TWI785410B - 單結晶製造系統及單結晶製造方法 - Google Patents

單結晶製造系統及單結晶製造方法 Download PDF

Info

Publication number
TWI785410B
TWI785410B TW109138217A TW109138217A TWI785410B TW I785410 B TWI785410 B TW I785410B TW 109138217 A TW109138217 A TW 109138217A TW 109138217 A TW109138217 A TW 109138217A TW I785410 B TWI785410 B TW I785410B
Authority
TW
Taiwan
Prior art keywords
diameter
single crystal
mentioned
correction coefficient
crystal pulling
Prior art date
Application number
TW109138217A
Other languages
English (en)
Other versions
TW202138634A (zh
Inventor
西岡研一
高梨啓一
Original Assignee
日商Sumco股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Sumco股份有限公司 filed Critical 日商Sumco股份有限公司
Publication of TW202138634A publication Critical patent/TW202138634A/zh
Application granted granted Critical
Publication of TWI785410B publication Critical patent/TWI785410B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/26Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using television detectors; using photo or X-ray detectors
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing

Abstract

提供可以防止補正量的計算錯誤、設定錯誤且可以在下一批次反映適當補正量的單結晶製造系統及單結晶製造方法。 單結晶製造系統1,包括:單結晶提拉裝置10,在CZ法的單結晶提拉步驟中求出單結晶的直徑測量值,透過使用直徑補正係數補正直徑測量值求出單結晶的第1直徑,根據第1直徑控制單結晶的直徑;直徑測量裝置50,在室溫下測量單結晶提拉裝置10提拉的單結晶直徑,再求出單結晶的第2直徑;以及資料庫伺服器60,從單結晶提拉裝置10及直徑測量裝置50分別取得第1直徑及第2直徑並管理。資料庫伺服器60,根據在室溫下一致的直徑測量位置中的第1直徑及第2直徑算出直徑補正係數的補正量,使用上述補正量補正直徑補正係數。

Description

單結晶製造系統及單結晶製造方法
本發明,係有關於Czochralski(柴可拉斯基)法 (CZ法)的單結晶製造系統及單結晶製造方法,特別有關於單結晶直徑的控制系統及控制方法。
作為半導體元件的基板材料的矽單晶多數利用CZ法製造。CZ法中,石英坩堝內填充多晶矽原料,密室內加熱原料產生矽融液。其次,從石英坩堝上方降下種結晶,浸漬在矽融液內,旋轉種結晶及石英坩堝的同時,透過緩緩上升種結晶,種結晶下方生長大的單結晶。根據CZ法,可以提高大口徑的矽單結晶的製造良率。
以某直徑為目標製造單結晶錠。例如最終製品是300mm(毫米)晶圓的話,一般生長比其直徑稍微大的305〜320mm單結晶錠。其後,單結晶錠,外周研削成圓柱狀,切割為晶圓狀後,經過去角步驟,最終成為目標直徑的晶圓。這樣,單結晶錠的目標直徑,必須比最終製品的晶圓直徑大,但過度過大時研削研磨費增加,變得不經濟。因此,要求比晶圓大且盡量小直徑的單結晶錠。
根據CZ法,為了使結晶直徑為一定,控制結晶提拉速度、加熱器功率的同時,提拉單結晶。關於單結晶的直徑控制,例如專利文獻1中記載,使用重量法或光學法的推斷手法,一邊推斷提拉單結晶的直徑,一邊變更提拉速度或加熱器功率,控制提拉單結晶直徑的方法中,特徵在於每次提拉結束實際測量單結晶錠在長邊方向的特定複數處直徑,比較上述實測值與相同特定複數處的直徑推斷值,取得直徑控制的補正值,在下次提拉時的單結晶直徑推斷中使用上述補正值或在下次複數提拉時單結晶直徑的推斷中使用整合複數上述補正值得到的補正值之單結晶直徑的控制方法。
又,專利文獻2中記載,檢測以CZ法生長的單結晶直徑的方法中,透過攝影機與測力器(load cell)兩方分別檢測單結晶直徑,利用攝影機檢測直徑與測力器算出的直徑之差以及根據單結晶成長速度預先求出的補正係數,補正攝影機檢測直徑,以利用上述補正得到的值作為單結晶直徑。 [先行技術文獻] [專利文獻]
[專利文獻1]日本專利公開昭和63年第242992號公報 [專利文獻2]日本專利公開第2009-57236號公報
[發明所欲解決的課題]
單結晶直徑的測量中,每次提拉結束根據單結晶錠算出新補正量,透過反映此補正量在下一批次,可以提高結晶直徑的測量精度。但是,操作者以手動計算算出新的補正量,對單結晶提拉裝置以手動輸入實行補正量的設定時,恐怕發生手動計算引起的補正量計算錯誤或補正量的手動輸入引起的設定錯誤,因此單結晶的製造良率下降。近年來,由於製造設備的增強,因為單結晶錠的生產量增加,設定補正量的操作者的負擔改善是當務之急。
本發明係用以解決上述課題而形成,提供可以防止補正量的計算錯誤或設定錯誤,且可以反映適當的補正量在下一批次之單結晶製造系統及單結晶製造方法。 [用以解決課題的手段]
為了解決上述課題,本發明的單結晶製造系統,其特徵在於包括:單結晶提拉裝置,在CZ法的單結晶提拉步驟中求出上述單結晶的直徑測量值,透過使用直徑補正係數補正上述直徑測量值求出上述單結晶的第1直徑,根據上述第1直徑控制結晶提拉條件;直徑測量裝置,在室溫下測量上述單結晶提拉裝置提拉的上述單結晶直徑,再求出上述單結晶的第2直徑;以及資料庫伺服器,從上述單結晶提拉裝置及直徑測量裝置分別取得上述第1直徑及上述第2直徑並管理;上述資料庫伺服器,根據在室溫下一致的直徑測量位置中的上述第1直徑及上述第2直徑算出上述直徑補正係數的補正量,使用上述補正量補正上述直徑補正係數。
根據本發明,可以自動收集單結晶提拉裝置為了結晶提拉控制求出的第1直徑以及直徑測量裝置為了正確測量結晶直徑求出的第2直徑,根據第1直徑及第2直徑,可以自動計算用以補正直徑測量值的直徑補正係數的補正量。因此,可以防止操作者手動計算引起的補正量計算錯誤或手動輸入引起的設定錯誤,可以反映適當的補正量在下一批次。
本發明中,上述單結晶提拉裝置,最好具有在上述單結晶的提拉步驟中拍攝上述單結晶與融液的邊界部的攝影機,根據上述攝影機的拍攝影像求出上述單結晶的直徑測量值。又,上述資料庫伺服器,對上述單結晶提拉裝置設定補正後的上述直徑補正係數,上述單結晶提拉裝置,最好使用補正後的上述直徑補正係數,補正下一批次的單結晶的直徑測量值。藉此,根據CZ法的單結晶提拉步驟中,可以適當修正單結晶的直徑測量誤差。
本發明中,上述直徑補正係數的補正量,係在室溫下一致的直徑測量位置中的上述第1直徑與上述第2直徑的差或比乘以增益的值,上述增益最好是比0大在1以下的值,0.5以下的值特別理想。藉此,可以穩定補正補正直徑測量值求出第1直徑所需要的補正係數。
本發明中,上述單結晶提拉裝置及上述直徑測量裝置,經由通訊網路連接至上述資料庫伺服器,上述單結晶提拉裝置,傳送上述單結晶的上述第1直徑、測量上述第1直徑時的直徑測量位置以及上述單結晶的鑄錠ID至上述資料庫伺服器,上述直徑測量裝置,傳送上述單結晶的上述第2直徑、測量上述第2直徑時的直徑測量位置以及上述單結晶的鑄錠ID至上述資料庫伺服器,上述資料庫伺服器,最好連結來自上述單結晶提拉裝置的上述第1直徑與根據上述直徑測量裝置的上述第2直徑並登錄。藉此,可以自動收集單結晶提拉裝置求出的第1直徑及直徑測量裝置求出的第2直徑並管理,還可以自動計算求出第1直徑所需要的直徑補正係數的補正量。
本發明中,上述資料庫伺器,最好使用考慮上述單結晶熱膨脹的結晶長補正係數,補正上述單結晶提拉裝置測量的直徑測量位置,使用補正後的直徑測量位置,根據直徑測量位置互相一致的上述第1直徑及上述第2直徑算出上述直徑補正係數的補正量。藉此,根據第1直徑及第2直徑求出直徑補正係數,可以補正直徑測量值。
又,本發明的單結晶製造方法,其特徵在於包括:單結晶提拉步驟,在CZ法的單結晶提拉步驟中根據攝影機的拍攝影像求出上述單結晶的直徑測量值,透過使用直徑補正係數補正上述直徑測量值求出上述單結晶的第1直徑,根據上述第1直徑控制結晶提拉條件;直徑測量步驟,在室溫下測量上述單結晶提拉步驟提拉的上述單結晶直徑,再求出上述單結晶的第2直徑;以及管理步驟,分別取得上述第1直徑及上述第2直徑並管理;上述管理步驟,包含直徑補正係數補正步驟,根據在室溫下一致的直徑測量位置中的上述第1直徑及上述第2直徑算出上述直徑補正係數的補正量,使用上述補正量補正上述直徑補正係數。
根據本發明,可以自動收集單結晶提拉步驟中為了結晶提拉控制求出的第1直徑以及直徑測量步驟中為了正確測量結晶直徑求出的第2直徑,根據第1直徑及第2直徑,可以自動計算直徑補正係數的補正量。因此,可以防止操作者手動計算引起的補正量計算錯誤或手動輸入引起的設定錯誤,可以反映適當的補正量在下一批次。 [發明效果]
根據本發明,提供可以防止補正量的計算錯誤、設定錯誤且可以在下一批次反映適當補正量的單結晶製造系統及單結晶製造方法。
以下,參照附加圖面的同時,詳細說明關於本發明的較佳實施形態。
圖1,顯示本發明實施形態的單結晶製造系統的全體構成方塊圖。
如圖1所示,單結晶製造系統1,包括:複數單結晶提拉裝置10,利用CZ法提拉矽單結晶;直徑測量裝置50,在室溫下測量複數單結晶提拉裝置10提拉的矽單結晶錠直徑;以及資料庫伺服器60,管理關於矽單結晶錠的資料。複數單結晶提拉裝置10及直徑測量裝置50,經由通訊網路70連接至資料庫伺服器60,構成為可互相資料通訊。
單結晶提拉裝置10,係利用CZ法製造矽單結晶的眾所周知的裝置。細節之後敘述,單結晶提拉裝置10,在單結晶提拉步驟中測量各種物理量,這些測量值在單結晶提拉控制中使用的同時,經由通訊網路70,傳送至資料庫伺服器30並管理。又,單結晶提拉裝置10,控制結晶提拉速度、加熱器功率使矽單結晶直徑維持一定的同時,實行矽單結晶的生長。因此,結晶提拉步驟中,以攝影機拍攝單結晶與融液的邊界部,根據固液界面中出現的融合圈直徑推斷實際的單結晶直徑,以此推斷直徑為基礎,實行矽單結晶的直徑控制。又,單結晶提拉裝置10,使用資料庫伺服器60提供的直徑補正係數,補正結晶提拉步驟中在高溫下測量的矽單結晶直徑測量值成為室溫時的直徑(第1直徑),以補正後的直徑為基礎實行結晶直徑的控制。
運送以單結晶提拉裝置10提拉的矽單結晶錠至直徑測量裝置50,直徑測量裝置50測量矽單結晶錠在室溫下的直徑(第2直徑)。此直徑資料經由通訊網路70傳送至資料庫伺服器60並管理。
資料庫伺服器60,係具有資料庫機能的電腦,管理關於複數單結晶提拉裝置10提供的矽單結晶錠的資料的同時,將直徑測量裝置50測量的矽單結晶錠直徑資料與關於單結晶提拉裝置10提供的上述矽單結晶錠的資料連結並管理。還有,資料庫伺服器60,管理單結晶提拉裝置10根據攝影機拍攝的影像算出結晶直徑所需要的直徑補正係數,根據單結晶提拉裝置10在結晶提拉步驟中測量的矽單結晶錠直徑資料與直徑測量裝置50在室溫下實際測量的上述矽單結晶錠直徑資料之差,算出直徑補正係數。此直徑補正係數,傳送至對應的單結晶提拉裝置10,使用於補正單結晶提拉裝置10在結晶提拉步驟中根據攝影機的拍攝影像求出的矽單結晶直徑測量值之際。
圖2係概略顯示單結晶提拉裝置10的構成之側面剖面圖
如圖2所示,單結晶提拉裝置10,包括水冷式密室11、密室11內保持矽融液2的石英坩堝12、保持石英坩堝12的黑鉛坩堝13、支撐黑鉛坩堝13的旋轉軸14、配置在黑鉛坩堝13周圍的加熱器15、配置在石英坩堝12上方的熱遮蔽體16、在石英坩堝12上方與旋轉軸14在同軸上配置的結晶提拉軸即提拉線17、配置在密室11上方的結晶提拉機構18、經由旋轉軸14及黑鉛坩堝13旋轉及升降驅動石英坩堝12的軸驅動機構19。
又,單結晶提拉裝置10,拍攝密室11內的攝影機20、處理攝影機20的拍攝影像之影像處理部21、控制單結晶提拉裝置10內的各部之控制部22、記憶結晶提拉步驟中測量的各種物理量之記憶體23以及傳送記憶體23中記憶的資料至資料庫伺服器60之通訊部24。
密室11,以主密室11a以及連結至主密室11a的上部開口的細長圓筒狀提拉密室11b構成,設置石英坩堝12、黑鉛坩堝13、加熱器15以及熱遮蔽體16在主密室11a內。提拉密室11b中設置用以往密室11內導入氬氣等非活性氣體(沖洗用氣體)、摻雜氣體 的氣體導入口11c,主密室11a的下部設置用以排出密室11內的空氣之氣體排出口11d。又,在主密室11a上部設置窺視窗11e,可從窺視窗11e窺視矽單結晶3的生長狀況。
石英坩堝12,係具有圓筒狀側壁與底部的矽玻璃製容器。黑鉛坩堝13,為了維持加熱軟化的石英坩堝12的形狀,密合至石英坩堝12的外表面,保持包圍石英坩堝12。石英坩堝12及黑鉛坩堝13在密室11內構成支撐矽融液2的二層構造之坩堝。
黑鉛坩堝13,固定至旋轉軸14的上端部,旋轉軸14的下端部貫通密室11的底部,連接至設置在密室11外側的軸驅動機構19。黑鉛坩堝13、旋轉軸14及軸驅動機構19構成石英坩堝12的旋轉機構及升降機構。由軸驅動機構19驅動的石英坩堝12的旋轉及升降動作,由控制部22控制。
加熱器15,融解石英坩堝12內填充的矽原料產生矽融液2的同時,用於維持矽融液2的溶融狀態。加熱器15係碳製電阻加熱式加熱器,設置為環繞黑鉛坩堝13內的石英坩堝12。更在加熱器15外側設置斷熱材11f為環繞加熱器15,藉此提高密室11內的保溫性。加熱器15的輸出由控制部22控制。
熱遮蔽體16,抑制矽融液2的溫度變動,給予結晶生長界面近旁適當的熱分布的同時,設置為用以防止來自加熱器15及石英坩堝12的輻射熱引起的矽單結晶3的加熱。熱遮蔽體16是略圓筒狀的黑鉛製構件,設置為覆蓋除了矽單結晶3的提拉路徑之外的矽融液2的上方區域。
熱遮蔽體16下端的開口直徑比矽單結晶3的直徑大,藉此確保矽單結晶3的提拉路徑。還有,因為熱遮蔽體16的下端部外徑比石英坩堝12的口徑小,且遮蔽體16的下端部位於石英坩堝12的內側,即使上升石英坩堝12的邊緣上端至比熱遮蔽體16下端更上方,熱遮蔽體16也不會干擾石英坩堝12。
隨著矽單結晶3的生長,石英坩堝12內的融液量少,但上升石英坩堝12使上升融液面與熱遮蔽體16的間隔(間隙)固定。透過這樣的間隙控制,可以提高矽單結晶3在提拉軸方向的結晶缺陷分布、氧濃度分布、電阻率分布等的穩定性。
在石英坩堝12上方,設置矽單結晶3的提拉軸即提拉線17以及透過纏繞提拉線17提拉矽單結晶3的結晶提拉機構18。結晶提拉機構18與提拉線17一起具有旋轉矽單結晶3的機能。結晶提拉機構18由控制部22控制。結晶提拉機構18配置在提拉密室11b上方,提拉線17從結晶提拉機構18通過提拉密室11b內往下方延伸,提拉線17的前端部到達主密室11a的內部空間。圖1中,顯示吊設生長中途的矽單結晶3至提拉線17的狀態。提拉矽單結晶3時,分別旋轉石英坩堝12與矽單結晶3的同時,透過緩緩提拉提拉線17,生長矽單結晶3。由控制部22控制結晶提拉速度。
密室11的外側設置攝影機20。攝影機20例如是CCD攝影機,經由密室11中形成的窺視窗11e拍攝密室11內。攝影機20的設置角度對鉛直方向形成既定角度,攝影機20對矽單結晶3的提拉軸具有傾斜的光軸。即,攝影機20從斜上方拍攝熱遮蔽體16的開口、矽融液2的液面及單結晶。
攝影機20,連接至影像處理部21,影像處理部21連接至控制部22。影像處理部21,根據攝影機20的拍攝影像中映現的單結晶輪廓圖案算出固液界面近旁的結晶直徑。
控制部22,根據從攝影機20的拍攝影像得到的結晶直徑資料,透過控制結晶提拉速度等,控制結晶直徑。具體地,結晶直徑的測量值比目標直徑大時,增大結晶提拉速度,比目標直徑小時,減少結晶提拉速度。又,控制部22,根據從結晶提拉機構18的感應器得到的矽單結晶3的結晶長資料以及從攝影機20的拍攝影像求出的結晶直徑資料,控制石英坩堝12的移動量(坩堝上升速度)。
其次,說明關於矽單結晶3的直徑測量方法。矽單結晶3的提拉步驟中為了控制其直徑,以攝影機20拍攝矽單結晶3與融液面的邊界部,根據邊界部發生的融合圈(Fusion ring)的中心位置及融合圈(Fusion ring)的2個亮度峰值間距離,求出矽單結晶3的直徑。又,為了控制矽融液2的液面位置,根據融合圈(Fusion ring)的中心位置求出液面位置。控制部22,為了使矽單結晶3的直徑成為目標直徑,控制提拉線17的提拉速度、加熱器15的功率、石英坩堝12的旋轉速度等的提拉條件。又,控制部22,控制石英坩堝12的上下方向位置,使液面位置為所希望的位置。
圖3,係模式顯示攝影機20拍攝的矽單結晶3與矽融液2的邊界部影像立體圖。
如圖3所示,影像處理部21,根據矽單結晶3與矽融液2的邊界部發生的融合圈4在中心C0的座標位置以及融合圈4上任意一點的座標位置,算出融合圈4的半徑r及直徑R=2r。即,影像處理部21,算出固液界面中矽單結晶3的直徑R。融合圈4在中心C0的位置,係矽單結晶3的提拉軸延長線5與融液面的交點。
攝影機20,因為從斜上方拍攝矽單結晶3與融液面的邊界部,不能捕捉融合圈4為正圓。但是,在設計上決定的位置以決定的角度正確設置攝影機20的話,根據對於融液面的視覺辨識角度,可以補正略橢圓狀的融合圈4為正圓,根據補正的融合圈4幾何算出其直徑。
融合圈4係透過凹凸透鏡反射的光形成的環狀高亮度領域,在矽單結晶3全周發生,但不能從窺視窗11e看到矽單結晶3內側的融合圈4。又,從熱遮蔽體16的開口16a與矽單結晶3之間的間隙看融合圈4時,矽單結晶3的直徑大時,位於視覺辨識方向的最靠近側(圖3中下側)之融合圈4一部分有可能隱藏在熱遮蔽體16內側也不能看到。在此情況下,融合圈4中可以視覺辨識的部分,從視覺辨識方向看只有眼前左側一部分4L與眼前左側一部分4R。本發明,這樣即使只能觀察融合圈4的一部分的情況下,也可以根據其一部分算出其直徑。
如上述,單結晶提拉裝置10,包括拍攝密室11內的攝影機20,根據攝影機20的拍攝影像,推斷固液界面旁的矽單結晶3的直徑,控制結晶提拉速度等的結晶提拉條件,使此直徑為所希望的直徑(例如300mm晶圓的話,305~320mm)。
因為結晶提拉步驟中的矽單結晶在高溫下熱膨脹,其直徑比從密室11取出冷卻時的直徑大。根據這樣的熱膨脹結晶直徑,實行矽單結晶的直徑控制時,很難控制室溫下的結晶直徑為目標直徑。因此,單結晶提拉步驟中矽單結晶的直徑控制,轉換攝影機20的拍攝影像中映現的矽單結晶在高溫下的直徑至室溫下的直徑,根據此室溫下的結晶直徑,控制結晶提拉速度等的結晶生長條件。這樣,根據室溫時的結晶直徑控制結晶提拉條件的理由,是因為室溫時的結晶直徑管理很重要。即,高溫下與目標直徑相同即使提拉回到室溫時也比目標直徑小的情況下,因為恐怕不能製品化,實行直徑控制,使室溫時的結晶直徑為目標直徑。
如上述,結晶提拉步驟中的直徑測量值,係高溫下測量結晶直徑的值,至少包含起因於熱膨脹的誤差。因此,與實際提拉的矽單結晶錠的直徑比較,使直徑測量誤差明確的同時,必須修正直徑測量誤差。因此,單結晶提拉裝置10提拉的矽單結晶錠,在室溫下正確測量其結晶直徑。
圖4,係概略顯示直徑測量裝置50的一構成例之模式圖。
如圖4所示,直徑測量裝置50,包括裝載矽單結晶錠3的台架51、測量台架51上矽單結晶錠3直徑的雷射測距裝置52、使雷射測距裝置52沿著矽單結晶錠3的結晶長邊方向滑動的滑動機構53、記憶雷射測距裝置52測量的直徑資料及其直徑測量位置的記憶體54以及傳送記憶體54內的直徑資料至資料庫伺服器60的通訊部55。矽單結晶錠3的直徑資料與其鑄錠ID及結晶長邊方向的直徑測量位置資料一起傳送至資料庫伺服器60。矽單結晶錠3的直徑,例如矽單結晶錠3的前端3a到後端3b以10mm(毫米)間隔測量,直徑資料作為與鑄錠ID及直徑測量位置資料連結的資料表保存在記憶體54內。之後,記憶體54內的資料表,從通訊部55轉送至資料庫伺服器60。
資料庫伺服器60,將包含直徑測量裝置50送來的矽單結晶3的直徑資料之資料表,與已經從單結晶提拉裝置10取得的上述矽單結晶錠3的直徑資料連結並保存。之後,比較單結晶提拉裝置10測量的直徑資料(第1直徑)與直徑測量裝置50在室溫下實際測量的直徑資料(第2直徑)算出兩者的誤差,根據此直徑測量誤差算出直徑補正係數α的補正量Δα,使用此補正量Δα補正直徑測量值補正中使用的直徑補正係數α。
又,單結晶提拉步驟中的矽單結晶,不但徑方向而且長邊方向也熱膨脹,結晶提拉完成後取出鑄錠至爐外在室溫下測量時,也發生結晶長度的誤差。因此,為了使直徑測量位置與單結晶提拉步驟中的直徑測量位置及室溫下的直徑測量位置一致在等價位置,考慮因熱膨脹單結晶往長邊方向延伸的部分,必須補正直徑測量位置。直徑測量位置的補正中,使用預先準備的結晶長補正係數β。又,作為直徑測量位置的基準位置(原點),可以是單結晶在直筒部(定徑部)的開始位置(直筒開始位置)或種結晶的著液位置(結晶提拉開始位置)。
圖5係說明直徑補正係數α的補正方法之流程圖。
如圖5所示,單結晶提拉裝置10,取得根據結晶提拉步驟中攝影機20拍攝的影像求出的直徑測量值R0 以及測量直徑測量值R0 在結晶長邊方向的直徑測量位置L0 (步驟S11)。
其次,考慮直徑測量值R0 以及直徑測量位置L0 係根據高溫下熱膨脹的單結晶求出的值,使用直徑補正係數α補正直徑測量值R0 ,求出室溫下的結晶直徑Ra= R0 -α(步驟S12)。還有,直徑測量位置L0 ,也補正為除去熱膨脹影響的值,藉此得到室溫下的直徑測量位置La=L0 -β(步驟S12)。室溫下的直徑測量位置La與結晶提拉步驟中的直徑測量位置L0 ,只是熱膨脹部分β不同的值,但室溫下是互相一致的直徑測量位置。這樣,求出結晶提拉步驟中測量的室溫下的結晶直徑Ra(第1直徑)與其結晶長邊方向的直徑測量位置La。根據這樣求出的結晶直徑Ra,實行單結晶的直徑控制。
結晶提拉步驟中,結晶直徑Ra,往結晶長邊方向以例如1mm間隔測量,與對應的直徑測量位置La一起傳送至資料庫伺服器60並保存。即,資料庫伺服器60,取得以直徑補正係數α補正的結晶直徑Ra及以結晶長補正係數β補正的直徑測量位置La(步驟S13)。結晶提拉步驟結束後,將矽單結晶錠3冷卻,並從單結晶提拉裝置10取出。
其次,直徑測量裝置50在室溫下測量矽單結晶錠3的結晶直徑(步驟S14)。如上述,結晶直徑在室溫下的測量中使用雷射測距裝置52,以高精度測量結晶直徑。這樣,求出結晶直徑Rb (第2直徑)與其結晶長邊方向的直徑測量位置Lb。結晶直徑Rb,也往結晶長邊方向以例如1mm間隔測量,與對應的直徑測量位置Lb一起傳送至資料庫伺服器60並保存。即,資料庫伺服器60,取得結晶直徑Rb及其直徑測量位置Lb(步驟S15)。
資料庫伺服器60,互相連結單結晶提拉裝置10及直徑測量裝置50送來的結晶直徑資料並管理的同時,使用在室溫下一致的結晶長邊方向位置(La=Lb)分別計算的結晶直徑Ra及結晶直徑Rb,求出直徑測量誤差ΔR(步驟S16)。直徑測量誤差ΔR,求出作為2個結晶直徑的差ΔR=Ra-Rb也可以,求出作為2個結晶直徑的比ΔR=Ra/Rb也可以。
其次,直徑測量誤差ΔR乘以既定的增益G(0<G≦1)求出直徑補正係數α的補正量Δα=ΔR×G(步驟S17)。不乘以值比0大在1以下的增益G時,使用直徑補正係數α反覆直徑測量值R0 的補正中,直徑測量誤差ΔR有時候反而變大發散。乘以值比0大在1以下的增益G,具有穩定直徑測量誤差ΔR並停留在小值的效果。通常,因為直徑測量誤差ΔR非常小,增益G最好在0.5以下。於是,透過現在的直徑補正係數α加上補正量Δα,求出補正的直徑補正係數α=α+Δα(步驟S18)。即,假設補正前的直徑補正係數為αold ,補正後的直徑補正係數為αnew 時,成為αnewold +Δα。這樣補正的直徑補正係數αnew 從資料庫伺服器60傳送至對應的單結晶提拉裝置10,改寫既存的直徑補正係數,在下一批次結晶直徑的補正計算中使用(步驟S19)。即,直徑補正係數αnew ,用於求出補正的直徑測量值Ra=R0 -α。
圖6(a)及(b)係顯示矽單結晶錠在長邊方向的位置與直徑補正係數α的對應關係模式圖。
用以補正單結晶提拉裝置10在結晶提拉步驟中測量的結晶直徑之直徑補正係數α,如圖6(a)所示鑄錠全長相同也可以,或者如圖6(b)所示結晶長邊方向的每部位分開也可以。前者的情況,可以以直徑測量誤差ΔR在全區間的平均值乘以增益G的值作為直徑補正係數α的補正量Δα。又,後者的情況,對應的直徑補正係數的每區間求出直徑測量誤差ΔR的平均值,透過各區間的直徑測量誤差ΔR平均值乘以增益G,作為對直徑補正係數α1 的補正量Δα1 以及對直徑補正係數α2 的補正量Δα2 ,可以求出結晶長邊方向上具有不同值的補正量Δα。
單結晶提拉裝置10在結晶提拉步驟中測量的結晶直徑誤差,因為融合圈4的亮度狀態在單結晶的長邊方向不同,根據單結晶的長邊方向有時候大不相同。因此,例如圖6(b)所示,在單結晶長邊方向的前半與後半,透過使直徑補正係數不同,可以提高直徑補正精度。又,圖6(b)中分開單結晶成2個區間,但也可以分開成3個以上的區間。
直徑補正係數α的補正不必每批次實行,但最好定期實行。因為,根據CZ法的單結晶提拉步驟中,提拉中的單結晶直徑測量使用攝影機20實行,直徑測量值容易受爐內一點變化的影響。例如,斷熱材緩緩惡化,透過爐內的熱分布改變,攝影機的拍攝影像中映現的凹凸透鏡(meniscus)亮度分布改變,因此直徑測量值也改變。因此,配合單結晶提拉裝置10的使用狀況,最好定期補正直徑補正係數α。
如以上說明,本實施形態的單結晶製造系統1,保存根據單結晶提拉裝置10的攝影機20在結晶提拉步驟中拍攝的矽單結晶影像測量的上述矽單結晶的結晶直徑以及直徑測量裝置50在結晶提拉步驟結束後在室溫下測量的上述矽單結晶的結晶直徑在資料庫伺服器60內,資料庫伺服器60根據這些結晶直徑算出直徑測量誤差ΔR,根據直徑測量誤差ΔR補正直徑補正係數,因為對單結晶提拉裝置設定補正後的直徑補正係數,單結晶提拉裝置10,下一批次中可以使用新的直徑補正係數補正直徑測量值。
又,本實施形態中,資料庫伺服器60,當算出新的直徑補正係數時,因為使用補正的直徑測量值與實際測量直徑之間的直徑測量誤差乘以增益得到的補正量補正既存的直徑補正係數,抑制直徑補正係數過度變動,可以穩定補正結晶直徑。
又,本實施形態中,資料庫伺服器60,根據考慮熱膨脹的影響補正的直徑測量位置,因為進行在室溫下互相一致的直徑測量位置中補正的直徑測量值(第1直徑)與實際測量直徑(第2直徑) 的比較,可以正確補正直徑測量值。
以上,說明關於本發明的較佳實施形態,但本發明,不限於上述實施形態,在不脫離本發明的主旨的範圍內,可以作各種變更,當然這些也包括在本發明的範圍內。
例如,上述實施形態中舉出矽單結晶的製造為例,但本發明不限於此,可以應用於根據CZ 法生長的各種單結晶製造。
1:單結晶製造系統 2:矽融液 3:矽單結晶(錠) 3a:矽單結晶錠的前端 3b:矽單結晶錠的後端 4:融合圈 4L,4R:融合圈的一部分 5:提拉軸延長線 10:單結晶提拉裝置 11:密室 11a:主密室 11b:提拉密室 11c:氣體導入口 11d:氣體排出口 11e:窺視窗 11f:斷熱材 12:石英坩堝 13:黑鉛坩堝 14:旋轉軸 15:加熱器 16:熱遮蔽體 16a:開口 17:提拉線 18:線纏繞機構 19:軸驅動機構 20:攝影機 21:影像處理部 22:控制部 23:記憶體 24:通訊部 30:資料庫伺服器 50:直徑測量裝置 51:台架 52:雷射測距裝置 53:滑動機構 54:記憶體 55:通訊部 60:資料庫伺服器 70:通訊網路
[圖1]係顯示本發明實施形態的單結晶製造系統的全體構成方塊圖; [圖2] 係概略顯示單結晶提拉裝置構成的側面剖面圖; [圖3] 係模式顯示攝影機拍攝的矽單結晶與矽融液的邊界部影像立體圖; [圖4] 係概略顯示直徑測量裝置的一構成例之模式圖; [圖5] 係說明直徑補正係數的補正方法之流程圖;以及 [圖6(a)及(b)]係顯示矽單結晶錠在長邊方向的位置與直徑補正係數α的對應關係模式圖。
1:單結晶製造系統
10:單結晶提拉裝置
50:直徑測量裝置
60:資料庫伺服器
70:通訊網路

Claims (8)

  1. 一種單結晶製造系統,其特徵在於:包括:單結晶提拉裝置,在CZ法的單結晶提拉步驟中求出上述單結晶的直徑測量值,透過使用直徑補正係數補正上述直徑測量值求出上述單結晶的第1直徑,根據上述第1直徑控制上述單結晶的直徑;直徑測量裝置,在室溫下測量上述單結晶提拉裝置提拉的上述單結晶直徑,再求出上述單結晶的第2直徑;以及資料庫伺服器,從上述單結晶提拉裝置及上述直徑測量裝置分別取得上述第1直徑及上述第2直徑並管理;其中,上述資料庫伺服器,根據在室溫下一致的直徑測量位置中的上述第1直徑及上述第2直徑算出上述直徑補正係數的補正量,使用上述補正量補正上述直徑補正係數。
  2. 如請求項1之單結晶製造系統,其中,上述單結晶提拉裝置,具有在上述單結晶的提拉步驟中拍攝上述單結晶與融液的邊界部的攝影機,根據上述攝影機的拍攝影像求出上述單結晶的直徑測量值。
  3. 如請求項1或2之單結晶製造系統,其中,上述資料庫伺服器,對上述單結晶提拉裝置設定補正後的上述直徑補正係數;上述單結晶提拉裝置,使用補正後的上述直徑補正係數,補正下一批次的單結晶的直徑測量值。
  4. 如請求項1或2之單結晶製造系統,其中,上述直徑補正係數的補正量,係在室溫下一致的直徑測量位置中的上述第1 直徑與上述第2直徑的差或比乘以增益的值,上述增益是比0大在1以下的值。
  5. 如請求項1或2之單結晶製造系統,其中,上述單結晶提拉裝置及上述直徑測量裝置,經由通訊網路連接至上述資料庫伺服器;上述單結晶提拉裝置,傳送上述單結晶的上述第1直徑、測量上述第1直徑時的直徑測量位置以及上述單結晶的鑄錠ID至上述資料庫伺服器;上述直徑測量裝置,傳送上述單結晶的上述第2直徑、測量上述第2直徑時的直徑測量位置以及上述單結晶的鑄錠ID至上述資料庫伺服器;上述資料庫伺服器,連結來自上述單結晶提拉裝置的上述第1直徑與根據上述直徑測量裝置的上述第2直徑並登錄。
  6. 如請求項1或2之單結晶製造系統,其中,上述資料庫伺服器,使用考慮上述單結晶在長邊方向熱膨脹的結晶長補正係數,補正上述單結晶提拉裝置測量的直徑測量位置,使用補正後的直徑測量位置,根據室溫下一致的直徑測量位置中的上述第1直徑及上述第2直徑算出上述直徑補正係數的補正量。
  7. 一種單結晶製造方法,其特徵在於:包括:單結晶提拉步驟,在CZ法的單結晶提拉步驟中求出上述單結晶的直徑測量值,透過使用直徑補正係數補正上述直徑測量值求出上述單結晶的第1直徑,根據上述第1直徑控制結晶直徑;直徑測量步驟,在室溫下測量上述單結晶提拉步驟提拉的上述單結晶直徑,再求出上述單結晶的第2直徑;以及管理步驟,分別取得上述第1直徑及上述第2直徑並管理;其中,上述管理步驟,包含直徑補正係數補正步驟,根據在室溫下一致的 直徑測量位置中的上述第1直徑及上述第2直徑算出上述直徑補正係數的補正量,使用上述補正量補正上述直徑補正係數。
  8. 如請求項7之單結晶製造方法,其中,上述管理步驟,使用考慮上述單結晶在長邊方向熱膨脹的結晶長補正係數,補正上述單結晶提拉裝置測量的直徑測量位置,使用補正後的直徑測量位置,根據室溫下一致的直徑測量位置中的上述第1直徑及上述第2直徑算出上述直徑補正係數的補正量。
TW109138217A 2019-12-18 2020-11-03 單結晶製造系統及單結晶製造方法 TWI785410B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019228321 2019-12-18
JP2019-228321 2019-12-18

Publications (2)

Publication Number Publication Date
TW202138634A TW202138634A (zh) 2021-10-16
TWI785410B true TWI785410B (zh) 2022-12-01

Family

ID=76477209

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109138217A TWI785410B (zh) 2019-12-18 2020-11-03 單結晶製造系統及單結晶製造方法

Country Status (7)

Country Link
US (1) US20230023541A1 (zh)
JP (1) JP7318738B2 (zh)
KR (1) KR20220097476A (zh)
CN (1) CN114761626B (zh)
DE (1) DE112020006173T5 (zh)
TW (1) TWI785410B (zh)
WO (1) WO2021124708A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242992A (ja) * 1987-03-30 1988-10-07 Kyushu Denshi Kinzoku Kk 単結晶直径の制御方法
TW289838B (en) * 1995-06-02 1996-11-01 Memc Electronic Materials System and method for controlling growth of a silicon crystal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4428038B2 (ja) * 2003-12-04 2010-03-10 信越半導体株式会社 シリコン単結晶の製造システム及びシリコン単結晶の製造方法並びにシリコン単結晶
JP5104129B2 (ja) 2007-08-31 2012-12-19 信越半導体株式会社 単結晶直径の検出方法および単結晶引上げ装置
JP6447537B2 (ja) * 2016-02-29 2019-01-09 株式会社Sumco 単結晶の製造方法および製造装置
CN108445040B (zh) * 2018-03-05 2021-06-15 大连海事大学 一种带有热膨胀修正的接触热阻测试方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63242992A (ja) * 1987-03-30 1988-10-07 Kyushu Denshi Kinzoku Kk 単結晶直径の制御方法
TW289838B (en) * 1995-06-02 1996-11-01 Memc Electronic Materials System and method for controlling growth of a silicon crystal

Also Published As

Publication number Publication date
US20230023541A1 (en) 2023-01-26
CN114761626A (zh) 2022-07-15
JPWO2021124708A1 (zh) 2021-06-24
DE112020006173T5 (de) 2022-11-17
CN114761626B (zh) 2023-11-07
KR20220097476A (ko) 2022-07-07
WO2021124708A1 (ja) 2021-06-24
TW202138634A (zh) 2021-10-16
JP7318738B2 (ja) 2023-08-01

Similar Documents

Publication Publication Date Title
KR101028684B1 (ko) 실리콘 단결정 인상 방법
TWI588304B (zh) Single crystal manufacturing method
US8414701B2 (en) Method for manufacturing silicon single crystal in which a crystallization temperature gradient is controlled
KR101579780B1 (ko) 단결정 직경의 검출방법, 이를 이용한 단결정의 제조방법 및 단결정 제조장치
JP6885301B2 (ja) 単結晶の製造方法及び装置
KR20100014169A (ko) 결정 성장 프론트에서 열 구배들의 인-시츄 결정을 위한 절차
TW202140865A (zh) 單結晶製造裝置及單結晶的製造方法
JP4930487B2 (ja) 融液面と炉内構造物の下端部との距離の測定方法、及びこれを用いた融液面位置の制御方法、並びに単結晶の製造方法及び単結晶製造装置
CN108138355A (zh) 单晶制造装置以及熔液面位置的控制方法
JP6627739B2 (ja) 単結晶の製造方法
JP3704710B2 (ja) 種結晶着液温度の設定方法及びシリコン単結晶の製造装置
TWI785410B (zh) 單結晶製造系統及單結晶製造方法
JP2019214486A (ja) 融液面と種結晶の間隔測定方法、種結晶の予熱方法、及び単結晶の製造方法
JP2001019588A (ja) 単結晶直径の制御方法及び結晶成長装置
CN216304033U (zh) 监控单晶炉中硅熔液的液面的状态及坩埚的状态的系统
TWI762268B (zh) 單結晶製造裝置及單結晶的製造方法
TWI828140B (zh) 單結晶的製造方法及單結晶製造裝置
WO2023195217A1 (ja) シリコン単結晶の製造方法及び装置並びにシリコンウェーハの製造方法
JP4407539B2 (ja) 単結晶インゴットの引上げ速度のシミュレーション方法
JPH0859388A (ja) 単結晶体の製造装置
JP6885286B2 (ja) シリコン単結晶の製造方法
JPH01126295A (ja) 単結晶製造装置
JPH09263486A (ja) 単結晶引き上げ装置
JPS62278186A (ja) 半導体単結晶の製造方法及び装置
UA47988A (uk) Спосіб вирощування монокристала та пристрій для його здійснення