manufacturing process, illustrating a step (A), a step (B) and a step (C) of a conventional coplanar complementary metal-oxide-semiconductor (COMS) TFT device manufacturing method; FIG. 2 is a schematic front view of a component manufacturing process, illustrating a step (D), a step (E) and a step (F) of the conventional TFT device manufacturing method; Fig. 3 is a schematic front view of an element manufacturing process, illustrating a step (G), a step (H) and a step (I) of the manufacturing method of the existing TFT device; FIG. 4 is a schematic front view of an element manufacturing process, illustrating a step (J), a step (K) and a step (L) of the conventional TFT device manufacturing method; Fig. 5 is a schematic front view of an element manufacturing process, illustrating a step (a), a step (b), a step (c), and a step of an embodiment of a transparent thin film transistor manufacturing method with simplified procedures of the present invention (d); and Fig. 6 is a schematic front view of a device manufacturing process, illustrating a step (e), a step (f), and a step (g) of the method of the embodiment of the present invention.

2          透明基板 3          圖案化閘極線路層 4          閘極介電層 5          圖案化通道層 61        圖案化源極線路層 62        圖案化汲極線路層 7          鈍化層 81        第一圖案化透明線路層 82        第二圖案化透明線路層 2 Transparent substrate 3 Patterned gate line layer 4 Gate dielectric layer 5 patterned channel layer 61 Patterned source line layer 62 patterned drain line layer 7 passivation layer 81 The first patterned transparent circuit layer 82 Second patterned transparent circuit layer

Claims (4)

一種工序簡化的透明薄膜電晶體的製法,其包含以下步驟: 一步驟(a),在一透明基板上濺鍍一圖案化閘極線路層; 一步驟(b),在該圖案化閘極線路層上濺鍍一閘極介電層以全面覆蓋該圖案化閘極線路層; 一步驟(c),在該閘極介電層上濺鍍一由一經摻雜有載子的氧化銦鎵鋅所製成的圖案化通道層; 一步驟(d),在該圖案化通道層上濺鍍連接該圖案化通道層的一圖案化源極線路層與一圖案化汲極線路層; 一步驟(e),在該圖案化源極線路層與圖案化汲極線路層上濺鍍一鈍化層以全面覆蓋該步驟(a)至步驟(d)的各層; 一步驟(f),於該鈍化層與閘極介電層形成複數穿孔,該等穿孔中的部分穿孔裸露出該圖案化閘極線路層,且該等穿孔中的剩餘穿孔裸露出該圖案化源極線路層與該圖案化汲極線路層兩者中的其中一者;及 一步驟(g),濺鍍彼此分開的一第一圖案化透明線路層與一第二圖案化透明線路層以填充該等穿孔。 A method for preparing a transparent thin film transistor with simplified procedures, comprising the following steps: A step (a), sputtering a patterned gate circuit layer on a transparent substrate; A step (b), sputtering a gate dielectric layer on the patterned gate wiring layer to completely cover the patterned gate wiring layer; A step (c), sputtering a patterned channel layer made of carrier-doped indium gallium zinc oxide on the gate dielectric layer; A step (d), sputtering a patterned source line layer and a patterned drain line layer connecting the patterned channel layer on the patterned channel layer; A step (e), sputtering a passivation layer on the patterned source wiring layer and the patterned drain wiring layer to fully cover each layer of the step (a) to the step (d); A step (f), forming a plurality of through holes in the passivation layer and the gate dielectric layer, part of the through holes expose the patterned gate circuit layer, and the remaining through holes in the through holes expose the patterned one of a source wiring layer and the patterned drain wiring layer; and A step (g), sputtering a first patterned transparent circuit layer and a second patterned transparent circuit layer separated from each other to fill the through holes. 如請求項1所述的工序簡化的透明薄膜電晶體的製法,其中,該經摻雜有載子的氧化銦鎵鋅是摻雜有複數p型載子。The process-simplified method for manufacturing a transparent thin film transistor as claimed in Claim 1, wherein the carrier-doped InGaZnO is doped with a plurality of p-type carriers. 如請求項2所述的工序簡化的透明薄膜電晶體的製法,其中,該等p型載子是選自N 3+,或Sb 3+The manufacturing method of the transparent thin film transistor with simplified process as claimed in item 2, wherein the p-type carriers are selected from N 3+ or Sb 3+ . 如請求項1所述的工序簡化的透明薄膜電晶體的製法,其中,該閘極介電層與該鈍化層是由氧化鋁所製成。The manufacturing method of the transparent thin film transistor with simplified process as claimed in claim 1, wherein the gate dielectric layer and the passivation layer are made of aluminum oxide.
TW110109938A 2021-03-19 2021-03-19 Manufacturing Method of Transparent Thin Film Transistor with Simplified Process TWI785545B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110109938A TWI785545B (en) 2021-03-19 2021-03-19 Manufacturing Method of Transparent Thin Film Transistor with Simplified Process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110109938A TWI785545B (en) 2021-03-19 2021-03-19 Manufacturing Method of Transparent Thin Film Transistor with Simplified Process

Publications (2)

Publication Number Publication Date
TW202238732A TW202238732A (en) 2022-10-01
TWI785545B true TWI785545B (en) 2022-12-01

Family

ID=85460573

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110109938A TWI785545B (en) 2021-03-19 2021-03-19 Manufacturing Method of Transparent Thin Film Transistor with Simplified Process

Country Status (1)

Country Link
TW (1) TWI785545B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200950100A (en) * 2008-04-25 2009-12-01 Ulvac Inc A method for manufacturing a thin-film transistor, a thin-film transistor
TW201930195A (en) * 2017-11-20 2019-08-01 日商愛發科股份有限公司 Oxide semiconductor thin-film, thin-film transistor, manufacturing method of thin-film transistor and sputtering target
US20210083125A1 (en) * 2019-09-18 2021-03-18 South China University Of Technology Composite metal oxide semiconductor and thin-film transistor made therefrom and its application

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200950100A (en) * 2008-04-25 2009-12-01 Ulvac Inc A method for manufacturing a thin-film transistor, a thin-film transistor
TW201930195A (en) * 2017-11-20 2019-08-01 日商愛發科股份有限公司 Oxide semiconductor thin-film, thin-film transistor, manufacturing method of thin-film transistor and sputtering target
US20210083125A1 (en) * 2019-09-18 2021-03-18 South China University Of Technology Composite metal oxide semiconductor and thin-film transistor made therefrom and its application

Also Published As

Publication number Publication date
TW202238732A (en) 2022-10-01

Similar Documents

Publication Publication Date Title
TWI492315B (en) A low-temperature polysilicon thin-film transistor manufacturing method
JP4633310B2 (en) Method for forming germanium-doped polysilicon gate of MOS transistor and method for forming CMOS transistor using the same
US20160043212A1 (en) Thin film transistor, array substrate and manufacturing method thereof, and display device
WO2014012334A1 (en) Manufacturing method of array substrate and array substrate and display device
JP2738333B2 (en) Method for manufacturing semiconductor device
WO2015067054A1 (en) Cmos thin film transistor and manufacturing method thereof, array substrate and display device
JPH06275807A (en) Semiconductor circuit and its manufacture
WO2019056657A1 (en) Low-temperature polycrystalline silicon thin film transistor, preparation method therefor, and array substrate
WO2020113613A1 (en) Thin film transistor structure, manufacturing method thereof, and display device
KR20060062139A (en) The method of poly tft fabrication by the multiple heatreatment
TWI785545B (en) Manufacturing Method of Transparent Thin Film Transistor with Simplified Process
JP2003068757A (en) Active matrix substrate and manufacturing method thereof
WO2020113595A1 (en) Active switch and manufacturing method therefor, and display apparatus
KR20040070979A (en) Fabrication method of polycrystalline silicon thin film transistor using a cap layer
KR100815894B1 (en) Method of fabricating CMOS Poly Silicon TFT having LDD structure
WO2013007066A1 (en) Thin film transistor manufacturing method and thin film transistor
US20190043995A1 (en) Thin film transistor, thin film transistor manufacturing method and liquid crystal display panel
JPH113999A (en) Manufacture of semiconductor device
US11049881B2 (en) Method for manufacturing a top-gate self-aligned indium-tin-zinc oxide thin-film transistor
JP3325664B2 (en) Thin film transistor and method of manufacturing the same
JP2501451B2 (en) Thin film transistor and manufacturing method thereof
KR100452443B1 (en) Method for fabricating of poly silicon Thin film transistor
JP2777101B2 (en) Transistor and manufacturing method thereof
JP3953605B2 (en) Thin film transistor manufacturing method
JPH11284199A (en) Semiconductor device and its manufacture