TWI783495B - 併入光學可切換磁性隧道接面之陣列的圖像感測器 - Google Patents

併入光學可切換磁性隧道接面之陣列的圖像感測器 Download PDF

Info

Publication number
TWI783495B
TWI783495B TW110118684A TW110118684A TWI783495B TW I783495 B TWI783495 B TW I783495B TW 110118684 A TW110118684 A TW 110118684A TW 110118684 A TW110118684 A TW 110118684A TW I783495 B TWI783495 B TW I783495B
Authority
TW
Taiwan
Prior art keywords
line
magnetic tunnel
lines
radiation
tunnel junction
Prior art date
Application number
TW110118684A
Other languages
English (en)
Other versions
TW202218147A (zh
Inventor
阿希爾斯 加史瓦
阿喬伊 布凡努姆帝 雅各布
卞宇生
大衛C 理查
Original Assignee
美商格芯(美國)集成電路科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商格芯(美國)集成電路科技有限公司 filed Critical 美商格芯(美國)集成電路科技有限公司
Publication of TW202218147A publication Critical patent/TW202218147A/zh
Application granted granted Critical
Publication of TWI783495B publication Critical patent/TWI783495B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N52/00Hall-effect devices
    • H10N52/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N59/00Integrated devices, or assemblies of multiple devices, comprising at least one galvanomagnetic or Hall-effect element covered by groups H10N50/00 - H10N52/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)
  • Printers Or Recording Devices Using Electromagnetic And Radiation Means (AREA)

Abstract

本發明揭示一種圖像感測器,包括以行和列排列的光學可切換磁性隧道接面(MTJ)陣列。該圖像感測器具有透明導電材料的第一線路和導電材料的第二線路。各第一線路與對應列中MTJ的自由層相接觸。各第二線路與對應行中的固定層MTJ電性連接。第一線路同時暴露在輻射下。第一線路和第二線路可選擇性地偏壓。在全域重置操作中,偏壓條件使得所有MTJ被切換到反平行狀態。在全域感測操作中,偏壓條件使得根據在與MTJ接觸的第一線路的那些部分接收到的輻射強度,MTJ可以切換到平行狀態。在選擇性讀取操作中,偏壓條件使得可以讀取MTJ中儲存的資料值。

Description

併入光學可切換磁性隧道接面之陣列的圖像感測器
本發明係關於感測器,更具體而言,係關於併入光學可切換磁性隧道接面(MTJ)陣列的圖像感測器的實施例。
傳統圖像感測器是基於互補金屬氧化物半導體(CMOS)的。具體而言,其包括基於CMOS像素的陣列。示例性的基於CMOS像素包括光電二極體(photodiode)(例如PIN光電二極體)以及包括重置電晶體(reset transistor)(例如P型場效電晶體(PFET))、放大電晶體(例如N型場效電晶體(NFET))和存取或選擇電晶體(例如另一NFET)的至少三個電晶體。這種基於CMOS的圖像感測器的一個缺點是這些像素不是抗輻射的。具體而言,輻射會導致儲存的資料值洩露。另一個缺點是由於每個像素所需的裝置數量(例如,光電二極體和至少三個電晶體)以及相對大尺寸的光電二極體,像素陣列會消耗大量的晶片面積。
一般而言,本文公開的是圖像感測器的實施例,其包括排列成行和列的可光學切換磁性隧道接面(MTJ)陣列。MTJ可以在自由層和釘紮層(pinned layer)之間包括絕緣體層。圖像感測器可以進一步包括第一線路。第一線路至少部分可以由透明導電材料製成。各第一線路可以橫跨MTJ的對應列,從而使其延伸並與對應列中各MTJ的自由層相接觸。圖像感測器還可以包括第二線路。第二線路可以由導電材料製成。各第二線路可以電性連接到對應行中的各MTJ的釘紮層。這種圖像感測器中的MTJ可以響應於第一線路和第二線路上的特定偏壓條件以及第一線路同時暴露於輻射而同時儲存圖像資料。
例如,本文公開的圖像感測器實施例可以包括連接到第一線路和第二線路的週邊(peripheral)電路以及與週邊電路通信的控制器。響應於來自控制器的控制信號,週邊電路可以對第一線路和第二線路施加第一組偏壓條件以執行關於MTJ的全域重置操作,並且更具體地,使所有MJT同時儲存第一資料值(例如,“0”資料值)。響應於來自控制器的不同控制信號,週邊電路可以對第一線路和第二線路施加第二組偏壓條件以執行全域感測操作,並且更具體地,執行使MTJ捕獲和儲存圖像資料的圖像捕獲操作。具體而言,第二偏壓條件可由週邊電路施加於第一線路和第二線路,使得響應於所有第一線路同時暴露於輻射中,當在緊鄰的第一線路部分接收到的輻射的實際強度水平大於閾值強度水平時,僅在給定的磁性隧道接面中發生第一資料值到第二資料值的切換。最後,響應於來自控制器的其他不同的控制信號,週邊電路可以施加第三組偏壓條件來選擇第一線路和第二線路,以使能夠執行選擇性的讀取操作,並且更具體地,能夠讀出給 定MTJ中儲存的資料值。
應當注意,本文公開的不同圖像感測器實施例可以包括不同類型的MTJ。
例如,本文公開的一些圖像感測器實施例可以包括自旋霍爾效應型磁隧道接面(SHE-MTJ)陣列。各SHE-MTJ可包括自由層和釘紮層之間的絕緣體層。這些圖像感測器實施例可以進一步包括第一線路。第一線路可以包括透明導電自旋霍爾效應材料(例如,厚度小於3nm的重金屬或石墨烯或顯示自旋霍爾效應材料的其他一些合適的透明導電材料)。各第一線路可以橫跨並與對應列中各SHE-MTJ的自由層接觸。這些圖像感測器實施例還可以包括第二線路。第二線路可以包括導電材料。各第二線路可以電性連接到對應行中的各磁隧道接面的固定層。
本文公開的其它圖像感測器實施例可以包括自旋轉移轉矩型磁性隧道接面(STT-MTJ)陣列。各STT-MTJ可以包括自由層和釘紮層之間的絕緣體層。這些圖像感測器實施例可以進一步包括第一線路。第一線路可以包括透明導電材料(例如,銦錫氧化物或一些其他合適的透明導電材料)。各第一線路可以橫跨並與對應列中的各STT-MTJ的自由層接觸。這些圖像感測器實施例還可以包括第二線路。第二線路可以包括導電材料。各第二線路可以電性連接到對應行中的各磁性隧道接面的固定層。
根據在圖像感測器的MTJ陣列中使用的MTJ類型(例如SHE-MTJ或STT-MTJ),在上述全域重置、全域感測和選擇性讀取操作期間應用於第一線路和第二線路的偏壓條件將不同(如具體實施方式部分中進一步討論的)。
100A:圖像感測器實施例、圖像感測器
100B:圖像感測器實施例、圖像感測器
100C:圖像感測器實施例、圖像感測器
110:陣列
120:光學可切換自旋轉移轉矩型(STT)MTJ
121:第二線路
122:局部互連
123:釘紮鐵磁層、釘紮層
124:絕緣體層、隧道阻擋層
125:自由鐵磁層、自由層
126:第一線路
127:透明導電材料
128:金屬或金屬合金材料
129:多MTJ像素、像素
130:按需輻射屏蔽、輻射屏蔽
180:控制器
181:週邊電路
183:週邊電路
190:感測電路
191:放大器、特定放大器
192:開關
331:包層材料
332(1):銦錫氧化物(ITO)層
332(2):銦錫氧化物(ITO)層
332(3):銦錫氧化物(ITO)層
332(4):銦錫氧化物(ITO)層
332(5):銦錫氧化物(ITO)層
333a:接觸件
333b:接觸件
500A:圖像感測器實施例、圖像感測器
500B:圖像感測器實施例、圖像感測器
500C:圖像感測器實施例、圖像感測器
510:陣列
520:光學可切換自旋霍爾效應型(SHE)MTJ
521:第二線路
522:局部互連
523:釘紮鐵磁層、釘紮層
524:絕緣體層
525:自由鐵磁層、自由層
526:第一線路
527:SHE材料
528:金屬或金屬合金材料
529:多MTJ像素
530:按需輻射屏蔽
580:控制器
581:週邊電路
582:週邊電路
583:週邊電路
590:感測電路
591:放大器、特定放大器
592:開關
B-D:行
a-d:列
藉由以下參考附圖的詳細描述,將更好地理解本發明,這些附圖不一定按照比例繪製,其中:
圖1A、圖1B和圖1C為分別說明各圖像感測器實施例的示意圖,各圖像感測器實施例均包括光學可切換自旋轉移轉矩型(STT)磁性隧道接面(MTJ);
圖2A、圖2B和圖2C為分別說明圖1A、圖1B和圖1C的任意一個所示圖像感測器實施例中的STT-MTJ上方採用的第一線路的不同配置的截面圖;
圖3為說明可併入圖1B和圖1C所示的圖像感測器實施例中的示例性按需輻射屏蔽的截面圖;
圖4A、圖4B和圖4C分別說明了在重置、感測和讀取操作期間,在圖1A、圖1B和圖1C的任意圖像感測器實施例中的示例性STT-MTJ。
圖5A、圖5B和圖5C分別說明了圖像感測器實施例的示意圖,各實施例包括光學自旋霍爾效應型(SHE)MTJ。
圖6A、圖6B和圖6C分別說明在圖5A、圖5B和圖5C所示的任意圖像感測器實施例中所採用的SHE-MTJ上方的第一線路的不同配置的截面圖;以及
圖7A、圖7B(1)、圖7B(2)和圖7C分別說明了在重置、感測以及讀取操作期間,在圖5A、圖5B、圖5C的任意圖像感測器實施例中的示例性SHE-MTJ。
如上所述,傳統的圖像感測器是基於互補金屬氧化物半導體(CMOS)的。具體而言,它們包括基於CMOS像素的陣列。
示例性的基於CMOS的像素包括光電二極體(例如PIN光電二極體)和包括重置電晶體(例如P型場效電晶體(PFET)),放大電晶體(例如N型場效電晶體(NFET))和存取或選擇電晶體(例如,另一NFET)的至少三個電晶體。在這樣的像素中,重置電晶體和光電二極體以串聯方式電性連接在正電壓軌和接地軌之間。感測節點位於光電二極體和重置電晶體之間的接合處。放大電晶體和存取電晶體以串聯方式電性連接在另一正電壓軌和位元線之間。重置電晶體的閘極由重置信號(RST)控制。放大電晶體的閘極電性連接到感測節點,並且存取電晶體的閘極電性連接到字元線。在該陣列中,同一行中的所有像素電性連接到同一位元線,並且同一列中的所有像素電性連接到同一字元線。
圖像感測器的操作如下。在預充電操作期間,RST被切換到邏輯“0”,以打開每個像素的重置電晶體,從而對感測節點進行預充電。在感測操作(也稱為圖像捕獲操作)期間,RST被切換到邏輯“1”以關閉每個像素的重置電晶體,並且光電二極體被暴露在光下。在每個像素中,取決於在像素的光電二極體處接收到的光的強度等級,像素的感測節點上的電壓 位準將保持在相同的預充電電壓位準,以便放大電晶體保持在接通狀態,或者將被放電到較低的電壓位準,以便放大電晶體切換到關閉狀態。換句話說,將在像素的感測節點上生成感測資料值。在讀取操作期間,為了從所選像素讀取所儲存的資料值,包含所選像素的列的字元線將被切換到高電壓位準,從而打開存取電晶體,並且包含所選像素的行的位元線上的電壓位準(或者可選地,電流位準)的任何變化可以被感測(例如,藉由感測放大器、跨阻放大器(transimpedance amplifier;TIA)等),並且可以指示儲存的資料值。
這種基於CMOS的圖像感測器的一個缺點是像素無法抗輻射。具體而言,輻射會導致儲存的資料值洩漏。因此,必須在這種洩漏發生之前從像素快速讀取儲存的資料值並將其儲存在記憶體中以避免錯誤。另一個缺點是,由於每像素所需的裝置數量(例如,光電二極體和至少三個電晶體)以及相對較大的光電二極體尺寸,像素陣列消耗了大量的晶片面積。
一般而言,本文公開了一種圖像感測器的各種實施例,其包括以行和列排列的光學可切換磁性隧道接面(MTJ)陣列。每個MTJ可以是後段製程(BEOL)多層結構,其包括第一側的自由層和第二側的釘紮層之間的絕緣體層。每個圖像感測器實施例可以進一步包括第一線路。第一線路可以包括透明導電材料,並且可以分別緊鄰MTJ的列。具體地,每條第一線路可以橫跨MTJ的對應列,以使其跨越對應列中的各MTJ的自由層延伸並與之接觸。每個圖像感測器實施例可以進一步包括第二線路。第二線路可以包括導電材料並且可以分別電性連接到MTJ的行。具體而言,每條 第二線路可以電性連接到對應行中各MTJ的釘紮層。另外,每個圖像感測器實施例可被配置為使得第一線路可同時暴露於輻射,從而使得第一線路和第二線路兩者都可被選擇性偏壓,以實現針對陣列中的MTJ的全域重置、全域感測和選擇性讀取操作,而無需為每個MTJ配備電晶體(例如,存取電晶體等)。
為了本申請的目的,全域重置操作指的是一種操作,其中,陣列中的所有MTJ被重置為相同狀態(例如,反平行狀態(anti-parallel state))以使得它們儲存相同的資料值(例如,為“0”)。全域感測操作(在本文中也稱為圖像捕獲操作)指的是一種操作,其中,所有第一線路都暴露於輻射下,並且根據輻射的強度水平,在第一線路中與MTJ緊鄰的部分中,某些MTJ可能會切換狀態(例如,從AP狀態轉換為平行(P)狀態),以使它們現在儲存不同的資料值(例如,“1”)。在全域感測操作之後儲存在所有MTJ中的資料值在本文中被稱為圖像資料值。因此,MTJ被認為是光學可切換的。選擇性讀取操作指的是一種操作,其中,讀取(即感測、確定等)所選像素的值,所選像素是單MTJ像素或者多MTJ像素(取決於實施例,如下所述),並且對應於在全域感測操作期間捕獲的圖像的給定位置。如以下關於各種不同實施例所討論的,在不同的全域重置、全域感測和選擇性讀取操作期間,第一線路和第二線路的偏壓將根據陣列中使用的MTJ的類型(例如,自旋轉移轉矩型(spin transfer torque;STT)MTJ或自旋霍爾效應型(spin hall effect;SHE)MTJ))而變化。
更具體地,參考圖1A、圖1B和圖1C,本文揭示的一些圖像感測器實施例100A、100B和100C包括光學可切換磁性隧道接面(MTJ) 的陣列110,特別是,排列成行和列的光學可切換自旋轉移轉矩型(STT)MTJ 120。為了說明的目的,所示的陣列110具有四行A-D和四列a-d。然而,應當理解,附圖並非旨在進行限制,並且替代地,陣列110可以具有任意數量的兩個或更多行以及兩個或更多列的STT-MTJ 120。
各STT MTJ 120可以是後段製程(BEOL)多層結構。也就是說,各STT MTJ 120可以是在積體電路晶片上的前端製程(FEOL)裝置(例如,半導體裝置等)上方的BEOL金屬層中形成的多層結構。各STT-MTJ 120可以包括位於第一側的自由鐵磁層125(在本文中也稱為自由層或資料儲存層)和位於第二側的釘紮鐵磁層123(在本文中也稱為釘紮層或固定鐵磁層)之間的絕緣體層124(也稱為隧道阻擋層)。在一示例性實施例中,釘紮鐵磁層123可以是例如釓(Gd)、鐵(Fe)和鈷(Co)合金層。絕緣體層124(即隧道阻擋層)可以是例如氧化鎂(MgO)層、氧化鋁(Al2O3)層(也稱為氧化鋁)和鉍鐵氧體(BiFeO3,也稱為BFO)層中的任何一層。自由鐵磁層125可以是例如鈷(Co)、鐵(Fe)、硼(B)合金層。
這些圖像感測器實施例100A、100B和100C可以進一步包括第一線路126。第一線路126可以分別緊鄰STT MTJ 120的列a-d。具體而言,各第一線路126可以跨越STT-MTJ的對應列,使其延伸到對應列中的各STT-MTJ 120的自由層125並與之接觸。例如,第一線路126可以是相對薄且平坦的材料條(也被稱為奈米片),它們(a)完全由透明導電材料127構成(如圖2A所示)或(b)具有第一區段和第二區段,所述第一區段緊鄰STT MTJ 120的自由層125且由透明導電材料127構成,所述第二區段位於所述第一區段的相對側(例如,使得各第一區段橫向位於兩個第二區段之 間),並且由金屬或金屬合金材料128構成,以增加導電性(如圖2B或圖2C所示)。在任何情況下,透明導電材料127可包括例如銦錫氧化物(ITO)、氧化鋅(ZnO)、石墨烯或任何其他合適的透明導電材料。在第一線路126具有透明導電材料127的第一區段和金屬或金屬合金材料128的第二區段的情況下,金屬或金屬合金材料128可以是例如銅、鋁或任何其他合適的BEOL金屬或金屬合金材料。另外,透明導電材料127的第一區段和金屬或金屬合金材料128的第二區段可以具有相同的厚度(如圖2B所示)或不同的厚度(例如,金屬或金屬合金材料128的第二區段可比透明導電材料127的第一區段厚)(如圖2C所示)。
這些圖像感測器實施例100A、100B和100C可以進一步包括導電材料的第二線路121。第二線路121可以是例如由金屬或金屬合金(例如,銅或任何其他合適的BEOL金屬或金屬合金)製成的導線。第二線路121可分別電性連接(例如,藉由局部互連122)到STT MTJ的A-D行中的MTJ。具體而言,各第二線路121可以藉由局部互連122電性連接到對應行A-D中的各STT-MTJ 120的釘紮層123。
此外,這些圖像感測器實施例100A、100B和100C可以被配置成使得第一線路和第二線路都是選擇性偏壓的,從而能夠在無需為各STT-MTJ配置電晶體(例如,存取電晶體等)的情況下,執行STT-MTJ的全域重置、全域感測和選擇性讀取操作。
具體而言,圖像感測器實施例100A、100B和100C可以進一步包括控制器180和週邊電路181和183。響應於來自控制器180的控制信號,週邊電路181和183可以在全域重置、全域感測和選擇性讀取操 作期間引起第一線路126和第二線路121的特定偏壓,如下所述。具體而言,週邊電路181可以連接到列的第一線路126,並且可以包括例如位址解碼邏輯和用於適當偏壓第一線路的第一線路驅動器,如下所述。週邊電路183可以連接到行的第二線路121,並且可以包括行位址解碼邏輯和用於適當地偏壓第二線路的第二線路驅動器,如下所述。週邊電路被配置成響應於來自控制器的控制信號而選擇性地偏壓陣列的線在本領域中是公知的。因此,為了允許讀者關注於所公開實施例的顯著方面,本說明書省略了其細節。
這些圖像感測器實施例100A、100B和100C可以進一步配置成至少在全域感測操作期間,第一線路126同時暴露於輻射(例如,不同波長的環境輻射)。例如,由於第一線路126的頂面沒有任何其它薄膜,或者由於第一線路126的頂面僅被透明膜覆蓋(如圖1A的圖像感測器實施例100A中所示),因此第一線路126可以連續暴露於環境光下。或者,單個按需(on-demand)輻射屏蔽可以覆蓋整個陣列110(未示出),或者多個離散的按需輻射屏蔽130可以分別對準第一線路126上方(如圖1B的圖像感測器實施例100B和圖1C的圖像感測器實施例100C)。這種按需輻射屏蔽可以被配置成響應於不同的偏壓條件(例如,由週邊電路181響應於來自控制器180的控制信號而施加者)在不透明狀態和透明狀態之間切換,使得僅在需要時才出現第一線路的曝光(例如,在全域感測操作期間)。也就是說,在第一組偏壓條件下的第一狀態中,按需輻射屏蔽基本上可以是不透明的,以防止輻射傳輸到第一線路526,而在與第一組不同的第二組偏壓條件下的第二狀態中,按需輻射屏蔽基本上是透明的,以允許第一線路126同時 暴露於輻射中。
圖3是一個橫截面圖,說明了一個按需輻射屏蔽的示例。這種按需輻射屏蔽包括多層堆疊的、相對較薄的銦錫氧化物(ITO)層332(1)-332(5)(例如,每層小於3nm)。為了便於說明,圖3中顯示了五個ITO層;但是,也可以使用不同數量的多ITO層(例如,三個或更多)。在任何情況下,ITO層332(1)-332(5)嵌入包層材料中,使得ITO層被包層材料331分開。交替的ITO層彼此電性連接。例如,奇數編號的ITO層332(1)、(3)和(5)可以藉由一端的接觸件333a彼此電性連接,並且偶數編號的ITO層332(2)和(4)可以藉由相對一端的不同接觸件333b彼此電性連接。根據分別藉由接觸件333a和333b施加到奇數ITO層和偶數ITO層的電壓,輻射屏蔽130將對輻射(例如,給定波長範圍)透明或不透明。例如,如果一組ITO層(例如,奇數ITO層)為負偏壓(例如-3V)並且另一組ITO層(例如偶數ITO層)為接地,則輻射屏蔽130可以具有相對較低的折射率(例如,n~1,例如n=1.042)和高消光係數(例如k>0.2,例如k=0.273),使其表現為Bragg反射器並導致高傳輸損耗(例如-40dB或更高,例如-47dB),因此基本上是不透明的。相反地,如果ITO層是無偏壓的,則輻射屏蔽130可以具有相對較高的折射率(例如,n~2,例如n=1.964)和低消光係數(例如,k>0.005,例如k=0.002),從而導致低的傳輸損耗(例如,小於等於-4dB,例如-3dB),並且因此本質上是透明的。
圖4A為說明在全域重置操作期間的示例性STT-MTJ 120的橫截面圖。在全域重置操作期間,所有第一線路126可以被放電以接地,並且第一正電壓(例如VDD高)可以施加到所有第二線路121,以便足夠高 的電流從第二線路121沿第一方向通過STT-MTJ 120中的每一個(即,通過釘紮層123、隧道阻擋層124、和自由層125),從而使陣列110中的所有STT-MTJ 120同時重置為反平行(AP)狀態。因此,作為全域重置操作的結果,相同的第一資料值(例如,“0”)被同時儲存在陣列110中的STT-MTJ 120的每一個中。
圖4B是說明在全域感測操作期間的示例性STT-MTJ 120的一個橫截面圖。在全域感測操作(本文也稱為圖像捕獲操作)期間,可以將小於第一正電壓(例如VDD高)的第二正電壓(例如VDD低)施加到所有第一線路126,並且所有第二線路121可被放電以接地。在這些偏壓條件下,低電流從第一線路126沿第二方向通過STT-MTJ 120中的每一個(即,通過自由層125、隧道阻擋層124和釘紮層123)流向第二線路121。然而,將任何給定的STT-MTJ 120從AP狀態切換到平行(P)狀態,使得儲存的資料值從第一資料值(例如,“0”)切換到第二資料值(例如,“1”),將僅當在緊鄰的第一線路部分接收到的輻射300的實際發光強度水平大於閾值發光強度水平(即,實際坎德拉(candela)(Cda)>閾值坎德拉(Cdt))時才會出現。也就是說,在全域感測操作期間,所有第一線路126將同時暴露於輻射中,這是因為:(a)無論操作如何,第一線路126的頂面連續暴露(例如,如在圖像感測器100A中),或(b)因為按需輻射屏蔽130的狀態已被切換,如上文所述,以允許傳輸輻射(例如,在圖像感測器100B或100C中)。取決於在全域感測操作期間捕獲的特定圖像,在任何給定STT-MTJ上方的第一線路126的任何給定區域中接收到的輻射300的實際發光強度位準可以變化。如果在特定的第一線路部分(其位於特定STT-MTJ上方並緊鄰特定STT- MTJ)接收到的輻射300的實際發光強度水平低於閾值發光強度水平,則來自第一線路126上施加的偏壓和在特定第一線路部分接收到的輻射300的組合能量將不足以導致與其緊鄰的特定STT-MTJ從AP狀態切換到P狀態。也就是說,特定STT-MTJ將繼續儲存第一個資料值(例如,“0”)。然而,如果在特定的第一線路部分(其位於特定STT-MTJ上方並緊鄰特定STT-MTJ)接收到的輻射300的實際發光強度水平高於閾值發光強度水平,則來自第一線路126上施加的偏壓和在特定的第一線路部分接收到的輻射300的組合能量將導致特定的STT-MTJ從AP狀態切換到P狀態。即,在特定STT-MTJ中儲存的資料值將從第一資料值(例如,“0”)切換到第二資料值(例如,“1”)。因此,在此全域感測操作期間,陣列110中的STT-MTJ 120被認為是可光學切換的。
可選地,可以具體地選擇STT-MTJ的材料和/或在全域感測操作期間使用的偏壓條件,使得輻射誘導開關僅響應於超過閾值強度值和特定波長範圍內的輻射而發生。
隨後可以執行選擇性讀取操作以讀取與在全域感測操作期間捕獲的圖像的不同位置相對應的像素值。圖4C為說明在選擇性讀取操作期間示例性的STT-MTJ 120的橫截面圖。
在一些圖像感測器實施例中(例如,參見圖1A的圖像感測器實施例100A和圖1B的圖像感測器實施例100B),像素可以是單MTJ像素,使得在陣列110中,像素的行數和像素的列數與STT MTJ的行數和STT MTJ的列數相同。在這種情況下,圖像感測器可以包括感測電路190,並且此感測電路190可以包括分別電性連接到第二線路121的放大器 191(例如,感測放大器、運算放大器(OPAMP)或任何其他合適類型的放大器)。應當注意到,到第二線路121的接地連接也可以藉由使用偏移補償OPAMP虛擬接地連接來實現。在所選單MTJ像素的選擇性讀取操作(在這種情況下是其中的單STT-MTJ的讀取操作)期間,可以將讀取電壓(Vread)施加到與所選單MJT像素的STT-MTJ接觸的特定第一線路126(即,含有所選單MJT像素的STT-MTJ的列的特定第一線路126)。在存在輻射的情況下(如在圖像感測器100A中)或者在當按需輻射屏蔽130不透明時沒有輻射的情況下(如在圖像感測器100B中),Vread可以小於用以將所選單MTJ像素的STT-MTJ從AP狀態切換到P狀態所需的電壓位準。所有其他的第一線路都可以被放電以接地。作為這些偏壓條件的結果,特定放大器191對於含有所選單MTJ像素的STT-MTJ的特定行的輸出(即,在與所選單MTJ像素的STT-MTJ電性連接的特定第二線路121上的特定放大器191的輸出)將表示像素值。
應注意的是,可選地,STT-MTJ可設計為高電阻裝置(例如,藉由增加絕緣體層124的厚度)來抑制選擇性讀取操作期間來自未選擇列的潛入電流(sneak current)的影響。還應注意,給定上述偏壓條件,可以執行像素值的同時讀取操作(concurrent read operation),其被讀取作為給定像素列中所有單MJT像素的所有單STT-MTJ的儲存資料值。
或者,在其他圖像感測器實施例中(例如,參見圖1C的圖像感測器實施例100C),像素可以是多MTJ像素。也就是說,對應於在全域感測操作期間捕獲的圖像的給定位置的每個像素可以與多個STT-MTJ 120相關聯。例如,對應於在全域感測操作期間捕獲的圖像的給定位置的每個 多MTJ像素129可以與來自兩個或更多個相鄰行的兩個或多個相鄰STT MTJ 120和/或來自兩個或更多個相鄰列的兩個或更多個相鄰STT MTJ 120相關聯。為了便於說明,在圖1C中,每個多MTJ像素129與四個STT MTJ相關聯,包括來自STT MTJ的相鄰行的兩個和來自STT MTJ的相鄰列的兩個。因此,具有STT MTJ的四行A-D和STT MTJ的四列a-d的示例性陣列110將僅具有兩行像素和兩列像素。在這種情況下,感測電路190'可以包括分別與像素行中的每一行相關聯的第二線路組中相鄰第二線路之間的開關192(例如,傳輸閘)。也就是說,與給定像素行相關聯的給定第二線路組中的每一對相鄰第二線路將藉由使用開關192(例如,傳輸閘)電性連接(按需)。感測電路190'可以進一步包括分別電連接到第二線路組的放大器191(例如,感測放大器或任何其他合適類型的放大器)。也就是說,每個放大器191可以電性連接到與給定像素行相關聯的給定第二線路組。在選定的多MTJ像素129的選擇性讀取操作期間(在這種情況下,是四個相鄰STT MTJ中儲存的資料值的組合值的讀取操作),開關192將響應於來自控制器180的一個或多個控制信號(例如,響應於使能信號和反向使能信號)而打開,從而電性連接與每個給定像素行相關聯的每個給定第二線路組內的相鄰第二線路。然後,讀取電壓(Vread)可僅施加至與所選多MTJ像素129的STT MTJ接觸的那些第一線路126。在存在輻射的情況下(例如,當不存在輻射屏蔽時(未示出)),或可替換地,在當按需輻射屏蔽130不透明時沒有輻射的情況下(如在圖像感測器100C中),Vread可以小於用以將所選像素129中的任何STT-MTJ從AP狀態切換到P狀態所需的電壓位準。所有其他的第一線路都可以放電以接地。作為打開開關192的結果, 並且進一步作為偏壓條件的結果,對於包含所選多MTJ像素129的特定像素行的特定放大器191的輸出將指示所選多MTJ像素129中所有STT-MTJ的儲存資料值的組合值。
藉由考慮在全域感測操作期間響應於暴露於輻射的多MTJ像素中的所有STT-MTJ的切換行為的結果而不是單MTJ像素中單STT-MTJ的切換行為的結果,可以從統計角度提高圖像捕獲精度。也就是說,不是當單MTJ像素的STT-MTJ在全域感測操作期間響應於暴露於輻射而切換儲存的資料值時,將捕獲圖像的給定位置與高強度光相關聯,而是僅當多MJT像素的一群相鄰STT-MTJ中至少有一半切換其儲存的資料值時,才將給定位置與高強度光相關聯,從而提高了精度。在前一種情況下,如果單MJT像素的STT-MJT錯誤地切換了其儲存的資料值,則與該像素相關的值將是錯誤的。在後一種情況下,如果多MJT像素的STT MJT中只有一個錯誤地切換其儲存的資料值,則與該像素相關聯的值仍然是正確的。應當注意的是,給定上述偏壓條件,可以從給定像素列中的多MJT像素執行像素值的並行讀取操作。在任何情況下,在選擇性讀取操作期間,從單MTJ像素或多MTJ像素讀出的值將是二進制的,指示是否存在高強度光(可選地具有特定顏色)。
可選的,對於多MJT像素,可以配置給定群(即,在多MTJ像素內)內的不同STT-MTJ以具有不同的能量屏障。例如,每個多MTJ像素內的STT-MTJ可以分別具有不同的橫截面區域。在這種情況下,可以藉由探測在全域感測操作期間切換的群內的STT-MTJ的總數來感測入射輻射的模擬強度。
參考圖5A、圖5B和圖5C,本文公開的其他圖像感測器實施例500A、500B和500C包括排列成行和列的光學可切換磁性隧道接面(MTJ),特別是光學可切換自旋霍爾效應型(SHE)MTJ 520的陣列510。出於說明的目的,所示的陣列510具有四行A-D和四列a-d。然而,應當理解的是,這些數字並非意在限制,或者,陣列510可以具有任意數量的兩個或多個行和兩個或更多列SHE-MTJ 520。如下文更詳細地討論的,SHE-MTJ 520可以是傳統的SHE-MTJ或電壓控制的磁各向異性(voltage-controlled magnetic anisotropy;VCMA)輔助的SHE-MTJ。
在任何情況下,SHE-MTJ 520中的每一個都可以是後段製程(BEOL)多層結構。也就是說,各SHE-MTJ 520可以是在積體電路晶片上的前端製程(FEOL)裝置(例如,半導體裝置等)上方的BEOL金屬層中形成的多層結構。各SHE-MTJ 520可包括第一側的自由鐵磁層525(在本文中也稱為自由層或資料儲存層)和第二側的釘紮鐵磁層523(本文也稱為釘紮層或固定鐵磁層)之間的絕緣體層524(也稱為隧道阻擋層)。在一示例性實施例中,釘紮鐵磁層523可以是例如釓(Gd)、鐵(Fe)和鈷(Co)合金層。絕緣體層524(即,隧道阻擋層)可以是例如氧化鎂(MgO)層、氧化鋁(Al2O3)層(也稱為氧化鋁)和鉍鐵氧體(BiFeO3,也稱為BFO)層中的任何一層。自由鐵磁層525可以是例如鈷(Co)、鐵(Fe)、硼(B)合金層。
本領域技術人員將認識到,可以使用類似或相同的材料來形成STT-MTJ、常規SHE-MTJ和VCMA輔助的SHE-MTJ。然而,與在VCMA輔助SHE-MTJ中使用的絕緣體層524相比,常規SHE-MTJ中採用的絕緣體層524可使用不同的厚度來優化性能。
這些圖像感測器實施例500A、500B和500C可以進一步包括第一線路526。第一線路526可以分別緊鄰SHE-MTJ 520的a-d列。具體而言,各第一線路526可以跨過SHE-MTJ的對應列,使得其延伸並與對應列中的每個SHE-MTJ 520的自由層525接觸。例如,第一線路526可以是相對薄而平坦的材料條帶(也被稱為奈米片),這些材料是:(a)完全由透明導電的SHE材料527(如圖6A所示)構成,或(b)具有第一區段和第二區段,第一區段緊鄰SHE-MTJ 520的自由層525並且由透明導電SHE材料527製成,第二區段位於第一區段的相對側(例如,使每個第一區段橫向位於兩個第二區段之間),並且由金屬或金屬合金材料528構成,以提高導電性(如圖6B或圖6C所示)。在任何情況下,透明導電SHE材料527可以包括相對薄的(例如,小於3nm),並且可以包括例如重金屬(例如釓、鉭、鉑、鎢或密度至少為5g/cm3的任何其他合適的重金屬),石墨烯或任何其他合適的透明導電材料,具有自旋霍爾效應。應當注意,也可以使用銦錫氧化物(ITO)或氧化鋅(ZnO),但本領域技術人員將認識到這些材料具有相對較低的自旋霍爾角度。在第一線路526具有透明導電SHE材料527的第一區段和金屬或金屬合金材料528的第二區段的情況下,金屬或金屬合金材料528可以是例如銅、鋁或任何其他合適的BEOL金屬或金屬合金材料。另外,透明導電SHE材料527的第一區段和金屬或金屬合金材料528的第二區段可以具有相同的厚度(如圖6B所示)或不同的厚度(例如,金屬或金屬合金材料528的第二區段厚度可大於透明導電SHE材料527的厚度)(如圖6C所示)。
這些圖像感測器實施例500A、500B和500C可進一步包括 導電材料的第二線路521。第二線路521可以是例如由金屬或金屬合金(例如,銅或任何其他合適的BEOL金屬或金屬合金)製成的導線。第二線路521可分別電性連接(例如,藉由局部互連522)到SHE-MTJ的A-D行中的MTJ。具體而言,各第二線路521可以藉由局部互連522電性連接到對應行A-D中的各SHE-MTJ 520的釘紮層523。
此外,這些圖像感測器實施例500A、500B和500C可以被配置成使得第一線路和第二線路都是選擇性偏壓的,從而能夠在不需要為各SHE-MTJ配置電晶體(例如,存取電晶體等)的情況下,執行關於SHE-MTJ的全域重置、全域感測和選擇性讀取操作。
具體而言,圖像感測器實施例500A、500B和500C可以進一步包括控制器180和週邊電路581-583。響應於來自控制器180的控制信號,週邊電路581-583可以在全域重置、全域感測和選擇性讀取操作期間導致第一線路126和第二線路121的偏壓,如下所述。具體而言,週邊電路581和582可以連接到列的第一線路526的相對端,並可包括例如位址解碼邏輯和第一線路驅動器,用於適當地偏壓第一線路的相對端,如下所述。週邊電路583可以連接到行的第二線路521,並且可以包括行位址解碼邏輯和用於適當地偏壓第二線路的第二線路驅動器,如下所述。週邊電路被配置成響應於來自控制器的控制信號而選擇性地偏壓陣列的線路,這在本領域中是公知的。因此,為了允許讀者關注所公開實施例的顯著方面,本說明書省略了其細節。
這些圖像感測器實施例500A、500B和500C可以進一步配置成至少在全域感測操作期間,第一線路526同時暴露於輻射(例如,不同 波長的環境輻射)。例如,由於第一線路526的頂面沒有任何其它膜,或者由於第一線路126的頂面僅被透明膜覆蓋(如圖5A的圖像感測器實施例500A中所示),第一線路526可以連續暴露於環境光下。或者,覆蓋整個陣列510的單個按需輻射屏蔽(未示出)或多個離散的按需輻射屏蔽530可以分別在第一線路526的上方對齊。這種按需輻射屏蔽可以被配置成響應於不同的偏壓條件(例如,由週邊電路581和/或582響應於來自控制器580的控制信號而施加)在不透明和透明狀態之間切換,使得僅在需要時(例如,在全域感測期間)才發生第一線路的曝光。也就是說,在第一組偏壓條件下的第一狀態下,按需輻射屏蔽基本上可以是不透明的,以防止輻射傳輸到第一線路526,而在與第一組不同的第二組偏壓條件下的第二狀態中,按需輻射屏蔽基本上是透明的,以允許第一線路526同時暴露於輻射中。圖3是示例性按需輻射屏蔽的橫截面圖(參見上文圖3的詳細討論)。
圖7A是一個橫截面圖,說明了在全域重置操作期間的示例性SHE-MTJ 520。例如,在全域重置操作期間,第一正電壓(例如VDD高)可施加到所有第一線路526的第一端(即透明導電的SHE材料),與第一端相對的所有第一線路526的所有第二端可以接地,並且所有第二線路521也可以接地,使得足夠高的電流沿著第一方向(例如,在X方向)流過第一線路526,從而使得SHE-MTJ同時重置到反平行(AP)狀態。也就是說,在每個SHE-MTJ中,自由層525中的磁性的極性將保持或切換到第二方向,該第二方向垂直於通過第一線路526的電流的第一方向,並且與釘紮層523中的磁性的極性相反。例如,如果每個SHE-MTJ的釘紮層523中的磁性的極性在Y+方向,使得電流在X方向流過第一線路526(其中含有透明導 電的SHE材料)可以導致自由層525中的磁性的極性保持在Y方向或切換到Y方向,如此,相同的第一資料值(例如,“0”)同時儲存在陣列510中的每個SHE-MTJ 520中。
圖7B(1)和圖7B(2)是不同的橫截面圖,分別說明了在全域感測操作期間的示例性常規SHE-MTJ或示例性VCMA輔助SHE-MTJ。在全域感測操作(本文也稱為圖像捕獲操作)期間,所有第一線路可同時暴露於輻射300,然而,偏壓條件將根據SHE-MTJ是常規的SHE-MTJ還是VCMA輔助的SHE-MTJ而變化。
具體而言,對於傳統的SHE-MTJ(如圖7B(1)所示)而言,小於第一正電壓(例如VDD高)的第二正電壓(例如VDD低)可以施加到第一線路526的所有第二端,第一線路526的所有第一端可以接地,並且所有第二線路521可以放電接地。在這些偏壓條件下,低電流沿X+方向流過第一線路526。然而,藉由將自由層525中的磁性極性切換到與釘紮層523中的磁性的極性相同的方向(例如,向Y+方向),以將任何給定的常規SHE-MTJ從AP狀態切換到平行(P)狀態,使得在僅當緊鄰的第一線路部分接收到的輻射300的實際發光強度水平大於閾值發光強度水平(即,實際坎德拉(Cda)>閾值坎德拉(Cdt))時,才會發生將儲存的資料值從第一資料值(例如,“0”)切換到第二資料值(例如,“1”)。也就是說,在全域感測操作期間,所有第一線路526將同時暴露於輻射300,這是因為:(a)無論操作如何,第一線路526的頂面為連續暴露(例如,如在圖像感測器500A中),或者(b)因為按需輻射屏蔽530的狀態已被切換(根據需要,如上所述),以允許輻射300的傳輸(例如,在圖像感測器500B或500C中)。取決於在該全域感 測操作期間捕獲的特定圖像,在任何給定的常規SHE-MTJ上方的第一線路526的任何給定區域中接收到的輻射300的實際發光強度水平可以變化。如果在特定的第一線路部分接收到的輻射300的實際發光強度水平(其位於特定的SHE-MTJ上方並緊鄰特定的SHE-MTJ)小於閾值發光強度水平,則來自穿過第一線路526的X+方向的低電流和在特定第一線路部分接收到的輻射300的組合能量將不足以導致與其相鄰的特定常規SHE-MTJ從AP狀態切換到P狀態。也就是說,特定的常規SHE-MTJ將繼續儲存第一個資料值(例如,“0”)。然而,如果在特定的第一線路部分接收到的輻射300的實際發光強度水平(其位於特定的SHE-MTJ上方並緊鄰特定的SHE-MTJ)高於閾值發光強度水平,則來自穿過第一線路526的X+方向的低電流和在特定第一線路部分接收到的輻射300的組合能量將導致特定的SHE-MTJ從AP狀態切換到P狀態(即,將導致自由層525中的磁性的極性切換,使得其與釘紮層523中的磁性的極性相同,例如在Y+方向)。也就是說,特定常規SHE-MTJ中儲存的資料值將從第一資料值(例如,“0”)切換到第二資料值(例如,“1”)。
對於VCMA輔助SHE-MTJ(如圖7B(2)所示)而言,所有第一線路526的第一端和第二端可以電性接地,並且電壓控制的磁各向異性(VCMA)電壓可施加於所有第二線路。VCMA電壓可以是高正電壓,尤其是在與上述第一正電壓(例如VDD高)相同或更高的水平上。在這些偏壓條件下,藉由將自由層525中的磁性的極性切換到與釘紮層523中的磁性的極性相同的方向(例如,沿Y+方向)以將VCMA輔助SHE-MTJ由從AP狀態切換到平行(P)狀態,使得在僅當緊鄰的第一線路部分接收到的輻射300 的實際發光強度水平大於閾值發光強度水平(即,實際坎德拉(Cda)>閾值坎德拉(Cdt))時,才會發生將儲存的資料值從第一資料值切換(例如,“0”)切換到第二資料值(例如,“1”)。也就是說,在全域感測操作期間,所有第一線路526將同時暴露於輻射300,這是因為:(a)無論操作如何,第一線路526的頂面為連續暴露(例如,如在圖像感測器500A中),或者(b)因為按需輻射屏蔽530的狀態已被切換(根據需要,如上所述),以允許輻射300的傳輸(例如,在圖像感測器500B或500C中)。取決於在該全域感測操作期間捕獲的特定圖像,在任何給定的VCMA-輔助SHE-MTJ上方的第一線路526的任何給定區域中接收到的輻射300的實際發光強度水平可以變化。如果在特定的第一線路部分接收到的輻射300的實際發光強度水平(其位於特定的VCMA-輔助SHE-MTJ上方並緊鄰特定的VCMA-輔助SHE-MTJ)小於閾值發光強度水平,則來自施加到第二線路的VCMA電壓和在特定的第一線路部分接收到的輻射300的組合能量將不足以導致與其相鄰的特定VCMA-輔助SHE-MTJ從AP狀態切換到P狀態。也就是說,特定VCMA-輔助SHE-MTJ將繼續儲存第一個資料值(例如,“0”)。然而,如果在特定的第一線路分接收到的輻射300的實際發光強度水平(其位於特定VCMA-輔助SHE-MTJ上方並緊鄰VCMA-輔助SHE-MTJ)高於閾值發光強度水平,則來自施加到第二線路的VCMA電壓和在特定的第一線路部分接收到的輻射300的組合能量將導致特定VCMA-輔助SHE-MTJ從AP狀態切換到P狀態(即,將導致自由層525中的磁性的極性切換,使得其與釘紮層523中的磁性的極性相同,例如在Y+方向)。也就是說,特定特定VCMA-輔助SHE-MTJ中儲存的資料值將從第一資料值(例如,“0”)切換到 第二資料值(例如,“1”)。
因此,陣列510中的SHE-MTJ 520(常規或Vvcma輔助)被認為在該全域感測操作期間是可光學切換的。
可選地,可以特別選擇SHE-MTJ 520的材料和/或在全域感測操作期間使用的偏壓條件,使得輻射誘導切換僅在響應於超過閾值強度值和在特定波長範圍內的輻射時發生。
隨後可以執行選擇性讀取操作,以讀取與在全域感測操作期間捕獲的圖像的不同位置相對應的像素值。圖7C示出了在選擇性讀取操作期間的示例性SHE-MTJ 520的橫截面圖。
在一些圖像感測器實施例中(例如,參見圖5A的圖像感測器實施例500A和圖5B的圖像感測器實施例500B),像素可以是單MTJ像素,使得在陣列510內,像素的行數和像素的列數與SHE-MTJ的行數和SHE-MTJ的列數相同。在這種情況下,圖像感測器可以包括感測電路590,並且感測電路590可以包括分別電性連接到第二線路521的放大器591(例如,感測放大器或任何其他合適類型的放大器)。在選定單MTJ像素的選擇性讀取操作期間(在這種情況下,是其中的單SHE-MTJ的讀取操作),可以將讀取電壓(Vread)施加到與所選單MJT像素的SHE-MTJ(即,到包含所選單MJT像素的SHE-MTJ的列的特定第一線路526)接觸的特定第一線路526的相對端(即,第一端和第二端)。在存在輻射的情況下(如在圖像感測器500A中)或者在當按需輻射屏蔽530不透明時沒有輻射的情況下(如在圖像感測器500B中),Vread可以小於用以將所選單MTJ像素的SHE-MTJ從AP狀態切換到P狀態所需的電壓位準。所有其他的第一條線路都 可接地。作為這些偏壓條件的結果,特定放大器591對於包含所選單MTJ像素的SHE-MTJ的特定行的輸出(即,電性連接所選單MTJ像素的SHE-MTJ的特定第二線路521上的特定放大器591的輸出)將指示像素值。
應當注意,在這些偏壓條件下,可以執行作為給定像素列中所有單MJT像素的所有單SHE-MTJ的儲存資料值而讀取的像素值的同時讀取操作。
可替換地,在其他圖像感測器實施例中(例如,參見圖5C的圖像感測器實施例500C),像素可以是多MTJ像素。也就是說,對應於在全域感測操作期間捕獲的圖像的給定位置的每個像素可以與多SHE-MTJ 520相關聯。例如,對應於在全域感測操作期間捕獲的圖像的給定位置的每個多MTJ像素529可以與來自兩個或更多個相鄰行的兩個或多個相鄰SHE-MTJ 520和/或來自兩個或更多個相鄰列的兩個或更多個相鄰SHE-MTJ 520相關聯。為了便於說明,在圖5C中,每個多MTJ像素529與四個SHE-MTJ相關聯,包括來自SHE-MTJ的相鄰行的兩個和來自SHE-MTJ的相鄰列的兩個。因此,具有SHE-MTJ的四行A-D和SHE-MTJ的四列a-d的示例性陣列510將僅具有兩行像素和兩列像素。在這種情況下,感測電路590'可以包括分別與像素行中的每一行相關聯的第二線路組中相鄰第二線路之間的開關592(例如,傳輸閘)。也就是說,與給定像素行相關聯的給定第二線路組中的每對相鄰第二線路將藉由開關592(例如,傳輸閘)的使用而可電性連接(按需)。感測電路590'還可以包括分別電性連接到第二線路組的放大器591(例如,感測放大器或任何其他合適類型的放大器)。也就是說,每個放大器591可以電性連接到與給定像素行相關聯的給定第 二線路組。在選定的多MTJ像素529的選擇性讀取操作期間(在這種情況下,該操作是四個相鄰SHE-MTJ中儲存的資料值的組合值的讀取操作),開關592將響應於來自控制器580的一個或多個控制信號(例如,響應於使能信號和反向使能信號),從而在與每個給定像素行相關聯的每個給定的第二線路組內電性連接相鄰的第二線路。然後,讀取電壓(Vread)可僅施加於與所選多MTJ像素529的SHE-MTJ接觸的第一線路526的相對端。在存在輻射的情況下(例如,當沒有輻射屏蔽時(未顯示))或可替換地,在當按需輻射屏蔽530不透明時不存在輻射的情況下(如在圖像感測器100C中),Vread可以小於用以將所選多MTJ像素529中的任何SHE-MTJ從AP狀態切換到P狀態所需的電壓位準。所有其他的第一線路都可以放電以接地。作為打開開關592的結果,並且進一步作為偏壓條件的結果,對於包含所選多MTJ像素529的特定像素行的特定放大器591的輸出將指示所選多MTJ像素529中所有SHE-MTJ的儲存資料值的組合值。
藉由考慮在全域感測操作期間,響應於暴露於輻射的多MTJ像素中的所有SHE-MTJ的切換行為的結果而不是單MTJ像素中只有單SHE-MTJ的切換行為的結果,可以從統計角度提高圖像捕捉的準確性。也就是說,不是當單MTJ像素的SHE-MTJ響應於在全域感測操作期間暴露於輻射而切換儲存的資料值時,將捕獲圖像的給定位置與高強度光相關聯,而是藉由僅當多MJT像素的一群相鄰SHE-MJT中至少有一半切換其儲存的資料值時,才將給定位置與高強度光相關聯,從而提高精度。在前一種情況下,如果單MJT像素的SHE-MJT錯誤地切換了其儲存的資料值,則與該像素相關聯的值將是錯誤的。在後一種情況下,如果多MJT像素的 SHE-MJT中只有一個錯誤地切換其儲存的資料值,則與該像素相關聯的值仍然是正確的。應當注意,給定上述偏壓條件,可以執行給定像素列中所有多MJT像素的像素值的同時讀取操作。在任何情況下,在選擇性讀取操作期間,從單MTJ像素或多MTJ像素讀取的值將是二進制的,指示是否存在高強度光(可選地具有特定顏色)。
可選地,對於多MJT像素,可以配置給定群(即,在多MTJ像素內)內的不同SHE-MTJ以具有不同的能量屏障。例如,每個多MTJ像素內的SHE-MTJ可以分別具有不同的橫截面區域。在這種情況下,可以藉由感測在全域感測操作期間切換的群內SHE-MTJ的總數來感測入射輻射的模擬強度。
在上述每個圖像感測器實施例(例如,圖1A-圖1C的圖像感測器實施例100A-100C和圖5A-圖5C的圖像感測器實施例500A-500C)中,在全域感測操作期間,陣列110、510中的所有MTJ 120、520同時暴露於輻射,並且當應用施加於第一線路和第二線路的特定偏壓條件時,只有接收到高於閾值發光強度水平的輻射的MTJ同時將狀態從AP切換到P。本文將MTJ同時暴露於輻射並且可根據輻射強度同時切換的陣列110、510的狀態稱為全域快門效應。由於在全域感測操作期間施加於第一線路和第二線路的特定偏壓條件(如上所述),可以實現這種全域快門效應。其它偏壓條件,尤其是在重置和讀取操作期間(如上所述)施加於第一線路和第二線路的特定偏壓條件,在MTJ結構下不足以實現這種光學切換。在任何情況下,可以增強全域快門效應,尤其是藉由使用按需輻射屏蔽130、530來更好地定義全域快門效應,其具體地限制了輻射暴露的時間。
上述圖像感測器實施例(例如,圖1A-圖1C的圖像感測器實施例100A-100C和圖5A-圖5C的圖像感測器實施例500A-500C)的優點包括MTJ(例如,STT-MTJ或SHE-MTJ)能夠儲存感測的圖像資料,其在全域感測操作期間被捕獲,直到執行全域重置操作並且沒有洩漏問題。也就是說,陣列具有內在的記憶體儲存,並且是抗輻射的,因此不需要立即讀取捕獲的資料或避免資料丟失。此外,MTJ是相對較小的後段製程(BEOL)資料儲存裝置,並且與常規圖像感測器不同,常規圖像感測器要求陣列內每個像素有多個前端製程(FEOL)裝置(例如,相對較大的光電二極體和每像素至少三個電晶體),所公開的圖像感測器實施例不需要陣列110,510內的FEOL裝置。因此,所公開的圖像感測器實施例相對於常規圖像感測器所消耗的晶片面積(例如,約2-4μm2),消耗的晶片面積量顯著更小(例如,小於0.022μm2)。
應當理解,本文使用的術語是為了描述所公開的結構和方法,而不是為了限制。例如,如本文所使用的,單數形式“一”、“一個”和“該”意欲包括複數形式,除非上下文清楚地另外指示。另外,如本文所用的術語“包括”“包含”、“包括有”和/或“包含有”指定所述特徵、整數、步驟、操作、元件和/或組件的存在,但不排除存在或添加一個或多個其他特徵、整數、步驟、操作、元件、組件,和/或其群。此外,如本文所使用的術語,例如“右”、“左”、“垂直”、“水平”、“頂”、“底”、“下”、“下方”、“下面”、“底部”、“上”、“上方”、“平行”、“垂直”等,旨在描述在圖紙中定向和說明的相對位置(除非另有說明),以及諸如“接觸”、“直接接觸”、“鄰接”、“直接相鄰”、“緊鄰”等術語旨在表示至少一個元件與另一個元件物理接觸(沒 有將所述元件分開的其他元件)。本文使用術語“橫向”用於描述元件的相對位置,並且更具體地,表示一個元件被定位到另一個元件的側面,而不是相對於另一個元件的上方或下方,因為這些元件在附圖中被定向和示出。例如,一個側面靠近另一個元素的元素將位於另一個元素的旁邊,一個側面緊靠另一個元素的元素將直接位於另一個元素的旁邊,橫向包圍另一元件的元件將與另一元件的外側壁相鄰並與之接界。以下申請專利範圍中的所有裝置或步驟加功能元件的相應結構、材料、動作和等效物旨在包括與具體要求保護的其它元件組合來執行功能的任何結構、材料或動作。
本發明的各種實施例的描述是為了說明的目的而提出的,但並不打算是詳盡的或僅限於所公開的實施例。在不脫離所描述實施例的範圍和精神的情況下,對於本領域的普通技術人員來說,許多修改和變化是顯而易見的。本文使用的術語被選擇來最好地解釋實施例的原理、實際應用或相對於市場上已有技術的技術改進,或者使本領域的其他技術人員能夠理解本文公開的實施例。
100A:圖像感測器實施例、圖像感測器
110:陣列
120:光學可切換自旋轉移轉矩型(STT)MTJ
121:第二線路
122:局部互連
123:釘紮鐵磁層、釘紮層
124:絕緣體層、隧道阻擋層
125:自由鐵磁層、自由層
126:第一線路
180:控制器
181:週邊電路
183:週邊電路
190:感測電路
191:放大器、特定放大器
A-D:行
a-d:列

Claims (20)

  1. 一種感測器,包括:磁性隧道接面的陣列,排列成行和列,其中,該磁性隧道接面包括自旋霍爾效應型磁性隧道接面,該自旋霍爾效應型磁性隧道接面包括自由層和釘紮層之間的絕緣體層;第一線路,包括透明導電自旋霍爾效應材料,其中,各第一線路橫跨並接觸對應列中的各磁性隧道接面的該自由層,且各該第一線路暴露於輻射;以及第二線路,其中,各第二線路電性連接對應行中的各磁性隧道接面的該釘紮層,並且其中,該磁性隧道接面被配置成儲存資料值,該資料值係取決於感測操作期間在緊鄰的該第一線路的部分處接收到的該輻射的強度水平。
  2. 如請求項1所述的感測器,其中,該透明導電自旋霍爾效應材料包括厚度小於3nm的重金屬或石墨烯。
  3. 如請求項1所述的感測器,其中,各第一線路包括第一區段和第二區段,該第一區段包括與該對應列中的各磁性隧道接面的該自由層接觸的該透明導電自旋霍爾效應材料;該第二區段位於該第一區段的相對側上並包括金屬或金屬合金材料。
  4. 如請求項1所述的感測器,進一步包括:控制器;以及週邊電路,與該控制器通信,該週邊電路被配置成響應於來自該控制器的控制信號而選擇性地偏壓該第一線路和該第二線路。
  5. 如請求項4所述的感測器, 其中,在全域重置操作期間,該週邊電路向所有該第一線路的第一端施加第一正電壓,將與該第一端相對的所有該第一線路的第二端接地,並且將所有該第二線路接地,使得該陣列中的所有該磁性隧道接面同時儲存第一資料值,以及其中,在全域感測操作期間,該週邊電路向所有該第一線路的該第二端施加小於該第一正電壓的第二正電壓,將所有該第一線路的該第一端接地,並將所有該第二線路接地,使得響應於所有該第一線路同時暴露於輻射,當在緊鄰第一線路部分處接收到的該輻射的實際強度水平大於閾值強度水平時,僅在給定的磁性隧道接面中發生第一資料值到第二資料值的切換。
  6. 如請求項5所述的感測器,其中,像素包括單磁性隧道接面,其中,該感測器進一步包括分別與該第二線路電性連接的放大器;以及其中,該週邊電路在選擇性讀取操作期間向與所選像素的該單磁性隧道接面接觸的第一線路施加讀取電壓,並將所有其他第一線路接地,使得在電性連接該單磁性隧道接面的第二線路上的放大器的輸出指示在該單磁性隧道接面中儲存的資料值。
  7. 如請求項5所述的感測器,其中,像素包括一群至少兩個磁性隧道接面,使得該磁性隧道接面的陣列包括排列成行和列的像素的陣列;其中,該感測器進一步包括: 開關,分別位於與該像素的該行相關聯的第二線路的組中的相鄰第二線路之間;以及放大器,分別電性連接該第二線路的該組;以及其中,該開關響應於來自該控制器的使能信號而開啟,並電性連接各組內的該第二線路,且在選擇性讀取操作期間,該週邊電路向與所選像素的任何磁性隧道接面接觸的所有第一線路施加讀取電壓,並且進一步將所有其他第一線路接地,使得連接到電性連接該所選像素的該磁性隧道接面的該第二線路的組的放大器的輸出指示該所選像素中的所有該磁性隧道接面的組合資料值。
  8. 如請求項1所述的感測器,進一步包括在第一狀態和第二狀態中可選擇性操作的至少一個按需輻射屏蔽,其中,在該第一狀態中,該至少一個按需輻射屏蔽基本上是不透明的,以防止該輻射傳輸到該第一線路,並且其中,在該第二狀態中,該至少一個按需輻射屏蔽基本上是透明的,以允許該第一線路同時暴露在輻射中。
  9. 一種感測器,包括:磁性隧道接面的陣列,排列成行和列,其中,該磁性隧道接面包括自由層和釘紮層之間的絕緣體層;第一線路,包括透明導電材料,其中,各第一線路橫跨並接觸對應列中的各磁性隧道接面的該自由層;以及第二線路,其中,各第二線路電性連接到對應行中的各磁性隧道接面的該釘紮層,並且其中,該磁性隧道接面響應於該第一線路和該第二線路上的特定偏壓條件以及該第一線路同時暴露於輻射而同時儲存圖像資料。
  10. 如請求項9所述的感測器,其中,各第一線路包括第一區段和第二區段,該第一區段包括與該對應列中的各磁性隧道接面的該自由層接觸的該透明導電材料;該第二區段位於該第一區段的相對側上並包括金屬或金屬合金材料。
  11. 如請求項9所述的感測器,其中,該磁性隧道接面包括自旋轉移轉矩型磁性隧道接面。
  12. 如請求項11所述的感測器,其中,該透明導電材料包括氧化銦錫(ITO)、氧化鋅(ZnO)和石墨烯中的任何一種。
  13. 如請求項11所述的感測器,進一步包括:控制器;以及週邊電路,與該控制器通信,該週邊電路被配置成響應於來自該控制器的控制信號而選擇性地偏壓該第一線路和該第二線路。
  14. 如請求項13所述的感測器,其中,在全域重置操作期間,該週邊電路將所有該第一線路接地並向所有該第二線路施加第一正電壓,使得該陣列中的所有該磁性隧道接面同時儲存第一資料值;以及其中,在全域感測操作期間,該週邊電路向所有該第一線路施加小於該第一正電壓的第二正電壓並將所有該第二線路接地,使得響應於所有該第一線路同時暴露於輻射,當在緊鄰第一線路部分處接收到的該輻射的實際強度水平大於閾值強度水平時,僅在給定的磁性隧道接面中發生第一資料值到第二資料值的切換。
  15. 如請求項13所述的感測器,其中,像素包括單磁性隧道接面; 其中,該感測器進一步包括分別與該第二線路電性連接的放大器;以及其中,該週邊電路在選擇性讀取操作期間向與所選像素的該單磁性隧道接面接觸的第一線路施加讀取電壓,並將所有其他第一線路接地,使得電性連接到該單磁性隧道接面的第二線路上的放大器的輸出指示在該單磁性隧道接面中儲存的資料值。
  16. 如請求項13所述的感測器,其中,像素包括一群至少兩個磁性隧道接面,使得該磁性隧道接面的陣列包括排列成行和列的像素的陣列;其中,該感測器進一步包括:開關,分別位於與該像素的該行相關聯的第二線路的組中的相鄰第二線路之間;放大器,分別電性連接到該第二線路的該組;以及其中,該開關響應於來自該控制器的使能信號而開啟,並且電性連接各組內的該第二線路,並且在選擇性讀取操作期間,該週邊電路向與所選像素的任何磁性隧道接面接觸的所有第一線路施加讀取電壓,並將所有其他第一線路接地,使得連接到電性連接該所選像素的該磁性隧道接面的該第二線路的組的放大器的輸出指示該所選像素中的所有該磁性隧道接面的組合資料值。
  17. 如請求項13所述的感測器,進一步包括在第一狀態和第二狀態中可操作的至少一個按需輻射屏蔽,其中,在該第一狀態中,該至少一個按需輻射屏蔽基本上是不透明的,以防止該輻射傳輸到該第一線路, 並且其中,在該第二狀態中,該至少一個按需輻射屏蔽基本上是透明的,以允許該第一線路同時暴露在輻射中。
  18. 一種感測器,包括:磁性隧道接面的陣列,排列成行和列,其中,該磁性隧道接面包括自由層和釘紮層之間的絕緣體層;第一線路,包括透明導電材料,其中,各第一線路橫跨並接觸對應列中的各磁性隧道接面的該自由層;第二線路,其中,各第二線路電性連接到對應行中的各磁性隧道接面的該釘紮層;以及週邊電路,連接到該第一線路和該第二線路;其中,該週邊電路對該第一線路和該第二線路施加第一組偏壓條件,以便在該磁性隧道接面中同時儲存第一資料值,以及其中,該週邊電路對該第一線路和該第二線路施加第二組偏壓條件,使得響應於所有該第一線路同時暴露於輻射中,當在緊鄰第一線路部分處接收到的該輻射的實際強度水平大於閾值強度水平時,僅在給定的磁性隧道接面中發生第一資料值到第二資料值的切換。
  19. 如請求項18所述的感測器,其中,該磁性隧道接面包括自旋轉移轉矩型磁性隧道接面,並且其中,該透明導電材料包括銦錫氧化物(ITO)、氧化鋅(ZnO)和石墨烯中的任何一種。
  20. 如請求項18所述的感測器,其中,該磁性隧道接面包括自旋霍爾效應型磁性隧道接面,並且其中,該透明導電材料包括透明導電自旋霍爾效應材料,該透明導電自旋霍爾效應材料包括厚度小於3nm的重金 屬或石墨烯。
TW110118684A 2020-06-25 2021-05-24 併入光學可切換磁性隧道接面之陣列的圖像感測器 TWI783495B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/911,950 US11226231B1 (en) 2020-06-25 2020-06-25 Image sensor incorporating an array of optically switchable magnetic tunnel junctions
US16/911,950 2020-06-25

Publications (2)

Publication Number Publication Date
TW202218147A TW202218147A (zh) 2022-05-01
TWI783495B true TWI783495B (zh) 2022-11-11

Family

ID=78827086

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110118684A TWI783495B (zh) 2020-06-25 2021-05-24 併入光學可切換磁性隧道接面之陣列的圖像感測器

Country Status (4)

Country Link
US (1) US11226231B1 (zh)
CN (1) CN113851578A (zh)
DE (1) DE102021108242B4 (zh)
TW (1) TWI783495B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11703380B2 (en) * 2020-10-23 2023-07-18 Tdk Corporation Receiving device, transceiver device, communication system, portable terminal device, and photodetection element
CN114497116A (zh) 2020-10-23 2022-05-13 Tdk株式会社 发送接收装置
US11703381B2 (en) * 2021-02-08 2023-07-18 Tdk Corporation Light detection element, receiving device, and light sensor device
KR20230104455A (ko) * 2021-12-31 2023-07-10 삼성전자주식회사 장파장 적외선 센서 및 이를 포함하는 전자 장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170178705A1 (en) * 2014-07-17 2017-06-22 Cornell University Circuits and devices based on enhanced spin hall effect for efficient spin transfer torque
TW201907553A (zh) * 2017-05-04 2019-02-16 韓商愛思開海力士有限公司 電子裝置
US20190125388A1 (en) * 2017-10-30 2019-05-02 Ethicon Llc Surgical instrument systems comprising handle arrangements

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6703062A (zh) 1966-03-01 1967-09-04
US3488636A (en) 1966-08-22 1970-01-06 Fairchild Camera Instr Co Optically programmable read only memory
FR2884916B1 (fr) 2005-04-25 2007-06-22 Commissariat Energie Atomique Detecteur optique ultrasensible a grande resolution temporelle, utilisant un plasmon de surface
DE102006019482A1 (de) 2006-04-26 2007-10-31 Siemens Ag Anordnung mit magnetoresistivem Effekt sowie Verwendungen davon
CN103336251B (zh) 2013-06-27 2016-05-25 江苏多维科技有限公司 磁电阻成像传感器阵列
JP2016197160A (ja) * 2015-04-03 2016-11-24 日本放送協会 空間光変調器
KR102621752B1 (ko) 2017-01-13 2024-01-05 삼성전자주식회사 Mram을 포함한 씨모스 이미지 센서
WO2019125388A1 (en) * 2017-12-18 2019-06-27 Intel Corporation Spin orbit coupling based oscillator using exchange bias
CA3146681A1 (en) 2019-07-26 2021-02-04 Purdue Research Foundation Ultrafast imaging system without active pixel reset
WO2021130796A1 (ja) 2019-12-23 2021-07-01 Tdk株式会社 磁気抵抗効果素子及び磁気記録アレイ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170178705A1 (en) * 2014-07-17 2017-06-22 Cornell University Circuits and devices based on enhanced spin hall effect for efficient spin transfer torque
TW201907553A (zh) * 2017-05-04 2019-02-16 韓商愛思開海力士有限公司 電子裝置
US20190125388A1 (en) * 2017-10-30 2019-05-02 Ethicon Llc Surgical instrument systems comprising handle arrangements

Also Published As

Publication number Publication date
TW202218147A (zh) 2022-05-01
CN113851578A (zh) 2021-12-28
DE102021108242B4 (de) 2024-06-06
US11226231B1 (en) 2022-01-18
US20210404867A1 (en) 2021-12-30
DE102021108242A1 (de) 2021-12-30

Similar Documents

Publication Publication Date Title
TWI783495B (zh) 併入光學可切換磁性隧道接面之陣列的圖像感測器
JP5415543B2 (ja) 保護側壁パシベーションを利用する磁気素子
KR100878306B1 (ko) 정보 저장 장치
KR100676358B1 (ko) 자기 터널 접합을 갖는 메모리 셀을 구비한 박막 자성체기억 장치
US6912152B2 (en) Magnetic random access memory
TWI720641B (zh) 記憶體裝置及讀取記憶體裝置的方法
CN107481749A (zh) 一种自旋霍尔效应辅助写入的多态磁性随机存取存储器位元及自旋霍尔效应辅助写入方法
US6882563B2 (en) Magnetic memory device and method for manufacturing the same
US11842780B2 (en) Semiconductor device and electronic apparatus including the same
US10839879B2 (en) Read techniques for a magnetic tunnel junction (MTJ) memory device with a current mirror
KR102623306B1 (ko) 수직 선택기 stt-mram 아키텍처
JP5147972B2 (ja) 薄膜磁性体記憶装置
US7272028B2 (en) MRAM cell with split conductive lines
JP2002141481A (ja) 強磁性体メモリおよびその動作方法
JP2009170069A (ja) 半導体装置