TWI782214B - Photosensitive resin composition, method for producing hardened relief pattern, and semiconductor device - Google Patents

Photosensitive resin composition, method for producing hardened relief pattern, and semiconductor device Download PDF

Info

Publication number
TWI782214B
TWI782214B TW108121559A TW108121559A TWI782214B TW I782214 B TWI782214 B TW I782214B TW 108121559 A TW108121559 A TW 108121559A TW 108121559 A TW108121559 A TW 108121559A TW I782214 B TWI782214 B TW I782214B
Authority
TW
Taiwan
Prior art keywords
group
general formula
bis
acid
photosensitive resin
Prior art date
Application number
TW108121559A
Other languages
Chinese (zh)
Other versions
TW201936722A (en
Inventor
頼末友裕
笹野大輔
中村光孝
井上泰平
Original Assignee
日商旭化成股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商旭化成股份有限公司 filed Critical 日商旭化成股份有限公司
Publication of TW201936722A publication Critical patent/TW201936722A/en
Application granted granted Critical
Publication of TWI782214B publication Critical patent/TWI782214B/en

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Laminated Bodies (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Polyamides (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本發明提供一種能夠獲得於高溫保存(high temperature storage)試驗後於Cu層與硬化後之感光性樹脂層接觸之界面處不會產生空隙而密接性較高之樹脂層的感光性樹脂組合物、使用該感光性樹脂組合物之硬化浮凸圖案之形成方法、及具有該硬化浮凸圖案而成之半導體裝置。 本發明之感光性樹脂組合物藉由於具有特定結構之感光性樹脂組合物中調配具有羰基之環狀化合物,而能夠形成於高溫保存試驗後與Cu層接觸之界面處之空隙產生被抑制的硬化膜。The present invention provides a photosensitive resin composition capable of obtaining a resin layer with high adhesion without voids at the interface between the Cu layer and the cured photosensitive resin layer after a high temperature storage test. A method for forming a hardened relief pattern using the photosensitive resin composition, and a semiconductor device having the hardened relief pattern. The photosensitive resin composition of the present invention can be hardened by suppressing the formation of voids at the interface contacting the Cu layer after a high-temperature storage test by blending a cyclic compound having a carbonyl group in the photosensitive resin composition having a specific structure. membrane.

Description

感光性樹脂組合物、硬化浮凸圖案之製造方法及半導體裝置Photosensitive resin composition, method for producing cured embossed pattern, and semiconductor device

本發明係關於一種用於形成例如電子零件之絕緣材料、及半導體裝置中之鈍化膜、緩衝塗膜、層間絕緣膜等之浮凸圖案的感光性樹脂組合物、使用其之硬化浮凸圖案之形成方法、及半導體裝置。The present invention relates to a photosensitive resin composition for forming embossed patterns such as insulating materials of electronic parts and passivation films, buffer coating films, and interlayer insulating films in semiconductor devices, and methods for curing embossed patterns using the same Formation method, and semiconductor device.

先前,電子零件之絕緣材料、及半導體裝置之鈍化膜、表面保護膜、層間絕緣膜等係使用兼具優異之耐熱性、電氣特性及機械特性之聚醯亞胺樹脂、聚苯并㗁唑樹脂、酚樹脂等。該聚醯亞胺樹脂之中,以感光性聚醯亞胺前驅物組合物之形式提供者藉由該組合物之塗佈、曝光、顯影、及利用固化而進行之熱醯亞胺化處理,可容易地形成耐熱性之浮凸圖案皮膜。此種感光性聚醯亞胺前驅物組合物與先前之非感光型聚醯亞胺材料相比具有能夠大幅縮減步驟之特徵。 另外,半導體裝置(以下亦稱為「元件」)根據目的而藉由各種方法安裝於印刷基板。先前之元件一般而言係藉由利用細導線自元件之外部端子(焊墊)連接至引線框架之打線接合法製作。然而,於元件之高速化發展而動作頻率已達到GHz之今日,安裝中之各端子之配線長度之差異甚至會影響到元件之動作。因此,於高端用途之元件之安裝中,必須精確控制安裝配線之長度,若利用打線接合則難以滿足該要求。 因此,提出有倒裝晶片安裝,即,於半導體晶片之表面形成再配線層,並於其上形成凸塊(電極)後,將該晶片翻面(倒裝)而直接安裝於印刷基板(例如參照專利文獻1)。該倒裝晶片安裝由於可精確控制配線距離,故而用於處理高速信號之高端用途之元件,或由於安裝尺寸較小,故而用於行動電話等,其需求急遽擴大。於倒裝晶片安裝中使用聚醯亞胺、聚苯并㗁唑、酚樹脂等材料之情形時,待形成該樹脂層之圖案後,經過金屬配線層形成步驟。金屬配線層通常係對樹脂層表面進行電漿蝕刻而使表面粗化後,藉由濺鍍以1 μm以下之厚度形成成為鍍覆之籽晶層之金屬層後,以該金屬層為電極,藉由電解鍍覆而形成。此時,一般使用Ti作為成為籽晶層之金屬,使用Cu作為藉由電解鍍覆而形成之再配線層之金屬。 針對此種金屬再配線層,要求再配線之金屬層與樹脂層之密接性於可靠性試驗後較高。作為此處進行之可靠性試驗,例如可列舉:於空氣中、125℃以上之高溫下保存100小時以上之高溫保存試驗;組裝配線並一面施加電壓,一面確認於空氣中、125℃左右之溫度下保存100小時以上之狀態下之動作的高溫動作試驗;於空氣中將-65~-40℃左右之低溫狀態與125~150℃左右之高溫狀態以週期加以反覆之溫度週期試驗;於溫度85℃以上且濕度85%以上之水蒸氣環境下保存之高溫高濕保存試驗;組裝配線並一面施加電壓一面進行相同之試驗的高溫高濕偏壓試驗;於空氣中或氮氣下複數次通過260℃之回流焊爐之回流焊試驗等。 然而,先前於上述可靠性試驗中之高溫保存試驗之情形時,存在試驗後於再配線之Cu層與樹脂層接觸之界面處產生空隙之問題。若於Cu層與樹脂層之界面處產生空隙,則兩者之密接性降低。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2001-338947號公報Previously, polyimide resins and polybenzoxazole resins with excellent heat resistance, electrical properties and mechanical properties were used for insulating materials of electronic parts, passivation films, surface protection films, and interlayer insulating films of semiconductor devices. , Phenolic resin, etc. Among the polyimide resins, the photosensitive polyimide precursor composition is provided in the form of thermal imidization treatment by coating, exposing, developing, and curing of the composition, Heat-resistant embossed film can be easily formed. Compared with the previous non-photosensitive polyimide material, the photosensitive polyimide precursor composition has the feature of greatly reducing the number of steps. In addition, semiconductor devices (hereinafter also referred to as "elements") are mounted on printed circuit boards by various methods according to purposes. Previous devices were generally fabricated by wire bonding using thin wires connected from the external terminals (pads) of the device to the lead frame. However, in today's high-speed development of components and the operation frequency has reached GHz, the difference in the wiring length of each terminal during installation will even affect the operation of the components. Therefore, in the installation of components for high-end applications, the length of the installation wiring must be precisely controlled, and it is difficult to meet this requirement if wire bonding is used. Therefore, flip-chip mounting has been proposed, that is, after forming a rewiring layer on the surface of a semiconductor chip and forming a bump (electrode) thereon, the chip is turned over (flip-chip) and directly mounted on a printed substrate (such as Refer to Patent Document 1). Since the flip-chip mounting can precisely control the wiring distance, it is used for high-end components that process high-speed signals, or it is used for mobile phones due to its small mounting size, and its demand is rapidly expanding. When materials such as polyimide, polybenzoxazole, and phenolic resin are used for flip-chip mounting, the metal wiring layer is formed after patterning the resin layer. The metal wiring layer is usually roughened by plasma etching on the surface of the resin layer, and then a metal layer to be a plating seed layer is formed with a thickness of 1 μm or less by sputtering, and the metal layer is used as an electrode. Formed by electrolytic plating. At this time, Ti is generally used as the metal to be the seed layer, and Cu is used as the metal for the rewiring layer formed by electrolytic plating. For this kind of metal redistribution layer, it is required that the adhesion between the redistribution metal layer and the resin layer is higher after the reliability test. Examples of the reliability test performed here include: a high-temperature storage test of storing in the air at a high temperature of 125°C or higher for 100 hours or more; assembling an assembly line and applying a voltage while checking the temperature in the air at about 125°C The high-temperature action test of the action in the state of storage for more than 100 hours; the temperature cycle test of the low temperature state of about -65 ~ -40 ° C and the high temperature state of about 125 ~ 150 ° C in the air; at a temperature of 85 High-temperature and high-humidity storage test for storage in a water vapor environment with a humidity of 85% or higher; high-temperature and high-humidity bias test for assembling an assembly line and performing the same test while applying voltage; passing through 260°C multiple times in air or nitrogen The reflow soldering test of the reflow soldering oven, etc. However, in the case of the high-temperature storage test in the above-mentioned reliability test, there was a problem that voids were generated at the interface where the Cu layer of the rewiring contacted the resin layer after the test. When voids are generated at the interface between the Cu layer and the resin layer, the adhesion between the two will decrease. [Prior Art Literature] [Patent Document] [Patent Document 1] Japanese Patent Laid-Open No. 2001-338947

[發明所欲解決之問題] 本發明係鑒於此種先前實際情況研究所得者,其目的在於提供一種能夠獲得於高溫保存(high temperature storage)試驗後於Cu層與硬化後之感光性樹脂層接觸之界面處不會產生空隙而密接性較高之樹脂層的感光性樹脂組合物、使用該感光性樹脂組合物之硬化浮凸圖案之形成方法、及具有該硬化浮凸圖案而成之半導體裝置。 [解決問題之技術手段] 本發明者等人發現,藉由於感光性樹脂組合物中調配具有羰基之環狀化合物,可獲得能夠形成即便於銅或銅合金之上而變色抑制亦優異之硬化膜的感光性樹脂組合物,從而完成本發明。即,本發明如下所述。 [1]一種感光性樹脂組合物,其包含: (A)選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、以及酚醛清漆、聚羥基苯乙烯及酚樹脂所組成之群中之至少一種樹脂:100質量份; (B)選自由如下化合物所組成之群中之至少一種化合物:以上述(A)樹脂100質量份為基準計0.01~10質量份,該化合物係具有2個以上之羰基之環狀化合物,且上述羰基直接鍵結於上述環狀結構,於單環化合物之情形時,形成環結構之原子之1/3以上為N原子,於縮合環化合物之情形時,形成具有上述羰基之上述環結構之原子之1/3以上為N原子;以及 (C)感光劑:以上述(A)樹脂100質量份為基準計1~50質量份。 [2]如[1]記載之感光性樹脂組合物,其中上述(A)樹脂為選自由包含下述通式(1)之聚醯亞胺前驅物、包含下述通式(4)之聚醯胺、包含下述通式(5)之聚㗁唑前驅物、包含下述通式(6)之聚醯亞胺、以及酚醛清漆、聚羥基苯乙烯及包含下述通式(7)之酚樹脂所組成之群中之至少一種。 下述通式(1)為 [化1]

Figure 02_image001
{式中,X1 為4價之有機基,Y1 為2價之有機基,n1 為2~150之整數,並且R1 及R2 分別獨立為氫原子、碳數1~30之飽和脂肪族基、芳香族基、或下述通式(2): [化2]
Figure 02_image003
(式中,R3 、R4 及R5 分別獨立為氫原子或碳數1~3之有機基,並且m1 為2~10之整數)所表示之1價之有機基、或碳數1~4之飽和脂肪族基、或下述通式(3): [化3]
Figure 02_image005
(式中,R6 、R7 及R8 分別獨立為氫原子或碳數1~3之有機基,並且m2 為2~10之整數)所表示之一價之銨離子}所表示之作為聚醯亞胺前驅物之聚醯胺酸、聚醯胺酸酯或聚醯胺酸鹽, 下述通式(4)為具有 [化4]
Figure 02_image007
{式中,X2 為碳數6~15之3價之有機基,Y2 為碳數6~35之2價之有機基,且可為同一結構或具有複數種結構,R9 為具有至少一個碳數3~20之自由基聚合性之不飽和鍵結基的有機基,並且n2 為1~1000之整數} 所表示之結構之聚醯胺, 下述通式(5)為具有 [化5]
Figure 02_image009
{式中,Y3 為具有碳原子之4價之有機基,Y4 、X3 及X4 分別獨立為具有2個以上之碳原子之2價之有機基,n3 為1~1000之整數,n4 為0~500之整數,n3 /(n3 +n4 )>0.5,並且包含X3 及Y3 之n3 個二羥基二醯胺單元以及包含X4 及Y4 之n4 個二醯胺單元之排列順序為任意} 所表示之結構之作為聚㗁唑前驅物之聚羥基醯胺, 下述通式(6)為具有 [化6]
Figure 02_image011
{式中,X5 為4~14價之有機基,Y5 為2~12價之有機基,R10 及R11 分別獨立地表示具有至少一個選自酚性羥基、磺酸基或硫醇基中之基的有機基,n5 為3~200之整數,並且m3 及m4 表示0~10之整數} 所表示之結構之聚醯亞胺,並且 下述通式(7)為 [化7]
Figure 02_image013
{式中,a為1~3之整數,b為0~3之整數,1≦(a+b)≦4,R12 表示選自由碳數1~20之1價之有機基、鹵素原子、硝基及氰基所組成之群中之1價之取代基,於b為2或3之情形時,複數個R12 相互可相同或亦可不同,X表示選自由可具有不飽和鍵之碳數2~10之2價之脂肪族基、碳數3~20之2價之脂環式基、下述通式(8): [化8]
Figure 02_image015
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及具有碳數6~12之芳香族環之2價之有機基所組成之群中之2價之有機基}所表示之酚樹脂。 [3]如[1]或[2]記載之感光性樹脂組合物,其中上述感光性樹脂組合物包含具有上述通式(7)所表示之重複單元之酚樹脂,上述通式(7)中之X為選自由下述通式(9): [化9]
Figure 02_image017
{式中,R13 、R14 、R15 及R16 分別獨立為氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,n6 為0~4之整數,且n6 為1~4之整數之情形時之R17 為鹵素原子、羥基、或碳數1~12之1價之有機基,至少1個R17 為羥基,n6 為2~4之整數之情形時之複數個R17 相互可相同或亦可不同}所表示之2價之基、及下述通式(10): [化10]
Figure 02_image019
{式中,R18 、R19 、R20 及R21 分別獨立表示氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,W為單鍵、選自由可經氟原子取代之碳數1~10之脂肪族基、可經氟原子取代之碳數3~20之脂環式基、下述通式(8): [化11]
Figure 02_image021
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及下述式(11): [化12]
Figure 02_image023
所表示之2價之基所組成之群中之2價之基}所表示之2價之基所組成之群中之2價之有機基。 [4]一種硬化浮凸圖案之製造方法,其包括: (1)藉由於基板上塗佈如[1]至[3]中任一項記載之感光性樹脂組合物而於上述基板上形成感光性樹脂層之步驟; (2)對上述感光性樹脂層進行曝光之步驟; (3)將上述曝光後之感光性樹脂層進行顯影而形成浮凸圖案之步驟;及 (4)藉由對上述浮凸圖案進行加熱處理而形成硬化浮凸圖案之步驟。 [5]如[4]記載之方法,其中上述基板係由銅或銅合金形成。 [6]一種半導體裝置,其包含藉由如[4]或[5]記載之製造方法所獲得之硬化浮凸圖案。 [發明之效果] 根據本發明,藉由將特定之感光性樹脂與特定之化合物加以組合,而可提供一種能夠獲得於高溫保存(high temperature storage)試驗後於Cu層與聚醯亞胺層之界面處不會產生空隙而密接性較高之感光性樹脂的感光性樹脂組合物、使用該感光性樹脂組合物之硬化浮凸圖案之形成方法、及具有該硬化浮凸圖案而成之半導體裝置。[Problems to be Solved by the Invention] The present invention is obtained in view of such previous actual conditions, and its purpose is to provide a method that can be obtained after the Cu layer contacts the hardened photosensitive resin layer after the high temperature storage (high temperature storage) test. Photosensitive resin composition of resin layer having high adhesion without voids at interface, method of forming hardened relief pattern using said photosensitive resin composition, and semiconductor device having said hardened relief pattern . [Technical Means to Solve the Problem] The inventors of the present invention have found that by blending a cyclic compound having a carbonyl group in a photosensitive resin composition, a cured film capable of forming a cured film excellent in discoloration suppression even on copper or copper alloys can be obtained The photosensitive resin composition, thus complete the present invention. That is, the present invention is as follows. [1] A photosensitive resin composition comprising: (A) selected from polyamide acid, polyamide ester, polyamide acid salt, polyhydroxyamide, polyaminoamide, polyamide, At least one resin selected from the group consisting of polyamideimide, polyimide, polybenzoxazole, and novolac, polyhydroxystyrene, and phenolic resin: 100 parts by mass; (B) selected from the following compounds At least one compound in the group formed: 0.01 to 10 parts by mass based on 100 parts by mass of the resin (A) above, the compound is a cyclic compound having two or more carbonyl groups, and the carbonyl groups are directly bonded to the above-mentioned In the case of a ring structure, in the case of a monocyclic compound, more than 1/3 of the atoms forming the ring structure are N atoms, and in the case of a condensed ring compound, more than 1/3 of the atoms forming the above-mentioned ring structure having the above-mentioned carbonyl group are N atoms N atoms; and (C) Photosensitizer: 1 to 50 parts by mass based on 100 parts by mass of the above-mentioned (A) resin. [2] The photosensitive resin composition as described in [1], wherein the above-mentioned (A) resin is selected from polyimide precursors containing the following general formula (1), polyimides containing the following general formula (4), Amides, polyoxazole precursors comprising the following general formula (5), polyimides comprising the following general formula (6), and novolaks, polyhydroxystyrene, and polyoxazole precursors comprising the following general formula (7) At least one of the group consisting of phenolic resins. The following general formula (1) is [Chemical 1]
Figure 02_image001
{In the formula, X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer from 2 to 150, and R 1 and R 2 are independently a hydrogen atom, a saturated carbon number of 1 to 30 Aliphatic group, aromatic group, or the following general formula (2): [Chemical 2]
Figure 02_image003
(wherein, R 3 , R 4 and R 5 are each independently a hydrogen atom or an organic group with 1 to 3 carbons, and m 1 is an integer of 2 to 10), or a monovalent organic group with 1 carbon ~4 saturated aliphatic groups, or the following general formula (3): [Chemical 3]
Figure 02_image005
(In the formula, R 6 , R 7 and R 8 are each independently a hydrogen atom or an organic group with 1 to 3 carbons, and m 2 is an integer of 2 to 10) represents a monovalent ammonium ion} as represented by Polyamic acid, polyamic acid ester or polyamic acid salt of polyimide precursor, the following general formula (4) is having [Chemical 4]
Figure 02_image007
{In the formula, X 2 is a trivalent organic group with 6 to 15 carbons, Y 2 is a divalent organic group with 6 to 35 carbons, and may have the same structure or multiple structures, R 9 is an organic group with at least A polyamide having a structure represented by a free radical polymerizable unsaturated bonded organic group with 3 to 20 carbons, and n 2 is an integer from 1 to 1000}, the following general formula (5) has [ Chemical 5]
Figure 02_image009
{In the formula, Y 3 is a tetravalent organic group with carbon atoms, Y 4 , X 3 and X 4 are each independently a divalent organic group with 2 or more carbon atoms, and n 3 is an integer ranging from 1 to 1000 , n 4 is an integer from 0 to 500, n 3 /(n 3 +n 4 )>0.5, and n 3 dihydroxydiamide units including X 3 and Y 3 and n 4 units including X 4 and Y 4 The arrangement sequence of the diamide units is arbitrary} The structure represented by the polyhydroxyamide as a polyoxazole precursor, the following general formula (6) has [Chemical 6]
Figure 02_image011
{In the formula, X5 is an organic group with a valence of 4 to 14 , Y5 is an organic group with a valence of 2 to 12 , and R10 and R11 independently represent at least one group selected from a phenolic hydroxyl group, a sulfonic acid group or a thiol The organic group of the base in the group, n 5 is an integer of 3 to 200, and m 3 and m 4 represent an integer of 0 to 10} The polyimide of the structure represented, and the following general formula (7) is [ Chemical 7]
Figure 02_image013
{In the formula, a is an integer of 1 to 3, b is an integer of 0 to 3, 1≦(a+b)≦4, R12 represents a monovalent organic group selected from 1 to 20 carbons, a halogen atom, a nitro group And the monovalent substituent in the group formed by cyano group, when b is 2 or 3, the plurality of R 12 may be the same or different from each other, and X represents 2 carbon atoms selected from the group that may have an unsaturated bond. A divalent aliphatic group of ~10, a divalent alicyclic group with a carbon number of 3 to 20, the following general formula (8): [Chemical 8]
Figure 02_image015
(wherein, p is an integer from 1 to 10), a divalent organic group consisting of a divalent alkylene group represented by a divalent organic group having an aromatic ring having 6 to 12 carbons. Base} represented by the phenolic resin. [3] The photosensitive resin composition as described in [1] or [2], wherein the photosensitive resin composition contains a phenol resin having a repeating unit represented by the above general formula (7), and in the above general formula (7) X is selected from the following general formula (9): [Chemical 9]
Figure 02_image017
{In the formula, R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom, a monovalent aliphatic group with 1 to 10 carbons, or a carbon in which part or all of the hydrogen atoms are replaced by fluorine atoms A monovalent aliphatic group with a number of 1 to 10, n 6 is an integer of 0 to 4, and when n 6 is an integer of 1 to 4, R 17 is a halogen atom, a hydroxyl group, or 1 of 1 to 12 carbons A valent organic group, at least one R 17 is a hydroxyl group, and when n 6 is an integer of 2 to 4, a plurality of R 17 may be the same or different from each other} a divalent group represented by the following general formula (10): [chemical 10]
Figure 02_image019
{In the formula, R 18 , R 19 , R 20 and R 21 independently represent a hydrogen atom, a monovalent aliphatic group with 1 to 10 carbons, or a carbon in which part or all of the hydrogen atoms are replaced by fluorine atoms A monovalent aliphatic group with a number of 1 to 10, W is a single bond, selected from an aliphatic group with a carbon number of 1 to 10 that may be substituted by a fluorine atom, and an alicyclic group with a carbon number of 3 to 20 that may be substituted by a fluorine atom base, the following general formula (8): [Chemical 11]
Figure 02_image021
(wherein, p is an integer of 1 to 10), a divalent alkyleneoxy group represented by the following formula (11): [Chem. 12]
Figure 02_image023
The divalent organic group in the group formed by the divalent groups represented by} the divalent organic group in the group formed by the divalent groups represented. [4] A method for producing a hardened relief pattern, comprising: (1) forming a photosensitive resin composition on the substrate by coating the photosensitive resin composition described in any one of [1] to [3] on the substrate. (2) exposing the above-mentioned photosensitive resin layer; (3) developing the above-mentioned exposed photosensitive resin layer to form a relief pattern; and (4) by exposing the above-mentioned The embossed pattern is heat-treated to form a hardened embossed pattern. [5] The method according to [4], wherein the substrate is formed of copper or a copper alloy. [6] A semiconductor device including a hardened relief pattern obtained by the manufacturing method described in [4] or [5]. [Effects of the Invention] According to the present invention, by combining a specific photosensitive resin and a specific compound, it is possible to provide a composite material that can be obtained on the Cu layer and the polyimide layer after a high temperature storage test. Photosensitive resin composition of photosensitive resin having high adhesion without voids at interface, method of forming hardened relief pattern using said photosensitive resin composition, and semiconductor device having said hardened relief pattern .

關於本發明,以下進行具體說明。再者,本說明書中,於通式中以同一符號表示之結構在分子中存在複數個之情形時,相互可相同或亦可不同。 <感光性樹脂組合物> (態樣A) 本發明係以如下成分作為必須成分,即,(A)選自由聚醯胺酸、聚醯胺酸酯及聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、以及酚醛清漆、聚羥基苯乙烯及酚樹脂所組成之群中之至少一種樹脂:100質量份、(B)具有羰基之環狀化合物:以(A)樹脂100質量份為基準計0.01~10質量份、(C)感光劑:以(A)樹脂100質量份為基準計1~50質量份。 (A)樹脂 對本發明中所使用之(A)樹脂進行說明。本發明之(A)樹脂係以選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、以及酚醛清漆、聚羥基苯乙烯及酚樹脂所組成之群中之至少一種樹脂作為主成分。此處,所謂主成分意指含有占樹脂整體60質量%以上之該等樹脂,較佳為含有80質量%以上。又,視需要亦可含有其他樹脂。 該等樹脂之重量平均分子量就熱處理後之耐熱性、機械特性之觀點而言,以基於凝膠滲透層析法之聚苯乙烯換算計,較佳為200以上,更佳為5,00以上。上限較佳為500,000以下,於製成感光性樹脂組合物之情形時,就於顯影液中之溶解性之觀點而言,更佳為20,000以下。 本發明中,為了形成浮凸圖案,(A)樹脂為感光性樹脂。感光性樹脂係與下述(C)感光劑一併使用而成為感光性樹脂組合物,於其後之顯影步驟中引起溶解或未溶解之現象的樹脂。 作為感光性樹脂,於聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、以及包含酚醛清漆、聚羥基苯乙烯之酚樹脂之中,就熱處理後之樹脂之耐熱性、機械特性優異之方面而言,可較佳地使用聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚醯胺、聚羥基醯胺、聚醯亞胺及酚樹脂。又,該等感光性樹脂可根據所需用途而選擇與下述(C)感光劑一起製備負型或正型之任意感光性樹脂組合物等。 [(A)聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽] 本發明之感光性樹脂組合物中,就耐熱性及感光特性之觀點而言最佳之(A)樹脂之一例為上述通式(1): [化13]

Figure 02_image025
{式中,X1 為4價之有機基,Y1 為2價之有機基,n1 為2~150之整數,R1 及R2 分別獨立為氫原子、碳數1~30之飽和脂肪族基、或上述通式(2): [化14]
Figure 02_image027
(式中,R3 、R4 及R5 分別獨立為氫原子或碳數1~3之有機基,並且m1 為2~10之整數)所表示之1價之有機基、或碳數1~4之飽和脂肪族基}所表示之1價之有機基;或下述通式(3): [化15]
Figure 02_image029
(式中,R6 、R7 及R8 分別獨立為氫原子或碳數1~3之有機基,並且m2 為2~10之整數)所表示之一價之銨離子}所表示之作為聚醯亞胺前驅物之聚醯胺酸、聚醯胺酸酯或聚醯胺酸鹽。 聚醯亞胺前驅物藉由實施加熱(例如200℃以上)環化處理而轉化為聚醯亞胺。聚醯亞胺前驅物適用於負型感光性樹脂組合物用。 上述通式(1)中,X1 所表示之4價之有機基就兼具耐熱性與感光特性之方面而言,較佳為碳數6~40之有機基,更佳為-COOR1 基及-COOR2 基與-CONH-基相互位於鄰位之芳香族基、或脂環式脂肪族基。作為X1 所表示之4價之有機基,較佳為含有芳香族環之碳原子數6~40之有機基,更佳為列舉下述式(30): [化16]
Figure 02_image031
{式中,R25為選自氫原子、氟原子、C1~C10之烴基、C1~C10之含氟烴基之1價之基,l為選自0~2之整數,m為選自0~3之整數,n為選自0~4之整數} 所表示之結構,但並不限定於該等。又,X1 之結構可為1種,亦可為2種以上之組合。具有上述式所表示之結構之X1 基就兼具耐熱性與感光特性之方面而言尤佳。 上述通式(1)中,Y1 所表示之2價之有機基就兼具耐熱性與感光特性之方面而言,較佳為碳數6~40之芳香族基,例如可列舉下述式(31): [化17]
Figure 02_image033
{式中,R25為選自氫原子、氟原子、C1~C10之烴基、C1~C10之含氟烴基之1價之基,n為選自0~4之整數} 所表示之結構,但並不限定於該等。又,Y1 之結構可為1種,亦可為2種以上之組合。具有上述式(31)所表示之結構之Y1 基就兼具耐熱性與感光特性之方面而言尤佳。 上述通式(2)中之R3 較佳為氫原子或甲基,R4 及R5 就感光特性之觀點而言,較佳為氫原子。又,m1 就感光特性之觀點而言,為2以上且10以下之整數,較佳為2以上且4以下之整數。 於使用聚醯亞胺前驅物作為(A)樹脂之情形時,作為對感光性樹脂組合物賦予感光性之方式,可列舉酯鍵型與離子鍵型。前者係於聚醯亞胺前驅物之側鏈藉由酯鍵而導入具有光聚合性基、即烯烴性雙鍵之化合物的方法,後者係使聚醯亞胺前驅物之羧基與具有胺基之(甲基)丙烯酸系化合物之胺基經由離子鍵而鍵結從而賦予光聚合性基的方法。 上述酯鍵型之聚醯亞胺前驅物係藉由如下方式獲得,即,首先,使包含上述4價之有機基X1 之四羧酸二酐與具有光聚合性之不飽和雙鍵之醇類及任意之碳數1~4之飽和脂肪族醇類進行反應,而製備部分酯化之四羧酸(以下亦稱為酸/酯體)後,使其與包含上述2價之有機基Y1 之二胺類進行醯胺縮聚合。 (酸/酯體之製備) 本發明中,作為適於製備酯鍵型之聚醯亞胺前驅物之包含4價之有機基X1 之四羧酸二酐,可列舉以上述通式(30)所表示之四羧酸二酐為代表之例如均苯四甲酸二酐、二苯醚-3,3',4,4'-四羧酸二酐、二苯甲酮-3,3',4,4'-四羧酸二酐、聯苯基-3,3',4,4'-四羧酸二酐、二苯基碸-3,3',4,4'-四羧酸二酐、二苯基甲烷-3,3',4,4'-四羧酸二酐、2,2-雙(3,4-苯二甲酸酐)丙烷、2,2-雙(3,4-苯二甲酸酐)-1,1,1,3,3,3-六氟丙烷等,較佳為列舉:均苯四甲酸二酐、二苯醚-3,3',4,4'-四羧酸二酐、二苯甲酮-3,3',4,4'-四羧酸二酐、聯苯基-3,3',4,4'-四羧酸二酐,但並不限定於該等。又,該等當然可單獨使用,但亦可將2種以上混合使用。 本發明中,作為適於製備酯鍵型之聚醯亞胺前驅物之具有光聚合性之不飽和雙鍵之醇類,例如可列舉:2-丙烯醯氧基乙醇、1-丙烯醯氧基-3-丙醇、2-丙烯醯胺基乙醇、羥甲基乙烯基酮、2-羥基乙基乙烯基酮、丙烯酸2-羥基-3-甲氧基丙酯、丙烯酸2-羥基-3-丁氧基丙酯、丙烯酸2-羥基-3-苯氧基丙酯、丙烯酸2-羥基-3-丁氧基丙酯、丙烯酸2-羥基-3-第三丁氧基丙酯、丙烯酸2-羥基-3-環己氧基丙酯、2-甲基丙烯醯氧基乙醇、1-甲基丙烯醯氧基-3-丙醇、2-甲基丙烯醯胺基乙醇、羥甲基乙烯基酮、2-羥基乙基乙烯基酮、甲基丙烯酸2-羥基-3-甲氧基丙酯、甲基丙烯酸2-羥基-3-丁氧基丙酯、甲基丙烯酸2-羥基-3-苯氧基丙酯、甲基丙烯酸2-羥基-3-丁氧基丙酯、甲基丙烯酸2-羥基-3-第三丁氧基丙酯、甲基丙烯酸2-羥基-3-環己氧基丙酯等。 亦可於上述醇類中混合一部分作為碳數1~4之飽和脂肪族醇之例如甲醇、乙醇、正丙醇、異丙醇、正丁醇、第三丁醇等使用。 使上述本發明中適宜之四羧酸二酐與上述醇類於吡啶等鹼性觸媒之存在下,於如下所述之溶劑中,以溫度20~50℃攪拌4~10小時使之溶解、混合,藉此進行酸酐之酯化反應,而可獲得所需之酸/酯體。 (聚醯亞胺前驅物之製備) 對上述酸/酯體(典型而言為下述溶劑中之溶液),於冰浴冷卻下投入適宜之脫水縮合劑、例如二環碳二醯亞胺(例如二環己基碳二醯亞胺)、1-乙氧基羰基-2-乙氧基-1,2-二氫喹啉、1,1-羰基二氧基-二-1,2,3-苯并三唑、N,N'-二丁二醯亞胺基碳酸酯等加以混合而將酸/酯體製成聚酸酐後,於其中滴加投入另外使本發明中適宜使用之包含2價之有機基Y1 之二胺類溶解或分散於溶劑所得者,進行醯胺縮聚合,藉此可獲得目標聚醯亞胺前驅物。或者使用亞硫醯氯等而使上述酸/酯體中之酸部分進行醯氯化後,於吡啶等鹼存在下與二胺化合物反應,藉此可獲得目標聚醯亞胺前驅物。 作為本發明中適宜使用之包含2價之有機基Y1 之二胺類,可列舉以具有上述通式(31)所表示之結構之二胺為代表的例如對苯二胺、間苯二胺、4,4'-二胺基二苯醚、3,4'-二胺基二苯醚、3,3'-二胺基二苯醚、4,4'-二胺基二苯硫醚、3,4'-二胺基二苯硫醚、3,3'-二胺基二苯硫醚、4,4'-二胺基二苯基碸、3,4'-二胺基二苯基碸、3,3'-二胺基二苯基碸、4,4'-二胺基聯苯、3,4'-二胺基聯苯、3,3'-二胺基聯苯、4,4'-二胺基二苯甲酮、3,4'-二胺基二苯甲酮、3,3'-二胺基二苯甲酮、4,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基甲烷、3,3'-二胺基二苯基甲烷、1,4-雙(4-胺基苯氧基)苯、1,3-雙(4-胺基苯氧基)苯、 1,3-雙(3-胺基苯氧基)苯、雙[4-(4-胺基苯氧基)苯基]碸、雙[4-(3-胺基苯氧基)苯基]碸、4,4-雙(4-胺基苯氧基)聯苯、4,4-雙(3-胺基苯氧基)聯苯、雙[4-(4-胺基苯氧基)苯基]醚、雙[4-(3-胺基苯氧基)苯基]醚、1,4-雙(4-胺基苯基)苯、1,3-雙(4-胺基苯基)苯、9,10-雙(4-胺基苯基)蒽、2,2-雙(4-胺基苯基)丙烷、2,2-雙(4-胺基苯基)六氟丙烷、2,2-雙[4-(4-胺基苯氧基)苯基)丙烷、2,2-雙[4-(4-胺基苯氧基)苯基)六氟丙烷、1,4-雙(3-胺基丙基二甲基矽烷基)苯、鄰聯甲苯胺碸、9,9-雙(4-胺基苯基)茀,及該等之苯環上之氫原子之一部分被甲基、乙基、羥基甲基、羥基乙基、鹵素等取代者,例如3,3'-二甲基-4,4'-二胺基聯苯、2,2'-二甲基-4,4'-二胺基聯苯、3,3'-二甲基-4,4'-二胺基二苯基甲烷、2,2'-二甲基-4,4'-二胺基二苯基甲烷、3,3'-二甲氧基-4,4'-二胺基聯苯、3,3'-二氯-4,4'-二胺基聯苯、2,2'-二甲基聯苯胺、2,2'-雙(三氟甲基)-4,4'-二胺基聯苯、2,2'-雙(氟)-4,4'-二胺基聯苯、4,4'-二胺基八氟聯苯等;較佳為列舉:對苯二胺、間苯二胺、4,4'-二胺基二苯醚、2,2'-二甲基聯苯胺、2,2'-雙(三氟甲基)-4,4'-二胺基聯苯、2,2'-雙(氟)-4,4'-二胺基聯苯、4,4'-二胺基八氟聯苯等、以及該等之混合物等,但並不限定於此。 又,為了提高藉由於基板上塗佈本發明之感光性樹脂組合物而於基板上形成之樹脂層與各種基板的密接性,於製備聚醯亞胺前驅物時,亦可與1,3-雙(3-胺基丙基)四甲基二矽氧烷、1,3-雙(3-胺基丙基)四苯基二矽氧烷等二胺基矽氧烷類進行共聚。 醯胺縮聚合反應結束後,視需要將共存於該反應液中之脫水縮合劑之吸水副產物過濾分離後,於所獲得之聚合物成分中投入水、脂肪族低級醇、或其混合液等不良溶劑而使聚合物成分析出,進而反覆進行再溶解、再沈澱析出操作等,藉此精製聚合物,並進行真空乾燥而單離目標聚醯亞胺前驅物。為了提高精製度,亦可使該聚合物之溶液通過填充有利用適宜之有機溶劑而膨潤之陰離子及/或陽離子交換樹脂的管柱而去除離子性雜質。 另一方面,上述離子鍵型之聚醯亞胺前驅物典型而言係使四羧酸二酐與二胺反應而獲得。於該情形時,上述通式(1)中之R1 及R2 中之至少一者為羥基。 作為四羧酸二酐,較佳為包含上述式(30)之結構之四羧酸之酸酐,作為二胺,較佳為包含上述式(31)之結構之二胺。藉由對所獲得之聚醯胺前驅物添加下述具有胺基之(甲基)丙烯酸系化合物,而利用羧基與胺基之離子鍵結而賦予光聚合性基。 作為具有胺基之(甲基)丙烯酸系化合物,例如較佳為丙烯酸二甲胺基乙酯、甲基丙烯酸二甲胺基乙酯、丙烯酸二乙胺基乙酯、甲基丙烯酸二乙胺基乙酯、丙烯酸二甲胺基丙酯、甲基丙烯酸二甲胺基丙酯、丙烯酸二乙胺基丙酯、甲基丙烯酸二乙胺基丙酯、丙烯酸二甲胺基丁酯、甲基丙烯酸二甲胺基丁酯、丙烯酸二乙胺基丁酯、甲基丙烯酸二乙胺基丁酯、等丙烯酸二烷基胺基烷基酯或甲基丙烯酸二烷基胺基烷基酯,其中,就感光特性之觀點而言,較佳為胺基上之烷基之碳數為1~10、烷基鏈之碳數為1~10的丙烯酸二烷基胺基烷基酯或甲基丙烯酸二烷基胺基烷基酯。 關於該等具有胺基之(甲基)丙烯酸系化合物之調配量,相對於(A)樹脂100質量份而為1~20質量份,就光感度特性之觀點而言,較佳為2~15質量份。相對於(A)樹脂100質量份,藉由調配作為(C)感光劑之具有胺基之(甲基)丙烯酸系化合物1質量份以上而光感度優異,藉由調配20質量份以下而厚膜硬化性優異。 關於上述酯鍵型及上述離子鍵型之聚醯亞胺前驅物之分子量,於以基於凝膠滲透層析法之聚苯乙烯換算重量平均分子量之形式測定之情形時,較佳為8,000~150,000,更佳為9,000~50,000。於重量平均分子量為8,000以上之情形時機械物性良好,於為150,000以下之情形時於顯影液中之分散性良好,且浮凸圖案之解像性能良好。作為凝膠滲透層析法之展開溶劑,推薦使用四氫呋喃及N-甲基-2-吡咯啶酮。又,重量平均分子量係根據使用標準單分散聚苯乙烯所製作之校準曲線而求出。作為標準單分散聚苯乙烯,推薦自昭和電工公司製造之有機溶劑系標準試樣STANDARD SM-105中選擇。 [(A)聚醯胺] 本發明之感光性樹脂組合物中之較佳之(A)樹脂之另一例為具有下述通式(4): [化18]
Figure 02_image035
{式中,X2 為碳數6~15之3價之有機基,Y2 為碳數6~35之2價之有機基,且可為同一結構或具有複數種結構,R9 為具有至少一個碳數3~20之自由基聚合性之不飽和鍵結基的有機基,並且n2 為1~1000之整數} 所表示之結構之聚醯胺。該聚醯胺適用於負型感光性樹脂組合物用。 上述通式(4)中,作為R9 所表示之基,就兼具感光特性與耐化學品性之方面而言,較佳為下述通式(32) [化19]
Figure 02_image037
{式中,R32 為具有至少一個碳數2~19之自由基聚合性之不飽和鍵結基的有機基} 所表示之基。 上述通式(4)中,作為X2 所表示之3價之有機基,較佳為碳數6~15之3價之有機基,例如較佳為選自下述式(33): [化20]
Figure 02_image039
所表示之基中之芳香族基,進而更佳為自胺基取代間苯二甲酸結構中去除羧基及胺基所得之芳香族基。 上述通式(4)中,作為Y2 所表示之2價之有機基,較佳為碳數6~35之有機基,進而更佳為具有1~4個可經取代之芳香族環或脂肪族環之環狀有機基、或者不具有環狀結構之脂肪族基或矽氧烷基。作為Y2 所表示之2價之有機基,可列舉下述通式(I)及下述通式(34)、(35): [化21]
Figure 02_image041
[化22]
Figure 02_image043
{式中,R33 及R34 分別獨立為選自由羥基、甲基(-CH3 )、乙基(-C2 H5 )、丙基(-C3 H7 )或丁基(-C4 H9 )所組成之群中之一種基,並且該丙基及丁基包括各種異構物} [化23]
Figure 02_image045
{式中,m7 為0~8之整數,m8 及m9 分別獨立為0~3之整數,m10 及m11 分別獨立為0~10之整數,並且R35 及R36 為甲基(-CH3 )、乙基(-C2 H5 )、丙基(-C3 H7 )、丁基(-C4 H9 )或該等之異構物}。 關於不具有環狀結構之脂肪族基或矽氧烷基,作為其較佳者,可列舉下述通式(36): [化24]
Figure 02_image047
{式中,m12 為2~12之整數,m13 為1~3之整數,m14 為1~20之整數,並且R37 、R38 、R39 及R40 分別獨立為碳數1~3之烷基或可經取代之苯基}。 本發明之聚醯胺樹脂例如可藉由如下方式合成。 (苯二甲酸化合物封端體之合成) 第一步,使具有3價之芳香族基X2 之化合物、例如選自由經胺基取代之鄰苯二甲酸、經胺基取代之間苯二甲酸及經胺基取代之對苯二甲酸所組成之群中之至少1種以上之化合物(以下稱為「苯二甲酸化合物」)1莫耳、和會與胺基反應之化合物1莫耳進行反應,而合成該苯二甲酸化合物之胺基經下述包含自由基聚合性之不飽和鍵之基修飾、封端的化合物(以下稱為「苯二甲酸化合物封端體」)。該等可單獨使用,亦可混合使用。 若成為苯二甲酸化合物經上述包含自由基聚合性之不飽和鍵之基封端的結構,則可對聚醯胺樹脂賦予負型之感光性(光硬化性)。 作為包含自由基聚合性之不飽和鍵之基,較佳為具有碳數3~20之自由基聚合性之不飽和鍵結基的有機基,尤佳為包含甲基丙烯醯基或丙烯醯基之基。 上述苯二甲酸化合物封端體可藉由使苯二甲酸化合物之胺基、與具有至少一個碳數3~20之自由基聚合性之不飽和鍵結基的醯氯、異氰酸酯或環氧化合物等進行反應而獲得。 作為適宜之醯氯,可列舉:(甲基)丙烯醯氯、2-[(甲基)丙烯醯氧基]乙醯氯、3-[(甲基)丙烯醯氧基]丙醯氯、氯甲酸2-[(甲基)丙烯醯氧基]乙酯、氯甲酸3-[(甲基)丙烯醯氧基丙基]酯等。作為適宜之異氰酸酯,可列舉:異氰酸2-(甲基)丙烯醯氧基乙酯、異氰酸1,1-雙[(甲基)丙烯醯氧基甲基]乙酯、異氰酸2-[2-(甲基)丙烯醯氧基乙氧基]乙酯等。作為適宜之環氧化合物,可列舉(甲基)丙烯酸縮水甘油酯等。該等可單獨使用,亦可混合使用,但尤佳為使用甲基丙烯醯氯及/或異氰酸2-(甲基丙烯醯氧基)乙酯。 進而,作為該等苯二甲酸化合物封端體,苯二甲酸化合物為5-胺基間苯二甲酸者可獲得不僅感光特性優異且加熱硬化後之膜特性亦優異之聚醯胺,因此較佳。 上述封端反應可藉由於吡啶等鹼性觸媒或二月桂酸二正丁基錫等錫系觸媒之存在下,將苯二甲酸化合物與封端劑視需要於如下所述之溶劑中攪拌溶解、混合而進行。 醯氯等根據封端劑之種類而會於封端反應之過程中生成副產物氯化氫。於該情形時,為了防止對以後之步驟造成污染,較佳為適當進行精製,即,暫且使之於水中再沈澱並水洗乾燥、或使之通過填充有離子交換樹脂之管柱而去除減少離子成分等。 (聚醯胺之合成) 使上述苯二甲酸化合物封端體與具有2價之有機基Y2 之二胺化合物於吡啶或三乙胺等鹼性觸媒之存在下,於如下所述之溶劑中混合而使之進行醯胺縮聚合,藉此可獲得本發明之聚醯胺。 作為醯胺縮聚合方法,可列舉:使用脫水縮合劑而使苯二甲酸化合物封端體成為對稱聚酸酐後與二胺化合物混合之方法、或藉由已知方法使苯二甲酸化合物封端體實現醯氯化後與二胺化合物混合之方法、使二羧酸成分與活性酯化劑於脫水縮合劑之存在下反應而實現活性酯化後與二胺化合物混合之方法等。 作為脫水縮合劑,例如作為較佳者,可列舉:二環己基碳二醯亞胺、1-乙氧基羰基-2-乙氧基-1,2-二氫喹啉、1,1'-羰基二氧基-二-1,2,3-苯并三唑、N,N'-二丁二醯亞胺基碳酸酯等。 作為氯化劑,可列舉亞硫醯氯等。 作為活性酯化劑,可列舉:N-羥基丁二醯亞胺或1-羥基苯并三唑、N-羥基-5-降𦯉烯-2,3-二羧醯亞胺、2-羥基亞胺基-2-氰基乙酸乙酯、2-羥基亞胺基-2-氰基乙醯胺等。 作為具有有機基Y2 之二胺化合物,較佳為選自由芳香族二胺化合物、芳香族雙胺基苯酚化合物、脂環式二胺化合物、直鏈脂肪族二胺化合物、矽氧烷二胺化合物所組成之群中之至少一種二胺化合物,視需要亦可併用複數種。 作為芳香族二胺化合物,可列舉:對苯二胺、間苯二胺、4,4'-二胺基二苯醚、3,4'-二胺基二苯醚、3,3'-二胺基二苯醚、4,4'-二胺基二苯硫醚、3,4'-二胺基二苯硫醚、3,3'-二胺基二苯硫醚、4,4'-二胺基二苯基碸、3,4'-二胺基二苯基碸、3,3'-二胺基二苯基碸、4,4'-二胺基聯苯、3,4'-二胺基聯苯、3,3'-二胺基聯苯、4,4'-二胺基二苯甲酮、3,4'-二胺基二苯甲酮、3,3'-二胺基二苯甲酮、4,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基甲烷、 3,3'-二胺基二苯基甲烷、1,4-雙(4-胺基苯氧基)苯、1,3-雙(4-胺基苯氧基)苯、1,3-雙(3-胺基苯氧基)苯、雙[4-(4-胺基苯氧基)苯基]碸、雙[4-(3-胺基苯氧基)苯基]碸、4,4'-雙(4-胺基苯氧基)聯苯、4,4'-雙(3-胺基苯氧基)聯苯、雙[4-(4-胺基苯氧基)苯基]醚、雙[4-(3-胺基苯氧基)苯基]醚、1,4-雙(4-胺基苯基)苯、1,3-雙(4-胺基苯基)苯、9,10-雙(4-胺基苯基)蒽、2,2-雙(4-胺基苯基)丙烷、2,2-雙(4-胺基苯基)六氟丙烷、2,2-雙[4-(4-胺基苯氧基)苯基]丙烷、2,2-雙[4-(4-胺基苯氧基)苯基]六氟丙烷、1,4-雙(3-胺基丙基二甲基矽烷基)苯、鄰聯甲苯胺碸、9,9-雙(4-胺基苯基)茀、以及該等之苯環上之氫原子之一部被選自由甲基、乙基、羥基甲基、羥基乙基及鹵素原子所組成之群中之1種以上之基取代的二胺化合物。 作為該苯環上之氫原子被取代的二胺化合物之例,可列舉:3,3'-二甲基-4,4'-二胺基聯苯、2,2'-二甲基-4,4'-二胺基聯苯、3,3'-二甲基-4,4'-二胺基二苯基甲烷、2,2'-二甲基-4,4'-二胺基二苯基甲烷、3,3'-二甲氧基-4,4'-二胺基聯苯、3,3'-二氯-4,4'-二胺基聯苯基等。 作為芳香族雙胺基苯酚化合物,可列舉:3,3'-二羥基聯苯胺、3,3'-二胺基-4,4'-二羥基聯苯、3,3'-二羥基-4,4'-二胺基二苯基碸、雙-(3-胺基-4-羥基苯基)甲烷、2,2-雙-(3-胺基-4-羥基苯基)丙烷、2,2-雙-(3-胺基-4-羥基苯基)六氟丙烷、2,2-雙-(3-羥基-4-胺基苯基)六氟丙烷、雙-(3-羥基-4-胺基苯基)甲烷、2,2-雙-(3-羥基-4-胺基苯基)丙烷、3,3'-二羥基-4,4'-二胺基二苯甲酮、3,3'-二羥基-4,4'-二胺基二苯醚、4,4'-二羥基-3,3'-二胺基二苯醚、2,5-二羥基-1,4-二胺基苯、4,6-二胺基間苯二酚、1,1-雙(3-胺基-4-羥基苯基)環己烷、4,4-(α-甲基亞苄基)-雙(2-胺基苯酚)等。 作為脂環式二胺化合物,可列舉:1,3-二胺基環戊烷、1,3-二胺基環己烷、1,3-二胺基-1-甲基環己烷、3,5-二胺基-1,1-二甲基環己烷、1,5-二胺基-1,3-二甲基環己烷、1,3-二胺基-1-甲基-4-異丙基環己烷、1,2-二胺基-4-甲基環己烷、1,4-二胺基環己烷、1,4-二胺基-2,5-二乙基環己烷、1,3-雙(胺基甲基)環己烷、1,4-雙(胺基甲基)環己烷、2-(3-胺基環戊基)-2-丙基胺、薄荷烷二胺、異佛爾酮二胺、降𦯉烷二胺、1-環庚烯-3,7-二胺、4,4'-亞甲基雙(環己基胺)、4,4'-亞甲基雙(2-甲基環己基胺)、1,4-雙(3-胺基丙基)哌𠯤、3,9-雙(3-胺基丙基)-2,4,8,10-四氧雜螺-[5,5]-十一烷等。 作為直鏈脂肪族二胺化合物,可列舉:1,2-二胺基乙烷、1,4-二胺基丁烷、1,6-二胺基己烷、1,8-二胺基辛烷、1,10-二胺基癸烷、1,12-二胺基十二烷等烴型二胺、或2-(2-胺基乙氧基)乙基胺、2,2'-(乙二氧基)二乙基胺、雙[2-(2-胺基乙氧基)乙基]醚等環氧烷型二胺等。 作為矽氧烷二胺化合物,可列舉二甲基(聚)矽氧烷二胺,例如信越化學工業製造之商標名PAM-E、KF-8010、X-22-161A等。 醯胺縮聚合反應結束後,視需要將反應液中所析出之源自脫水縮合劑之析出物等過濾分離。繼而,於反應液中投入水或脂肪族低級醇或其混合液等聚醯胺之不良溶劑而使聚醯胺析出。進而,使所析出之聚醯胺再次溶解於溶劑,反覆實施再沈澱析出操作,藉此進行精製,並進行真空乾燥,而單離目標聚醯胺。再者,為了進一步提高精製度,可使該聚醯胺之溶液通過填充有離子交換樹脂之管柱而去除離子性雜質。 聚醯胺之基於凝膠滲透層析法(以下稱為「GPC」)之聚苯乙烯換算重量平均分子量較佳為7,000~70,000,進而更佳為10,000~50,000。若聚苯乙烯換算重量平均分子量為7,000以上,則確保硬化浮凸圖案之基本物性。又,若聚苯乙烯換算重量平均分子量為70,000以下,則確保形成浮凸圖案時之顯影溶解性。 作為GPC之溶離液,推薦使用四氫呋喃或N-甲基-2-吡咯啶酮。又,重量平均分子量值係根據使用標準單分散聚苯乙烯所製作之校準曲線而求出。作為標準單分散聚苯乙烯,推薦自昭和電工製造之有機溶劑系標準試樣STANDARD SM-105中選擇。 [(A)聚羥基醯胺] 本發明之感光性樹脂組合物中之較佳之(A)樹脂之另一例為具有下述通式(5): [化25]
Figure 02_image049
{式中,Y3 為具有碳原子之4價之有機基,較佳為具有2個以上之碳原子之4價之有機基,Y4 、X3 及X4 分別獨立為具有2個以上之碳原子之2價之有機基,n3 為1~1000之整數,n4 為0~500之整數,n3 /(n3 +n4 )>0.5,並且包含X3 及Y3 之n3 個二羥基二醯胺單元以及包含X4 及Y4 之n4 個二醯胺單元之排列順序為任意}所表示之結構之聚羥基醯胺(聚㗁唑前驅物(以下有時將上述通式(5)所表示之聚羥基醯胺簡稱為「聚㗁唑前驅物」))。 聚㗁唑前驅物為具有上述通式(5)中之n3 個二羥基二醯胺單元(以下有時簡稱為二羥基二醯胺單元)之聚合物,亦可具有上述通式(5)中之n4 個二醯胺單元(以下有時簡稱為二醯胺單元)。 X3 之碳原子數基於獲得感光特性之目的而較佳為2個以上且40個以下,X4 之碳原子數基於獲得感光特性之目的而較佳為2個以上且40個以下,Y3 之碳原子數基於獲得感光特性之目的而較佳為2個以上且40個以下,並且Y4 之碳原子數基於獲得感光特性之目的而較佳為2個以上且40個以下。 該二羥基二醯胺單元可藉由使具有Y3 (NH2 )2 (OH)2 之結構之二胺基二羥基化合物(較佳為雙胺基苯酚)與具有X3 (COOH)2 之結構之二羧酸進行合成而形成。以下,以上述二胺基二羥基化合物為雙胺基苯酚之情形為例而說明典型態樣。該雙胺基苯酚之2組胺基與羥基分別相互位於鄰位,該二羥基二醯胺單元於約250~400℃之加熱下閉環而轉化為耐熱性之聚㗁唑結構。通式(5)中之n3 基於獲得感光特性之目的而為1以上,且基於獲得感光特性之目的而為1000以下。n3 較佳為2~1000之範圍,更佳為3~50之範圍,最佳為3~20之範圍。 視需要亦可於聚㗁唑前驅物上縮合n4 個上述二醯胺單元。該二醯胺單元可藉由使具有Y4 (NH2 )2 之結構之二胺與具有X4 (COOH)2 之結構之二羧酸進行合成而形成。通式(5)中之n4 為0~500之範圍,藉由n4 為500以下而獲得良好之感光特性。n4 更佳為0~10之範圍。若二醯胺單元相對於二羥基二醯胺單元之比率過高,則於用作顯影液之鹼性水溶液中之溶解性降低,因此通式(5)中之n3 /(n3 +n4 )之值超過0.5,更佳為0.7以上,最佳為0.8以上。 關於作為具有Y3 (NH2 )2 (OH)2 之結構之二胺基二羥基化合物的雙胺基苯酚,例如可列舉:3,3'-二羥基聯苯胺、3,3'-二胺基-4,4'-二羥基聯苯、4,4'-二胺基-3,3'-二羥基聯苯、3,3'-二胺基-4,4'-二羥基二苯基碸、4,4'-二胺基-3,3'-二羥基二苯基碸、雙-(3-胺基-4-羥基苯基)甲烷、2,2-雙-(3-胺基-4-羥基苯基)丙烷、2,2-雙-(3-胺基-4-羥基苯基)六氟丙烷、2,2-雙-(4-胺基-3-羥基苯基)六氟丙烷、雙-(4-胺基-3-羥基苯基)甲烷、2,2-雙-(4-胺基-3-羥基苯基)丙烷、4,4'-二胺基-3,3'-二羥基二苯甲酮、3,3'-二胺基-4,4'-二羥基二苯甲酮、4,4'-二胺基-3,3'-二羥基二苯醚、3,3'-二胺基-4,4'-二羥基二苯醚、1,4-二胺基-2,5-二羥基苯、1,3-二胺基-2,4-二羥基苯、1,3-二胺基-4,6-二羥基苯等。該等雙胺基苯酚可單獨使用或將2種以上組合使用。作為該雙胺基苯酚中之Y3 基,就感光特性之方面而言,較佳為下述式(37): [化26]
Figure 02_image051
{式中,Rs1與Rs2分別獨立地表示氫原子、甲基、乙基、丙基、環戊基、環己基、苯基、三氟甲基}所表示者。 又,作為具有Y4 (NH2 )2 之結構之二胺,可列舉芳香族二胺、矽二胺等。其中,作為芳香族二胺,例如可列舉:間苯二胺、對苯二胺、2,4-甲苯二胺、3,3'-二胺基二苯醚、3,4'-二胺基二苯醚、4,4'-二胺基二苯醚、3,3'-二胺基二苯基碸、4,4'-二胺基二苯基碸、3,4'-二胺基二苯基碸、3,3'-二胺基二苯基甲烷、4,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基甲烷、4,4'-二胺基二苯硫醚、3,3'-二胺基二苯基酮、4,4'-二胺基二苯基酮、3,4'-二胺基二苯基酮、2,2'-雙(4-胺基苯基)丙烷、2,2'-雙(4-胺基苯基)六氟丙烷、1,3-雙(3-胺基苯氧基)苯、1,3-雙(4-胺基苯氧基)苯、1,4-雙(4-胺基苯氧基)苯、4-甲基-2,4-雙(4-胺基苯基)-1-戊烯、 4-甲基-2,4-雙(4-胺基苯基)-2-戊烯、1,4-雙(α,α-二甲基-4-胺基苄基)苯、亞胺基二對苯二胺、1,5-二胺基萘、2,6-二胺基萘、4-甲基-2,4-雙(4-胺基苯基)戊烷、5(或6)-胺基-1-(4-胺基苯基)-1,3,3-三甲基茚滿、雙(對胺基苯基)氧化膦、4,4'-二胺基偶氮苯、4,4'-二胺基二苯基脲、4,4'-雙(4-胺基苯氧基)聯苯、2,2-雙[4-(4-胺基苯氧基)苯基]丙烷、2,2-雙[4-(4-胺基苯氧基)苯基]六氟丙烷、2,2-雙[4-(3-胺基苯氧基)苯基]二苯甲酮、4,4'-雙(4-胺基苯氧基)二苯基碸、4,4'-雙[4-(α,α-二甲基-4-胺基苄基)苯氧基]二苯甲酮、4,4'-雙[4-(α,α-二甲基-4-胺基苄基)苯氧基]二苯基碸、4,4'-二胺基聯苯、 4,4'-二胺基二苯甲酮、苯基茚滿二胺、3,3'-二甲氧基-4,4'-二胺基聯苯、3,3'-二甲基-4,4'-二胺基聯苯、鄰甲苯胺碸、2,2-雙(4-胺基苯氧基苯基)丙烷、雙(4-胺基苯氧基苯基)碸、雙(4-胺基苯氧基苯基)硫醚、1,4-(4-胺基苯氧基苯基)苯、1,3-(4-胺基苯氧基苯基)苯、9,9-雙(4-胺基苯基)茀、4,4'-二-(3-胺基苯氧基)二苯基碸、4,4'-二胺基苯甲醯苯胺等、以及該等芳香族二胺之芳香核之氫原子被選自由氯原子、氟原子、溴原子、甲基、甲氧基、氰基及苯基所組成之群中之至少一種基或原子取代的化合物。 又,作為上述二胺,為了提高與基材之接著性而可選擇矽二胺。作為矽二胺之例,可列舉:雙(4-胺基苯基)二甲基矽烷、雙(4-胺基苯基)四甲基矽氧烷、雙(4-胺基苯基)四甲基二矽氧烷、雙(γ-胺基丙基)四甲基二矽氧烷、1,4-雙(γ-胺基丙基二甲基矽烷基)苯、雙(4-胺基丁基)四甲基二矽氧烷、雙(γ-胺基丙基)四苯基二矽氧烷等。 又,作為具有X3 (COOH)2 或X4 (COOH)2 之結構之較佳之二羧酸,可列舉X3 及X4 分別為具有直鏈、支鏈或環狀結構之脂肪族基或芳香族基者。其中,較佳為可含有芳香族環或脂肪族環之碳原子數2個以上且40個以下之有機基,X3 及X4 分別可較佳地自下述式(38): [化27]
Figure 02_image053
{式中,R41 表示選自由-CH2 -、-O-、-S-、-SO2 -、-CO-、-NHCO-及-C(CF3 )2 -所組成之群中之2價之基} 所表示之芳香族基中進行選擇,該等於感光特性之方面較佳。 聚㗁唑前驅物亦可為末端基經特定之有機基封端者。於使用經封端基封端之聚㗁唑前驅物之情形時,有望使本發明之感光性樹脂組合物之加熱硬化後之塗膜之機械物性(尤其伸長率)及硬化浮凸圖案形狀變得良好。作為此種封端基之較佳例,可列舉下述式(39): [化28]
Figure 02_image055
所表示者。 聚㗁唑前驅物之基於凝膠滲透層析法之聚苯乙烯換算重量平均分子量較佳為3,000~70,000,更佳為6,000~50,000。該重量平均分子量就硬化浮凸圖案之物性之觀點而言,較佳為3,000以上。又,就解像性之觀點而言,較佳為70,000以下。作為凝膠滲透層析法之展開溶劑,推薦使用四氫呋喃、N-甲基-2-吡咯啶酮。又,分子量係根據使用標準單分散聚苯乙烯所製作之校準曲線而求出。作為標準單分散聚苯乙烯,推薦自昭和電工公司製造之有機溶劑系標準試樣STANDARD SM-105中選擇。 [(A)聚醯亞胺] 本發明之感光性樹脂組合物中之較佳之(A)樹脂之另一例為具有上述通式(6): [化29]
Figure 02_image057
{式中,X5 表示4~14價之有機基,Y5 表示2~12價之有機基,R10 及R11 表示具有至少一個選自酚性羥基、磺酸基或硫醇基中之基的有機基,且可相同或亦可不同,n5 為3~200之整數,並且m3 及m4 為0~10之整數} 所表示之結構之聚醯亞胺。此處,通式(6)所表示之樹脂於表現充分之膜特性時無需藉由熱處理步驟而產生化學變化,因此適合於更低溫下進行處理,就該方面而言尤佳。 上述通式(6)所表示之結構單元中之X5 較佳為碳數4~40之4價~14價之有機基,就兼具耐熱性與感光特性之方面而言,進而較佳為含有芳香族環或脂肪族環之碳原子數5~40之有機基。 上述通式(6)所表示之聚醯亞胺可使四羧酸、對應之四羧酸二酐、四羧酸二酯二氯化物等與二胺、對應之二異氰酸酯化合物、三甲基矽烷基化二胺進行反應而獲得。聚醯亞胺一般而言可藉由使作為由四羧酸二酐與二胺反應獲得之聚醯亞胺前驅物之一者的聚醯胺酸經過利用加熱或酸或鹼等進行之化學處理而發生脫水閉環而獲得。 作為適宜之四羧酸二酐,可列舉:均苯四甲酸二酐、3,3',4,4'-聯苯基四羧酸二酐、2,3,3',4'-聯苯基四羧酸二酐、2,2',3,3'-聯苯基四羧酸二酐、3,3',4,4'-二苯甲酮四羧酸二酐、2,2',3,3'-二苯甲酮四羧酸二酐、2,2-雙(3,4-二羧基苯基)丙烷二無水物、2,2-雙(2,3-二羧基苯基)丙烷二無水物、1,1-雙(3,4-二羧基苯基)乙烷二無水物、1,1-雙(2,3-二羧基苯基)乙烷二無水物、雙(3,4-二羧基苯基)甲烷二無水物、雙(2,3-二羧基苯基)甲烷二無水物、雙(3,4-二羧基苯基)碸二無水物、雙(3,4-二羧基苯基)醚二無水物、1,2,5,6-萘四羧酸二酐、9,9-雙(3,4-二羧基苯基)茀酸二酐、 9,9-雙{4-(3,4-二羧基苯氧基)苯基}茀酸二酐、2,3,6,7-萘四羧酸二酐、2,3,5,6-吡啶四羧酸二酐、3,4,9,10-苝四羧酸二酐、2,2-雙(3,4-二羧基苯基)六氟丙烷二無水物等芳香族四羧酸二酐、或丁烷四羧酸二酐、1,2,3,4-環戊烷四羧酸二酐等脂肪族四羧酸二酐、3,3',4,4'-二苯基碸四羧酸二酐及下述通式(40): [化30]
Figure 02_image059
{式中,R42 表示選自氧原子、C(CF3 )2 、C(CH3 )2 或SO2 中之基,並且R43 及R44 可相同或亦可不同,且表示選自氫原子、羥基或硫醇基中之基}所表示之化合物。 該等之中,較佳為3,3',4,4'-聯苯基四羧酸二酐、2,3,3',4'-聯苯基四羧酸二酐、2,2',3,3'-聯苯基四羧酸二酐、3,3',4,4'-二苯甲酮四羧酸二酐、2,2',3,3'-二苯甲酮四羧酸二酐、2,2-雙(3,4-二羧基苯基)丙烷二無水物、2,2-雙(2,3-二羧基苯基)丙烷二無水物、1,1-雙(3,4-二羧基苯基)乙烷二無水物、1,1-雙(2,3-二羧基苯基)乙烷二無水物、雙(3,4-二羧基苯基)甲烷二無水物、雙(2,3-二羧基苯基)甲烷二無水物、雙(3,4-二羧基苯基)碸二無水物、 雙(3,4-二羧基苯基)醚二無水物、2,2-雙(3,4-二羧基苯基)六氟丙烷二無水物、3,3',4,4'-二苯基碸四羧酸二酐、9,9-雙(3,4-二羧基苯基)茀酸二酐、9,9-雙{4-(3,4-二羧基苯氧基)苯基}茀酸二酐及下述通式(41) [化31]
Figure 02_image061
{式中,R45 表示選自氧原子、C(CF3 )2 、C(CH3 )2 或SO2 中之基,並且R46 及R47 可相同或亦可不同,且表示選自氫原子、羥基或硫醇基中之基}所表示之結構之酸二酐。該等可單獨使用或2種以上組合使用。 上述通式(6)之Y5 表示二胺之結構成分,作為該二胺,表示含有芳香族環或脂肪族環之2~12價之有機基,其中較佳為碳原子數5~40之有機基。 作為二胺之具體例,可列舉:3,4'-二胺基二苯醚、4,4'-二胺基二苯醚、3,4'-二胺基二苯基甲烷、4,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基碸、4,4'-二胺基二苯基碸、3,4'-二胺基二苯硫醚、4,4'-二胺基二苯硫醚、1,4-雙(4-胺基苯氧基)苯、苯炔、間苯二胺、對苯二胺、1,5-萘二胺、2,6-萘二胺、雙(4-胺基苯氧基苯基)碸、雙(3-胺基苯氧基苯基)碸、雙(4-胺基苯氧基)聯苯、雙{4-(4-胺基苯氧基)苯基}醚、1,4-雙(4-胺基苯氧基)苯、2,2'-二甲基-4,4'-二胺基聯苯、2,2'-二乙基-4,4'-二胺基聯苯、3,3'-二甲基-4,4'-二胺基聯苯、 3,3'-二乙基-4,4'-二胺基聯苯、2,2',3,3'-四甲基-4,4'-二胺基聯苯、3,3',4,4'-四甲基-4,4'-二胺基聯苯、2,2'-二(三氟甲基)-4,4'-二胺基聯苯、9,9-雙(4-胺基苯基)茀或該等之芳香族環經烷基或鹵素原子取代的化合物、或者脂肪族之環己基二胺、亞甲基雙環己基胺、及下述通式(42): [化32]
Figure 02_image063
{式中,R48 表示選自氧原子、C(CF3 )2 、C(CH3 )2 或SO2 中之基,並且R49 ~R52 可相同或亦可不同,且表示選自氫原子、羥基或硫醇基中之基}所表示之結構之二胺等。 該等之中,較佳為3,4'-二胺基二苯醚、4,4'-二胺基二苯醚、3,4'-二胺基二苯基甲烷、4,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基碸、4,4'-二胺基二苯基碸、3,4'-二胺基二苯硫醚、4,4'-二胺基二苯硫醚、間苯二胺、P-苯二胺、1,4-雙(4-胺基苯氧基)苯、9,9-雙(4-胺基苯基)茀、及下述通式(43): [化33]
Figure 02_image065
{式中,R53 表示選自氧原子、C(CF3 )2 、C(CH3 )2 或SO2 中之基,並且R54 ~R57 可相同或亦可不同,且表示選自氫原子、羥基或硫醇基中之基} 所表示之結構之二胺。 該等之中,尤佳為3,4'-二胺基二苯醚、4,4'-二胺基二苯醚、3,4'-二胺基二苯基甲烷、4,4'-二胺基二苯基甲烷、3,4'-二胺基二苯基碸、4,4'-二胺基二苯基碸、1,4-雙(4-胺基苯氧基)苯、及下述通式(44): [化34]
Figure 02_image067
{式中,R58 表示選自氧原子、C(CF3 )2 、C(CH3 )2 或SO2 中之基,並且R59 及R60 可相同或亦可不同,且表示選自氫原子、羥基或硫醇基中之基} 所表示之結構之二胺。該等可單獨使用或2種以上組合使用。 通式(6)之R10 及R11 表示酚性羥基、磺酸基、或硫醇基。本發明中,作為R10 及R11 ,可使酚性羥基、磺酸基及/或硫醇基混合存在。 藉由控制R10 及R11 之鹼可溶性基之量,於鹼性水溶液中之溶解速度發生變化,因此可藉由該調整而獲得具有適度之溶解速度之感光性樹脂組合物。 進而,為了提高與基板之接著性,亦可於不會降低耐熱性之範圍內與作為X5 、Y5 之具有矽氧烷結構之脂肪族基進行共聚。具體而言,可列舉與1~10莫耳%之作為二胺成分之雙(3-胺基丙基)四甲基二矽氧烷、雙(對胺基苯基)八甲基五矽氧烷等進行有共聚者等。 上述聚醯亞胺可利用如下等方法獲得聚醯亞胺前驅物後,利用採用已知之醯亞胺化反應法使該聚醯亞胺前驅物完全醯亞胺化之方法、或中途停止醯亞胺化反應而導入一部分醯亞胺結構(於該情形時為聚醯胺醯亞胺)之方法、或藉由將完全醯亞胺化之聚合物與該聚醯亞胺前驅物進行摻合而導入一部分醯亞胺結構之方法進行合成,上述獲得聚醯亞胺前驅物之方法如下:例如使四羧酸二酐與二胺化合物(一部分經作為單胺之末端封端劑取代)於低溫下反應;使四羧酸二酐(一部分經作為酸酐或單醯氯化合物或單活性酯化合物之末端封端劑取代)與二胺化合物於低溫下反應;由四羧酸二酐與醇而獲得二酯,其後與二胺(一部分經作為單胺之末端封端劑取代)於縮合劑之存在下反應;由四羧酸二酐與醇而獲得二酯,其後將剩餘之二羧酸進行醯氯化,使之與二胺(一部分經作為單胺之末端封端劑取代)反應。 上述聚醯亞胺較佳為以相對於構成感光性樹脂組合物之樹脂整體而醯亞胺化率為15%以上之方式具有聚醯亞胺。進而較佳為20%以上。此處所謂醯亞胺化率係指構成感光性樹脂組合物之樹脂整體中所存在之醯亞胺化之比率。若醯亞胺化率低於15%,則熱硬化時之收縮量變大,不適於厚膜製作。 醯亞胺化率可藉由以下方法而容易地算出。首先,測定聚合物之紅外線吸收光譜,確認存在源自聚醯亞胺之醯亞胺結構之吸收波峰(1780 cm-1附近、1377 cm-1附近)。繼而,於350℃下對該聚合物進行1小時之熱處理,測定熱處理後之紅外線吸收光譜,將1377 cm-1附近之波峰強度與熱處理前之強度進行比較,藉此算出熱處理前聚合物中之醯亞胺化率。 關於上述聚醯亞胺之分子量,於以基於凝膠滲透層析法之聚苯乙烯換算重量平均分子量之形式測定之情形時,較佳為3,000~200,000,更佳為5,000~50,000。於重量平均分子量為3,000以上之情形時機械物性良好,於50,000以下之情形時於顯影液中之分散性良好,且浮凸圖案之解像性能良好。 作為凝膠滲透層析法之展開溶劑,推薦使用四氫呋喃及N-甲基-2-吡咯啶酮。又,分子量係根據使用標準單分散聚苯乙烯所製作之校準曲線而求出。作為標準單分散聚苯乙烯,推薦自昭和電工公司製造之有機溶劑系標準試樣STANDARD SM-105中選擇。 進而,於本發明中,亦可較佳地使用酚樹脂。 [(A)酚樹脂] 本實施形態中之所謂酚樹脂意指具有包含酚性羥基之重複單元之樹脂。(A)酚樹脂於熱硬化時不發生如聚醯亞胺前驅物進行環化(醯亞胺化)之結構變化,因此具有能夠於低溫(例如250℃以下)下硬化之優點。 本實施形態中,(A)酚樹脂之重量平均分子量較佳為700~100,000,更佳為1,500~80,000,進而較佳為2,000~50,000。重量平均分子量就硬化膜之回流焊處理適用性之觀點而言,較佳為700以上,另一方面,就感光性樹脂組合物之鹼溶解性之觀點而言,較佳為100,000以下。 本文中之重量平均分子量之測定可藉由凝膠滲透層析法(GPC)進行,根據使用標準聚苯乙烯所製作之校準曲線而算出。 (A)酚樹脂就於鹼性水溶液中之溶解性、形成抗蝕圖案時之感度與解像性、及硬化膜之殘留應力之觀點而言,較佳為選自酚醛清漆、聚羥基苯乙烯、具有下述通式(7): [化35]
Figure 02_image069
{式中,a為1~3之整數,b為0~3之整數,1≦(a+b)≦4,R12 表示選自由碳數1~20之1價之有機基、鹵素原子、硝基及氰基所組成之群中之1價之取代基,於b為2或3之情形時,複數個R12 相互可相同或亦可不同,X表示選自由可具有不飽和鍵之碳數2~10之2價之脂肪族基、碳數3~20之2價之脂環式基、下述通式(8): [化36]
Figure 02_image071
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及具有碳數6~12之芳香族環之2價之有機基所組成之群中之2價之有機基} 所表示之重複單元之酚樹脂、及經具有碳數4~100之不飽和烴基之化合物改性的酚樹脂中之至少一種酚樹脂。 (酚醛清漆) 本文中,所謂酚醛清漆意指藉由使酚類與甲醛於觸媒存在下進行縮合而獲得之聚合物全體。一般而言,酚醛清漆可使1莫耳之酚類與相對於該酚類而未達1莫耳之甲醛進行縮合而獲得。作為上述酚類,例如可列舉:苯酚、鄰甲酚、間甲酚、對甲酚、鄰乙基苯酚、間乙基苯酚、對乙基苯酚、鄰丁基苯酚、間丁基苯酚、對丁基苯酚、2,3-二甲苯酚、2,4-二甲苯酚、2,5-二甲苯酚、2,6-二甲苯酚、3,4-二甲苯酚、3,5-二甲苯酚、2,3,5-三甲基苯酚、3,4,5-三甲基苯酚、兒茶酚、間苯二酚、連苯三酚、α-萘酚、β-萘酚等。作為具體之酚醛清漆,例如可列舉:苯酚/甲醛縮合酚醛清漆樹脂、甲酚/甲醛縮合酚醛清漆樹脂、苯酚-萘酚/甲醛縮合酚醛清漆樹脂等。 酚醛清漆之重量平均分子量較佳為700~100,000,更佳為1,500~80,000,進而較佳為2,000~50,000。重量平均分子量就硬化膜之回流焊處理適用性之觀點而言,較佳為700以上,另一方面,就感光性樹脂組合物之鹼溶解性之觀點而言,較佳為100,000以下。 (聚羥基苯乙烯) 本文中,所謂聚羥基苯乙烯意指含有羥基苯乙烯作為聚合單元之聚合物全體。作為聚羥基苯乙烯之較佳例,可列舉聚對乙烯基苯酚。聚對乙烯基苯酚意指含有對乙烯基苯酚作為聚合單元之聚合物全體。因此,只要不違反本發明之目的,則可使用羥基苯乙烯(例如對乙烯基苯酚)以外之聚合單元來構成聚羥基苯乙烯(例如聚對乙烯基苯酚)。聚羥基苯乙烯中,以全部聚合單元之莫耳數基準計之羥基苯乙烯單元之莫耳數之比率較佳為10莫耳%~99莫耳%,更佳為20~97莫耳%,進而較佳為30~95莫耳%。於上述比率為10莫耳%以上之情形時,於感光性樹脂組合物之鹼溶解性之觀點而言有利,於99莫耳%以下之情形時,於使含有下述共聚成分之組合物硬化而成之硬化膜之回流焊適用性之觀點而言有利。羥基苯乙烯(例如對乙烯基苯酚)以外之聚合單元可為能夠與羥基苯乙烯(例如對乙烯基苯酚)進行共聚之任意之聚合單元。作為形成羥基苯乙烯(例如對乙烯基苯酚)以外之聚合單元的共聚成分,並無限定,可列舉:例如丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸羥基乙酯、甲基丙烯酸丁酯、丙烯酸辛酯、甲基丙烯酸2-乙氧基乙酯、丙烯酸第三丁酯、1,5-戊二醇二丙烯酸酯、丙烯酸N,N-二乙基胺基乙酯、乙二醇二丙烯酸酯、1,3-丙二醇二丙烯酸酯、癸二醇二丙烯酸酯、癸二醇二甲基丙烯酸酯、1,4-環己二醇二丙烯酸酯、2,2-二羥甲基丙烷二丙烯酸酯、甘油二丙烯酸酯、三丙二醇二丙烯酸酯、甘油三丙烯酸酯、2,2-二(對羥基苯基)丙烷二甲基丙烯酸酯、三乙二醇二丙烯酸酯、聚氧乙基-2-2-二(對羥基苯基)丙烷二甲基丙烯酸酯、三乙二醇二甲基丙烯酸酯、聚氧丙基三羥甲基丙烷三丙烯酸酯、乙二醇二甲基丙烯酸酯、丁二醇二甲基丙烯酸酯、1,3-丙二醇二甲基丙烯酸酯、丁二醇二甲基丙烯酸酯、1,3-丙二醇二甲基丙烯酸酯、1,2,4-丁三醇三甲基丙烯酸酯、2,2,4-三甲基-1,3-戊二醇二甲基丙烯酸酯、季戊四醇三甲基丙烯酸酯、1,2-二甲基丙烯酸1-苯基乙二酯、季戊四醇四甲基丙烯酸酯、三羥甲基丙烷三甲基丙烯酸酯、1,5-戊二醇二甲基丙烯酸酯及1,4-苯二醇二甲基丙烯酸酯之類的丙烯酸之酯;苯乙烯以及例如2-甲基苯乙烯及乙烯基甲苯之類的經取代之苯乙烯;例如丙烯酸乙烯酯及甲基丙烯酸乙烯酯之類的乙烯酯單體;以及鄰乙烯基苯酚、間乙烯基苯酚等。 又,作為上述說明之酚醛清漆及聚羥基苯乙烯,分別可單獨使用1種或將2種以上組合使用。 聚羥基苯乙烯之重量平均分子量較佳為700~100,000,更佳為1,500~80,000,進而較佳為2,000~50,000。重量平均分子量就硬化膜之回流焊處理適用性之觀點而言,較佳為700以上,另一方面,就感光性樹脂組合物之鹼溶解性之觀點而言,較佳為100,000以下。 (通式(7)所表示之酚樹脂) 本實施形態中,(A)酚樹脂亦較佳為包含具有下述通式(7): [化37]
Figure 02_image073
{式中,a為1~3之整數,b為0~3之整數,1≦(a+b)≦4,R12 表示選自由碳數1~20之1價之有機基、鹵素原子、硝基及氰基所組成之群中之1價之取代基,於b為2或3之情形時,複數個R12 相互可相同或亦可不同,X表示選自由可具有不飽和鍵之碳數2~10之2價之脂肪族基、碳數3~20之2價之脂環式基、下述通式(8): [化38]
Figure 02_image075
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及具有碳數6~12之芳香族環之2價之有機基所組成之群中之2價之有機基}所表示之重複單元之酚樹脂。具有上述重複單元之酚樹脂與例如先前使用之聚醯亞胺樹脂及聚苯并㗁唑樹脂相比能夠於低溫下硬化,且能夠形成具有良好之伸長率之硬化膜,於該方面而言特別有利。酚樹脂分子中所存在之上述重複單元可為1種或2種以上之組合。 上述通式(7)中,R12 就合成通式(7)之樹脂時之反應性之觀點而言為選自由碳數1~20之1價之有機基、鹵素原子、硝基及氰基所組成之群中之1價之取代基。R12 就鹼溶解性之觀點而言,較佳為選自由鹵素原子、硝基、氰基、可具有不飽和鍵之碳數1~10之脂肪族基、碳數6~20之芳香族基、及下述通式(45): [化39]
Figure 02_image077
{式中,R61 、R62 及R63 分別獨立表示氫原子、可具有不飽和鍵之碳數1~10之脂肪族基、碳數3~20之脂環式基、或碳數6~20之芳香族基,並且R64 表示可具有不飽和鍵之碳數1~10之2價之脂肪族基、碳數3~20之2價之脂環式基、或碳數6~20之2價之芳香族基}所表示之四種基所組成之群中之1價之取代基。 本實施形態中,上述通式(7)中,a為1~3之整數,但就鹼溶解性及伸長率之觀點而言,較佳為2。又,於a為2之情形時,羥基彼此之取代位置可為鄰位、間位及對位之任意位置。並且,於a為3之情形時,羥基彼此之取代位置可為1,2,3-位、1,2,4-位及1,3,5-位等任意位置。 本實施形態中,上述通式(7)中,於a為1之情形時,為了提高鹼溶解性,可對具有通式(7)所表示之重複單元之酚樹脂(以下亦稱為(a1)樹脂)進而混合選自酚醛清漆及聚羥基苯乙烯中之酚樹脂(以下亦稱為(a2)樹脂)。 (a1)樹脂與(a2)樹脂之混合比以質量比計較佳為(a1)/(a2)=10/90~90/10之範圍。該混合比就於鹼性水溶液中之溶解性、及硬化膜之伸長率之觀點而言,較佳為(a1)/(a2)=10/90~90/10,更佳為(a1)/(a2)=20/80~80/20,進而較佳為(a1)/(a2)=30/70~70/30。 關於作為上述(a2)樹脂之酚醛清漆及聚羥基苯乙烯,可使用與上述(酚醛清漆)及(聚羥基苯乙烯)項中所示者相同之樹脂。 本實施形態中,上述通式(7)中,b為0~3之整數,但就鹼溶解性及伸長率之觀點而言,較佳為0或1。又,於b為2或3之情形時,複數個R12 相互可相同或亦可不同。 進而,本實施形態中,上述通式(7)中,a及b滿足1≦(a+b)≦4之關係。 本實施形態中,上述通式(7)中,X就硬化浮凸圖案形狀、及硬化膜之伸長率之觀點而言為選自由可具有不飽和鍵之碳數2~10之2價之脂肪族基、碳數3~20之2價之脂環式基、上述通式(8)所表示之伸烷氧基、及具有碳數6~12之芳香族環之2價之有機基所組成之群中之2價之有機基。該等2價之有機基之中,就硬化後之膜之強韌性之觀點而言,X較佳為選自由下述通式(9): [化40]
Figure 02_image079
{式中,R13 、R14 、R15 及R16 分別獨立為氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,n6 為0~4之整數,且n6 為1~4之整數之情形時之R17 為鹵素原子、羥基、或碳數1~12之1價之有機基,至少1個R17 為羥基,n6 為2~4之整數之情形時之複數個R17 相互可相同或亦可不同}所表示之2價之基、及下述通式(10): [化41]
Figure 02_image081
{式中,R18 、R19 、R20 及R21 分別獨立表示氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,W為單鍵、選自由可經氟原子取代之碳數1~10之脂肪族基、可經氟原子取代之碳數3~20之脂環式基、下述通式(8): [化42]
Figure 02_image083
(式中,p為1~10之整數)所表示之2價之伸烷氧基、及下述式(11): [化43]
Figure 02_image085
所表示之2價之基所組成之群中之2價之有機基}所表示之2價之基所組成之群中之2價之有機基。上述具有碳數6~12之芳香族環之2價之有機基X之碳數較佳為8~75,更佳為8~40。再者,上述具有碳數6~12之芳香族環之2價之有機基X之結構一般而言不同於上述通式(7)中之芳香環上鍵結有OH基及任意之R12 基之結構。 進而,上述通式(10)所表示之2價之有機基就樹脂組合物之圖案形成性、及硬化後之硬化膜之伸長率良好之觀點而言,更佳為下述式(12): [化44]
Figure 02_image087
所表示之2價之有機基,進而尤佳為下述式(13): [化45]
Figure 02_image089
所表示之2價之有機基。 通式(7)所表示之結構中,X尤佳為上述式(12)或(13)所表示之結構,X之以式(12)或(13)表示之結構所代表之部位之比率就伸長率之觀點而言,較佳為20質量%以上,更佳為30質量%以上。上述比率就組合物之鹼溶解性之觀點而言,較佳為80質量%以下,更佳為70質量%以下。 又,具有上述通式(7)所表示之結構之酚樹脂之中,就組合物之鹼溶解性、及硬化膜之伸長率之觀點而言,尤佳為於同一樹脂骨架內具有下述通式(14)所表示之結構及下述通式(15)所表示之結構該兩者的結構。 [化46]
Figure 02_image091
{式中,R21 為選自由烴基及烷氧基所組成之群中之碳數1~10之1價之基,n7 為2或3,n8 為0~2之整數,m5 為1~500之整數,2≦(n7 +n8 )≦4,於n8 為2之情形時,複數個R21 相互可相同或亦可不同} [化47]
Figure 02_image093
{式中,R22 及R23 分別獨立為選自由烴基及烷氧基所組成之群中之碳數1~10之1價之基,n9 為1~3之整數,n10 為0~2之整數,n11 為0~3之整數,m6 為1~500之整數,2≦(n9 +n10 )≦4,於n10 為2之情形時,複數個R22 相互可相同或亦可不同,於n11 為2或3之情形時,複數個R23 相互可相同或亦可不同} 上述通式(14)之m5 及上述通式(15)之m6 表示酚樹脂之主鏈中之各自之重複單元之總數。即,(A)酚樹脂中,例如上述通式(14)所表示之結構中之括弧內之重複單元與上述通式(15)所表示之結構中之括弧內之重複單元可以無規、嵌段或該等之組合之形式排列。m5 及m6 分別獨立為1~500之整數,下限值較佳為2,更佳為3,上限值較佳為450,更佳為400,進而較佳為350。m5 及m6 就硬化後之膜之強韌性之觀點而言,較佳為分別獨立為2以上,就於鹼性水溶液中之溶解性之觀點而言,較佳為450以下。m5 與m6 之合計就硬化後之膜之強韌性之觀點而言,較佳為2以上,更佳為4以上,進而較佳為6以上,就於鹼性水溶液中之溶解性之觀點而言,較佳為200以下,更佳為175以下,進而較佳為150以下。 於同一樹脂骨架內具有上述通式(14)所表示之結構及上述通式(15)所表示之結構該兩者的(A)酚樹脂中,上述通式(14)所表示之結構之莫耳比率越高,則硬化後之膜物性越良好,耐熱性亦越優異,另一方面,上述通式(15)所表示之結構之莫耳比率越高,則鹼溶解性越良好,硬化後之圖案形狀越優異。因此,上述通式(14)所表示之結構相對於上述通式(15)所表示之結構的比率m5 /m6 就硬化後之膜物性之觀點而言,較佳為20/80以上,更佳為40/60以上,尤佳為50/50以上,就鹼溶解性及硬化浮凸圖案形狀之觀點而言,較佳為90/10以下,更佳為80/20以下,進而較佳為70/30以下。 具有通式(7)所表示之重複單元之酚樹脂典型而言包含酚化合物與共聚成分(具體而言為選自由具有醛基之化合物(亦包括如三㗁烷般分解生成醛化合物之化合物)、具有酮基之化合物、分子內具有2個羥甲基之化合物、分子內具有2個烷氧基甲基之化合物、及分子內具有2個鹵烷基之化合物所組成之群中之1種以上之化合物),更典型而言可藉由使包含該等之單體成分進行聚合反應而合成。例如可使如下所述之苯酚及/或苯酚衍生物(以下亦統稱為「酚化合物」)與醛化合物、酮化合物、羥甲基化合物、烷氧基甲基化合物、二烯化合物或鹵烷基化合物等共聚成分進行聚合而獲得(A)酚樹脂。於該情形時,上述通式(7)中,芳香環上鍵結有OH基及任意之R12 基之結構所表示之部分源自上述酚化合物,X所表示之部分源自上述共聚成分。就反應控制、以及所獲得之(A)酚樹脂及感光性樹脂組合物之穩定性之觀點而言,酚化合物與上述共聚成分之添加莫耳比(酚化合物):(共聚成分)較佳為5:1~1.01:1,更佳為2.5:1~1.1:1。 具有通式(7)所表示之重複單元之酚樹脂之重量平均分子量較佳為700~100,000,更佳為1,500~80,000,進而較佳為2,000~50,000。重量平均分子量就硬化膜之回流焊處理適用性之觀點而言,較佳為700以上,另一方面,就感光性樹脂組合物之鹼溶解性之觀點而言,較佳為100,000以下。 作為可用於獲得具有通式(7)所表示之重複單元之酚樹脂的酚化合物,例如可列舉:甲酚、乙基苯酚、丙基苯酚、丁基苯酚、戊基苯酚、環己基苯酚、羥基聯苯、苄基苯酚、硝基苄基苯酚、氰基苄基苯酚、金剛烷苯酚、硝基苯酚、氟苯酚、氯苯酚、溴苯酚、三氟甲基苯酚、N-(羥基苯基)-5-降𦯉烯-2,3-二羧基醯亞胺、N-(羥基苯基)-5-甲基-5-降𦯉烯-2,3-二羧基醯亞胺、三氟甲基苯酚、羥基苯甲酸、羥基苯甲酸甲酯、羥基苯甲酸乙酯、羥基苯甲酸苄酯、羥基苯甲醯胺、羥基苯甲醛、羥基苯乙酮、羥基二苯甲酮、羥基苯甲腈、間苯二酚、二甲苯酚、兒茶酚、甲基兒茶酚、乙基兒茶酚、己基兒茶酚、苄基兒茶酚、硝基苄基兒茶酚、甲基間苯二酚、乙基間苯二酚、己基間苯二酚、苄基間苯二酚、硝基苄基間苯二酚、氫醌、咖啡酸、二羥基苯甲酸、二羥基苯甲酸甲酯、二羥基苯甲酸乙酯、二羥基苯甲酸丁酯、二羥基苯甲酸丙酯、二羥基苯甲酸苄酯、二羥基苯甲醯胺、二羥基苯甲醛、二羥基苯乙酮、二羥基二苯甲酮、二羥基苯甲腈、N-(二羥基苯基)-5-降𦯉烯-2,3-二羧基醯亞胺、N-(二羥基苯基)-5-甲基-5-降𦯉烯-2,3-二羧基醯亞胺、硝基兒茶酚、氟兒茶酚、氯兒茶酚、溴兒茶酚、三氟甲基兒茶酚、硝基間苯二酚、氟間苯二酚、氯間苯二酚、溴間苯二酚、三氟甲基間苯二酚、連苯三酚、間苯三酚、1,2,4-三羥基苯、三羥基苯甲酸、三羥基苯甲酸甲酯、三羥基苯甲酸乙酯、三羥基苯甲酸丁酯、三羥基苯甲酸丙酯、三羥基苯甲酸苄酯、三羥基苯甲醯胺、三羥基苯甲醛、三羥基苯乙酮、三羥基二苯甲酮、三羥基苯甲腈等。 作為上述醛化合物,例如可列舉:乙醛、丙醛、三甲基乙醛、丁醛、戊醛、己醛、三㗁烷、乙二醛、環己醛、二苯基乙醛、乙基丁醛、苯甲醛、乙醛酸、5-降𦯉烯-2-羧基醛、丙二醛、丁二醛、戊二醛、柳醛、萘甲醛、對苯二甲醛等。 作為上述酮化合物,例如可列舉:丙酮、甲基乙基酮、二乙基酮、二丙基酮、二環己基酮、二苄基酮、環戊酮、環己酮、雙環己酮、環己烷二酮、3-丁炔-2-酮、2-降𦯉酮、金剛酮、2,2-雙(4-氧雜環己基)丙烷等。 作為上述羥甲基化合物,例如可列舉:2,6-雙(羥基甲基)對甲酚、2,6-雙(羥基甲基)-4-乙基苯酚、2,6-雙(羥基甲基)-4-丙基苯酚、2,6-雙(羥基甲基)-4-正丁基苯酚、2,6-雙(羥基甲基)-4-第三丁基苯酚、2,6-雙(羥基甲基)-4-甲氧基苯酚、2,6-雙(羥基甲基)-4-乙氧基苯酚、2,6-雙(羥基甲基)-4-丙氧基苯酚、2,6-雙(羥基甲基)-4-正丁氧基苯酚、2,6-雙(羥基甲基)-4-第三丁氧基苯酚、1,3-雙(羥基甲基)脲、核糖醇、阿拉伯糖醇、阿洛醇、2,2-雙(羥基甲基)丁酸、2-苄氧基-1,3-丙二醇、2,2-二甲基-1,3-丙二醇、2,2-二乙基-1,3-丙二醇、單乙酸甘油酯、2-甲基-2-硝基-1,3-丙二醇、5-降𦯉烯-2,2-二甲醇、5-降𦯉烯-2,3-二甲醇、季戊四醇、2-苯基-1,3-丙二醇、三羥甲基乙烷、三羥甲基丙烷、3,6-雙(羥基甲基)均四甲苯、2-硝基對苯二甲醇、1,10-二羥基癸烷、1,12-二羥基十二烷、1,4-雙(羥基甲基)環己烷、1,4-雙(羥基甲基)環己烯、1,6-雙(羥基甲基)金剛烷、1,4-苯二甲醇、1,3-苯二甲醇、2,6-雙(羥基甲基)-1,4-二甲氧基苯、2,3-雙(羥基甲基)萘、2,6-雙(羥基甲基)萘、1,8-雙(羥基甲基)蒽、2,2'-雙(羥基甲基)二苯醚、4,4'-雙(羥基甲基)二苯醚、4,4'-雙(羥基甲基)二苯硫醚、4,4'-雙(羥基甲基)二苯甲酮、4-羥基甲基苯甲酸-4'-羥基甲基苯酯、4-羥基甲基苯甲酸-4'-羥基甲基苯胺、4,4'-雙(羥基甲基)苯基脲、4,4'-雙(羥基甲基)苯基胺基甲酸酯、1,8-雙(羥基甲基)蒽、4,4'-雙(羥基甲基)聯苯、2,2'-二甲基-4,4'-雙(羥基甲基)聯苯、2,2-雙(4-羥基甲基苯基)丙烷、乙二醇、二乙二醇、三乙二醇、四乙二醇、丙二醇、二丙二醇、三丙二醇、四丙二醇等。 作為上述烷氧基甲基化合物,例如可列舉:2,6-雙(甲氧基甲基)對甲酚、2,6-雙(甲氧基甲基)-4-乙基苯酚、2,6-雙(甲氧基甲基)-4-丙基苯酚、2,6-雙(甲氧基甲基)-4-正丁基苯酚、2,6-雙(甲氧基甲基)-4-第三丁基苯酚、2,6-雙(甲氧基甲基)-4-甲氧基苯酚、2,6-雙(甲氧基甲基)-4-乙氧基苯酚、2,6-雙(甲氧基甲基)-4-丙氧基苯酚、2,6-雙(甲氧基甲基)-4-正丁氧基苯酚、2,6-雙(甲氧基甲基)-4-第三丁氧基苯酚、1,3-雙(甲氧基甲基)脲、2,2-雙(甲氧基甲基)丁酸、2,2-雙(甲氧基甲基)-5-降𦯉烯、2,3-雙(甲氧基甲基)-5-降𦯉烯、1,4-雙(甲氧基甲基)環己烷、1,4-雙(甲氧基甲基)環己烯、1,6-雙(甲氧基甲基)金剛烷、1,4-雙(甲氧基甲基)苯、1,3-雙(甲氧基甲基)苯、2,6-雙(甲氧基甲基)-1,4-二甲氧基苯、2,3-雙(甲氧基甲基)萘、2,6-雙(甲氧基甲基)萘、1,8-雙(甲氧基甲基)蒽、2,2'-雙(甲氧基甲基)二苯醚、4,4'-雙(甲氧基甲基)二苯醚、4,4'-雙(甲氧基甲基)二苯硫醚、4,4'-雙(甲氧基甲基)二苯甲酮、4-甲氧基甲基苯甲酸-4'-甲氧基甲基苯基、4-甲氧基甲基苯甲酸-4'-甲氧基甲基苯胺、4,4'-雙(甲氧基甲基)苯基脲、4,4'-雙(甲氧基甲基)苯基胺基甲酸酯、1,8-雙(甲氧基甲基)蒽、4,4'-雙(甲氧基甲基)聯苯、2,2'-二甲基-4,4'-雙(甲氧基甲基)聯苯、2,2-雙(4-甲氧基甲基苯基)丙烷、乙二醇二甲醚、二乙二醇二甲醚、三乙二醇二甲醚、四乙二醇二甲醚、丙二醇二甲醚、二丙二醇二甲醚、三丙二醇二甲醚、四丙二醇二甲醚等。 作為上述二烯化合物,例如可列舉:丁二烯、戊二烯、己二烯、庚二烯、辛二烯、3-甲基-1,3-丁二烯、1,3-丁二醇-二甲基丙烯酸酯、2,4-己二烯-1-醇、甲基環己二烯、環戊二烯、環己二烯、環庚二烯、環辛二烯、二環戊二烯、1-羥基二環戊二烯、1-甲基環戊二烯、甲基二環戊二烯、二烯丙醚、二烯丙基硫醚、己二酸二烯丙酯、2,5-降𦯉二烯、四氫茚、5-亞乙基-2-降𦯉烯、5-乙烯基-2-降𦯉烯、三聚氰酸三烯丙酯、異三聚氰酸二烯丙酯、異三聚氰酸三烯丙酯、異三聚氰酸二烯丙基丙酯等。 作為上述鹵烷基化合物,例如可列舉:二氯二甲苯、雙氯甲基二甲氧基苯、雙氯甲基均四甲苯、雙氯甲基聯苯、雙氯甲基-聯苯基羧酸、雙氯甲基-聯苯基二羧酸、雙氯甲基-甲基聯苯、雙氯甲基-二甲基聯苯、雙氯甲基蒽、乙二醇雙(氯乙基)醚、二乙二醇雙(氯乙基)醚、三乙二醇雙(氯乙基)醚、四乙二醇雙(氯乙基)醚等。 使上述酚化合物與共聚成分藉由脫水、脫鹵化氫、或脫醇而縮合,或一面使不飽和鍵斷鍵一面進行聚合,藉此可獲得(A)酚樹脂,聚合時亦可使用觸媒。作為酸性之觸媒,例如可列舉:鹽酸、硫酸、硝酸、磷酸、亞磷酸、甲磺酸、對甲苯磺酸、二甲基硫酸、二乙基硫酸、乙酸、草酸、1-羥基亞乙基-1,1'-二膦酸、乙酸鋅、三氟化硼、三氟化硼-苯酚錯合物、三氟化硼-醚錯合物等。另一方面,作為鹼性之觸媒,例如可列舉:氫氧化鋰、氫氧化鈉、氫氧化鉀、氫氧化鈣、氫氧化鋇、碳酸鈉、三乙胺、吡啶、4-N,N-二甲基胺基吡啶、哌啶、哌𠯤、1,4-二氮雜雙環[2.2.2]辛烷、1,8-二氮雜雙環[5.4.0]-7-十一烯、1,5-二氮雜雙環[4.3.0]-5-壬烯、氨、六亞甲基四胺等。 關於用以獲得具有通式(7)所表示之重複結構之酚樹脂所使用的觸媒之量,相對於共聚成分(即酚化合物以外之成分)之合計莫耳數,較佳為醛化合物、酮化合物、羥甲基化合物、烷氧基甲基化合物、二烯化合物及鹵烷基化合物之合計莫耳數100莫耳%,較佳為0.01莫耳%~100莫耳%之範圍。 (A)酚樹脂之合成反應中,反應溫度通常較佳為40℃~250℃,更佳為100℃~200℃之範圍,並且反應時間較佳為約1小時~10小時。視需要可使用能夠使該樹脂充分溶解之溶劑。 再者,具有通式(7)所表示之重複結構之酚樹脂亦可為於無損本發明之效果之範圍內進而聚合有不成為上述通式(7)之結構之原料的酚化合物者。所謂無損本發明之效果之範圍係例如成為(A)酚樹脂之原料的酚化合物總莫耳數之30%以下。 (經具有碳數4~100之不飽和烴基之化合物改性的酚樹脂) 經具有碳數4~100之不飽和烴基之化合物改性的酚樹脂為苯酚或其衍生物與具有碳數4~100之不飽和烴基之化合物(以下有時簡稱為「含不飽和烴基之化合物」)之反應產物(以下亦稱為「不飽和烴基改性苯酚衍生物」)和醛類的縮聚合產物,或為酚樹脂和含不飽和烴基之化合物的反應產物。 苯酚衍生物可使用與上述作為具有通式(7)所表示之重複單元之酚樹脂之原料所記述之苯酚衍生物相同者。 關於含不飽和烴基之化合物之不飽和烴基,就硬化膜之殘留應力及回流焊處理適用性之觀點而言,較佳為包含2個以上之不飽和基。又,就製成樹脂組合物時之相溶性及硬化膜之殘留應力之觀點而言,不飽和烴基較佳為碳數4~100,更佳為碳數8~80,進而較佳為碳數10~60。 作為含不飽和烴基之化合物,例如可列舉:碳數4~100之不飽和烴、具有羧基之聚丁二烯、環氧化聚丁二烯、亞麻醇、油醇、不飽和脂肪酸及不飽和脂肪酸酯。作為適宜之不飽和脂肪酸,可列舉:丁烯酸、肉豆蔻油酸、棕櫚油酸、油酸、反油酸、異油酸、鱈油酸、芥子酸、二十四烯酸、亞麻油酸、α-次亞麻油酸、桐酸、十八碳四烯酸、花生四烯酸、二十碳五烯酸、鯡魚酸及二十二碳六烯酸。該等之中,尤其就硬化膜之伸長率、及硬化膜之可撓性之觀點而言,尤佳為作為不飽和脂肪酸酯之植物油。 植物油通常包含甘油與不飽和脂肪酸之酯,存在碘值為100以下之不乾性油、超過100且未達130之半乾性油或130以上之乾性油。作為不乾性油,例如可列舉:橄欖油、牽牛花籽油、何首烏油、茶梅油、山茶油、蓖麻油及花生油。作為半乾性油,例如可列舉:玉米油、棉籽油及芝麻油。作為乾性油,例如可列舉:桐油、亞麻仁油、大豆油、胡桃油、紅花油、葵花籽油、荏子油及芥子油。又,亦可使用由該等植物油加工而成之加工植物油。 上述植物油之中,就於苯酚或其衍生物或者酚樹脂與植物油之反應中防止隨反應過度進行而產生之凝膠化、提高良率之觀點而言,較佳為使用不乾性油。另一方面,就抗蝕圖案之密接性、機械特性及耐熱衝擊性提高之觀點而言,較佳為使用乾性油。乾性油之中,就可更有效且確實地發揮本發明之效果之方面而言,較佳為桐油、亞麻仁油、大豆油、胡桃油及紅花油,更佳為桐油及亞麻仁油。該等植物油可單獨使用1種或將2種以上組合使用。 苯酚或其衍生物與含不飽和烴基之化合物的反應較佳為於50~130℃下進行。關於苯酚或其衍生物與含不飽和烴基之化合物的反應比率,就降低硬化膜之殘留應力之觀點而言,相對於苯酚或其衍生物100質量份,含不飽和烴基之化合物較佳為1~100質量份,更佳為5~50質量份。若含不飽和烴基之化合物未達1質量份,則存在硬化膜之可撓性降低之傾向,若超過100質量份,則存在硬化膜之耐熱性降低之傾向。於上述反應中,視需要亦可使用對甲苯磺酸、三氟甲磺酸等作為觸媒。 使利用上述反應而生成之不飽和烴基改性苯酚衍生物與醛類進行縮聚合,藉此生成經含不飽和烴基之化合物改性的酚樹脂。醛類例如自甲醛、乙醛、糠醛、苯甲醛、羥基苯甲醛、甲氧基苯甲醛、羥基苯基乙醛、甲氧基苯基乙醛、巴豆醛、氯乙醛、氯苯基乙醛、丙酮、甘油醛、乙醛酸、乙醛酸甲酯、乙醛酸苯酯、乙醛酸羥基苯酯、甲醯基乙酸、甲醯基乙酸甲酯、2-甲醯基丙酸、2-甲醯基丙酸甲酯、丙酮酸、乙醯丙酸、4-乙醯丁酸、丙酮二羧酸及3,3'-4,4'-二苯甲酮四羧酸中選擇。又,亦可使用多聚甲醛、三㗁烷等甲醛前驅物。該等醛類可單獨使用1種或將2種以上組合使用。 上述醛類與上述不飽和烴基改性苯酚衍生物之反應為縮聚合反應,可採用先前公知之酚樹脂之合成條件。反應較佳為於酸或鹼等觸媒之存在下進行,就樹脂之聚合度(分子量)之觀點而言,更佳為使用酸觸媒。作為酸觸媒,例如可列舉:鹽酸、硫酸、甲酸、乙酸、對甲苯磺酸及草酸。該等酸觸媒可單獨使用1種或將2種以上組合使用。 上述反應通常較佳為於反應溫度100~120℃下進行。又,反應時間根據所使用之觸媒之種類或量而不同,通常為1~50小時。反應結束後,藉由將反應產物於200℃以下之溫度下減壓脫水而獲得經含不飽和烴基之化合物改性的酚樹脂。再者,反應時可使用甲苯、二甲苯、甲醇等溶劑。 經含不飽和烴基之化合物改性的酚樹脂亦可藉由使間二甲苯之類的苯酚以外之化合物及醛類一起與上述不飽和烴基改性苯酚衍生物進行縮聚合而獲得。於該情形時,苯酚以外之化合物相對於由苯酚衍生物與含不飽和烴基之化合物反應而獲得之化合物的添加莫耳比較佳為未達0.5。 經含不飽和烴基之化合物改性的酚樹脂亦可藉由使酚樹脂與含不飽和烴基之化合物進行反應而獲得。該情形時所使用之酚樹脂為酚化合物(即苯酚及/或苯酚衍生物)與醛類之縮聚合產物。於該情形時,作為苯酚衍生物及醛類,可使用與上述苯酚衍生物及醛類相同者,可於如上所述之先前公知之條件下合成酚樹脂。 作為由適宜用於形成經含不飽和烴基之化合物改性的酚樹脂之酚化合物與醛類所獲得之酚樹脂之具體例,可列舉:苯酚/甲醛酚醛清漆樹脂、甲酚/甲醛酚醛清漆樹脂、苯二甲酚/甲醛酚醛清漆樹脂、間苯二酚/甲醛酚醛清漆樹脂及苯酚-萘酚/甲醛酚醛清漆樹脂。 與酚樹脂反應之含不飽和烴基之化合物可使用和上述參與製造與醛類反應之不飽和烴基改性苯酚衍生物的含不飽和烴基之化合物相同者。 酚樹脂與含不飽和烴基之化合物的反應通常較佳為於50~130℃下進行。又,關於酚樹脂與含不飽和烴基之化合物的反應比率,就提高硬化膜(抗蝕圖案)之可撓性之觀點而言,相對於酚樹脂100質量份,含不飽和烴基之化合物較佳為1~100質量份,更佳為2~70質量份,進而較佳為5~50質量份。若含不飽和烴基之化合物未達1質量份,則存在硬化膜之可撓性降低之傾向,若超過100質量份,則存在反應中產生凝膠化之可能性變高之傾向、及硬化膜之耐熱性降低之傾向。於酚樹脂與含不飽和烴基之化合物反應時視需要亦可使用對甲苯磺酸、三氟甲磺酸等作為觸媒。再者,反應時可使用例如甲苯、二甲苯、甲醇、四氫呋喃等溶劑,於下文進行詳細說明。 亦可使用藉由使利用如上方法所生成之經含不飽和烴基之化合物改性的酚樹脂中所殘留之酚性羥基進而與多元酸酐進行反應而實現酸改性的酚樹脂。藉由利用多元酸酐進行酸改性而導入羧基,於鹼性水溶液(用作顯影液者)中之溶解性進一步提高。 多元酸酐只要具有含複數個羧基之多元酸之羧基經脫水縮合而形成之酸酐基,則並無特別限定。作為多元酸酐,例如可列舉:鄰苯二甲酸酐、琥珀酸酐、辛烯基琥珀酸酐、十五烯基琥珀酸酐、順丁烯二酸酐、伊康酸酐、四氫鄰苯二甲酸酐、六氫鄰苯二甲酸酐、甲基四氫鄰苯二甲酸酐、甲基六氫鄰苯二甲酸酐、耐地酸酐、3,6-內亞甲基四氫鄰苯二甲酸酐、甲基內亞甲基四氫鄰苯二甲酸酐、四溴鄰苯二甲酸酐及偏苯三甲酸酐等二元酸酐,聯苯基四羧酸二酐、萘四羧酸二酐、二苯醚四羧酸二酐、丁烷四羧酸二酐、環戊烷四羧酸二酐、均苯四甲酸二酐及二苯甲酮四羧酸二酐等芳香族四元酸二酐。該等可單獨使用1種或將2種以上組合使用。該等之中,多元酸酐較佳為二元酸酐,更佳為選自由四氫鄰苯二甲酸酐、琥珀酸酐及六氫鄰苯二甲酸酐所組成之群中之1種以上。於該情形時,具有可形成形狀更良好之抗蝕圖案之優點。 酚性羥基與多元酸酐之反應可於50~130℃下進行。於該反應中,相對於酚性羥基1莫耳,較佳為使0.10~0.80莫耳之多元酸酐進行反應,更佳為使0.15~0.60莫耳進行反應,進而較佳為使0.20~0.40莫耳進行反應。若多元酸酐未達0.10莫耳,則存在顯影性降低之傾向,若超過0.80莫耳,則存在未曝光部之耐鹼性降低之傾向。 再者,就使反應快速進行之觀點而言,上述反應時視需要可含有觸媒。作為觸媒,可列舉:三乙胺等三級胺、三乙基苄基氯化銨等四級銨鹽、2-乙基-4-甲基咪唑等咪唑化合物、三苯基膦等磷化合物。 進而經多元酸酐改性之酚樹脂之酸值較佳為30~200 mgKOH/g,更佳為40~170 mgKOH/g,進而較佳為50~150 mgKOH/g。若酸值未達30 mgKOH/g,則與酸值處於上述範圍之情形相比存在鹼性顯影所需時間較長之傾向,若超過200 mgKOH/g,則與酸值處於上述範圍之情形相比存在未曝光部之耐顯影液性降低之傾向。 關於經含不飽和烴基之化合物改性的酚樹脂之分子量,考慮到於鹼性水溶液中之溶解性、或感光特性與硬化膜物性之均衡性,以重量平均分子量計較佳為1000~100000,更佳為2000~100000。 作為本實施形態之(A)酚樹脂,亦較佳為選自具有上述通式(7)所表示之重複單元之酚樹脂及上述經具有碳數4~100之不飽和烴基之化合物改性的酚樹脂中之至少一種酚樹脂(以下亦稱為(a3)樹脂)、與選自酚醛清漆及聚羥基苯乙烯中之酚樹脂(以下亦稱為(a4)樹脂)的混合物。(a3)樹脂與(a4)樹脂之混合比以質量比計為(a3)/(a4)=5/95~95/5之範圍。該混合比就於鹼性水溶液中之溶解性、形成抗蝕圖案時之感度與解像性、及硬化膜之殘留應力、回流焊處理適用性之觀點而言,較佳為(a3)/(a4)=5/95~95/5,更佳為(a3)/(a4)=10/90~90/10,進而較佳為(a3)/(a4)=15/85~85/15。關於作為上述(a4)樹脂之酚醛清漆及聚羥基苯乙烯,可使用與上述(酚醛清漆)及(聚羥基苯乙烯)項中所示者相同之樹脂。 (B)具有羰基之環狀化合物 (B)化合物為選自由如下化合物所組成之群中之至少一種化合物,該化合物係具有2個以上之羰基之環狀化合物,且上述羰基直接鍵結於上述環狀結構,於單環化合物之情形時,形成環結構之原子之1/3以上為N原子,於縮合環化合物之情形時,形成具有上述羰基之上述環結構之原子之1/3以上為N原子。 就耐遷移性之觀點而言,較佳為選自由根據環結構進行分類之如下化合物所組成之群中之至少一種化合物,即,5員環化合物、6員環化合物、5員環與5員環之縮合環化合物、5員環與6員環之縮合環化合物、6員環與6員環之縮合環化合物。 藉由具有2個以上之羰基,可減小銅表面上之空隙之面積。進而就顯影性或感度、固化後之面內均勻性、回流焊後之伸長率等觀點而言,亦較佳為具有2個以上之羰基。於羰基為2個以上之情形時,與羰基為1個之情形相比,銅表面上之空隙之面積顯著變小。又,就顯影性或感度、固化後之面內均勻性、回流焊後之伸長率等觀點而言,羰基為2個以上之情形優於羰基為1個之情形。 關於(B)化合物之具體例,作為5員環化合物,可列舉:3-吡唑啉酮、5-吡唑啉酮、3-甲基-5-吡唑啉酮、1,3-二甲基-5-吡唑啉酮、2-咪唑啶酮、1,3-二甲基-2-咪唑啶酮、乙內醯脲、尿囊素、仲班酸(parabanic acid)等,作為6員環化合物,可列舉:四氫-2-嘧啶酮、巴比妥酸、1,3-二甲基巴比妥酸、1,3-二環己基巴比妥酸、5-胺基巴比妥酸(uramil)、尿嘌呤、三聚氰酸、異三聚氰酸三(2-羥基乙基)酯等,作為5員環與5員環之縮合環化合物,可列舉甘脲等,作為6員環與5員環之縮合環化合物,可列舉:鳥嘌呤、異鳥嘌呤、N-甲基鳥嘌呤、7-(2-羥基乙基)鳥嘌呤、N-(3-氯苯基)鳥嘌呤、N-(3-乙基苯基)鳥嘌呤、次黃嘌呤、8-氮雜次黃嘌呤、7-去氮雜次黃嘌呤、黃嘌呤、1-甲基黃嘌呤、3-甲基黃嘌呤、8-溴-3-甲基黃嘌呤、可可鹼、茶鹼、7-(2-氯乙基)茶鹼、咖啡因、尿酸、8-氮雜黃嘌呤等,作為6員環與6員環之縮合環狀化合物,可列舉:喋呤、二氧四氫蝶啶、7,8-二甲基咯𠯤、1,4-二氫-6-甲基喹㗁啉-2,3-二酮等,亦可列舉該等之混合物。該等之中,較佳為使用縮合環化合物。 進而,就耐遷移性之觀點而言,(B)化合物較佳為選自由下述通式(60): [化48]
Figure 02_image095
{式中,Rs3、Rs4及Rs5分別獨立為氫原子、鹵素原子、羥基、可經芳香族基取代之胺基、碳數1~6之烷氧基、羥基烷基或碳數1~10之烷基或芳香族基} 所表示之化合物、下述通式(61): [化49]
Figure 02_image097
{式中,Rs6、Rs7及Rs8分別獨立為氫原子、鹵素原子、羥基、可經芳香族基取代之胺基、碳數1~6之烷氧基、羥基烷基或碳數1~10之烷基或芳香族基} 所表示之化合物、下述通式(62): [化50]
Figure 02_image099
{式中,Rs9、Rs10、Rs11及Rs12分別獨立為氫原子、鹵素原子、羥基、可經芳香族基取代之胺基、碳數1~6之烷氧基、羥基烷基或碳數1~10之烷基或芳香族基} 所表示之化合物、下述通式(63): [化51]
Figure 02_image101
{式中,R21 、R22 、R23 及R24 分別獨立為氫原子、鹵素原子、羥基、可經芳香族基取代之胺基、碳數1~6之烷氧基、羥基烷基或碳數1~10之烷基或芳香族基} 所表示之化合物所組成之群中之至少一種化合物。 作為上述通式(60)~(63)所表示之化合物,具體而言,可列舉:黃嘌呤、1-甲基黃嘌呤、3-甲基黃嘌呤、可可鹼、茶鹼、咖啡因、尿酸、8-氮雜黃嘌呤、二氧四氫蝶啶等及其衍生物。 關於(B)化合物之調配量,相對於(A)樹脂100質量份而為0.01~10質量份,較佳為0.05~2質量份。就耐遷移性之觀點而言,較理想為0.01質量份以上,就溶解性之觀點而言,較理想為未達10質量份。 認為該等(B)成分藉由羰基、或環結構中所含之氮原子與銅進行配位而改變銅之表面狀態,從而抑制於高溫保存試驗時發生銅遷移。認為尤其於縮合環之情形時,藉由複數個羰基與氮原子之協同作用而提高耐遷移性。 (C)感光劑 對本發明所使用之(C)感光劑進行說明。(C)感光劑根據本發明之感光性樹脂組合物為例如主要使用聚醯亞胺前驅物及/或聚醯胺作為(A)樹脂之負型,或為例如主要使用聚㗁唑前驅物、可溶性聚醯亞胺及酚樹脂之至少一種作為(A)樹脂之正型等而不同。 關於(C)感光劑於感光性樹脂組合物中之調配量,相對於(A)樹脂100質量份而為1~50質量份。上述調配量就光感度或圖案化性之觀點而言為1質量份以上,就感光性樹脂組合物之硬化性或硬化後之感光性樹脂層之物性之觀點而言為50質量份以下。 [(C)負型感光劑:光聚合起始劑及/或光酸產生劑] 首先,對期望為負型之情形進行說明。於該情形時,使用光聚合起始劑及/或光酸產生劑作為(C)感光劑,作為光聚合起始劑,較佳為光自由基聚合起始劑,較佳為列舉:二苯甲酮、鄰苯甲醯苯甲酸甲酯、4-苯甲醯基-4'-甲基二苯基酮、二苄基酮、茀酮等二苯甲酮衍生物,2,2'-二乙氧基苯乙酮、2-羥基-2-甲基苯丙酮、1-羥基環己基苯基酮等苯乙酮衍生物,9-氧硫𠮿
Figure 108121559-A0304-12-01
、2-甲基9-氧硫𠮿
Figure 108121559-A0304-12-01
、2-異丙基9-氧硫𠮿
Figure 108121559-A0304-12-01
、二乙基9-氧硫𠮿
Figure 108121559-A0304-12-01
等9-氧硫𠮿
Figure 108121559-A0304-12-01
衍生物,苯偶醯、苯偶醯二甲基縮酮、苯偶醯-β-甲氧基乙基縮醛等苯偶醯衍生物, 安息香、安息香甲醚等安息香衍生物,1-苯基-1,2-丁烷二酮-2-(鄰甲氧基羰基)肟、1-苯基-1,2-丙烷二酮-2-(鄰甲氧基羰基)肟、1-苯基-1,2-丙烷二酮-2-(鄰乙氧基羰基)肟、1-苯基-1,2-丙烷二酮-2-(鄰苯甲醯基)肟、1,3-二苯基丙烷三酮-2-(鄰乙氧基羰基)肟、1-苯基-3-乙氧基丙烷三酮-2-(鄰苯甲醯基)肟等肟類,N-苯基甘胺酸等N-芳基甘胺酸類,苯甲醯基過氯化物等過氧化物類,芳香族聯咪唑類,二茂鈦類,α-(正辛磺醯氧基亞胺基)-4-甲氧基苄基氰化物等光酸產生劑類等,但並不限定於該等。上述光聚合起始劑之中,尤其就光感度之方面而言,更佳為肟類。 於在負型之感光性樹脂組合物中使用光酸產生劑作為(C)感光劑之情形時,於紫外線之類之活性光線之照射下呈現酸性,且具有藉由該作用而使下述交聯劑與作為(A)成分之樹脂進行交聯、或使交聯劑彼此進行聚合之作用。作為該光酸產生劑之例,可使用二芳基鋶鹽、三芳基鋶鹽、二烷基苯甲醯甲基鋶鹽、二芳基錪鹽、芳基重氮鎓鹽、芳香族四羧酸酯、芳香族磺酸酯、硝基苄基酯、肟磺酸酯、芳香族N-氧基醯亞胺磺酸酯、芳香族磺醯胺、含鹵烷基之烴系化合物、含鹵烷基之雜環狀化合物、萘醌二疊氮-4-磺酸酯等。此種化合物視需要可併用2種以上、或與其他增感劑組合使用。上述光酸產生劑之中,尤其就光感度之方面而言,更佳為芳香族肟磺酸酯、芳香族N-氧基醯亞胺磺酸酯。 關於該等感光劑之調配量,相對於(A)樹脂100質量份而為1~50質量份,就光感度特性之觀點而言,較佳為2~15質量份。藉由調配相對於(A)樹脂100質量份而為1質量份以上之(C)感光劑則光感度優異,藉由調配50質量份以下則厚膜硬化性優異。 進而,如上所述,於通式(1)所表示之(A)樹脂為離子鍵型之情形時,為了經由離子鍵對(A)樹脂之側鏈賦予光聚合性基而使用具有胺基之(甲基)丙烯酸系化合物。於該情形時,具有胺基之(甲基)丙烯酸系化合物係用作(C)感光劑,如上所述,例如較佳為丙烯酸二甲胺基乙酯、甲基丙烯酸二甲胺基乙酯、丙烯酸二乙胺基乙酯、甲基丙烯酸二乙胺基乙酯、丙烯酸二甲胺基丙酯、甲基丙烯酸二甲胺基丙酯、丙烯酸二乙胺基丙酯、甲基丙烯酸二乙胺基丙酯、丙烯酸二甲胺基丁酯、甲基丙烯酸二甲胺基丁酯、丙烯酸二乙胺基丁酯、甲基丙烯酸二乙胺基丁酯等丙烯酸二烷基胺基烷基酯或甲基丙烯酸二烷基胺基烷基酯,其中,就感光特性之觀點而言,較佳為胺基上之烷基之碳數為1~10、烷基鏈之碳數為1~10之丙烯酸二烷基胺基烷基酯或甲基丙烯酸二烷基胺基烷基酯。 關於該等具有胺基之(甲基)丙烯酸系化合物之調配量,相對於(A)樹脂100質量份而為1~20質量份,就光感度特性之觀點而言,較佳為2~15質量份。藉由調配相對於(A)樹脂100質量份而為1質量份以上之具有胺基之(甲基)丙烯酸系化合物作為(C)感光劑則光感度優異,藉由調配20質量份以下則厚膜硬化性優異。 其次,對期望為正型之情形進行說明。於該情形時,使用光酸產生劑作為(C)感光劑,具體而言,可使用重氮醌化合物、鎓鹽、含鹵素之化合物等,就溶劑溶解性及保存穩定性之觀點而言,較佳為具有重氮醌結構之化合物。 [(C)正型感光劑:具有醌二疊氮基之化合物] 作為(C)具有醌二疊氮基之化合物(以下亦稱為「(C)醌二疊氮化合物」),可例示具有1,2-苯醌二疊氮結構之化合物、及具有1,2-萘醌二疊氮結構之化合物,乃美國專利第2,772,972號說明書、美國專利第2,797,213號說明書、及美國專利第3,669,658號說明書等中之公知物質。該(C)醌二疊氮化合物較佳為選自由以下詳細說明之具有特定結構之聚羥基化合物之1,2-萘醌二疊氮-4-磺酸酯、及該聚羥基化合物之1,2-萘醌二疊氮-5-磺酸酯所組成之群中之至少一種化合物(以下亦稱為「NQD化合物」)。 該NQD化合物係藉由如下方式獲得:依據常規方法,利用氯磺酸或亞硫醯氯將萘醌二疊氮磺酸化合物進行磺醯氯化,使所獲得之萘醌二疊氮磺醯氯與聚羥基化合物進行縮合反應。例如可藉由如下方式獲得:使聚羥基化合物與特定量之1,2-萘醌二疊氮-5-磺醯氯或1,2-萘醌二疊氮-4-磺醯氯於二㗁烷、丙酮或四氫呋喃等溶劑中,於三乙胺等鹼性觸媒之存在下反應而進行酯化,將所獲得之產物水洗並加以乾燥。 本實施形態中,就形成抗蝕圖案時之感度與解像性之觀點而言,(C)具有醌二疊氮基之化合物較佳為下述通式(70)~(74)所表示之羥基化合物之1,2-萘醌二疊氮-4-磺酸酯及/或1,2-萘醌二疊氮-5-磺酸酯。 通式(70)由 [化52]
Figure 02_image103
{式中,X11 及X12 分別獨立表示氫原子或碳數1~60(較佳為碳數1~30)之1價之有機基,X13 及X14 分別獨立表示氫原子或碳數1~60(較佳為碳數1~30)之1價之有機基,r1、r2、r3及r4分別獨立為0~5之整數,r3及r4之至少一者為1~5之整數,(r1+r3)≦5,並且(r2+r4)≦5}所表示。 通式(71)由 [化53]
Figure 02_image105
{式中,Z表示碳數1~20之4價之有機基,X15 、X16 、X17 及X18 分別獨立表示碳數1~30之1價之有機基,r6為0或1之整數,r5、r7、r8及r9分別獨立為0~3之整數,r10、r11、r12及r13分別獨立為0~2之整數,並且r10、r11、r12及r13不會均為0}所表示。 且通式(72)由 [化54]
Figure 02_image107
{式中,r14表示1~5之整數,r15表示3~8之整數,(r14×r15)個之L分別獨立表示碳數1~20之1價之有機基,(r15)個之T1 及(r15)個之T2 分別獨立表示氫原子或碳數1~20之1價之有機基}所表示。 且通式(73)由 [化55]
Figure 02_image109
{式中,A表示脂肪族之包含三級或四級碳之2價之有機基,並且M表示2價之有機基,較佳為表示選自下述化學式: [化56]
Figure 02_image111
所表示之3種基中之2價之基}所表示。 進而,通式(74)由 [化57]
Figure 02_image113
{式中,r17、r18、r19及r20分別獨立為0~2之整數,r17、r18、r19及r20之至少一者為1或2,X20 ~X29 分別獨立表示氫原子、鹵素原子、選自由烷基、烯基、烷氧基、烯丙基及醯基所組成之群之1價之基,並且Y10 、Y11 及Y12 分別獨立表示單鍵、選自由-O-、-S-、-SO-、-SO2 -、-CO-、-CO2 -、亞環戊基、亞環己基、伸苯基、及碳數1~20之2價之有機基所組成之群中之2價之基}所表示。 於另一實施形態中,上述通式(74)中,Y10 ~Y12 較佳為分別獨立地自下述通式: [化58]
Figure 02_image115
[化59]
Figure 02_image117
[化60]
Figure 02_image119
{式中,X30 及X31 分別獨立表示氫原子、選自由烷基、烯基、芳基、及取代芳基所組成之群中之至少一種1價之基,X32 、X33 、X34 及X35 分別獨立表示氫原子或烷基,r21為1~5之整數,並且X36 、X37 、X38 及X39 分別獨立表示氫原子或烷基} 所表示之三種2價之有機基中選擇。 作為上述通式(70)所表示之化合物,可列舉下述式(75)~(79)所表示之羥基化合物。 此處,通式(75)為 [化61]
Figure 02_image121
{式中,r16分別獨立為0~2之整數,並且X40 分別獨立表示氫原子或碳數1~20之1價之有機基,於X40 存在複數個之情形時,複數個X40 相互可相同或亦可不同,並且X40 較佳為下述通式: [化62]
Figure 02_image123
(式中,r18為0~2之整數,X41 表示氫原子、選自由烷基及環烷基所組成之群中之1價之有機基,並且於r18為2之情形時,2個X41 相互可相同亦可不同) 所表示之1價之有機基}, 通式(76)由 [化63]
Figure 02_image125
{式中,X42 表示氫原子、選自由碳數1~20之烷基、碳數1~20之烷氧基及碳數1~20之環烷基所組成之群中之1價之有機基}所表示。 又,通式(77)為 [化64]
Figure 02_image127
{式中,r19分別獨立為0~2之整數,X43 分別獨立表示氫原子或下述通式: [化65]
Figure 02_image129
(式中,r20為0~2之整數,X45 選自由氫原子、烷基及環烷基所組成之群中,並且於r20為2之情形時,2個X45 相互可相同亦可不同)所表示之1價之有機基,並且X44 選自由氫原子、碳數1~20之烷基、及碳數1~20之環烷基所組成之群中},式(78)及(79)為如下結構。 [化66]
Figure 02_image131
[化67]
Figure 02_image133
作為上述通式(70)所表示之化合物,就製成NQD化物時之感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,較佳為下述式(80)~(82)所表示之羥基化合物。 式(80)~(82)之結構如下所示。 [化68]
Figure 02_image135
[化69]
Figure 02_image137
[化70]
Figure 02_image139
作為上述通式(76)所表示之化合物,就製成NQD化物時之感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,較佳為下述式(83): [化71]
Figure 02_image141
所表示之羥基化合物。 作為上述通式(77)所表示之化合物,就製成NQD化物時之感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,較佳為下述式(84)~(86)所表示之羥基化合物。 式(84)~(86)之結構如下所示。 [化72]
Figure 02_image143
[化73]
Figure 02_image145
[化74]
Figure 02_image147
上述通式(71)中,Z只要為碳數1~20之4價之有機基即可,並無特別限定,就感度之觀點而言,較佳為具有下述式: [化75]
Figure 02_image149
所表示之結構之4價之基。 上述通式(71)所表示之化合物之中,就製成NQD化物時之感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,較佳為下述式(87)~(90)所表示之羥基化合物。 式(87)~(90)之結構如下所示。 [化76]
Figure 02_image151
[化77]
Figure 02_image153
[化78]
Figure 02_image155
[化79]
Figure 02_image157
作為上述通式(72)所表示之化合物,就製成NQD化物時之感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,較佳為下述式(91): [化80]
Figure 02_image159
{式中,r40分別獨立為0~9之整數}所表示之羥基化合物。 作為上述通式(73)所表示之化合物,就製成NQD化物時之感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,較佳為下述式(92)及(93)所表示之羥基化合物。 式(92)及(93)之結構如下所示。 [化81]
Figure 02_image161
[化82]
Figure 02_image163
作為上述通式(74)所表示之化合物,就感度較高、且於感光性樹脂組合物中之析出性較低之方面而言,具體而言較佳為下述式(94): [化83]
Figure 02_image165
所表示之聚羥基化合物之NQD化物。 於(C)具有醌二疊氮基之化合物具有1,2-萘醌二疊氮磺醯基之情形時,該基可為1,2-萘醌二疊氮-5-磺醯基或1,2-萘醌二疊氮-4-磺醯基之任意者。1,2-萘醌二疊氮-4-磺醯基能夠吸收水銀燈之i射線區域,因此適於利用i射線進行曝光。另一方面,1,2-萘醌二疊氮-5-磺醯基甚至能夠吸收水銀燈之g射線區域,因此適於利用g射線進行曝光。 本實施形態中,較佳為根據進行曝光之波長而選擇1,2-萘醌二疊氮-4-磺酸酯化合物及1,2-萘醌二疊氮-5-磺酸酯化合物之一者或兩者。又,亦可使用於同一分子中具有1,2-萘醌二疊氮-4-磺醯基及1,2-萘醌二疊氮-5-磺醯基之1,2-萘醌二疊氮磺酸酯化合物,亦可將1,2-萘醌二疊氮-4-磺酸酯化合物與1,2-萘醌二疊氮-5-磺酸酯化合物混合使用。 (C)具有醌二疊氮基之化合物中,就顯影對比度之觀點而言,羥基化合物之萘醌二疊氮磺醯基酯之平均酯化率較佳為10%~100%,進而較佳為20%~100%。 就感度及伸長率等硬化膜物性之觀點而言,作為NQD化合物之較佳例,例如可列舉下述通式群所表示者。 [化84]
Figure 02_image167
可列舉{式中,Q為氫原子、或下述式群: [化85]
Figure 02_image169
中之任一者所表示之萘醌二疊氮磺酸酯基,但Q不會全體同時為氫原子}所表示者。 於該情形時,作為NQD化合物,可使用於同一分子中具有4-萘醌二疊氮磺醯基及5-萘醌二疊氮磺醯基之萘醌二疊氮磺醯基酯化合物,亦可將4-萘醌二疊氮磺醯基酯化合物與5-萘醌二疊氮磺醯基酯化合物混合使用。 上述段落[0196]所記載之萘醌二疊氮磺酸酯基之中,尤佳為下述通式(95): [化86]
Figure 02_image171
所表示者。 作為上述鎓鹽,可列舉:錪鹽、鋶鹽、ホシホニウム鹽、鏻鹽、銨鹽及重氮鎓鹽等,較佳為選自由二芳基錪鹽、三芳基鋶鹽及三烷基鋶鹽所組成之群中之鎓鹽。 作為上述含鹵素之化合物,可列舉含鹵烷基之烴化合物等,較佳為三氯甲基三𠯤。 關於該等光酸產生劑之調配量,相對於(A)樹脂100質量份而為1~50質量份,較佳為5~30質量份。若作為(C)感光劑之光酸產生劑之調配量為1質量份以上,則感光性樹脂組合物之圖案化性良好,若為50質量份以下,則感光性樹脂組合物之硬化後之膜之拉伸伸長率良好,且曝光部之顯影殘留物(浮渣)較少。 上述NQD化合物可單獨使用,亦可將2種以上混合使用。 本實施形態中,關於感光性樹脂組合物中之(C)具有醌二疊氮基之化合物之調配量,相對於(A)樹脂100質量份而為0.1質量份~70質量份,較佳為1質量份~40質量份,更佳為3質量份~30質量份,進而較佳為5質量份~30質量份。若該調配量為0.1質量份以上,則獲得良好之感度,另一方面,若為70質量份以下,則硬化膜之機械物性良好。 本發明之感光性樹脂組合物亦可進而含有上述(A)~(C)成分以外之成分。該成分之較佳者根據作為(A)樹脂例如使用聚醯亞胺前驅物及聚醯胺等之負型或使用聚㗁唑前驅物及可溶性聚醯亞胺等之正型等而不同。 本實施形態中之作為負型樹脂組合物之上述聚醯亞胺前驅物樹脂組合物及聚醯胺樹脂組合物、或者作為正型感光性樹脂組合物之聚㗁唑樹脂組合物、可溶性聚醯亞胺樹脂組合物及酚樹脂組合物中可包含用以使該等樹脂溶解之溶劑。 作為溶劑,可列舉:醯胺類、亞碸類、脲類、酮類、酯類、內酯類、醚類、鹵化烴類、烴類、醇類等,例如可使用N-甲基-2-吡咯啶酮、N,N-二甲基乙醯胺、N,N-二甲基甲醯胺、二甲基亞碸、四甲基脲、丙酮、甲基乙基酮、甲基異丁基酮、環戊酮、環己酮、乙酸甲酯、乙酸乙酯、乙酸丁酯、草酸二乙酯、乳酸乙酯、乳酸甲酯、乳酸丁酯、γ-丁內酯、丙二醇單甲醚乙酸酯、丙二醇單甲醚、苄醇、苯乙二醇、四氫呋喃甲醇、乙二醇二甲醚、二乙二醇二甲醚、四氫呋喃、𠰌啉、二氯甲烷、1,2-二氯乙烷、1,4-二氯丁烷、氯苯、鄰二氯苯、苯甲醚、己烷、庚烷、苯、甲苯、二甲苯、均三甲苯等。其中,就樹脂之溶解性、樹脂組合物之穩定性、及對基板之接著性之觀點而言,較佳為N-甲基-2-吡咯啶酮、二甲基亞碸、四甲基脲、乙酸丁酯、乳酸乙酯、γ-丁內酯、丙二醇單甲醚乙酸酯、丙二醇單甲醚、二乙二醇二甲醚、苄醇、苯乙二醇及四氫呋喃甲醇。 此種溶劑之中,尤佳為可使生成聚合物完全溶解者,例如可列舉:N-甲基-2-吡咯啶酮、N,N-二甲基乙醯胺、N,N-二甲基甲醯胺、二甲基亞碸、四甲基脲、γ-丁內酯等。 作為適用於上述酚樹脂之溶劑,可列舉:雙(2-甲氧基乙基)醚、甲基溶纖劑、乙基溶纖劑、丙二醇單甲醚、丙二醇單甲醚乙酸酯、二乙二醇二甲醚、二丙二醇二甲醚、環己酮、環戊酮、甲苯、二甲苯、γ-丁內酯、N-甲基-2-吡咯啶酮等。 本發明之感光性樹脂組合物中,關於溶劑之使用量,相對於(A)樹脂100質量份,較佳為100~1000質量份,更佳為120~700質量份,進而較佳為125~500質量份之範圍。 本發明之感光性樹脂組合物亦可進而含有上述(A)~(C)成分以外之成分。 例如於使用本發明之感光性樹脂組合物於包含銅或銅合金之基板上形成硬化膜之情形時,為了抑制銅上產生變色,可任意地調配唑類化合物及嘌呤衍生物等含氮雜環化合物。 作為唑類化合物,可列舉:1H-三唑、5-甲基-1H-三唑、5-乙基-1H-三唑、4,5-二甲基-1H-三唑、5-苯基-1H-三唑、4-第三丁基-5-苯基-1H-三唑、5-羥基苯基-1H-三唑、苯基三唑、對乙氧基苯基三唑、5-苯基-1-(2-二甲基胺基乙基)三唑、5-苄基-1H-三唑、羥基苯基三唑、1,5-二甲基三唑、4,5-二乙基-1H-三唑、1H-苯并三唑、2-(5-甲基-2-羥基苯基)苯并三唑、2-[2-羥基-3,5-雙(α,α-二甲基苄基)苯基]-苯并三唑、2-(3,5-二第三丁基-2-羥基苯基)苯并三唑、2-(3-第三丁基-5-甲基-2-羥基苯基)-苯并三唑、2-(3,5-二第三戊基-2-羥基苯基)苯并三唑、2-(2'-羥基-5'-第三辛基苯基)苯并三唑、羥基苯基苯并三唑、甲苯并三唑、5-甲基-1H-苯并三唑、4-甲基-1H-苯并三唑、4-羧基-1H-苯并三唑、5-羧基-1H-苯并三唑、1H-四唑、5-甲基-1H-四唑、5-苯基-1H-四唑、5-胺基-1H-四唑、1-甲基-1H-四唑等。 可尤佳地列舉:甲苯并三唑、5-甲基-1H-苯并三唑及4-甲基-1H-苯并三唑。又,該等唑類化合物可使用1種或以2種以上之混合物之形式使用。 作為嘌呤衍生物之具體例,可列舉:嘌呤、腺嘌呤、鳥嘌呤、次黃嘌呤、黃嘌呤、可可鹼、咖啡因、尿酸、異鳥嘌呤、2,6-二胺基嘌呤、9-甲基腺嘌呤、2-羥基腺嘌呤、2-甲基腺嘌呤、1-甲基腺嘌呤、N-甲基腺嘌呤、N,N-二甲基腺嘌呤、2-氟腺嘌呤、9-(2-羥基乙基)腺嘌呤、鳥嘌呤肟、N-(2-羥基乙基)腺嘌呤、8-胺基腺嘌呤、6-胺基‐8-苯基‐9H-嘌呤、1-乙基腺嘌呤、6-乙基胺基嘌呤、1-苄基腺嘌呤、N-甲基鳥嘌呤、7-(2-羥基乙基)鳥嘌呤、N-(3-氯苯基)鳥嘌呤、N-(3-乙基苯基)鳥嘌呤、2-氮雜腺嘌呤、5-氮雜腺嘌呤、8-氮雜腺嘌呤、8-氮雜鳥嘌呤、8-氮雜嘌呤、8-氮雜黃嘌呤、8-氮雜次黃嘌呤等及其衍生物。 關於本發明之感光性樹脂組合物含有上述唑類化合物或嘌呤衍生物之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.1~20質量份,就光感度特性之觀點而言,更佳為0.5~5質量份。若唑類化合物相對於(A)樹脂100質量份之調配量為0.1質量份以上,則於銅或銅合金之上形成本發明之感光性樹脂組合物之情形時,抑制銅或銅合金表面產生變色,另一方面,若為20質量份以下,則光感度優異。 又,為了抑制銅表面上產生變色而可任意地調配受阻酚化合物。作為受阻酚化合物,可列舉:2,6-二第三丁基-4-甲基苯酚、2,5-二第三丁基-氫醌、3-(3,5-二第三丁基-4-羥基苯基)丙酸十八烷基酯、3-(3,5-二第三丁基-4-羥基苯基)丙酸異辛酯、4,4'-亞甲基雙(2,6-二第三丁基苯酚)、4,4'-硫代-雙(3-甲基-6-第三丁基苯酚)、4,4'-亞丁基-雙(3-甲基-6-第三丁基苯酚)、三乙二醇-雙[3-(3-第三丁基-5-甲基-4-羥基苯基)丙酸酯]、1,6-己二醇-雙[3-(3,5-二第三丁基-4-羥基苯基)丙酸酯]、2,2-硫代-二伸乙基雙[3-(3,5-二第三丁基-4-羥基苯基)丙酸酯]、N,N'-六亞甲基雙(3,5-二第三丁基-4-羥基-苯丙醯胺)、2,2'-亞甲基-雙(4-甲基-6-第三丁基苯酚)、2,2'-亞甲基-雙(4-乙基-6-第三丁基苯酚)、 四[3-(3,5-二第三丁基-4-羥基苯基)丙酸]季戊四醇酯、異氰尿酸三-(3,5-二第三丁基-4-羥基苄基)酯、1,3,5-三甲基-2,4,6-三(3,5-二第三丁基-4-羥基苄基)苯、1,3,5-三(3-羥基-2,6-二甲基-4-異丙基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-3-羥基-2,6-二甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第二丁基-3-羥基-2,6-二甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三[4-(1-乙基丙基)-3-羥基-2,6-二甲基苄基]-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、 1,3,5-三[4-三乙基甲基-3-羥基-2,6-二甲基苄基]-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(3-羥基-2,6-二甲基-4-苯基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-3-羥基-2,5,6-三甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-5-乙基-3-羥基-2,6-二甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-6-乙基-3-羥基-2-甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-6-乙基-3-羥基-2,5-二甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-5,6-二乙基-3-羥基-2-甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、 1,3,5-三(4-第三丁基-3-羥基-2-甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-3-羥基-2,5-二甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮、1,3,5-三(4-第三丁基-5‐乙基-3-羥基-2-甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮等,但並不限定於此。該等之中,尤佳為1,3,5-三(4-第三丁基-3-羥基-2,6-二甲基苄基)-1,3,5-三𠯤-2,4,6-(1H,3H,5H)-三酮等。 關於受阻酚化合物之調配量,相對於(A)樹脂100質量份,較佳為0.1~20質量份,就光感度特性之觀點而言,更佳為0.5~10質量份。若受阻酚化合物相對於(A)樹脂100質量份之調配量為0.1質量份以上,則例如於銅或銅合金之上形成本發明之感光性樹脂組合物之情形時,防止銅或銅合金產生變色或受到腐蝕,另一方面,若為20質量份以下,則光感度優異。 本發明之感光性樹脂組合物亦可含有交聯劑。交聯劑可為於對使用本發明之感光性樹脂組合物所形成之浮凸圖案進行加熱硬化時,能夠使(A)樹脂交聯、或交聯劑本身能夠形成交聯網狀結構的交聯劑。交聯劑可進一步強化由感光性樹脂組合物所形成之硬化膜之耐熱性及耐化學品性。 作為交聯劑,例如可列舉:作為含有羥甲基及/或烷氧基甲基之化合物的Cymel(註冊商標)300、301、303、370、325、327、701、266、267、238、1141、272、202、1156、1158、1123、1170、1174,UFR 65、300,Micoat 102、105(以上為Mitsui Cytec公司製造);NIKALAC(註冊商標)MX-270、-280、-290,NIKALAC MS-11,NIKALAC MW-30、-100、-300、-390、-750(以上為SANWA CHEMICAL公司製造);DML-OCHP、DML-MBPC、DML-BPC、DML-PEP、DML-34X、DML-PSBP、DML-PTBP、DML-PCHP、DML-POP、DML-PFP、DML-MBOC、BisCMP-F、DML-BisOC-Z、DML-BisOCHP-Z、DML-BisOC-P、DMOM-PTBT、TMOM-BP、TMOM-BPA、TML-BPAF-MF(以上為本州化學工業公司製造);苯二甲醇、雙(羥基甲基)甲酚、雙(羥基甲基)二甲氧基苯、雙(羥基甲基)二苯醚、雙(羥基甲基)二苯甲酮、羥基甲基苯甲酸羥基甲基苯酯、雙(羥基甲基)聯苯、二甲基雙(羥基甲基)聯苯、雙(甲氧基甲基)苯、雙(甲氧基甲基)甲酚、雙(甲氧基甲基)二甲氧基苯、雙(甲氧基甲基)二苯醚、雙(甲氧基甲基)二苯甲酮、甲氧基甲基苯甲酸甲氧基甲基苯酯、雙(甲氧基甲基)聯苯、二甲基雙(甲氧基甲基)聯苯等。 又,可列舉:作為環氧乙烷化合物之苯酚酚醛清漆型環氧樹脂、甲酚酚醛清漆型環氧樹脂、雙酚型環氧樹脂、三苯酚型環氧樹脂、四苯酚型環氧樹脂、苯酚-苯二甲基型環氧樹脂、萘酚-苯二甲基型環氧樹脂、苯酚-萘酚型環氧樹脂、苯酚-二環戊二烯型環氧樹脂、脂環式環氧樹脂、脂肪族環氧樹脂、二乙二醇二縮水甘油醚、山梨醇聚縮水甘油醚、丙二醇二縮水甘油醚、三羥甲基丙烷聚縮水甘油醚、1,1,2,2-四(對羥基苯基)乙烷四縮水甘油醚、甘油三縮水甘油醚、鄰第二丁基苯基縮水甘油醚、1,6-雙(2,3-環氧丙氧基)萘、二甘油聚縮水甘油醚、聚乙二醇縮水甘油醚、YDB-340、YDB-412、YDF-2001、YDF-2004(以上為商品名,新日鐵化學股份有限公司製造)、NC-3000-H、EPPN-501H、EOCN-1020、NC-7000L、EPPN-201L、XD-1000、EOCN-4600(以上為商品名,日本化藥股份有限公司製造)、Epikote(註冊商標)1001、Epikote 1007、Epikote 1009、Epikote 5050、Epikote 5051、Epikote 1031S、Epikote 180S65、Epikote 157H70、YX-315-75(以上為商品名,Japan Epoxy Resins股份有限公司製造)、EHPE3150、PLACCEL G402、PUE101、PUE105(以上為商品名,Diacel Chemical Industries股份有限公司製造)、EPICLON(註冊商標)830、850、1050、N-680、N-690、N-695、N-770、HP-7200、HP-820、EXA-4850-1000(以上為商品名,DIC公司製造)、DENACOL(註冊商標)EX-201、EX-251、EX-203、EX-313、EX-314、EX-321、EX-411、EX-511、EX-512、EX-612、EX-614、EX-614B、EX-711、EX-731、EX-810、EX-911、EM-150(以上為商品名,Nagase chemteX公司製造)、Epolight(註冊商標)70P、Epolight 100MF(以上為商品名,共榮社化學製造)等。 又,可列舉:作為含異氰酸酯基之化合物之4,4'-二苯基甲烷二異氰酸酯、甲苯二異氰酸酯、1,3-苯二亞甲基二異氰酸酯、二環己基甲烷-4,4'-二異氰酸酯、異佛爾酮二異氰酸酯、六亞甲基二異氰酸酯、Takenate(註冊商標)500、600、Cosmonate(註冊商標)NBDI、ND(以上為商品名,三井化學公司製造)、Duranate(註冊商標)17B-60PX、TPA-B80E、MF-B60X、MF-K60X、E402-B80T(以上為商品名,Asahi Kasei Chemicals公司製造)等。 又,可列舉:作為雙順丁烯二醯亞胺化合物之4,4'-二苯基甲烷雙順丁烯二醯亞胺、苯基甲烷順丁烯二醯亞胺、間伸苯基雙順丁烯二醯亞胺、雙酚A二苯醚雙順丁烯二醯亞胺、3,3'-二甲基-5,5'-二乙基-4,4'-二苯基甲烷雙順丁烯二醯亞胺、4-甲基-1,3-伸苯基雙順丁烯二醯亞胺、1,6'-雙順丁烯二醯亞胺-(2,2,4-三甲基)己烷、4,4'-二苯醚雙順丁烯二醯亞胺、4,4'-二苯基碸雙順丁烯二醯亞胺、1,3-雙(3-順丁烯二醯亞胺苯氧基)苯、1,3-雙(4-順丁烯二醯亞胺苯氧基)苯、BMI-1000、BMI-1100、BMI-2000、BMI-2300、BMI-3000、BMI-4000、BMI-5100、BMI-7000、BMI-TMH、BMI-6000、BMI-8000(以上為商品名,大和化成工業股份有限公司製造)等,但只要為如上所述般進行熱交聯之化合物,則並不限定於該等。 關於使用交聯劑之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.5~20質量份,更佳為2~10質量份。於該調配量為0.5質量份以上之情形時,表現出良好之耐熱性及耐化學品性,另一方面,於為20質量份以下之情形時,保存穩定性優異。 本發明之感光性樹脂組合物亦可包含有機鈦化合物。藉由包含有機鈦化合物,而即便於約250℃之低溫下硬化之情形時亦可形成耐化學品性優異之感光性樹脂層。又,尤其藉由使感光性樹脂組合物中含有(B)具有羰基之環狀化合物與有機鈦化合物該兩者,而具有固化後之樹脂層不僅基板接著性優異且耐化學品性亦優異之效果。 作為可使用之有機鈦化合物,可列舉鈦原子上經由共價鍵或離子鍵而鍵結了有機化學物質者。 將有機鈦化合物之具體例示於以下之I)~VII): I)鈦螯合物化合物:其中,就負型感光性樹脂組合物之保存穩定性及獲得良好圖案之方面而言,更佳為具有2個以上之烷氧基之鈦螯合物,具體例如下:雙(三乙醇胺)二異丙醇鈦、雙(2,4-戊二酸)二正丁醇鈦、雙(2,4-戊二酸)二異丙醇鈦、雙(四甲基庚二酸)二異丙醇鈦、雙(乙基乙醯乙酸)二異丙醇鈦等。 II)四烷氧基鈦化合物:例如四(正丁醇)鈦、四乙醇鈦、四(2-乙基己醇)鈦、四異丁醇鈦、四異丙醇鈦、四甲醇鈦、四甲氧基丙醇鈦、四甲基苯酚鈦、四(正壬醇)鈦、四(正丙醇)鈦、四硬脂醇鈦、四[雙{2,2-(烯丙氧基甲基)丁醇}]鈦等。 III)二茂鈦化合物:例如(五甲基環戊二烯基)三甲醇鈦、雙(η5 -2,4-環戊二烯-1-基)雙(2,6-二氟苯基)鈦、雙(η5 -2,4-環戊二烯-1-基)雙(2,6-二氟-3-(1H-吡咯-1-基)苯基)鈦等。 IV)單烷氧基鈦化合物:例如三(二辛基磷酸)異丙醇鈦、三(十二烷基苯磺酸)異丙醇鈦等。 V)氧鈦化合物:例如雙(戊二酸)氧鈦、雙(四甲基庚二酸)氧鈦、酞菁氧鈦等。 VI)四乙醯丙酮酸鈦化合物:例如四乙醯丙酮酸鈦等。 VII)鈦酸酯偶合劑:例如三(十二烷基苯磺醯基)鈦酸異丙酯等。 其中,就表現出更良好之耐化學品性之觀點而言,有機鈦化合物較佳為選自由上述I)鈦螯合物化合物、II)四烷氧基鈦化合物及III)二茂鈦化合物所組成之群中之至少一種化合物。尤佳為雙(乙基乙醯乙酸)二異丙醇鈦、四(正丁醇)鈦、及雙(η5 -2,4-環戊二烯-1-基)雙(2,6-二氟-3-(1H-吡咯-1-基)苯基)鈦。 關於調配有機鈦化合物之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.05~10質量份,更佳為0.1~2質量份。於該調配量為0.05質量份以上之情形時,表現出良好之耐熱性及耐化學品性,另一方面,於為10質量份以下之情形時,保存穩定性優異。 進而,為了提高使用本發明之感光性樹脂組合物所形成之膜與基材之接著性,可任意地調配接著助劑。作為接著助劑,可列舉:γ-胺基丙基二甲氧基矽烷、N-(β-胺基乙基)-γ-胺基丙基甲基二甲氧基矽烷、γ-縮水甘油氧基丙基甲基二甲氧基矽烷、γ-巰基丙基甲基二甲氧基矽烷、3-甲基丙烯醯氧基丙基二甲氧基甲基矽烷、3-甲基丙烯醯氧基丙基三甲氧基矽烷、二甲氧基甲基-3-哌啶基丙基矽烷、二乙氧基-3-縮水甘油氧基丙基甲基矽烷、N-(3-二乙氧基甲基矽烷基丙基)丁二醯亞胺、N-[3-(三乙氧基矽烷基)丙基]苯二甲醯胺酸、二苯甲酮-3,3'-雙(N-[3-三乙氧基矽烷基]丙基醯胺)-4,4'-二羧酸、苯-1,4-雙(N-[3-三乙氧基矽烷基]丙基醯胺)-2,5-二羧酸、3-(三乙氧基矽烷基)丙基丁二酸酐、N-苯基胺基丙基三甲氧基矽烷、3-脲基丙基三甲氧基矽烷、3-脲基丙基三乙氧基矽烷、3-(三烷氧基矽烷基)丙基琥珀酸酐等矽烷偶合劑,及三(乙基乙醯乙酸)鋁、三(乙醯丙酮酸)鋁、乙醯乙酸乙基鋁二異丙酯等鋁系接著助劑等。 該等接著助劑之中,就接著力之方面而言,更佳為使用矽烷偶合劑。於感光性樹脂組合物含有接著助劑之情形時,關於接著助劑之調配量,相對於(A)樹脂100質量份,較佳為0.5~25質量份之範圍。 作為矽烷偶合劑,可列舉:3-巰基丙基三甲氧基矽烷(信越化學工業股份有限公司製造:商品名KBM803、Chisso股份有限公司製造:商品名Sila-Ace S810)、3-巰基丙基三乙氧基矽烷(Azmax股份有限公司製造:商品名SIM6475.0)、3-巰基丙基甲基二甲氧基矽烷(信越化學工業股份有限公司製造:商品名LS1375、Azmax股份有限公司製造:商品名SIM6474.0)、巰基甲基三甲氧基矽烷(Azmax股份有限公司製造:商品名SIM6473.5C)、巰基甲基甲基二甲氧基矽烷(Azmax股份有限公司製造:商品名SIM6473.0)、3-巰基丙基二乙氧基甲氧基矽烷、3-巰基丙基乙氧基二甲氧基矽烷、3-巰基丙基三丙氧基矽烷、3-巰基丙基二乙氧基丙氧基矽烷、3-巰基丙基乙氧基二丙氧基矽烷、3-巰基丙基二甲氧基丙氧基矽烷、3-巰基丙基甲氧基二丙氧基矽烷、2-巰基乙基三甲氧基矽烷、2-巰基乙基二乙氧基甲氧基矽烷、2-巰基乙基乙氧基二甲氧基矽烷、2-巰基乙基三丙氧基矽烷、2-巰基乙基三丙氧基矽烷、2-巰基乙基乙氧基二丙氧基矽烷、2-巰基乙基二甲氧基丙氧基矽烷、2-巰基乙基甲氧基二丙氧基矽烷、4-巰基丁基三甲氧基矽烷、4-巰基丁基三乙氧基矽烷、4-巰基丁基三丙氧基矽烷、N-(3-三乙氧基矽烷基丙基)脲(信越化學工業股份有限公司製造:商品名LS3610、Azmax股份有限公司製造:商品名SIU9055.0)、N-(3-三甲氧基矽烷基丙基)脲(Azmax股份有限公司製造:商品名SIU9058.0)、N-(3-二乙氧基甲氧基矽烷基丙基)脲、N-(3-乙氧基二甲氧基矽烷基丙基)脲、N-(3-三丙氧基矽烷基丙基)脲、N-(3-二乙氧基丙氧基矽烷基丙基)脲、N-(3-乙氧基二丙氧基矽烷基丙基)脲、N-(3-二甲氧基丙氧基矽烷基丙基)脲、N-(3-甲氧基二丙氧基矽烷基丙基)脲、N-(3-三甲氧基矽烷基乙基)脲、N-(3-乙氧基二甲氧基矽烷基乙基)脲、N-(3-三丙氧基矽烷基乙基)脲、N-(3-三丙氧基矽烷基乙基)脲、N-(3-乙氧基二丙氧基矽烷基乙基)脲、N-(3-二甲氧基丙氧基矽烷基乙基)脲、N-(3-甲氧基二丙氧基矽烷基乙基)脲、N-(3-三甲氧基矽烷基丁基)脲、N-(3-三乙氧基矽烷基丁基)脲、N-(3-三丙氧基矽烷基丁基)脲、3-(m-胺基苯氧基)丙基三甲氧基矽烷(Azmax股份有限公司製造:商品名SLA0598.0)、間胺基苯基三甲氧基矽烷(Azmax股份有限公司製造:商品名SLA0599.0)、對胺基苯基三甲氧基矽烷(Azmax股份有限公司製造:商品名SLA0599.1)、胺基苯基三甲氧基矽烷(Azmax股份有限公司製造:商品名SLA0599.2)、2-(三甲氧基矽烷基乙基)吡啶(Azmax股份有限公司製造:商品名SIT8396.0)、2-(三乙氧基矽烷基乙基)吡啶、2-(二甲氧基矽烷基甲基乙基)吡啶、2-(二乙氧基矽烷基甲基乙基)吡啶、胺基甲酸(3-三乙氧基矽烷基丙基)第三丁酯、(3-縮水甘油氧基丙基)三乙氧基矽烷、四甲氧基矽烷、四乙氧基矽烷、四正丙氧基矽烷、四異丙氧基矽烷、四正丁氧基矽烷、四異丁氧基矽烷、四第三丁氧基矽烷、四(甲氧基乙氧基矽烷)、四(甲氧基正丙氧基矽烷)、四(乙氧基乙氧基矽烷)、四(甲氧基乙氧基乙氧基矽烷)、雙(三甲氧基矽烷基)乙烷、雙(三甲氧基矽烷基)己烷、雙(三乙氧基矽烷基)甲烷、雙(三乙氧基矽烷基)乙烷、雙(三乙氧基矽烷基)乙烯、雙(三乙氧基矽烷基)辛烷、雙(三乙氧基矽烷基)辛二烯、雙[3-(三乙氧基矽烷基)丙基]二硫醚、雙[3-(三乙氧基矽烷基)丙基]四硫醚、二第三丁氧基二乙醯氧基矽烷、二異丁氧基鋁氧基三乙氧基矽烷、雙(戊二酸)鈦-O,O'-雙(氧基乙基)-胺基丙基三乙氧基矽烷、苯基矽烷三醇、甲基苯基矽烷二醇、乙基苯基矽烷二醇、正丙基苯基矽烷二醇、異丙基苯基矽烷二醇、正丁基苯基矽烷二醇、異丁基苯基矽烷二醇、第三丁基苯基矽烷二醇、二苯基矽烷二醇、二甲氧基二苯基矽烷、二乙氧基二苯基矽烷、二甲氧基二對甲苯基矽烷、乙基甲基苯基矽烷醇、正丙基甲基苯基矽烷醇、異丙基甲基苯基矽烷醇、正丁基甲基苯基矽烷醇、異丁基甲基苯基矽烷醇、第三丁基甲基苯基矽烷醇、乙基正丙基苯基矽烷醇、乙基異丙基苯基矽烷醇、正丁基乙基苯基矽烷醇、異丁基乙基苯基矽烷醇、第三丁基乙基苯基矽烷醇、甲基二苯基矽烷醇、乙基二苯基矽烷醇、正丙基二苯基矽烷醇、異丙基二苯基矽烷醇、正丁基二苯基矽烷醇、異丁基二苯基矽烷醇、第三丁基二苯基矽烷醇、三苯基矽烷醇等,但並不限定於該等。該等可單獨使用,亦可將複數種組合使用。 作為矽烷偶合劑,上述矽烷偶合劑之中,就保存穩定性之觀點而言,較佳為苯基矽烷三醇、三甲氧基苯基矽烷、三甲氧基(對甲苯基)矽烷、二苯基矽烷二醇、二甲氧基二苯基矽烷、二乙氧基二苯基矽烷、二甲氧基二對甲苯基矽烷、三苯基矽烷醇、及下述結構所表示之矽烷偶合劑。 [化87]
Figure 02_image173
關於使用矽烷偶合劑之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.01~20質量份。 本發明之感光性樹脂組合物亦可進而含有上述成分以外之成分。該成分之較佳者根據作為(A)樹脂例如使用聚醯亞胺前驅物及聚醯胺等之負型或使用聚㗁唑前驅物、可溶性聚醯亞胺及酚樹脂等之正型等而不同。 於使用聚醯亞胺前驅物或聚醯胺等作為(A)樹脂之負型之情形時,為了提高光感度而可任意地調配增感劑。作為該增感劑,例如可列舉:米其勒酮、4,4'-雙(二乙基胺基)二苯甲酮、2,5-雙(4'-二乙基胺基亞苄基)環戊烷、2,6-雙(4'-二乙基胺基亞苄基)環己酮、2,6-雙(4'-二乙基胺基亞苄基)-4-甲基環己酮、4,4'-雙(二甲基胺基)查爾酮、4,4'-雙(二乙基胺基)查爾酮、對二甲基胺基亞桂皮基茚滿酮、對二甲基胺基亞苄基茚滿酮、2-(對二甲基胺基苯基伸聯苯基)苯并噻唑、2-(對二甲基胺基苯基伸乙烯基)苯并噻唑、2-(對二甲基胺基苯基伸乙烯基)異萘并噻唑、1,3-雙(4'-二甲基胺基亞苄基)丙酮、1,3-雙(4'-二乙基胺基亞苄基)丙酮、3,3'-羰基-雙(7-二乙基胺基香豆素)、3-乙醯基-7-二甲基胺基香豆素、3-乙氧基羰基-7-二甲基胺基香豆素、3-苄氧基羰基-7-二甲基胺基香豆素、3-甲氧基羰基-7-二乙基胺基香豆素、3-乙氧基羰基-7-二乙基胺基香豆素、N-苯基-N'-乙基乙醇胺、N-苯基二乙醇胺、N-對甲苯基二乙醇胺、N-苯基乙醇胺、4-𠰌啉基二苯甲酮、二甲基胺基苯甲酸異戊酯、二乙基胺基苯甲酸異戊酯、2-巰基苯并咪唑、1-苯基-5-巰基四唑、2-巰基苯并噻唑、2-(對二甲基胺基苯乙烯基)苯并㗁唑、2-(對二甲基胺基苯乙烯基)苯并噻唑、2-(對二甲基胺基苯乙烯基)萘并(1,2-d)噻唑、2-(對二甲基胺基苯甲醯基)苯乙烯等。該等可單獨使用或以例如2~5者之組合之形式使用。 關於感光性樹脂組合物含有用以提高光感度之增感劑之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.1~25質量份。 又,為了提高浮凸圖案之解像性,可任意地調配具有光聚合性之不飽和鍵之單體。作為此種單體,較佳為藉由光聚合起始劑而進行自由基聚合反應之(甲基)丙烯酸系化合物,並不特別限定於以下所列者,可列舉:二乙二醇二甲基丙烯酸酯、四乙二醇二甲基丙烯酸酯等乙二醇或聚乙二醇之單或二丙烯酸酯及甲基丙烯酸酯、丙二醇或聚丙二醇之單或二丙烯酸酯及甲基丙烯酸酯、甘油之單、二或三丙烯酸酯及甲基丙烯酸酯、環己烷二丙烯酸酯及二甲基丙烯酸酯、1,4-丁二醇之二丙烯酸酯及二甲基丙烯酸酯、1,6-己二醇之二丙烯酸酯及二甲基丙烯酸酯、新戊二醇之二丙烯酸酯及二甲基丙烯酸酯、雙酚A之單或二丙烯酸酯及甲基丙烯酸酯、苯三甲基丙烯酸酯、丙烯酸異𦯉酯及甲基丙烯酸異𦯉酯、丙烯醯胺及其衍生物、甲基丙烯醯胺及其衍生物、三羥甲基丙烷三丙烯酸酯及甲基丙烯酸酯、甘油之二或三丙烯酸酯及甲基丙烯酸酯、季戊四醇之二、三或四丙烯酸酯及甲基丙烯酸酯、以及該等化合物之環氧乙烷或環氧丙烷加成物等化合物。 於感光性樹脂組合物含有用以提高浮凸圖案之解像性的上述具有光聚合性之不飽和鍵之單體之情形時,關於具有光聚合性之不飽和鍵之單體之調配量,相對於(A)樹脂100質量份,較佳為1~50質量份。 又,於使用聚醯亞胺前驅物等作為(A)樹脂之負型之情形時,尤其是為了提高以包含溶劑之溶液之狀態保存時之感光性樹脂組合物之黏度及光感度之穩定性,可任意地調配熱聚合抑制劑。作為熱聚合抑制劑,可使用氫醌、N-亞硝基二苯基胺、對第三丁基兒茶酚、啡噻𠯤、N-苯基萘基胺、乙二胺四乙酸、1,2-環己二胺四乙酸、二醇醚二胺四乙酸、2,6-二第三丁基對甲基苯酚、5-亞硝基-8-羥基喹啉、1-亞硝基-2-萘酚、2-亞硝基-1-萘酚、2-亞硝基-5-(N-乙基-N-磺丙基胺基)苯酚、N-亞硝基-N-苯基羥基胺銨鹽、N-亞硝基-N(1-萘基)羥基胺銨鹽等。 關於感光性樹脂組合物中調配熱聚合抑制劑之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.005~12質量份之範圍。 另一方面,本發明之感光樹脂組合物中,於使用聚㗁唑前驅物等作為(A)樹脂之正型之情形時,視需要可添加先前作為感光性樹脂組合物之添加劑而使用之染料、界面活性劑、以及熱酸產生劑、溶解促進劑、用以提高與基材之密接性之接著助劑等。 <染料、界面活性劑、接著助劑> 若更具體地說明上述添加劑,則作為染料,例如可列舉:甲基紫、結晶紫、孔雀綠等。又,作為界面活性劑,例如可列舉包含聚丙二醇或聚氧乙烯月桂醚等聚二醇類或其衍生物之非離子系界面活性劑,例如Fluorad(商品名,住友3M公司製造)、MEGAFAC(商品名,Dainippon Ink & Chemical Industry公司製造)或Lumiflon(商品名,旭硝子公司製造)等氟系界面活性劑,例如KP341(商品名,信越化學工業公司製造)、DBE(商品名,Chisso公司製造)、Glanol(商品名,共榮社化學公司製造)等有機矽氧烷界面活性劑。作為接著助劑,例如可列舉:烷基咪唑啉、丁酸、烷基酸、聚羥基苯乙烯、聚乙烯基甲醚、第三丁基酚醛清漆、環氧矽烷、環氧聚合物等、及各種矽烷偶合劑。 關於上述染料及界面活性劑之調配量,相對於(A)樹脂100質量份,較佳為0.1~30質量份。 又,就即便於降低硬化溫度之情形時亦表現出良好之硬化物之熱物性及機械物性之觀點而言,可任意地調配熱酸產生劑。 就即便於降低硬化溫度之情形時亦表現出良好之硬化物之熱物性及機械物性之觀點而言,較佳為調配熱酸產生劑。 作為熱酸產生劑,可列舉:具有利用熱而產生酸之功能之鎓鹽等由強酸與鹼所形成之鹽、或醯亞胺磺酸酯。 作為鎓鹽,例如可列舉:芳基重氮鎓鹽、二苯基錪鹽等二芳基錪鹽;二(第三丁基苯基)錪鹽等二(烷基芳基)錪鹽;三甲基鋶鹽之類的三烷基鋶鹽;二甲基苯基鋶鹽等二烷基單芳基鋶鹽;二苯基甲基鋶鹽等二芳基單烷基錪鹽;三芳基鋶鹽等。 該等之中,較佳為對甲苯磺酸之二(第三丁基苯基)錪鹽、三氟甲磺酸之二(第三丁基苯基)錪鹽、三氟甲磺酸之三甲基鋶鹽、三氟甲磺酸之二甲基苯基鋶鹽、三氟甲磺酸之二苯基甲基鋶鹽、九氟丁磺酸之二(第三丁基苯基)錪鹽、樟腦磺酸之二苯基錪鹽、乙磺酸之二苯基錪鹽、苯磺酸之二甲基苯基鋶鹽、甲苯磺酸之二苯基甲基鋶鹽等。 又,作為由強酸與鹼所形成之鹽,除上述鎓鹽以外,亦可使用由如下強酸與鹼所形成之鹽,例如吡啶鎓鹽。作為強酸,可列舉:對甲苯磺酸、苯磺酸之類的芳基磺酸,樟腦磺酸、三氟甲磺酸、九氟丁磺酸之類的全氟烷基磺酸,甲磺酸、乙磺酸、丁磺酸之類的烷基磺酸等。作為鹼,可列舉:吡啶、2,4,6-三甲基吡啶之類的烷基吡啶、2-氯-N-甲基吡啶之類的N-烷基吡啶、鹵化-N-烷基吡啶等。 作為醯亞胺磺酸酯,例如可使用萘甲醯亞胺磺酸酯、鄰苯二甲醯亞胺磺酸酯等,只要為於熱作用下產生酸之化合物,則並無限定。 關於使用熱酸產生劑之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.1~30質量份,更佳為0.5~10質量份,進而較佳為1~5質量份。 於正型之感光性樹脂組合物之情形時,為了促進於感光後無用之樹脂之去除,可使用溶解促進劑。較佳為例如具有羥基或羧基之化合物。作為具有羥基之化合物之例,可列舉:用於上述萘醌二疊氮化合物之壓載劑、以及對異丙苯基苯酚、雙酚類、間苯二酚類、及MtrisPC、MtetraPC等直鏈狀酚化合物、TrisP-HAP、TrisP-PHBA、TrisP-PA等非直鏈狀酚化合物(均為本州化學工業公司製造)、二苯基甲烷之2~5個苯酚取代體、3,3-二苯基丙烷之1~5個苯酚取代體、使2,2-雙-(3-胺基-4-羥基苯基)六氟丙烷與5-降𦯉烯-2,3-二羧酸酐以莫耳比1:2進行反應而獲得之化合物、使雙-(3-胺基-4-羥基苯基)碸與1,2-環己基二羧酸酐以莫耳比1:2進行反應而獲得之化合物、N-羥基琥珀醯亞胺、N-羥基鄰苯二甲醯亞胺、N-羥基5-降𦯉烯-2,3-二羧醯亞胺等。作為具有羧基之化合物之例,可列舉:3-苯基乳酸、4-羥基苯基乳酸、4-羥基苦杏仁酸、3,4-二羥基苦杏仁酸、4-羥基-3-甲氧基苦杏仁酸、2-甲氧基-2-(1-萘基)丙酸、苦杏仁酸、2-苯乳酸、α-甲氧基苯基乙酸、O-乙醯基苦杏仁酸、伊康酸等。 關於使用溶解促進劑之情形時之調配量,相對於(A)樹脂100質量份,較佳為0.1~30質量份。 (態樣B) 於本實施形態之另一態樣中,可使用(B)含硫化合物代替上述(B)具有羰基之環狀化合物。更具體而言, 提供一種感光性樹脂組合物,其包含 (A)選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、以及酚醛清漆、聚羥基苯乙烯及酚樹脂所組成之群中之至少一種樹脂:100質量份, (B)含硫化合物:以上述(A)樹脂100質量份為基準計0.01~10質量份,以及 (C)感光劑:以上述(A)樹脂100質量份為基準計1~50質量份。 於該態樣中,(A)樹脂較佳為選自由包含上述通式(1)之聚醯亞胺前驅物、包含上述通式(4)之聚醯胺、包含上述通式(5)之聚㗁唑前驅物、包含上述通式(6)之聚醯亞胺、以及酚醛清漆、聚羥基苯乙烯及包含上述通式(7)之酚樹脂所組成之群中之至少一種。 又,較佳為感光性樹脂組合物包含具有上述通式(7)所表示之重複單元之酚樹脂,上述通式(7)中之X為選自由上述通式(9)所表示之2價之基、及上述通式(10)所表示之2價之基所組成之群中之2價之有機基。 藉由於感光性樹脂組合物中調配含硫化合物,可獲得能夠形成於高溫保存試驗後與Cu層接觸之界面處之空隙產生被抑制之硬化膜的感光性樹脂組合物。 (B)含硫化合物為具有硫、較佳為硫與氮之有機化合物,硫較佳為以形成環結構之一原子或硫羰基之形式含有。 關於可用作(B)含硫化合物者,作為以形成5員環結構之一原子之形式包含硫者,例如可列舉:噻唑、2-胺基噻唑、2-(4-噻唑基)苯并咪唑、1,3,4-噻二唑、2-胺基-1,3,4-噻二唑、5-胺基-1,2,3-噻二唑、2,4-噻唑烷二酮、苯并噻唑、2-胺基苯并噻唑等,作為以形成6員環結構之一原子之形式包含硫者,例如可列舉:啡噻𠯤、N-甲基啡噻𠯤等,作為以硫羰基之形式包含硫者,例如可列舉:若丹林、N-烯丙基若丹林、二乙基硫脲、二丁基硫脲、二環己基硫脲、二苯基硫脲、2-硫脲嘧啶、4-硫脲嘧啶、2,4-二巰基嘧啶、2-9-氧硫𠮿
Figure 108121559-A0304-12-01
、2-巰基-4(3H)-喹唑啉酮等。該等之中,較佳為使用具有硫脲結構之化合物。 關於(B)含硫化合物之調配量,相對於(A)樹脂100質量份為0.01~10質量份,較佳為0.05~2質量份。就耐遷移性之觀點而言,較理想為0.01質量份以上,就溶解性之觀點而言,較理想為未達10質量份。 含硫化合物、尤其是硫脲可藉由硫原子而與銅配位。藉此,銅表面之狀態改變,而抑制於高溫保存試驗中發生銅遷移。 (態樣C) 於本實施形態之另一態樣中,可使用(B)選自下述通式(B-1)、(B-2)及(B-3)中之至少一種化合物代替上述(B)具有羰基之環狀化合物。更具體而言, 提供一種感光性樹脂組合物,其包含 (A)選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并㗁唑、以及酚醛清漆、聚羥基苯乙烯及酚樹脂所組成之群中之至少一種樹脂:100質量份, (B)選自 下述通式(B-1): [化88]
Figure 02_image175
{式中,Rq1 表示由碳原子、氫原子、氮原子、氧原子所形成之碳數1~10之有機基}、 下述通式(B-2): [化89]
Figure 02_image177
{式中,Rq2 、Rq3 分別表示選自羥基、碳數1~10之烷基或烷氧基中之有機基,ll表示選自1~10之整數}、及 下述通式(B-3): [化90]
Figure 02_image179
{式中,Rq4 、Rq5 分別表示選自羥基、碳數1~10之烷基或烷氧基中之有機基,XS 表示碳數1~10之2價之烴基,mm、nn分表示選自1~10之整數}中之至少一種化合物:以上述(A)樹脂100質量份為基準計0.01~10質量份,以及 (C)感光劑:以上述(A)樹脂100質量份為基準計1~50質量份。 於該態樣中,(A)樹脂較佳為選自由包含上述通式(1)之聚醯亞胺前驅物、包含上述通式(4)之聚醯胺、包含上述通式(5)之聚㗁唑前驅物、包含上述通式(6)之聚醯亞胺、以及酚醛清漆、聚羥基苯乙烯及包含上述通式(7)之酚樹脂所組成之群中之至少一種。 又,較佳為感光性樹脂組合物包含具有上述通式(7)所表示之重複單元之酚樹脂,上述通式(7)中之X為選自由上述通式(9)所表示之2價之基、及上述通式(10)所表示之2價之基所組成之群中之2價之有機基。 (B)通式(B-1)、(B-2)及(B-3)所表示之化合物、較佳為(B-1)所表示之化合物藉由以氮原子或氧原子與銅之表面發生相互作用,而可改變銅之表面狀態。因此,抑制於高溫保存試驗時發生銅遷移。 作為具體例,(B-1)為具有脲基之由碳原子、氫原子、氮原子、氧原子所形成之有機化合物,例如可列舉:甲基脲、乙基脲、丁基脲、苯基脲、羥基乙基脲、乙內醯脲酸、尿囊素、瓜胺酸等及該等之混合物。 (B-2)為乙二醇之縮聚物或其末端醚化體,例如可列舉:二乙二醇、二乙二醇單甲醚、二乙二醇二甲醚、二乙二醇二丁醚、三乙二醇、三乙二醇單乙醚、三乙二醇二乙醚、四乙二醇、四乙二醇二甲醚等及該等之混合物。 進而,(B-3)為二羧酸之烷氧基聚環氧乙烷之酯或烷氧基乙基酯,例如可列舉:己二酸雙(2-甲氧基乙基)酯、己二酸雙(2-丁氧基乙基)酯、癸二酸雙(2-乙氧基乙基)酯等及該等之混合物。 該等(B)選自通式(B-1)、(B-2)及(B-3)中之至少一種化合物之中,可較佳地使用通式(B-1)所表示之化合物。 關於(B)選自通式(B-1)、(B-2)及(B-3)中之至少一種化合物之調配量,相對於(A)樹脂100質量份,較佳為0.01~10質量份,更佳為0.05~2質量份。就耐遷移性之觀點而言,較理想為0.01質量份以上,就溶解性之觀點而言,較理想為10質量份以下。 (態樣D) 於本實施形態之另一態樣中,可使用(B)芳香族胺化合物、即選自由下述通式(I)所表示之苯胺衍生物、下述通式(II)所表示之三唑衍生物、及下述通式(III)所表示之三唑衍生物所組成之群中之至少1種代替上述(B)具有羰基之環狀化合物。更具體而言, 提供一種感光性樹脂組合物,其包含 (A)選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、及聚苯并㗁唑所組成之群中之至少一種樹脂:100質量份, (B)芳香族胺化合物、即下述通式(I): [化91]
Figure 02_image181
{Ra1~Ra5分別可相同亦可不同,為氫原子或羥基、或碳數為1以上且15以下之整數之飽和烴基、不飽和烴基、芳香族基或醯胺基,Ra6~Ra7分別可相同亦可不同,為氫原子或碳數為1以上且5以下之整數之飽和烴基、不飽和烴基、或芳香族基} 所表示之苯胺衍生物、或下述通式(II): [化92]
Figure 02_image183
{Ra8~Ra10分別可相同亦可不同,為氫原子或羥基、或碳數為1以上且15以下之整數之飽和烴基、不飽和烴基、芳香族基或醯胺基} 所表示之三唑衍生物、或下述通式(III): [化93]
Figure 02_image185
{R11~R13分別可相同亦可不同,為氫原子或羥基、或碳數為1以上且15以下之整數之飽和烴基、不飽和烴基、芳香族基或醯胺基} 所表示之三唑衍生物中之至少任一種:以上述(A)樹脂100質量份為基準計0.01~15質量份,以及 (C)感光劑:以上述(A)樹脂100質量份為基準計1~50質量份。 於該態樣中,(A)樹脂較佳為選自由包含上述通式(1)之聚醯亞胺前驅物、包含上述通式(4)之聚醯胺、包含上述通式(5)之聚㗁唑前驅物、以及包含上述通式(6)之聚醯亞胺所組成之群中之至少一種。 使用(B)芳香族胺化合物之態樣中,作為感光性樹脂,可使用聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺及聚苯并㗁唑,其中,就熱處理後之樹脂之耐熱性、機械特性優異之方面而言,較佳為使用聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚醯胺、聚羥基醯胺、聚醯亞胺樹脂,最佳為使用聚醯亞胺前驅物、聚醯亞胺樹脂。 藉由使用(B)芳香族胺化合物,可抑制高溫保存試驗後於所再配線之Cu層與樹脂層之界面處產生空隙。其原因尚未確定,認為係由於如下效果:藉由芳香族胺化合物之孤電子對與Cu層表面之Cu元素配位,而將活性之Cu之反應部位進行封端,因此抑制空隙產生。 作為(B)芳香族胺化合物,可較佳地使用下述通式(I): [化94]
Figure 02_image187
{Ra1~Ra5分別可相同亦可不同,為氫原子或羥基、或碳數為1以上且15以下之整數之飽和烴基、不飽和烴基、芳香族基或醯胺基,Ra6~Ra7分別可相同亦可不同,為氫原子或碳數為1以上且5以下之整數之飽和烴基、不飽和烴基、或芳香族基}所表示之苯胺衍生物。 作為通式(I)所表示之苯胺衍生物之中適宜使用之化合物例,可較佳地使用N-苯基苄基胺、水楊醯替苯胺、萘酚AS、2-乙醯胺茀、草醯替苯胺、N-烯丙基苯胺、N-甲基苯胺、N-乙基苯胺、吲哚啉、N-正丁基苯胺、2-苯胺基乙醇、4-甲氧基乙醯苯胺、乙醯基乙醯苯胺、1,2,3,4-四氫喹啉、胺基甲酸第三丁基苯酯、(3-羥基苯基)胺基甲酸第三丁酯、草醯替苯胺、N,N'-二苯基乙烷-1,2-二胺等。其中,可尤佳地使用N-苯基苄基胺((B)-1)、N,N'-二苯基乙烷-1,2-二胺((B)-2)、胺基甲酸第三丁基苯酯((B)-3)、(3-羥基苯基)胺基甲酸第三丁酯((B)-4)。 [化95]
Figure 02_image189
[化96]
Figure 02_image191
[化97]
Figure 02_image193
[化98]
Figure 02_image195
作為(B)三唑衍生物,可較佳地使用下述通式(II): [化99]
Figure 02_image197
{Ra8~Ra10分別可相同亦可不同,為氫原子或羥基、或碳數為1以上且15以下之整數之飽和烴基、不飽和烴基、芳香族基或醯胺基} 所表示之三唑衍生物、或下述通式(III): [化100]
Figure 02_image199
{Ra11~Ra13分別可相同亦可不同,為氫原子或羥基、或碳數為1以上且15以下之整數之飽和烴基、不飽和烴基、芳香族基或醯胺基} 所表示之三唑衍生物。 作為上述通式(II)所表示之三唑衍生物之具體化合物例,可較佳地使用苯并三唑、1-羥基苯并三唑、1-胺基苯并三唑、5-甲基-1H-苯并三唑、1H-1,2,3-三唑、2-羥基-N-(1H-1,2,4-三唑-3-基)苯甲醯胺(ADEKA股份有限公司製造,Adekastab CDA-1)、2-(2H-苯并[d][1,2,3]三唑-2-基)-4-(2,4,4-三甲基戊烷-2-基)苯酚(ADEKA股份有限公司製造,Adekastab LA-29)、2-(2'-羥基-3',5'-二第三胺基苯基)苯并三唑、2-(2'-羥基-5'-甲基苯基)苯并三唑。其中,可尤佳地使用2-羥基-N-(1H-1,2,4-三唑-3-基)苯甲醯胺((B)-5)、2-(2H-苯并[d][1,2,3]三唑-2-基)-4-(2,4,4-三甲基戊烷-2-基)苯酚((B)-6)。 [化101]
Figure 02_image201
[化102]
Figure 02_image203
作為上述通式(III)所表示之三唑衍生物之具體化合物例,可較佳地使用(4-((1H-1,2,4-三唑-1-基甲基)苯基)甲醇、三賽唑、1,2,4-1H-三唑、抑芽唑(triapenthenol)、比多農(bitertanol)、4-(1H-1,2,4-三唑-1-基)苯甲醛、4-(1H-1,2,4-三唑-1-基)苯甲酸、3-(1H-1,2,4-三唑-1-基甲基)苯甲酸、4-[(1H-1,2,4-三唑-1-基甲基)苯基]甲醇、3-(1H-1,2,4-三唑-1-基)苯甲醛、3-(1H-1,2,4-三唑-1-基甲基)苯甲醛、3-(1H-1,2,4-三唑-1-基)苯甲酸、2-(1H-1,2,4-三唑-1-基)苯胺。其中,可尤佳地使用(4-((1H-1,2,4-三唑-1-基甲基)苯基)甲醇((B)-7)。 [化103]
Figure 02_image205
(B)芳香族胺化合物中,就與Cu元素之配位能力之方面而言,較佳為構成苯胺衍生物或三唑衍生物之胺原子之任一者為二級胺。 關於(B)芳香族胺化合物之含量,相對於樹脂(A)100質量份,較佳為0.01~15質量份,更佳為0.1~10質量份,進而較佳為1~8質量份。若含量多於該範圍,則保存穩定性降低,因此欠佳,若含量少於該範圍,則與銅表面之間容易產生空隙。 <硬化浮凸圖案之製造方法及半導體裝置> 又,本發明提供一種硬化浮凸圖案之製造方法,其包括:(1)藉由於基板上塗佈上述本發明之感光性樹脂組合物而於該基板上形成樹脂層之步驟;(2)對該樹脂層進行曝光之步驟;(3)將該曝光後之樹脂層進行顯影而形成浮凸圖案之步驟;及(4)藉由對該浮凸圖案進行加熱處理而形成硬化浮凸圖案之步驟。以下說明各步驟之典型態樣。 (1)藉由於基板上塗佈感光性樹脂組合物而於該基板上形成樹脂層之步驟 於本步驟中,於基材上塗佈本發明之感光性樹脂組合物,視需要其後加以乾燥而形成樹脂層。作為塗佈方法,可採用先前用於感光性樹脂組合物塗佈之方法,例如利用旋轉塗佈機、棒式塗佈機、刮刀塗佈機、簾幕式塗佈機、網版印刷機等進行塗佈之方法、利用噴霧塗佈機進行噴霧塗佈之方法等。 視需要可使包含感光性樹脂組合物之塗膜乾燥。作為乾燥方法,可採用風乾、利用烘箱或加熱板進行之加熱乾燥、真空乾燥等方法。具體而言,於進行風乾或加熱乾燥之情形時,可於20℃~140℃下、1分鐘~1小時之條件下進行乾燥。藉由如上方式而可於基板上形成樹脂層。 (2)對樹脂層進行曝光之步驟 於本步驟中,使用接觸式曝光機、鏡面投影曝光機、步進機等曝光裝置,隔著具有圖案之光罩(photomask)或掩膜(reticle)、或者直接地藉由紫外線光源等對上述所形成之樹脂層進行曝光。 其後,為了提高光感度等,視需要亦可實施任意之溫度及時間之組合之條件下之曝光後烘烤(PEB)及/或顯影前烘烤。烘烤條件之範圍較佳為溫度:40~120℃、時間:10秒~240秒,但只要無損本發明之感光性樹脂組合物之各特性,則不限於該範圍。 (3)將曝光後之樹脂層進行顯影而形成浮凸圖案之步驟 於本步驟中,將曝光後之感光性樹脂層之曝光部或未曝光部顯影去除。於使用負型之感光性樹脂組合物之情形(例如使用聚醯亞胺前驅物或聚醯胺作為(A)樹脂之情形)時,將未曝光部顯影去除,於使用正型之感光性樹脂組合物之情形(例如使用聚㗁唑前驅物或可溶性聚醯亞胺作為(A)樹脂之情形)時,將曝光部顯影去除。作為顯影方法,可自先前已知之光阻之顯影方法、例如旋轉噴霧法、覆液法、伴有超音波處理之浸漬法等中選擇任意方法而使用。又,於顯影後,為了調整浮凸圖案之形狀等,視需要亦可實施任意之溫度及時間之組合之條件下之顯影後烘烤。 作為顯影時使用之顯影液,較佳為針對感光性樹脂組合物之良溶劑、或該良溶劑與不良溶劑之組合。例如於不溶於鹼性水溶液之感光性樹脂組合物之情形時,作為良溶劑,較佳為N-甲基吡咯啶酮、N-環己基-2-吡咯啶酮、N,N-二甲基乙醯胺、環戊酮、環己酮、γ-丁內酯、α-乙醯基-γ-丁內酯等,作為不良溶劑,較佳為甲苯、二甲苯、甲醇、乙醇、異丙醇、乳酸乙酯、丙二醇甲醚乙酸酯及水等。於將良溶劑與不良溶劑混合使用之情形時,較佳為根據感光性樹脂組合物中之聚合物之溶解性而調整不良溶劑相對於良溶劑之比率。又,亦可將2種以上之各溶劑、例如數種溶劑組合使用。 另一方面,於溶於鹼性水溶液之感光性樹脂組合物之情形時,顯影時使用之顯影液係將鹼性水溶液可溶性聚合物溶解去除者,典型而言為溶解有鹼性化合物之鹼性水溶液。顯影液中所溶解之鹼性化合物可為無機鹼性化合物或有機鹼性化合物中之任意者。 作為該無機鹼性化合物,例如可列舉:氫氧化鋰、氫氧化鈉、氫氧化鉀、磷酸氫二銨、磷酸氫二鉀、磷酸氫二鈉、矽酸鋰、矽酸鈉、矽酸鉀、碳酸鋰、碳酸鈉、碳酸鉀、硼酸鋰、硼酸鈉、硼酸鉀、及氨等。 又,作為該有機鹼性化合物,例如可列舉:氫氧化四甲基銨、氫氧化四乙基銨、氫氧化三甲基羥基乙基銨、甲胺、二甲胺、三甲胺、單乙胺、二乙胺、三乙胺、正丙胺、二正丙胺、異丙胺、二異丙胺、甲基二乙基胺、二甲基乙醇胺、乙醇胺、及三乙醇胺等。 進而,視需要可於上述鹼性水溶液中適量添加甲醇、乙醇、丙醇或乙二醇等水溶性有機溶劑、界面活性劑、保存穩定劑、及樹脂之溶解抑止劑等。藉由如上方式可形成浮凸圖案。 (4)藉由對浮凸圖案進行加熱處理而形成硬化浮凸圖案之步驟 於本步驟中,藉由對經上述顯影而獲得之浮凸圖案進行加熱而轉變為硬化浮凸圖案。作為加熱硬化之方法,可選擇使用加熱板者、使用烘箱者、使用可設定溫控程式之升溫式烘箱者等各種方法。加熱可於例如180℃~400℃下、30分鐘~5小時之條件下進行。作為加熱硬化時之環境氣體,可使用空氣,亦可使用氮氣、氬氣等惰性氣體。 <半導體裝置> 本發明亦提供一種包含藉由上述本發明之硬化浮凸圖案之製造方法所獲得之硬化浮凸圖案的半導體裝置。本發明亦提供一種包含作為半導體元件之基材、與於上述基材上藉由上述硬化浮凸圖案製造方法所形成之樹脂之硬化浮凸圖案的半導體裝置。又,本發明亦適用於使用半導體元件作為基材,包括上述硬化浮凸圖案之製造方法作為步驟之一部分的半導體裝置之製造方法。本發明之半導體裝置可藉由將利用上述硬化浮凸圖案製造方法所形成之硬化浮凸圖案形成為表面保護膜、層間絕緣膜、再配線用絕緣膜、倒裝晶片裝置用保護膜、或具有凸塊結構之半導體裝置之保護膜等,並與已知之半導體裝置之製造方法進行組合而製造。 本發明之感光性樹脂組合物除如上所述般適用於半導體裝置以外,亦可用於多層電路之層間絕緣、撓性貼銅板之保護塗層、阻焊膜、及液晶配向膜等用途。 又,以上將態樣A~態樣D分開說明,但本發明亦包括各態樣之組合。 [實施例] 以下,藉由實施例而具體地說明本發明,但本發明並不限定於此。於實施例、比較例及製造例中,依據以下方法測定及評價感光性樹脂組合物之物性。 (1)重量平均分子量 藉由凝膠滲透層析法(標準聚苯乙烯換算)測定各樹脂之重量平均分子量(Mw)。測定所使用之管柱為昭和電工股份有限公司製造之商標名「Shodex 805M/806M串聯」,標準單分散聚苯乙烯係選擇昭和電工股份有限公司製造之商標名「Shodex STANDARD SM-105」,展開溶劑為N-甲基-2-吡咯啶酮,檢測器使用昭和電工股份有限公司製造之商標名「Shodex RI-930」。 (2)Cu上之硬化浮凸圖案之製作 使用濺鍍裝置(L-440S-FHL型,Canon Anelva公司製造),於6英吋矽晶圓(Fujimi Electronic Industry股份有限公司製造,厚度625±25 μm)上依序濺鍍厚200 nm之Ti、厚400 nm之Cu。繼而,使用塗佈顯影儀(Coater Developer)(D-Spin60A型,SOKUDO公司製造),於該晶圓上旋轉塗佈藉由下述方法所製備之感光性樹脂組合物,加以乾燥,藉此形成厚6~10 μm之塗膜。使用附測試圖案之光罩,利用平行光光罩對準曝光機(PLA-501FA型,Canon公司製造),對該塗膜照射300 mJ/cm2 之能量。繼而,於負型之情形時使用環戊酮作為顯影液,於正型之情形時使用2.38%TMAH (tetramethylammonium hydroxide,四甲基氫氧化銨)作為顯影液,利用塗佈顯影儀(D-Spin60A型,SOKUDO公司製造)對該塗膜進行噴霧顯影,於負型之情形時使用丙二醇甲醚乙酸酯進行沖洗,於正型之情形時使用純水進行沖洗,藉此獲得Cu上之浮凸圖案。 使用升溫程式型固化爐(VF-2000型,Koyo Lindberg公司製造),於氮氣環境下,於各實施例所記載之溫度下對Cu上形成有該浮凸圖案之晶圓進行2小時之加熱處理,藉此於Cu上獲得包含厚約6~7 μm之樹脂之硬化浮凸圖案。 (3)Cu上之硬化浮凸圖案之高溫保存(high temperature storage)試驗與其後之評價 使用升溫程式型固化爐(VF-2000型,Koyo Lindberg公司製造),於空氣中,於150℃下對Cu上形成有該硬化浮凸圖案之晶圓加熱168小時。繼而,使用電漿表面處理裝置(EXAM型,神港精機公司製造),藉由電漿蝕刻而去除Cu上全部之樹脂層。電漿蝕刻條件如下所述。 輸出:133 W 氣體種類、流量:O2 :40 ml/min+CF4 :1 ml/min 氣體壓力:50 Pa 模式:強力模式(hard mode) 蝕刻時間:1800秒 利用FE-SEM(field emission-scanning electron microscope,場發射掃描式電子顯微鏡)(S-4800型,Hitachi High-Technologies公司製造)觀察樹脂層全部經去除之Cu表面,使用圖像解析軟體(A像君,旭化成公司製造),算出空隙於Cu層之表面所占之面積比率。 (4)清漆保存穩定性評價 將實施例及比較例中獲得之感光性樹脂組合物於23℃、50%Rh之環境下放置3週,觀察黏度變化。 黏度測定係使用TV-25型黏度計(東機產業製造),測定23℃下之黏度。 ○:組合物於放置後之黏度變化率(下述)為10%以內。 ×:組合物於放置後之黏度變化率大於10%。 黏度變化率(%)={(初始黏度)-(放置後黏度)之絕對值}×100/(初始黏度) 實施例A <製造例A1>((A)作為聚醯亞胺前驅物之聚合物A之合成) 於容積2 L之可分離式燒瓶中放入4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,添加甲基丙烯酸2-羥基乙酯(HEMA)131.2 g與γ-丁內酯400 ml並於室溫下攪拌,一面攪拌一面添加吡啶81.5 g而獲得反應混合物。於由反應產生之放熱結束後,靜置冷卻至室溫,放置16小時。 繼而,於冰浴冷卻下,一面攪拌一面歷時40分鐘向反應混合物中添加使二環己基碳二醯亞胺(DCC)206.3 g溶解於γ-丁內酯180 ml所得之溶液,繼而,一面攪拌一面歷時60分鐘添加使4,4'-二胺基二苯醚(DADPE)93.0 g懸浮於γ-丁內酯350 ml所得者。進而於室溫下攪拌2小時後,添加乙醇30 ml並攪拌1小時,繼而,添加γ-丁內酯400 ml。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 將所獲得之反應液添加至3 L之乙醇中,而生成包含粗聚合物之沈澱物。過濾分離所生成之粗聚合物,使之溶解於四氫呋喃1.5 L而獲得粗聚合物溶液。將所獲得之粗聚合物溶液滴加至28 L之水中而使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物A)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物A之分子量,結果重量平均分子量(Mw)為20,000。 再者,各製造例中獲得之樹脂之重量平均分子量係採用凝膠滲透層析法(GPC),於以下之條件下進行測定,求出以標準聚苯乙烯換算計之重量平均分子量。 泵:JASCO PU-980 檢測器:JASCO RI-930 管柱烘箱:JASCO CO-965 40℃ 管柱:2根Shodex KD-806M串聯 流動相:0.1 mol/L LiBr/NMP(N-methylpyrrolidone,N-甲基吡咯啶酮) 流速:1 ml/min. <製造例A2>((A)作為聚醯亞胺前驅物之聚合物B之合成) 使用3,3',4,4'-聯苯基四羧酸二酐(BPDA)147.1 g代替製造例A1之4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,除此以外,藉由與上述製造例A1記載之方法相同之方式進行反應,而獲得聚合物B。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物B之分子量,結果重量平均分子量(Mw)為22,000。 <製造例A3>((A)作為聚醯亞胺前驅物之聚合物C之合成) 使用2,2'-雙三氟甲基-4,4'-二胺基聯苯(TFMB)147.8 g代替製造例A1之4,4'-二胺基二苯醚(DADPE)93.0 g,除此以外,藉由與上述製造例A1記載之方法相同之方式進行反應,而獲得聚合物C。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物C之分子量,結果重量平均分子量(Mw)為21,000。 <製造例A4>((A)作為聚醯胺之聚合物D之合成) (苯二甲酸化合物封端體AIPA-MO之合成) 於容積5 L之可分離式燒瓶中投入5-胺基間苯二甲酸{以下簡記為AIPA}543.5 g、N-甲基-2-吡咯啶酮1700 g,進行混合攪拌,藉由水浴加熱至50℃。利用滴液漏斗於其中滴加投入使異氰酸2-甲基丙烯醯氧基乙酯512.0 g(3.3 mol)經γ-丁內酯500 g稀釋所得者,直接於50℃下攪拌2小時左右。 藉由低分子量凝膠滲透層析法{以下記為低分子量GPC}確認反應結束(5-胺基間苯二甲酸消失)後,將該反應液投入至15 L之離子交換水中,進行攪拌,加以靜置,待出現反應產物之結晶化沈澱後將其過濾分離,經適當水洗後,於40℃下真空乾燥48小時,藉此獲得由5-胺基間苯二甲酸之胺基與異氰酸2-甲基丙烯醯氧基乙酯之異氰酸酯基作用所得之AIPA-MO。所獲得之AIPA-MO之低分子量GPC純度約為100%。 (聚合物D之合成) 於容積2 L之可分離式燒瓶中投入所獲得之AIPA-MO 100.89 g(0.3 mol)、吡啶71.2 g(0.9 mol)、GBL(丁內酯,γ-butyrolactone)400 g,進行混合,藉由冰浴冷卻至5℃。於冰浴冷卻下,歷時20分鐘左右於其中滴加使二環己基碳二醯亞胺(DCC)125.0 g(0.606 mol)經GBL 125 g溶解稀釋所得者,繼而,歷時20分鐘左右滴加使4,4'-雙(4-胺基苯氧基)聯苯{以下記為BAPB}103.16 g(0.28 mol)經NMP 168 g溶解所得者,藉由冰浴維持3小時未達5℃,繼而移除冰浴,於室溫下攪拌5小時。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 於所獲得之反應液中滴加水840 g與異丙醇560 g之混合液,分離所析出之聚合物,使之再溶解於NMP 650 g。將所獲得之粗聚合物溶液滴加至5 L之水中使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物E)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物D之分子量,結果重量平均分子量(Mw)為34,700。 <製造例A5>((A)作為聚㗁唑前驅物之聚合物E之合成) 於容積3 L之可分離式燒瓶中將2,2-雙(3-胺基-4-羥基苯基)-六氟丙烷183.1 g、N,N-二甲基乙醯胺(DMAc)640.9 g、吡啶63.3 g於室溫(25℃)下進行混合攪拌,製成均勻溶液。利用滴液漏斗於其中滴加使4,4'-二苯醚二甲醯氯118.0 g經二乙二醇二甲醚(DMDG)354 g溶解所得者。此時,將可分離式燒瓶於15~20℃之水浴中冷卻。滴液所需之時間為40分鐘,反應液溫最高為30℃。 滴液結束後經過3小時後,向反應液中添加1,2-環己基二羧酸酐30.8 g(0.2 mol),於室溫下攪拌放置15小時,使聚合物鏈之占總數99%之胺末端基經羧基環己基醯胺基封端。此時之反應率可藉由利用高效液相層析法(HPLC)追蹤所投入之1,2-環己基二羧酸酐之殘量而容易地算出。其後,將上述反應液於高速攪拌下滴加至2 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量9,000(聚苯乙烯換算)之粗聚苯并㗁唑前驅物。 使上述獲得之粗聚苯并㗁唑前驅物再溶解於γ-丁內酯(GBL)後,對其利用陽離子交換樹脂及陰離子交換樹脂進行處理,將藉此獲得之溶液投入至離子交換水中後,過濾分離所析出之聚合物,進行水洗並真空乾燥,藉此獲得經精製之聚苯并㗁唑前驅物(聚合物E)。 <製造例A6>((A)作為聚醯亞胺之聚合物F之合成) 對裝有Teflon(註冊商標)製錨型攪拌器之玻璃製可分離式四口燒瓶安裝附迪安-斯塔克分離器之冷卻管。一面通入氮氣,一面將上述燒瓶浸於矽油浴中進行攪拌。 添加2,2-雙(3-胺基-4-羥基苯基)丙烷(Clariant Japan公司製造)(以下記為BAP)72.28 g(280 mmol)、5-(2,5-二側氧四氫-3-呋喃基)-3-甲基-環己烯-1,2二羧酸酐(東京化成工業股份有限公司製造)(以下記為MCTC)70.29 g(266 mmol)、γ-丁內酯254.6 g、甲苯60 g,於室溫下以100 rpm攪拌4小時後,添加5-降𦯉烯-2,3-二羧酸酐(東京化成工業股份有限公司製造)4.6 g(28 mmol),一面通入氮氣一面於矽浴溫度50℃下以100 rpm加熱攪拌8小時。其後,加熱至矽浴溫度180℃,以100 rpm加熱攪拌2小時。去除於反應中所餾出之甲苯、水。醯亞胺化反應結束後恢復至室溫。 其後將上述反應液於高速攪拌下滴加至3 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量23,000(聚苯乙烯換算)之粗聚醯亞胺(聚合物F)。 <製造例A7>((A)作為酚樹脂之聚合物G之合成) 於容積0.5 L之附迪安-斯塔克裝置之可分離式燒瓶中將3,5-二羥基苯甲酸甲酯128.3 g(0.76 mol)、4,4'-雙(甲氧基甲基)聯苯(以下亦稱為「BMMB」)121.2 g(0.5 mol)、二乙基硫酸3.9 g(0.025 mol)、二乙二醇二甲醚140 g於70℃下進行混合攪拌,而使固形物溶解。 藉由油浴將混合溶液加熱至140℃,確認自反應液生成了甲醇。直接於140℃下攪拌反應液2小時。 繼而,將反應容器於大氣中冷卻,向其中另外添加100 g之四氫呋喃并攪拌。將上述反應稀釋液於高速攪拌下滴加至4 L之水中而使樹脂分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而以產率70%獲得包含3,5-二羥基苯甲酸甲酯/BMMB之共聚物(聚合物G)。該聚合物G之藉由GPC法之標準聚苯乙烯換算所求出之重量平均分子量為21,000。 <製造例A8>((A)作為酚樹脂之聚合物H之合成) 對容積1.0 L之附迪安-斯塔克裝置之可分離式燒瓶進行氮氣置換,其後,於該可分離式燒瓶中將間苯二酚81.3 g(0.738 mol)、BMMB 84.8 g(0.35 mol)、對甲苯磺酸3.81 g(0.02 mol)、丙二醇單甲醚(以下亦稱為PGME)116 g於50℃下進行混合攪拌,而使固形物溶解。 藉由油浴將混合溶液加熱至120℃,確認自反應液生成了甲醇。直接於120℃下將反應液攪拌3小時。 繼而,於另一容器中將2,6-雙(羥基甲基)對甲酚24.9 g(0.150 mol)、PGME 249 g進行混合攪拌,使之均勻溶解,將所獲得之溶液使用滴液漏斗歷時1小時滴加至該可分離式燒瓶內,滴液後進而攪拌2小時。 反應結束後,進行與製造例A7相同之處理,而以產率77%獲得包含間苯二酚/BMMB/2,6-雙(羥基甲基)對甲酚之共聚物(聚合物H)。該聚合物H之藉由GPC法之標準聚苯乙烯換算所求出之重量平均分子量為9,900。 <實施例A1> 使用聚合物A、B,藉由以下之方法製備負型感光性樹脂組合物,並對所製備之感光性樹脂組合物進行評價。將作為聚醯亞胺前驅物之聚合物A 50 g與B 50 g(相當於(A)樹脂)與黃嘌呤(相當於(B)具有羰基之環狀化合物)0.2 g、1-苯基-1,2-丙烷二酮-2-(O-乙氧基羰基)-肟(表1中記為「PDO」)(相當於(C)感光劑)4 g、四乙二醇二甲基丙烯酸酯8 g、N-[3-(三乙氧基矽烷基)丙基]苯二甲醯胺酸1.5 g一併溶解於包含N-甲基-2-吡咯啶酮(以下記為NMP)80 g與乳酸乙酯20 g之混合溶劑。藉由進而添加少量之上述混合溶劑而將所獲得之溶液之黏度調整為約35泊(poise),製成負型感光性樹脂組合物。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.2%之結果。 <實施例A2> 上述實施例A1中,作為(B)成分,將黃嘌呤之添加量變為0.05 g,除此以外,藉由與實施例A1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.4%之結果。 <實施例A3> 上述實施例A1中,作為(B)成分,將黃嘌呤之添加量變為5 g,除此以外,藉由與實施例A1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.9%之結果。 <實施例A4> 上述實施例A1中,作為(B)成分,使用8-氮雜黃嘌呤代替黃嘌呤,除此以外,藉由與實施例A1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.1%之結果。 <實施例A5> 上述實施例A1中,作為(B)成分,使用尿酸代替黃嘌呤,除此以外,藉由與實施例A1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.4%之結果。 <實施例A6> 上述實施例A1中,作為(B)成分,使用二氧四氫蝶啶代替黃嘌呤,除此以外,藉由與實施例A1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.5%之結果。 <實施例A7> 上述實施例A1中,作為(B)成分,使用巴比妥酸代替黃嘌呤,除此以外,藉由與實施例A1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得7.3%之結果。 <實施例A8> 藉由與上述實施例A1相同之方式製備負型感光性樹脂組合物溶液,針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.5%之結果。 <實施例A9> 上述實施例A1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物A 100 g,作為(C)成分,將PDO 4 g變為1,2-辛烷二酮-1-{4-(苯硫基)-2-(O-苯甲醯基肟)}(Irgacure OXE01(BASF公司製造,商品名))2.5 g,除此以外,藉由與實施例A1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.1%之結果。 <實施例A10> 上述實施例A1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物A 100 g,作為(C)成分,將PDO 4 g變為1,2-辛烷二酮-1-{4-(苯硫基)-2-(O-苯甲醯基肟)}(Irgacure OXE01(BASF公司製造,商品名))2.5 g,進而將溶劑變為γ-丁內酯85 g與二甲基亞碸15 g,除此以外,藉由與實施例A1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.2%之結果。 <實施例A11> 上述實施例A1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物C 100 g,除此以外,藉由與實施例A1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.9%之結果。 <實施例A12> 上述實施例A1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物D 100 g,除此以外,藉由與實施例A1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.0%之結果。 <實施例A13> 使用聚合物E,藉由以下之方法製備正型感光性樹脂組合物,並對所製備之感光性樹脂組合物進行評價。將作為聚㗁唑前驅物之聚合物E 100 g(相當於(A)樹脂)與下述式(96): [化104]
Figure 02_image207
所表示之77%之酚性羥基經萘醌二疊氮-4-磺酸酯化之感光性重氮醌化合物(東洋合成公司製造,相當於(C)感光劑)(C1)20 g、黃嘌呤(相當於(B)具有羰基之環狀化合物)0.2 g、3-第三丁氧基羰基胺基丙基三乙氧基矽烷6 g一併溶解於γ-丁內酯(作為溶劑)100 g。藉由進而添加少量之γ-丁內酯而將所獲得之溶液之黏度調整為約20泊(poise),製成正型感光性樹脂組合物。 針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.5%之結果。 <實施例A14> 上述實施例A13中,作為(A)樹脂,將聚合物E 100 g變為聚合物F 100 g,除此以外,藉由與實施例A13相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.7%之結果。 <實施例A15> 上述實施例A13中,作為(A)樹脂,將聚合物E 100 g變為聚合物G 100 g,除此以外,藉由與實施例A13相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行220℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.3%之結果。 <實施例A16> 上述實施例A13中,作為(A)樹脂,將聚合物E 100 g變為聚合物H 100 g,除此以外,藉由與實施例A13相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行220℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.2%之結果。 <比較例A1> 於實施例A1之組成中,添加苯并三唑0.2 g代替黃嘌呤0.2 g,除此以外,藉由與實施例A1相同之方式製備負型感光性樹脂組合物,並進行與實施例A1相同之評價。由於不含本發明之(B)化合物,故評價結果為15.2%。 <比較例A2> 於實施例A1之組成中,不添加黃嘌呤,除此以外,藉由與實施例A1相同之方式製備負型感光性樹脂組合物,並進行與實施例A1相同之評價。由於不含本發明之(B)化合物,故評價結果為14.3%。 <比較例A3> 實施例A10之組成中,不添加黃嘌呤,除此以外,藉由與實施例A10相同之方式製備負型感光性樹脂組合物,並進行與實施例A10相同之評價。由於不含本發明之(B)化合物,故評價結果為15.7%。 <比較例A4> 實施例A11之組成中,不添加黃嘌呤,除此以外,藉由與實施例A11相同之方式製備負型感光性樹脂組合物,並進行與實施例A11相同之評價。由於不含本發明之(B)化合物,故評價結果為14.9%。 將該等實施例A1~16、比較例A1~4之結果彙總示於表1。 實施例B <製造例B1>((A)作為聚醯亞胺前驅物之聚合物A之合成) 於容積2 L之可分離式燒瓶中放入4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,添加甲基丙烯酸2-羥基乙酯(HEMA)131.2 g與γ-丁內酯400 ml並於室溫下攪拌,一面攪拌一面添加吡啶81.5 g而獲得反應混合物。於由反應產生之放熱結束後,靜置冷卻至室溫,放置16小時。 繼而,於冰浴冷卻下,一面攪拌一面歷時40分鐘向反應混合物中添加使二環己基碳二醯亞胺(DCC)206.3 g溶解於γ-丁內酯180 ml所得之溶液,繼而,一面攪拌一面歷時60分鐘添加使4,4'-二胺基二苯醚(DADPE)93.0 g懸浮於γ-丁內酯350 ml所得者。進而於室溫下攪拌2小時後,添加乙醇30 ml並攪拌1小時,繼而,添加γ-丁內酯400 ml。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 將所獲得之反應液添加至3 L之乙醇中,而生成包含粗聚合物之沈澱物。過濾分離所生成之粗聚合物,使之溶解於四氫呋喃1.5 L而獲得粗聚合物溶液。將所獲得之粗聚合物溶液滴加至28 L之水中而使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物A)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物A之分子量,結果重量平均分子量(Mw)為20,000。 再者,各製造例B中獲得之樹脂之重量平均分子量係採用凝膠滲透層析法(GPC),於以下之條件下進行測定,求出以標準聚苯乙烯換算計之重量平均分子量。 泵:JASCO PU-980 檢測器:JASCO RI-930 管柱烘箱:JASCO CO-965 40℃ 管柱:2根Shodex KD-806M串聯 流動相:0.1 mol/L LiBr/NMP 流速:1 ml/min. <製造例B2>((A)作為聚醯亞胺前驅物之聚合物B之合成) 使用3,3',4,4'-聯苯基四羧酸二酐(BPDA)147.1 g代替製造例B1之4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,除此以外,藉由與上述製造例B1所記載之方法相同之方式進行反應,而獲得聚合物B。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物B之分子量,結果重量平均分子量(Mw)為22,000。 <製造例B3>((A)作為聚醯亞胺前驅物之聚合物C之合成) 使用2,2'-雙三氟甲基-4,4'-二胺基聯苯(TFMB)147.8 g代替製造例B1之4,4'-二胺基二苯醚(DADPE)93.0 g,除此以外,藉由與上述製造例B1所記載之方法相同之方式進行反應,而獲得聚合物C。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物C之分子量,結果重量平均分子量(Mw)為21,000。 <製造例B4>((A)作為聚醯胺之聚合物D之合成) (苯二甲酸化合物封端體AIPA-MO之合成) 於容積5 L之可分離式燒瓶中投入5-胺基間苯二甲酸{以下簡記為AIPA}543.5 g、N-甲基-2-吡咯啶酮1700 g,進行混合攪拌,藉由水浴加熱至50℃。利用滴液漏斗於其中滴加投入使異氰酸2-甲基丙烯醯氧基乙酯512.0 g(3.3 mol)經γ-丁內酯500 g稀釋所得者,直接於50℃下攪拌2小時左右。 藉由低分子量凝膠滲透層析法{以下記為低分子量GPC}確認反應結束(5-胺基間苯二甲酸消失)後,將該反應液投入至15 L之離子交換水中,進行攪拌,加以靜置,待出現反應產物之結晶化沈澱後將其過濾分離,經適當水洗後,於40℃下真空乾燥48小時,藉此獲得由5-胺基間苯二甲酸之胺基與異氰酸2-甲基丙烯醯氧基乙酯之異氰酸酯基作用所得之AIPA-MO。所獲得之AIPA-MO之低分子量GPC純度約為100%。 (聚合物D之合成) 於容積2 L之可分離式燒瓶中投入所獲得之AIPA-MO 100.89 g(0.3 mol)、吡啶71.2 g(0.9 mol)、GBL 400 g,進行混合,藉由冰浴冷卻至5℃。於冰浴冷卻下,歷時20分鐘左右於其中滴加使二環己基碳二醯亞胺(DCC)125.0 g(0.606 mol)經GBL 125 g溶解稀釋所得者,繼而,歷時20分鐘左右滴加使4,4'-雙(4-胺基苯氧基)聯苯{以下記為BAPB}103.16 g(0.28 mol)經NMP 168 g溶解所得者,藉由冰浴維持3小時未達5℃,繼而移除冰浴,於室溫下攪拌5小時。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 於所獲得之反應液中滴加水840 g與異丙醇560 g之混合液,分離所析出之聚合物,使之再溶解於NMP 650 g。將所獲得之粗聚合物溶液滴加至5 L之水中使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物E)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物D之分子量,結果重量平均分子量(Mw)為34,700。 <製造例B5>((A)作為聚㗁唑前驅物之聚合物E之合成) 於容積3 L之可分離式燒瓶中將2,2-雙(3-胺基-4-羥基苯基)-六氟丙烷183.1 g、N,N-二甲基乙醯胺(DMAc)640.9 g、吡啶63.3 g於室溫(25℃)下進行混合攪拌,製成均勻溶液。利用滴液漏斗於其中滴加使4,4'-二苯醚二甲醯氯118.0 g經二乙二醇二甲醚(DMDG)354 g溶解所得者。此時,將可分離式燒瓶於15~20℃之水浴中冷卻。滴液所需之時間為40分鐘,反應液溫最高為30℃。 滴液結束後經過3小時後,向反應液中添加1,2-環己基二羧酸酐30.8 g(0.2 mol),於室溫下攪拌放置15小時,使聚合物鏈之占總數99%之胺末端基經羧基環己基醯胺基封端。此時之反應率可藉由利用高效液相層析法(HPLC)追蹤所投入之1,2-環己基二羧酸酐之殘量而容易地算出。其後,將上述反應液於高速攪拌下滴加至2 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量9,000(聚苯乙烯換算)之粗聚苯并㗁唑前驅物。 使上述獲得之粗聚苯并㗁唑前驅物再溶解於γ-丁內酯(GBL)後,對其利用陽離子交換樹脂及陰離子交換樹脂進行處理,將藉此獲得之溶液投入至離子交換水中後,過濾分離所析出之聚合物,進行水洗並真空乾燥,藉此獲得經精製之聚苯并㗁唑前驅物(聚合物E)。 <製造例B6>((A)作為聚醯亞胺之聚合物F之合成) 對裝有Teflon(註冊商標)製錨型攪拌器之玻璃製可分離式四口燒瓶安裝附迪安-斯塔克分離器之冷卻管。一面通入氮氣,一面將上述燒瓶浸於矽油浴中進行攪拌。 添加2,2-雙(3-胺基-4-羥基苯基)丙烷(Clariant Japan公司製造)(以下記為BAP)72.28 g(280 mmol)、5-(2,5-二側氧四氫-3-呋喃基)-3-甲基-環己烯-1,2二羧酸酐(東京化成工業股份有限公司製造)(以下記為MCTC)70.29 g(266 mmol)、γ-丁內酯254.6 g、甲苯60 g,於室溫下以100 rpm攪拌4小時後,添加5-降𦯉烯-2,3-二羧酸酐(東京化成工業股份有限公司製造)4.6 g(28 mmol),一面通入氮氣一面於矽浴溫度50℃下以100 rpm加熱攪拌8小時。其後,加熱至矽浴溫度180℃,以100 rpm加熱攪拌2小時。去除於反應中所餾出之甲苯、水。醯亞胺化反應結束後恢復至室溫。 其後將上述反應液於高速攪拌下滴加至3 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量23,000(聚苯乙烯換算)之粗聚醯亞胺(聚合物F)。 <製造例B7>((A)作為酚樹脂之聚合物G之合成) 於容積0.5 L之附迪安-斯塔克裝置之可分離式燒瓶中將3,5-二羥基苯甲酸甲酯128.3 g(0.76 mol)、4,4'-雙(甲氧基甲基)聯苯(以下亦稱為「BMMB」)121.2 g(0.5 mol)、二乙基硫酸3.9 g(0.025 mol)、二乙二醇二甲醚140 g於70℃下進行混合攪拌,而使固形物溶解。 藉由油浴將混合溶液加熱至140℃,確認自反應液生成了甲醇。直接於140℃下攪拌反應液2小時。 繼而,將反應容器於大氣中冷卻,向其中另外添加100 g之四氫呋喃并攪拌。將上述反應稀釋液於高速攪拌下滴加至4 L之水中而使樹脂分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而以產率70%獲得包含3,5-二羥基苯甲酸甲酯/BMMB之共聚物(聚合物G)。該聚合物G之藉由GPC法之標準聚苯乙烯換算所求出之重量平均分子量為21,000。 <製造例B8>((A)作為酚樹脂之聚合物H之合成) 對容積1.0 L之附迪安-斯塔克裝置之可分離式燒瓶進行氮氣置換,其後,於該可分離式燒瓶中將間苯二酚81.3 g(0.738 mol)、BMMB 84.8 g(0.35 mol)、對甲苯磺酸3.81 g(0.02 mol)、丙二醇單甲醚(以下亦稱為PGME)116 g於50℃下進行混合攪拌,而使固形物溶解。 藉由油浴將混合溶液加熱至120℃,確認自反應液生成了甲醇。直接於120℃下將反應液攪拌3小時。 繼而,於另一容器中將2,6-雙(羥基甲基)對甲酚24.9 g(0.150 mol)、PGME 249 g進行混合攪拌,使之均勻溶解,將所獲得之溶液使用滴液漏斗歷時1小時滴加至該可分離式燒瓶內,滴液後進而攪拌2小時。 反應結束後,進行與製造例B7相同之處理,而以產率77%獲得包含間苯二酚/BMMB/2,6-雙(羥基甲基)對甲酚之共聚物(聚合物H)。該聚合物H之藉由GPC法之標準聚苯乙烯換算所求出之重量平均分子量為9,900。 <實施例B1> 使用聚合物A、B,藉由以下之方法製備負型感光性樹脂組合物,並對所製備之感光性樹脂組合物進行評價。將作為聚醯亞胺前驅物之聚合物A 50 g與B 50 g(相當於(A)樹脂)與二環己基硫脲(相當於(B)含硫化合物)0.5 g、1-苯基-1,2-丙烷二酮-2-(O-乙氧基羰基)-肟(表2中記為「PDO」)(相當於(C)感光劑)4 g、四乙二醇二甲基丙烯酸酯8 g、N-[3-(三乙氧基矽烷基)丙基]苯二甲醯胺酸1.5 g一併溶解於包含N-甲基-2-吡咯啶酮(以下記為NMP)80 g與乳酸乙酯20 g之混合溶劑。藉由進而添加少量之上述混合溶劑而將所獲得之溶液之黏度調整為約35泊(poise),製成負型感光性樹脂組合物。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.5%之結果。 <實施例B2> 上述實施例B1中,作為(B)成分,將二環己基硫脲之添加量變為0.1 g,除此以外,藉由與實施例B1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.9%之結果。 <實施例B3> 上述實施例B1中,作為(B)成分,將二環己基硫脲之添加量變為4 g,除此以外,藉由與實施例B1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.8%之結果。 <實施例B4> 上述實施例B1中,作為(B)成分,使用苯并噻唑代替二環己基硫脲,除此以外,藉由與實施例B1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得7.3%之結果。 <實施例B5> 上述實施例B1中,作為(B)成分,使用若丹林代替二環己基硫脲,除此以外,藉由與實施例B1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得7.2%之結果。 <實施例B6> 上述實施例B1中,作為(B)成分,使用2-9-氧硫𠮿
Figure 108121559-A0304-12-01
代替二環己基硫脲,除此以外,藉由與實施例B1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得7.3%之結果。 <實施例B7> 藉由與上述實施例B1相同之方式製備負型感光性樹脂組合物溶液,針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.9%之結果。 <實施例B8> 上述實施例B1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物A 100 g,作為(C)成分,將PDO 4 g變為1,2-辛烷二酮-1-{4-(苯硫基)-2-(O-苯甲醯基肟)}(Irgacure OXE01(BASF公司製造,商品名))2.5 g,除此以外,藉由與實施例B1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.7%之結果。 <實施例B9> 上述實施例B1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物A 100 g,作為(C)成分,將PDO 4 g變為1,2-辛烷二酮-1-{4-(苯硫基)-2-(O-苯甲醯基肟)}(Irgacure OXE01(BASF公司製造,商品名))2.5 g,進而將溶劑變為γ-丁內酯85 g與二甲基亞碸15 g,除此以外,藉由與實施例B1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.6%之結果。 <實施例B10> 上述實施例B1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物C 100 g,除此以外,藉由與實施例B1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.9%之結果。 <實施例B11> 上述實施例B1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物D 100 g,除此以外,藉由與實施例B1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.3%之結果。 <實施例B12> 使用聚合物E,藉由以下之方法製備正型感光性樹脂組合物,並對所製備之感光性樹脂組合物進行評價。將作為聚㗁唑前驅物之聚合物E 100 g(相當於(A)樹脂)與下述式(96): [化105]
Figure 02_image209
所表示之77%之酚性羥基經萘醌二疊氮-4-磺酸酯化之感光性重氮醌化合物(東洋合成公司製造,相當於(C)感光劑)(C1)15 g、二環己基硫脲(相當於(B)含硫化合物)0.5 g、3-第三丁氧基羰基胺基丙基三乙氧基矽烷6 g一併溶解於γ-丁內酯(作為溶劑)100 g。藉由進而添加少量之γ-丁內酯而將所獲得之溶液之黏度調整為約20泊(poise),製成正型感光性樹脂組合物。 針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.4%之結果。 <實施例B13> 上述實施例B12中,作為(A)樹脂,將聚合物E 100 g變為聚合物F 100 g,除此以外,藉由與實施例B12相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.5%之結果。 <實施例B14> 上述實施例B12中,作為(A)樹脂,將聚合物E 100 g變為聚合物G 100 g,除此以外,藉由與實施例B12相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行220℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.7%之結果。 <實施例B15> 上述實施例B12中,作為(A)樹脂,將聚合物E 100 g變為聚合物H 100 g,除此以外,藉由與實施例B12相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行220℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.6%之結果。 <比較例B1> 於實施例B1之組成中,不添加二環己基硫脲,除此以外,藉由與實施例B1相同之方式製備負型感光性樹脂組合物,並進行與實施例B1相同之評價。由於不含本發明之(B)化合物,故評價結果為14.3%。 <比較例B2> 於實施例B11之組成中,不添加二環己基硫脲,除此以外,藉由與實施例B11相同之方式製備負型感光性樹脂組合物,並進行與實施例B11相同之評價。由於不含本發明之(B)化合物,故評價結果為15.5%。 <比較例B3> 於實施例B12之組成中,不添加二環己基硫脲,除此以外,藉由與實施例B12相同之方式製備正型感光性樹脂組合物,並進行與實施例B12相同之評價。由於不含本發明之(B)化合物,故評價結果為14.6%。 將該等實施例B1~15、比較例B1~3之結果彙總示於表2。 實施例C <製造例C1>((A)作為聚醯亞胺前驅物之聚合物A之合成) 於容積2 L之可分離式燒瓶中放入4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,添加甲基丙烯酸2-羥基乙酯(HEMA)131.2 g與γ-丁內酯400 ml並於室溫下攪拌,一面攪拌一面添加吡啶81.5 g而獲得反應混合物。於由反應產生之放熱結束後,靜置冷卻至室溫,放置16小時。 繼而,於冰浴冷卻下,一面攪拌一面歷時40分鐘向反應混合物中添加使二環己基碳二醯亞胺(DCC)206.3 g溶解於γ-丁內酯180 ml所得之溶液,繼而,一面攪拌一面歷時60分鐘添加使4,4'-二胺基二苯醚(DADPE)93.0 g懸浮於γ-丁內酯350 ml所得者。進而於室溫下攪拌2小時後,添加乙醇30 ml並攪拌1小時,繼而,添加γ-丁內酯400 ml。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 將所獲得之反應液添加至3 L之乙醇中,而生成包含粗聚合物之沈澱物。過濾分離所生成之粗聚合物,使之溶解於四氫呋喃1.5 L而獲得粗聚合物溶液。將所獲得之粗聚合物溶液滴加至28 L之水中而使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物A)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物A之分子量,結果重量平均分子量(Mw)為20,000。 再者,各製造例C中獲得之樹脂之重量平均分子量係採用凝膠滲透層析法(GPC),於以下之條件下進行測定,求出以標準聚苯乙烯換算計之重量平均分子量。 泵:JASCO PU-980 檢測器:JASCO RI-930 管柱烘箱:JASCO CO-965 40℃ 管柱:2根Shodex KD-806M串聯 流動相:0.1 mol/L LiBr/NMP 流速:1 ml/min. <製造例C2>((A)作為聚醯亞胺前驅物之聚合物B之合成) 使用3,3',4,4'-聯苯基四羧酸二酐(BPDA)147.1 g代替製造例C1之4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,除此以外,藉由與上述製造例C1所記載之方法相同之方式進行反應,而獲得聚合物B。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物B之分子量,結果重量平均分子量(Mw)為22,000。 <製造例C3>((A)作為聚醯亞胺前驅物之聚合物C之合成) 使用2,2'-雙三氟甲基-4,4'-二胺基聯苯(TFMB)147.8 g代替製造例C1之4,4'-二胺基二苯醚(DADPE)93.0 g,除此以外,藉由與上述製造例C1所記載之方法相同之方式進行反應,而獲得聚合物C。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物C之分子量,結果重量平均分子量(Mw)為21,000。 <製造例C4>((A)作為聚醯胺之聚合物D之合成) (苯二甲酸化合物封端體AIPA-MO之合成) 於容積5 L之可分離式燒瓶中投入5-胺基間苯二甲酸{以下簡記為AIPA}543.5 g、N-甲基-2-吡咯啶酮1700 g,進行混合攪拌,藉由水浴加熱至50℃。利用滴液漏斗於其中滴加投入使異氰酸2-甲基丙烯醯氧基乙酯512.0 g(3.3 mol)經γ-丁內酯500 g稀釋所得者,直接於50℃下攪拌2小時左右。 藉由低分子量凝膠滲透層析法{以下記為低分子量GPC}確認反應結束(5-胺基間苯二甲酸消失)後,將該反應液投入至15 L之離子交換水中,進行攪拌,加以靜置,待出現反應產物之結晶化沈澱後將其過濾分離,經適當水洗後,於40℃下真空乾燥48小時,藉此獲得由5-胺基間苯二甲酸之胺基與異氰酸2-甲基丙烯醯氧基乙酯之異氰酸酯基作用所得之AIPA-MO。所獲得之AIPA-MO之低分子量GPC純度約為100%。 (聚合物D之合成) 於容積2 L之可分離式燒瓶中投入所獲得之AIPA-MO 100.89 g(0.3 mol)、吡啶71.2 g(0.9 mol)、GBL 400 g,進行混合,藉由冰浴冷卻至5℃。於冰浴冷卻下,歷時20分鐘左右於其中滴加使二環己基碳二醯亞胺(DCC)125.0 g(0.606 mol)經GBL 125 g溶解稀釋所得者,繼而,歷時20分鐘左右滴加使4,4'-雙(4-胺基苯氧基)聯苯{以下記為BAPB}103.16 g(0.28 mol)經NMP 168 g溶解所得者,藉由冰浴維持3小時未達5℃,繼而移除冰浴,於室溫下攪拌5小時。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 於所獲得之反應液中滴加水840 g與異丙醇560 g之混合液,分離所析出之聚合物,使之再溶解於NMP 650 g。將所獲得之粗聚合物溶液滴加至5 L之水中使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物E)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物D之分子量,結果重量平均分子量(Mw)為34,700。 <製造例C5>((A)作為聚㗁唑前驅物之聚合物E之合成) 於容積3 L之可分離式燒瓶中將2,2-雙(3-胺基-4-羥基苯基)-六氟丙烷183.1 g、N,N-二甲基乙醯胺(DMAc)640.9 g、吡啶63.3 g於室溫(25℃)下進行混合攪拌,製成均勻溶液。利用滴液漏斗於其中滴加使4,4'-二苯醚二甲醯氯118.0 g經二乙二醇二甲醚(DMDG)354 g溶解所得者。此時,將可分離式燒瓶於15~20℃之水浴中冷卻。滴液所需之時間為40分鐘,反應液溫最高為30℃。 滴液結束後經過3小時後,向反應液中添加1,2-環己基二羧酸酐30.8 g(0.2 mol),於室溫下攪拌放置15小時,使聚合物鏈之占總數99%之胺末端基經羧基環己基醯胺基封端。此時之反應率可藉由利用高效液相層析法(HPLC)追蹤所投入之1,2-環己基二羧酸酐之殘量而容易地算出。其後,將上述反應液於高速攪拌下滴加至2 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量9,000(聚苯乙烯換算)之粗聚苯并㗁唑前驅物。 使上述獲得之粗聚苯并㗁唑前驅物再溶解於γ-丁內酯(GBL)後,對其利用陽離子交換樹脂及陰離子交換樹脂進行處理,將藉此獲得之溶液投入至離子交換水中後,過濾分離所析出之聚合物,進行水洗並真空乾燥,藉此獲得經精製之聚苯并㗁唑前驅物(聚合物E)。 <製造例C6>((A)作為聚醯亞胺之聚合物F之合成) 對裝有Teflon(註冊商標)製錨型攪拌器之玻璃製可分離式四口燒瓶安裝附迪安-斯塔克分離器之冷卻管。一面通入氮氣,一面將上述燒瓶浸於矽油浴中進行攪拌。 添加2,2-雙(3-胺基-4-羥基苯基)丙烷(Clariant Japan公司製造)(以下記為BAP)72.28 g(280 mmol)、5-(2,5-二側氧四氫-3-呋喃基)-3-甲基-環己烯-1,2二羧酸酐(東京化成工業股份有限公司製造)(以下記為MCTC)70.29 g(266 mmol)、γ-丁內酯254.6 g、甲苯60 g,於室溫下以100 rpm攪拌4小時後,添加5-降𦯉烯-2,3-二羧酸酐(東京化成工業股份有限公司製造)4.6 g(28 mmol),一面通入氮氣一面於矽浴溫度50℃下以100 rpm加熱攪拌8小時。其後,加熱至矽浴溫度180℃,以100 rpm加熱攪拌2小時。去除於反應中所餾出之甲苯、水。醯亞胺化反應結束後恢復至室溫。 其後將上述反應液於高速攪拌下滴加至3 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量23,000(聚苯乙烯換算)之粗聚醯亞胺(聚合物F)。 <製造例C7>((A)作為酚樹脂之聚合物G之合成) 於容積0.5 L之附迪安-斯塔克裝置之可分離式燒瓶中將3,5-二羥基苯甲酸甲酯128.3 g(0.76 mol)、4,4'-雙(甲氧基甲基)聯苯(以下亦稱為「BMMB」)121.2 g(0.5 mol)、二乙基硫酸3.9 g(0.025 mol)、二乙二醇二甲醚140 g於70℃下進行混合攪拌,而使固形物溶解。 藉由油浴將混合溶液加熱至140℃,確認自反應液生成了甲醇。直接於140℃下攪拌反應液2小時。 繼而,將反應容器於大氣中冷卻,向其中另外添加100 g之四氫呋喃并攪拌。將上述反應稀釋液於高速攪拌下滴加至4 L之水中而使樹脂分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而以產率70%獲得包含3,5-二羥基苯甲酸甲酯/BMMB之共聚物(聚合物G)。該聚合物G之藉由GPC法之標準聚苯乙烯換算所求出之重量平均分子量為21,000。 <製造例C8>((A)作為酚樹脂之聚合物H之合成) 對容積1.0 L之附迪安-斯塔克裝置之可分離式燒瓶進行氮氣置換,其後,於該可分離式燒瓶中將間苯二酚81.3 g(0.738 mol)、BMMB 84.8 g(0.35 mol)、對甲苯磺酸3.81 g(0.02 mol)、丙二醇單甲醚(以下亦稱為PGME)116 g於50℃下進行混合攪拌,而使固形物溶解。 藉由油浴將混合溶液加熱至120℃,確認自反應液生成了甲醇。直接於120℃下將反應液攪拌3小時。 繼而,於另一容器中將2,6-雙(羥基甲基)對甲酚24.9 g(0.150 mol)、PGME 249 g進行混合攪拌,使之均勻溶解,將所獲得之溶液使用滴液漏斗歷時1小時滴加至該可分離式燒瓶內,滴液後進而攪拌2小時。 反應結束後,進行與製造例C7相同之處理,而以產率77%獲得包含間苯二酚/BMMB/2,6-雙(羥基甲基)對甲酚之共聚物(聚合物H)。該聚合物H之藉由GPC法之標準聚苯乙烯換算所求出之重量平均分子量為9,900。 <實施例C1> 使用聚合物A、B,藉由以下之方法製備負型感光性樹脂組合物,並對所製備之感光性樹脂組合物進行評價。將作為聚醯亞胺前驅物之聚合物A 50 g與B 50 g(相當於(A)樹脂)與丁基脲(相當於(B-1)化合物)1 g、1-苯基-1,2-丙烷二酮-2-(O-乙氧基羰基)-肟(表3中記為「PDO」)(相當於(C)感光劑)4 g、四乙二醇二甲基丙烯酸酯8 g、N-[3-(三乙氧基矽烷基)丙基]苯二甲醯胺酸1.5 g一併溶解於包含N-甲基-2-吡咯啶酮(以下記為NMP)80 g與乳酸乙酯20 g之混合溶劑。藉由進而添加少量之上述混合溶劑而將所獲得之溶液之黏度調整為約35泊(poise),製成負型感光性樹脂組合物。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.5%之結果。 <實施例C2> 上述實施例C1中,作為(B)成分,將丁基脲之添加量變為0.1 g,除此以外,藉由與實施例C1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.8%之結果。 <實施例C3> 上述實施例C1中,作為(B)成分,將丁基脲之添加量變為5 g,除此以外,藉由與實施例C1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.8%之結果。 <實施例C4> 上述實施例C1中,作為(B)成分,使用四乙二醇(相當於(B-2)化合物)代替丁基脲,除此以外,藉由與實施例C1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.2%之結果。 <實施例C5> 上述實施例C1中,作為(B)成分,使用己二酸雙(2-甲氧基乙基)酯(相當於(B-3)化合物)代替丁基脲,除此以外,藉由與實施例C1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.3%之結果。 <實施例C6> 藉由與上述實施例C1相同之方式製備負型感光性樹脂組合物溶液,針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.7%之結果。 <實施例C7> 上述實施例C1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物A 100 g,作為(C)成分,將PDO 4 g變為1,2-辛烷二酮-1-{4-(苯硫基)-2-(O-苯甲醯基肟)}(Irgacure OXE01(BASF公司製造,商品名))2.5 g,除此以外,藉由與實施例C1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.4%之結果。 <實施例C8> 上述實施例C1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物A 100 g,作為(C)成分,將PDO 4 g變為1,2-辛烷二酮-1-{4-(苯硫基)-2-(O-苯甲醯基肟)}(Irgacure OXE01(BASF公司製造,商品名))2.5 g,進而將溶劑變為γ-丁內酯85 g與二甲基亞碸15 g,除此以外,藉由與實施例C1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.5%之結果。 <實施例C9> 上述實施例C1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物C 100 g,除此以外,藉由與實施例C1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.7%之結果。 <實施例C10> 上述實施例C1中,作為(A)樹脂,將聚合物A 50 g與聚合物B 50 g變為聚合物D 100 g,除此以外,藉由與實施例C1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.8%之結果。 <實施例C11> 使用聚合物E,藉由以下之方法製備正型感光性樹脂組合物,並對所製備之感光性樹脂組合物進行評價。將作為聚㗁唑前驅物之聚合物E 100 g(相當於(A)樹脂)與下述式(96): [化106]
Figure 02_image211
所表示之77%之酚性羥基經萘醌二疊氮-4-磺酸酯化之感光性重氮醌化合物(東洋合成公司製造,相當於(C)感光劑)(C1)15 g、丁基脲(相當於(B-1)化合物)1 g、3-第三丁氧基羰基胺基丙基三乙氧基矽烷6 g一併溶解於γ-丁內酯(作為溶劑)100 g。藉由進而添加少量之γ-丁內酯而將所獲得之溶液之黏度調整為約20泊(poise),製成正型感光性樹脂組合物。 針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.6%之結果。 <實施例C12> 上述實施例C11中,作為(A)樹脂,將聚合物E 100 g變為聚合物F 100 g,除此以外,藉由與實施例C11相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.9%之結果。 <實施例C13> 上述實施例C11中,作為(A)樹脂,將聚合物E 100 g變為聚合物G 100 g,除此以外,藉由與實施例C11相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行220℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.5%之結果。 <實施例C14> 上述實施例C11中,作為(A)樹脂,將聚合物E 100 g變為聚合物H 100 g,除此以外,藉由與實施例C13相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行220℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.4%之結果。 <比較例C1> 於實施例C1之組成中,不添加丁基脲,除此以外,藉由與實施例C1相同之方式製備負型感光性樹脂組合物,並進行與實施例C1相同之評價。由於不含本發明之(B)化合物,故評價結果為14.3%。 <比較例C2> 於實施例C12之組成中,不添加丁基脲,除此以外,藉由與實施例C12相同之方式製備正型感光性樹脂組合物,並進行與實施例C12相同之評價。由於不含本發明之(B)化合物,故評價結果為15.5%。 <比較例C3> 於實施例C13之組成中,不添加丁基脲,除此以外,藉由與實施例C13相同之方式製備正型感光性樹脂組合物,並進行與實施例C11相同之評價。由於不含本發明之(B)化合物,故評價結果為15.7%。 實施例D <製造例D1>((A)作為聚醯亞胺前驅物之聚合物(A)-1之合成) 於容積2 L之可分離式燒瓶中放入4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,添加甲基丙烯酸2-羥基乙酯(HEMA)131.2 g與γ-丁內酯400 ml並於室溫下攪拌,一面攪拌一面添加吡啶81.5 g而獲得反應混合物。於由反應產生之放熱結束後,靜置冷卻至室溫,放置16小時。 繼而,於冰浴冷卻下,一面攪拌一面歷時40分鐘向反應混合物中添加使二環己基碳二醯亞胺(DCC)206.3 g溶解於γ-丁內酯180 ml所得之溶液,繼而,一面攪拌一面歷時60分鐘添加使4,4'-二胺基二苯醚(DADPE)93.0 g懸浮於γ-丁內酯350 ml所得者。進而於室溫下攪拌2小時後,添加乙醇30 ml並攪拌1小時,繼而,添加γ-丁內酯400 ml。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 將所獲得之反應液添加至3 L之乙醇中,而生成包含粗聚合物之沈澱物。過濾分離所生成之粗聚合物,使之溶解於四氫呋喃1.5 L而獲得粗聚合物溶液。將所獲得之粗聚合物溶液滴加至28 L之水中而使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物(A)-1)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物(A)-1之分子量,結果重量平均分子量(Mw)為20,000。 再者,各製造例D中獲得之樹脂之重量平均分子量係採用凝膠滲透層析法(GPC),於以下之條件下進行測定,求出以標準聚苯乙烯換算計之重量平均分子量。 泵:JASCO PU-980 檢測器:JASCO RI-930 管柱烘箱:JASCO CO-965 40℃ 管柱:2根Shodex KD-806M串聯 流動相:0.1 mol/L LiBr/NMP 流速:1 ml/min. <製造例D2>((A)作為聚醯亞胺前驅物之聚合物(A)-2之合成) 使用3,3',4,4'-聯苯基四羧酸二酐(BPDA)147.1 g代替製造例D1之4,4'-氧二鄰苯二甲酸二酐(ODPA)155.1 g,除此以外,藉由與上述製造例D1所記載之方法相同之方式進行反應,而獲得聚合物(A)-2。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物(A)-2之分子量,結果重量平均分子量(Mw)為22,000。 <製造例D3>((A)作為聚醯亞胺前驅物之聚合物(A)-3之合成) 使用2,2'-雙三氟甲基-4,4'-二胺基聯苯(TFMB)147.8 g代替製造例D1之4,4'-二胺基二苯醚(DADPE)93.0 g,除此以外,藉由與上述製造例D1所記載之方法相同之方式進行反應,而獲得聚合物(A)-3。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物(A)-3之分子量,結果重量平均分子量(Mw)為21,000。 <製造例D4>((A)作為聚醯胺之聚合物(A)-4之合成) (苯二甲酸化合物封端體AIPA-MO之合成) 於容積5 L之可分離式燒瓶中投入5-胺基間苯二甲酸{以下簡記為AIPA}543.5 g、N-甲基-2-吡咯啶酮1700 g,進行混合攪拌,藉由水浴加熱至50℃。利用滴液漏斗於其中滴加投入使異氰酸2-甲基丙烯醯氧基乙酯512.0 g(3.3 mol)經γ-丁內酯500 g稀釋所得者,直接於50℃下攪拌2小時左右。 藉由低分子量凝膠滲透層析法{以下記為低分子量GPC}確認反應結束(5-胺基間苯二甲酸消失)後,將該反應液投入至15 L之離子交換水中,進行攪拌,加以靜置,待出現反應產物之結晶化沈澱後將其過濾分離,經適當水洗後,於40℃下真空乾燥48小時,藉此獲得由5-胺基間苯二甲酸之胺基與異氰酸2-甲基丙烯醯氧基乙酯之異氰酸酯基作用所得之AIPA-MO。所獲得之AIPA-MO之低分子量GPC純度約為100%。 (聚合物(A)-4之合成) 於容積2 L之可分離式燒瓶中投入所獲得之AIPA-MO 100.89 g(0.3 mol)、吡啶71.2 g(0.9 mol)、GBL 400 g,進行混合,藉由冰浴冷卻至5℃。於冰浴冷卻下,歷時20分鐘左右於其中滴加使二環己基碳二醯亞胺(DCC)125.0 g(0.606 mol)經GBL 125 g溶解稀釋所得者,繼而,歷時20分鐘左右滴加使4,4'-雙(4-胺基苯氧基)聯苯{以下記為BAPB}103.16 g(0.28 mol)經NMP 168 g溶解所得者,藉由冰浴維持3小時未達5℃,繼而移除冰浴,於室溫下攪拌5小時。藉由過濾而去除反應混合物中所生成之沈澱物,獲得反應液。 於所獲得之反應液中滴加水840 g與異丙醇560 g之混合液,分離所析出之聚合物,使之再溶解於NMP 650 g。將所獲得之粗聚合物溶液滴加至5 L之水中使聚合物沈澱,過濾分離所獲得之沈澱物後,進行真空乾燥而獲得粉末狀之聚合物(聚合物(A)-4)。藉由凝膠滲透層析法(標準聚苯乙烯換算)測定聚合物(A)-4之分子量,結果重量平均分子量(Mw)為34,700。 <製造例D5>((A)作為聚㗁唑前驅物之聚合物(A)-5之合成) 於容積3 L之可分離式燒瓶中將2,2-雙(3-胺基-4-羥基苯基)-六氟丙烷183.1 g、N,N-二甲基乙醯胺(DMAc)640.9 g、吡啶63.3 g於室溫(25℃)下進行混合攪拌,製成均勻溶液。利用滴液漏斗於其中滴加使4,4'-二苯醚二甲醯氯118.0 g經二乙二醇二甲醚(DMDG)354 g溶解所得者。此時,將可分離式燒瓶於15~20℃之水浴中冷卻。滴液所需之時間為40分鐘,反應液溫最高為30℃。 滴液結束後經過3小時後,向反應液中添加1,2-環己基二羧酸酐30.8 g(0.2 mol),於室溫下攪拌放置15小時,使聚合物鏈之占總數99%之胺末端基經羧基環己基醯胺基封端。此時之反應率可藉由利用高效液相層析法(HPLC)追蹤所投入之1,2-環己基二羧酸酐之殘量而容易地算出。其後,將上述反應液於高速攪拌下滴加至2 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量9,000(聚苯乙烯換算)之粗聚苯并㗁唑前驅物。 使上述獲得之粗聚苯并㗁唑前驅物再溶解於γ-丁內酯(GBL)後,對其利用陽離子交換樹脂及陰離子交換樹脂進行處理,將藉此獲得之溶液投入至離子交換水中後,過濾分離所析出之聚合物,進行水洗並真空乾燥,藉此獲得經精製之聚苯并㗁唑前驅物(聚合物(A)-5)。 <製造例D6>((A)作為聚醯亞胺之聚合物(A)-6之合成) 對裝有Teflon(註冊商標)製錨型攪拌器之玻璃製可分離式四口燒瓶安裝附迪安-斯塔克分離器之冷卻管。一面通入氮氣,一面將上述燒瓶浸於矽油浴中進行攪拌。 添加2,2-雙(3-胺基-4-羥基苯基)丙烷(Clariant Japan公司製造)(以下記為BAP)72.28 g(280 mmol)、5-(2,5-二側氧四氫-3-呋喃基)-3-甲基-環己烯-1,2二羧酸酐(東京化成工業股份有限公司製造)(以下記為MCTC)70.29 g(266 mmol)、γ-丁內酯254.6 g、甲苯60 g,於室溫下以100 rpm攪拌4小時後,添加5-降𦯉烯-2,3-二羧酸酐(東京化成工業股份有限公司製造)4.6 g(28 mmol),一面通入氮氣一面於矽浴溫度50℃下以100 rpm加熱攪拌8小時。其後,加熱至矽浴溫度180℃,以100 rpm加熱攪拌2小時。去除於反應中所餾出之甲苯、水。醯亞胺化反應結束後恢復至室溫。 其後將上述反應液於高速攪拌下滴加至3 L之水中而使聚合物分散析出,將其回收,經適當水洗,脫水後實施真空乾燥,而獲得藉由凝膠滲透層析(GPC)法所測得之重量平均分子量23,000(聚苯乙烯換算)之粗聚醯亞胺(聚合物(A)-6)。 <實施例D1> 使用聚合物(A)-1、(A)-2,藉由以下之方法製備負型感光性樹脂組合物,並進行感光性樹脂組合物之評價。將作為聚醯亞胺前驅物之聚合物(A)-1 50 g與(A)-2 50 g(相當於(A)樹脂)與N-苯基苄基胺(東京化成工業股份有限公司製造,相當於(B)-1)3 g、1-苯基-1,2-丙烷二酮-2-(O-乙氧基羰基)-肟(表4中記為「PDO」)(相當於(C)感光劑)4 g、四乙二醇二甲基丙烯酸酯8 g、N-[3-(三乙氧基矽烷基)丙基]苯二甲醯胺酸1.5 g一併溶解於包含N-甲基-2-吡咯啶酮(以下記為NMP)80 g與乳酸乙酯20 g之混合溶劑。藉由進而添加少量之上述混合溶劑而將所獲得之溶液之黏度調整為約35泊(poise),製成負型感光性樹脂組合物。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.5%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D2> 上述實施例D1中,將(B)成分變為N,N'-二苯基乙烷-1,2-二胺(東京化成工業股份有限公司製造),除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.2%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D3> 上述實施例D1中,將(B)成分變為胺基甲酸第三丁基苯酯(東京化成工業股份有限公司製造),除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.1%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D4> 上述實施例D1中,將(B)成分變為(3-羥基苯基)胺基甲酸第三丁酯(東京化成工業股份有限公司製造),除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.8%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D5> 上述實施例D1中,將(B)成分變為2-羥基-N-(1H-1,2,4-三唑-3-基)苯甲醯胺(ADEKA股份有限公司製造,Adekastab CDA-1),除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.8%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D6> 上述實施例D1中,將(B)成分變為2-(2H-苯并[d][1,2,3]三唑-2-基)-4-(2,4,4-三甲基戊烷-2-基)苯酚(ADEKA股份有限公司製造,Adekastab LA-29),除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.2%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D7> 上述實施例D1中,將(B)成分變為(4-((1H-1,2,4-三唑-1-基)甲基)苯基)甲醇(東京化成工業股份有限公司製造),除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.1%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D8> 上述實施例D1中,將(B)-1成分之添加量變為1 g,除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得8.5%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D9> 上述實施例D1中,將(B)-1成分之添加量變為6 g,除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.9%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D10> 上述實施例D1中,將(B)-1成分之添加量變為10 g,除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行230℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.0%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D11> 上述實施例D1中,將固化溫度自230℃變為350℃,除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.1%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D12> 上述實施例D1中,作為(A)樹脂,將聚合物(A)-1 50 g與聚合物(A)-2 50 g變為聚合物(A)-1 100 g,將(C)成分自PDO變為1,2-辛烷二酮-1-{4-(苯硫基)-2-(O-苯甲醯基肟)}(Irgacure OXE01(BASF公司製造,商品名))2.5 g,除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.8%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D13> 上述實施例D12中,將溶劑變為γ-丁內酯85 g與二甲基亞碸15 g,除此以外,藉由與實施例D12相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得5.4%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D14> 上述實施例D1中,作為(A)樹脂,將聚合物(A)-1 50 g與聚合物(A)-2 50 g變為聚合物(A)-3 100 g,將固化溫度自230℃變為350℃,除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得7.2%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D15> 上述實施例D1中,作為(A)樹脂,將聚合物(A)-1 50 g與聚合物(A)-2 50 g變為聚合物(A)-4 100 g,除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物溶液。 針對該組合物,於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得4.9%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D16> 使用聚合物(A)-5,藉由以下之方法製備正型感光性樹脂組合物,並對所製備之感光性樹脂組合物進行評價。將作為聚㗁唑前驅物之聚合物(A)-5 100 g(相當於(A)樹脂)與下述式(96): [化107]
Figure 02_image213
所表示之77%之酚性羥基經萘醌二疊氮-4-磺酸酯化之感光性重氮醌化合物(東洋合成公司製造,相當於(C)成分)(C1)15 g溶解於γ-丁內酯(作為溶劑)100 g。藉由進而添加少量之γ-丁內酯而將所獲得之溶液之黏度調整為約20泊(poise),製成正型感光性樹脂組合物。 針對該組合物,藉由上述方法進行350℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.9%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <實施例D17> 上述實施例D16中,作為(A)樹脂,將聚合物(A)-5 100 g變為聚合物(A)-6 100 g,除此以外,藉由與實施例D12相同之方式製備正型感光性樹脂組合物溶液。 針對該組合物,藉由上述方法進行250℃固化而於Cu層上製作硬化浮凸圖案,進行高溫保存試驗後,評價空隙於Cu層之表面所占之面積比率,而獲得6.0%之結果。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <比較例D1> 於實施例D1之組成中,不添加(B)-1成分,除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物,並進行與實施例D1相同之評價。由於不含本發明之(B)成分,故評價結果為15.2%。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <比較例D2> 於實施例D15之組成中,不添加(B)-1成分,除此以外,藉由與實施例D15相同之方式製備負型感光性樹脂組合物,並進行與實施例D15相同之評價。由於不含本發明之(B)成分,故評價結果為14.3%。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <比較例D3> 於實施例D13之組成中,不添加(B)-1成分,除此以外,藉由與實施例D13相同之方式製備負型感光性樹脂組合物,並進行與實施例D13相同之評價。由於不含本發明之(B)成分,故評價結果為15.7%。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <比較例D4> 於實施例D17之組成中,不添加(B)-1成分,除此以外,藉由與實施例D17相同之方式製備正型感光性樹脂組合物,並進行與實施例D17相同之評價。由於不含本發明之(B)成分,故評價結果為16.3%。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以內。 <比較例D5> 於實施例D1之組成中,將(B)-1成分之添加量變為25 g,除此以外,藉由與實施例D1相同之方式製備負型感光性樹脂組合物,並進行與實施例D1相同之評價。評價結果為7.2%。又,所獲得之清漆之保存穩定性試驗後之黏度變化率為10%以上。 將該等實施例D1~17、比較例D1~5之結果彙總示於表4。 [表1] 表1
Figure 108121559-A0304-0001
[表2] 表2
Figure 108121559-A0304-0002
[表3] 表3
Figure 108121559-A0304-0003
[表4] 表4
Figure 108121559-A0304-0004
Figure 108121559-A0304-0005
[產業上之可利用性] 本發明之感光性樹脂組合物可較佳地用於例如對半導體裝置、多層配線基板等電氣・電子材料之製造有用之感光性材料領域。The present invention will be specifically described below. In addition, in this specification, when the structure represented by the same symbol in a general formula exists in plural in a molecule, it may be mutually identical or different. <Photosensitive Resin Composition> (Aspect A) The present invention contains, as an essential component, (A) selected from the group consisting of polyamic acid, polyamide ester and polyamide salt, polyhydroxyamide , polyaminoamide, polyamide, polyamideimide, polyimide, polybenzoxazole, and at least one resin in the group consisting of novolac, polyhydroxystyrene, and phenolic resin: 100 parts by mass, (B) cyclic compound having a carbonyl group: 0.01 to 10 parts by mass based on 100 parts by mass of (A) resin, (C) photosensitive agent: 1 to 10 parts by mass based on 100 parts by mass of (A) resin 50 parts by mass. (A) Resin The (A) resin used in this invention is demonstrated. The (A) resin of the present invention is selected from polyamide acid, polyamide ester, polyamide acid salt, polyhydroxyamide, polyaminoamide, polyamide, polyamide imide, At least one resin selected from the group consisting of polyimide, polybenzoxazole, and novolak, polyhydroxystyrene, and phenolic resin is used as the main component. Here, the term "main component" means that these resins account for at least 60% by mass of the entire resin, preferably at least 80% by mass. Moreover, other resins may be contained as needed. The weight average molecular weight of these resins is preferably 200 or more, more preferably 5,00 or more, in terms of heat resistance and mechanical properties after heat treatment, in terms of polystyrene conversion based on gel permeation chromatography. The upper limit is preferably at most 500,000, and when it is used as a photosensitive resin composition, it is more preferably at most 20,000 from the viewpoint of solubility in a developing solution. In the present invention, the (A) resin is a photosensitive resin in order to form a relief pattern. The photosensitive resin is used together with the following (C) photosensitive agent to form a photosensitive resin composition, and it is a resin that causes a phenomenon of dissolution or non-dissolution in the subsequent developing step. As a photosensitive resin, it is used in polyamic acid, polyamide ester, polyamide acid salt, polyhydroxyamide, polyaminoamide, polyamide, polyamideimide, polyimide, Among polybenzoxazole, and phenolic resins including novolac and polyhydroxystyrene, polyamic acid, polyacrylic acid, and polyacrylamide are preferably used in terms of excellent heat resistance and mechanical properties of the resin after heat treatment. Amino acid esters, polyamic acid esters, polyamides, polyhydroxyamides, polyimides and phenolic resins. Moreover, these photosensitive resins can be selected together with the following (C) photosensitizer according to the desired application to prepare any negative-type or positive-type photosensitive resin composition, etc. [(A) Polyamic acid, polyamic acid ester, polyamic acid salt] Among the photosensitive resin compositions of the present invention, an example of (A) resin that is optimal from the viewpoint of heat resistance and photosensitive properties For the above general formula (1): [Chemical 13]
Figure 02_image025
{where, X 1 It is a 4-valent organic group, Y 1 is a divalent organic group, n 1 It is an integer from 2 to 150, R 1 and R 2 Each independently is a hydrogen atom, a saturated aliphatic group with 1 to 30 carbons, or the above general formula (2): [Chem. 14]
Figure 02_image027
(where, R 3 , R 4 and R 5 are independently a hydrogen atom or an organic group with 1 to 3 carbons, and m 1 It is a monovalent organic group represented by an integer of 2 to 10), or a monovalent organic group represented by a saturated aliphatic group with 1 to 4 carbon atoms}; or the following general formula (3): [Chemical 15]
Figure 02_image029
(where, R 6 , R 7 and R 8 are independently a hydrogen atom or an organic group with 1 to 3 carbons, and m 2 is an integer of 2 to 10) represented by a valent ammonium ion} represented by polyamic acid, polyamic acid ester or polyamic acid salt as a polyimide precursor. The polyimide precursor is converted into polyimide by performing a cyclization treatment with heating (eg, above 200° C.). The polyimide precursor is suitable for negative photosensitive resin composition. In the above general formula (1), X 1 The tetravalent organic group represented is preferably an organic group with 6 to 40 carbon atoms, more preferably -COOR in terms of both heat resistance and photosensitive properties. 1 Base and -COOR 2 An aromatic group or an alicyclic aliphatic group in which the group and the -CONH- group are in the ortho position to each other. as X 1 The tetravalent organic group represented is preferably an organic group with 6 to 40 carbon atoms containing an aromatic ring, more preferably the following formula (30): [Chemical 16]
Figure 02_image031
{In the formula, R25 is a monovalent group selected from a hydrogen atom, a fluorine atom, a C1-C10 hydrocarbon group, and a C1-C10 fluorine-containing hydrocarbon group, l is an integer selected from 0-2, and m is selected from 0-3 integer, n is an integer selected from 0 to 4} the structure represented by, but not limited to these. Again, X 1 The structure may be one type, or a combination of two or more types. X having the structure represented by the above formula 1 The base is particularly preferable in terms of both heat resistance and photosensitivity. In the above general formula (1), Y 1 The divalent organic group represented is preferably an aromatic group with 6 to 40 carbon atoms in terms of both heat resistance and photosensitive properties. For example, the following formula (31) can be cited: [Chemical 17]
Figure 02_image033
{In the formula, R25 is a monovalent group selected from a hydrogen atom, a fluorine atom, a C1-C10 hydrocarbon group, and a C1-C10 fluorine-containing hydrocarbon group, and n is an integer selected from 0-4} The structure represented, but not Not limited to these. Again, Y 1 The structure may be one type, or a combination of two or more types. Y having the structure represented by the above formula (31) 1 The base is particularly preferable in terms of both heat resistance and photosensitivity. R in the above general formula (2) 3 Preferably a hydrogen atom or a methyl group, R 4 and R 5 From the viewpoint of photosensitivity, hydrogen atoms are preferred. again, m 1 From the viewpoint of photosensitivity, it is an integer of 2 or more and 10 or less, preferably an integer of 2 or more and 4 or less. When using a polyimide precursor as (A) resin, as a form which provides photosensitivity to a photosensitive resin composition, an ester bond type and an ion bond type are mentioned. The former is a method of introducing a compound with a photopolymerizable group, that is, an olefinic double bond, into the side chain of the polyimide precursor through an ester bond, and the latter is a method of combining the carboxyl group of the polyimide precursor with an amine group. A method of imparting a photopolymerizable group by bonding the amine groups of a (meth)acrylic compound via an ionic bond. The polyimide precursor of the above-mentioned ester bond type is obtained by the following method, that is, at first, making the above-mentioned 4-valent organic group X 1 Tetracarboxylic dianhydrides react with alcohols with photopolymerizable unsaturated double bonds and any saturated aliphatic alcohols with 1 to 4 carbons to prepare partially esterified tetracarboxylic acids (hereinafter also referred to as acid/ester body), make it with the above-mentioned divalent organic group Y 1 Amide polycondensation of diamines. (Preparation of Acid/Ester Body) In the present invention, as a precursor suitable for the preparation of ester-bonded polyimide, a tetravalent organic group X 1 Tetracarboxylic dianhydrides include tetracarboxylic dianhydrides represented by the above general formula (30), such as pyromellitic dianhydride, diphenyl ether-3,3',4,4'-tetracarboxylic Carboxylic acid dianhydride, benzophenone-3,3',4,4'-tetracarboxylic dianhydride, biphenyl-3,3',4,4'-tetracarboxylic dianhydride, diphenylsulfone -3,3',4,4'-tetracarboxylic dianhydride, diphenylmethane-3,3',4,4'-tetracarboxylic dianhydride, 2,2-bis(3,4-benzenedi Formic anhydride) propane, 2,2-bis(3,4-phthalic anhydride)-1,1,1,3,3,3-hexafluoropropane, etc., preferably, pyromellitic dianhydride, Diphenyl ether-3,3',4,4'-tetracarboxylic dianhydride, benzophenone-3,3',4,4'-tetracarboxylic dianhydride, biphenyl-3,3', 4,4'-tetracarboxylic dianhydride, but not limited to these. Moreover, these can be used individually of course, but can also mix and use 2 or more types. In the present invention, alcohols having photopolymerizable unsaturated double bonds suitable for the preparation of ester bond type polyimide precursors include, for example: 2-acryloxyethanol, 1-acryloxyethanol -3-propanol, 2-acrylamidoethanol, hydroxymethyl vinyl ketone, 2-hydroxyethyl vinyl ketone, 2-hydroxy-3-methoxypropyl acrylate, 2-hydroxy-3- acrylate Butoxypropyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2-hydroxy-3-butoxypropyl acrylate, 2-hydroxy-3-tert-butoxypropyl acrylate, 2- Hydroxy-3-cyclohexyloxypropyl ester, 2-methacryloxyethanol, 1-methacryloxy-3-propanol, 2-methacrylamidoethanol, hydroxymethylvinyl Ketone, 2-Hydroxyethyl vinyl ketone, 2-Hydroxy-3-methoxypropyl methacrylate, 2-Hydroxy-3-butoxypropyl methacrylate, 2-Hydroxy-3-methacrylate Phenoxypropyl, 2-Hydroxy-3-butoxypropyl methacrylate, 2-Hydroxy-3-tert-butoxypropyl methacrylate, 2-Hydroxy-3-cyclohexyloxymethacrylate Propyl ester etc. A part of saturated aliphatic alcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol can also be mixed with the above alcohols. Dissolve the above-mentioned suitable tetracarboxylic dianhydride and the above-mentioned alcohols in the presence of a basic catalyst such as pyridine in the following solvent at a temperature of 20-50°C for 4-10 hours, Mix to carry out the esterification reaction of the acid anhydride to obtain the desired acid/ester body. (Preparation of polyimide precursor) To the above-mentioned acid/ester body (typically, a solution in the following solvent), add a suitable dehydration condensation agent, such as bicyclic carbodiimide ( For example, dicyclohexylcarbodiimide), 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1-carbonyldioxy-di-1,2,3- After mixing benzotriazole, N,N'-dibutanediimide carbonate, etc. to make the acid/ester body into polyanhydride, add dropwise to it, which is suitable for use in the present invention. organic group Y 1 The diamines obtained by dissolving or dispersing in a solvent are subjected to amide polycondensation, thereby obtaining the target polyimide precursor. Alternatively, the acid moiety in the above-mentioned acid/ester is chlorinated by using thionyl chloride or the like, and then reacted with a diamine compound in the presence of a base such as pyridine, thereby obtaining the target polyimide precursor. As a divalent organic group Y suitable for use in the present invention 1 Diamines, such as p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenyl ether, 3, 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 3, 3'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 3,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfide, 4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 4,4'-diaminobenzophenone, 3,4' -Diaminobenzophenone, 3,3'-diaminobenzophenone, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3, 3'-Diaminodiphenylmethane, 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3 -aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]pyridine, bis[4-(3-aminophenoxy)phenyl]pyridine, 4,4-bis (4-aminophenoxy)biphenyl, 4,4-bis(3-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]ether, bis[4 -(3-aminophenoxy)phenyl]ether, 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 9,10-bis (4-aminophenyl)anthracene, 2,2-bis(4-aminophenyl)propane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis[4- (4-aminophenoxy)phenyl)propane, 2,2-bis[4-(4-aminophenoxy)phenyl)hexafluoropropane, 1,4-bis(3-aminopropyl Dimethylsilyl) benzene, o-toluidine, 9,9-bis(4-aminophenyl) fluorine, and some of the hydrogen atoms on the benzene ring of these are replaced by methyl, ethyl, hydroxymethyl Substituents such as radical, hydroxyethyl, halogen, etc., such as 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4,4'-diaminobiphenyl Benzene, 3,3'-Dimethyl-4,4'-diaminodiphenylmethane, 2,2'-Dimethyl-4,4'-diaminodiphenylmethane, 3,3'-Dimethoxy-4,4'-diaminobiphenyl,3,3'-dichloro-4,4'-diaminobiphenyl,2,2'-dimethylbenzidine, 2,2 '-Bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-bis(fluoro)-4,4'-diaminobiphenyl, 4,4'-diaminobiphenyl Octafluorobiphenyl, etc.; preferably, p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenyl ether, 2,2'-dimethylbenzidine, 2,2'-bis (Trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-bis(fluoro)-4,4'-diaminobiphenyl, 4,4'-diaminooctafluorobiphenyl Benzene, etc., and mixtures thereof, etc., but not limited thereto. Also, in order to improve the adhesion between the resin layer formed on the substrate and various substrates by coating the photosensitive resin composition of the present invention on the substrate, when preparing the polyimide precursor, it can also be mixed with 1,3- Copolymerize diaminosiloxanes such as bis(3-aminopropyl)tetramethyldisiloxane and 1,3-bis(3-aminopropyl)tetraphenyldisiloxane. After the amide polycondensation reaction is completed, if necessary, the water-absorbing by-product of the dehydration condensation agent coexisting in the reaction solution is filtered and separated, and then water, aliphatic lower alcohol, or a mixture thereof is added to the obtained polymer component A poor solvent is used to separate out the polymer components, and then repeated re-dissolution, re-precipitation, etc., thereby refining the polymer, and vacuum-drying to isolate the target polyimide precursor. In order to improve the degree of purification, the polymer solution can also be passed through a column filled with anion and/or cation exchange resin swollen with a suitable organic solvent to remove ionic impurities. On the other hand, the above ionomer polyimide precursor is typically obtained by reacting tetracarboxylic dianhydride and diamine. In this case, R in the above general formula (1) 1 and R 2 At least one of them is hydroxyl. As tetracarboxylic dianhydride, the acid anhydride of tetracarboxylic acid containing the structure of said formula (30) is preferable, and as diamine, the diamine containing the structure of said formula (31) is preferable. By adding the following (meth)acrylic compound which has an amine group to the obtained polyamide precursor, the photopolymerizable group was given by utilizing the ionic bond of a carboxyl group and an amine group. As the (meth)acrylic compound having an amino group, for example, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, diethylaminoethyl acrylate, diethylamino methacrylate Ethyl ester, dimethylaminopropyl acrylate, dimethylaminopropyl methacrylate, diethylaminopropyl acrylate, diethylaminopropyl methacrylate, dimethylaminobutyl acrylate, methacrylic acid Dimethylaminobutyl acrylate, diethylaminobutyl acrylate, diethylaminobutyl methacrylate, dialkylaminoalkyl acrylate or dialkylaminoalkyl methacrylate, wherein, From the viewpoint of photosensitive properties, dialkylaminoalkyl acrylate or dimethacrylate with an alkyl group having 1 to 10 carbon atoms and an alkyl chain having 1 to 10 carbon atoms is preferred. Alkylaminoalkyl esters. The compounding quantity of the (meth)acrylic-type compound which has these amino groups is 1-20 mass parts with respect to 100 mass parts of (A) resins, Preferably it is 2-15 mass parts from a viewpoint of the light sensitivity characteristic. parts by mass. With respect to 100 parts by mass of (A) resin, by compounding 1 part by mass or more of (meth)acrylic compound having an amino group as (C) photosensitizer, the photosensitivity is excellent, and by compounding 20 parts by mass or less, a thick film can be obtained. Excellent curability. The molecular weight of the above-mentioned ester bond type and the above ion bond type polyimide precursor is preferably 8,000 to 150,000 when measured as a polystyrene-equivalent weight average molecular weight by gel permeation chromatography , more preferably 9,000 to 50,000. When the weight average molecular weight is 8,000 or more, the mechanical properties are good, and when the weight average molecular weight is 150,000 or less, the dispersibility in the developer is good, and the resolution performance of the relief pattern is good. As developing solvents for gel permeation chromatography, tetrahydrofuran and N-methyl-2-pyrrolidone are recommended. In addition, the weight average molecular weight was calculated|required from the calibration curve prepared using the standard monodisperse polystyrene. As the standard monodisperse polystyrene, it is recommended to select from the organic solvent-based standard sample STANDARD SM-105 manufactured by Showa Denko. [(A) Polyamide] Another example of the preferred (A) resin in the photosensitive resin composition of the present invention has the following general formula (4): [Chemical 18]
Figure 02_image035
{where, X 2 It is a trivalent organic group with 6 to 15 carbons, Y 2 It is a divalent organic group with 6 to 35 carbon atoms, and can have the same structure or multiple structures, R 9 is an organic group having at least one free radical polymerizable unsaturated bonding group with a carbon number of 3 to 20, and n 2 Integer of 1 to 1000} Polyamide having a structure represented by . This polyamide is suitable for use in negative photosensitive resin compositions. In the above general formula (4), as R 9 The represented group is preferably the following general formula (32) in terms of both photosensitive properties and chemical resistance [Chem. 19]
Figure 02_image037
{where, R 32 A group represented by an organic group} having at least one radically polymerizable unsaturated bonding group having 2 to 19 carbon atoms. In the above general formula (4), as X 2 The trivalent organic group represented is preferably a trivalent organic group with 6 to 15 carbon atoms, for example, preferably selected from the following formula (33): [Chemical 20]
Figure 02_image039
The aromatic group among the groups shown is more preferably an aromatic group obtained by removing a carboxyl group and an amino group from an amino-substituted isophthalic acid structure. In the above general formula (4), as Y 2 The divalent organic group represented is preferably an organic group having 6 to 35 carbon atoms, more preferably a cyclic organic group having 1 to 4 aromatic rings or aliphatic rings which may be substituted, or having no Aliphatic group or siloxane group with ring structure. as Y 2 The divalent organic groups represented include the following general formula (I) and the following general formulas (34), (35): [Chemical 21]
Figure 02_image041
[chem 22]
Figure 02_image043
{where, R 33 and R 34 are independently selected from hydroxyl, methyl (-CH 3 ), ethyl (-C 2 h 5 ), propyl (-C 3 h 7 ) or butyl (-C 4 h 9 ), and the propyl and butyl groups include various isomers} [Chem. 23]
Figure 02_image045
{where, m 7 is an integer from 0 to 8, m 8 and m 9 are independently integers from 0 to 3, m 10 and m 11 are independently integers from 0 to 10, and R 35 and R 36 is methyl (-CH 3 ), ethyl (-C 2 h 5 ), propyl (-C 3 h 7 ), Butyl (-C 4 h 9 ) or their isomers}. Regarding the aliphatic group or siloxane group without a ring structure, as its preferred one, the following general formula (36) can be cited: [Chemical 24]
Figure 02_image047
{where, m 12 Integer of 2 to 12, m 13 is an integer from 1 to 3, m 14 is an integer from 1 to 20, and R 37 , R 38 , R 39 and R 40 are independently an alkyl group having 1 to 3 carbon atoms or a phenyl group which may be substituted}. The polyamide resin of the present invention can be synthesized, for example, as follows. (Synthesis of end-capped phthalic acid compounds) The first step is to make a trivalent aromatic group X 2 compounds, such as at least one compound selected from the group consisting of amino-substituted phthalic acid, amino-substituted isophthalic acid and amino-substituted terephthalic acid (hereinafter referred to as 1 mole of a "phthalic acid compound") and 1 mole of a compound that reacts with an amine group are reacted, and the amine group of the phthalic acid compound is synthesized through the following radical-polymerizable unsaturated bond-containing group Modified and blocked compounds (hereinafter referred to as "phthalic acid compound-blocked products"). These may be used alone or in combination. If the structure in which the phthalic acid compound is terminated by the above radical-polymerizable unsaturated bond-containing group, negative photosensitivity (photocurability) can be imparted to the polyamide resin. The group containing a radically polymerizable unsaturated bond is preferably an organic group having a radically polymerizable unsaturated bond group having 3 to 20 carbon atoms, particularly preferably a methacryl group or an acryl group. foundation. The above-mentioned phthalic acid compound-capped body can be obtained by making the amine group of the phthalic acid compound, and an acyl chloride, isocyanate or epoxy compound with at least one free radical polymerizable unsaturated bonding group having at least one carbon number of 3 to 20 obtained by the reaction. Examples of suitable acyl chloride include: (meth)acryl chloride, 2-[(meth)acryloxy]acetyl chloride, 3-[(meth)acryloxy]acryl chloride, chlorine 2-[(meth)acryloxy]ethyl formate, 3-[(meth)acryloxypropyl]chloroformate, and the like. Examples of suitable isocyanates include: 2-(meth)acryloxyethyl isocyanate, 1,1-bis[(meth)acryloxymethyl]ethyl isocyanate, isocyanic acid 2-[2-(Meth)acryloxyethoxy]ethyl ester and the like. Glycidyl (meth)acrylate etc. are mentioned as a suitable epoxy compound. These may be used alone or in combination, but it is particularly preferable to use methacryloyl chloride and/or 2-(methacryloyloxy)ethyl isocyanate. Furthermore, as these phthalic acid compound-capped products, those in which the phthalic acid compound is 5-aminoisophthalic acid can obtain polyamide not only excellent in photosensitive properties but also excellent in film properties after heating and hardening, so it is preferable. . The above-mentioned capping reaction can be carried out by stirring and dissolving the phthalic acid compound and the capping agent in the solvent described below in the presence of a basic catalyst such as pyridine or a tin-based catalyst such as di-n-butyltin dilaurate, Mix and proceed. Acyl chloride, etc. will generate hydrogen chloride as a by-product during the capping reaction process depending on the type of capping agent. In this case, in order to prevent contamination of subsequent steps, it is preferable to perform appropriate purification, that is, temporarily reprecipitate in water and wash and dry, or pass through a column filled with ion exchange resin to remove and reduce ions. ingredients etc. (Synthesis of polyamide) The above-mentioned phthalic acid compound end-capped product and a divalent organic group Y 2 In the presence of a basic catalyst such as pyridine or triethylamine, the diamine compound is mixed in a solvent as described below to carry out amide polycondensation, thereby obtaining the polyamide of the present invention. As the amide polycondensation method, a method in which a phthalic acid compound-capped body is made into a symmetrical polyanhydride and then mixed with a diamine compound using a dehydrating condensing agent, or a phthalic acid compound-capped body is made by a known method A method of mixing with a diamine compound after acyl chlorination, and a method of mixing with a diamine compound after active esterification by reacting a dicarboxylic acid component with an active esterification agent in the presence of a dehydration condensation agent, etc. As the dehydration condensation agent, for example, as preferable ones, there may be mentioned: dicyclohexylcarbodiimide, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline, 1,1'- Carbonyldioxy-di-1,2,3-benzotriazole, N,N'-disuccimidyl carbonate, etc. As a chlorinating agent, thionyl chloride etc. are mentioned. Examples of active esterification agents include: N-hydroxybutanediimide or 1-hydroxybenzotriazole, N-hydroxy-5-northene-2,3-dicarboximide, 2-hydroxyimide Amino-2-cyanoethyl acetate, 2-hydroxyimino-2-cyanoacetamide, and the like. As having an organic group Y 2 The diamine compound is preferably selected from the group consisting of aromatic diamine compounds, aromatic diaminophenol compounds, alicyclic diamine compounds, straight-chain aliphatic diamine compounds, and siloxane diamine compounds At least one type of diamine compound may be used in combination if necessary. Examples of aromatic diamine compounds include: p-phenylenediamine, m-phenylenediamine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, Aminodiphenyl ether, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 4,4'- Diaminodiphenylene, 3,4'-diaminodiphenylene, 3,3'-diaminodiphenylene, 4,4'-diaminobiphenyl, 3,4'- Diaminobiphenyl, 3,3'-diaminobiphenyl, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 3,3'-diamine benzophenone, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 1,4-bis (4-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, bis[4-(4- Aminophenoxy)phenyl]pyridine, bis[4-(3-aminophenoxy)phenyl]pyridine, 4,4'-bis(4-aminophenoxy)biphenyl, 4,4 '-Bis(3-aminophenoxy)biphenyl, bis[4-(4-aminophenoxy)phenyl]ether, bis[4-(3-aminophenoxy)phenyl]ether , 1,4-bis(4-aminophenyl)benzene, 1,3-bis(4-aminophenyl)benzene, 9,10-bis(4-aminophenyl)anthracene, 2,2- Bis(4-aminophenyl)propane, 2,2-bis(4-aminophenyl)hexafluoropropane, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 1,4-bis(3-aminopropyldimethylsilyl)benzene, o-toluidine, 9,9-bis(4-aminophenyl) fluorine, and one of the hydrogen atoms on the benzene ring is selected from the group consisting of methyl, ethyl, hydroxymethyl, hydroxyethyl and halogen atoms One or more group-substituted diamine compounds in the group. Examples of diamine compounds in which hydrogen atoms on the benzene ring are substituted include: 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl-4 ,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 2,2'-dimethyl-4,4'-diaminobis Phenylmethane, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dichloro-4,4'-diaminobiphenyl, etc. Examples of the aromatic bisaminophenol compound include: 3,3'-dihydroxybenzidine, 3,3'-diamino-4,4'-dihydroxybiphenyl, 3,3'-dihydroxy-4 ,4'-Diaminodiphenylsulfone, bis-(3-amino-4-hydroxyphenyl)methane, 2,2-bis-(3-amino-4-hydroxyphenyl)propane, 2, 2-bis-(3-amino-4-hydroxyphenyl)hexafluoropropane, 2,2-bis-(3-hydroxy-4-aminophenyl)hexafluoropropane, bis-(3-hydroxy-4 -aminophenyl)methane, 2,2-bis-(3-hydroxy-4-aminophenyl)propane, 3,3'-dihydroxy-4,4'-diaminobenzophenone, 3 ,3'-Dihydroxy-4,4'-diaminodiphenyl ether, 4,4'-dihydroxy-3,3'-diaminodiphenyl ether, 2,5-dihydroxy-1,4- Diaminobenzene, 4,6-diaminoresorcinol, 1,1-bis(3-amino-4-hydroxyphenyl)cyclohexane, 4,4-(α-methylbenzylidene )-bis(2-aminophenol), etc. Examples of the alicyclic diamine compound include: 1,3-diaminocyclopentane, 1,3-diaminocyclohexane, 1,3-diamino-1-methylcyclohexane, 3 ,5-diamino-1,1-dimethylcyclohexane, 1,5-diamino-1,3-dimethylcyclohexane, 1,3-diamino-1-methyl- 4-isopropylcyclohexane, 1,2-diamino-4-methylcyclohexane, 1,4-diaminocyclohexane, 1,4-diamino-2,5-diethyl Cyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1,4-bis(aminomethyl)cyclohexane, 2-(3-aminocyclopentyl)-2-propane amine, menthane diamine, isophorone diamine, northane diamine, 1-cycloheptene-3,7-diamine, 4,4'-methylenebis(cyclohexylamine), 4 ,4'-Methylenebis(2-methylcyclohexylamine), 1,4-bis(3-aminopropyl)piperone, 3,9-bis(3-aminopropyl)-2, 4,8,10-tetraoxaspiro-[5,5]-undecane, etc. Examples of linear aliphatic diamine compounds include: 1,2-diaminoethane, 1,4-diaminobutane, 1,6-diaminohexane, 1,8-diaminooctane alkane, 1,10-diaminodecane, 1,12-diaminododecane and other hydrocarbon diamines, or 2-(2-aminoethoxy)ethylamine, 2,2'-( Alkylene oxide type diamines such as ethylenedioxy)diethylamine, bis[2-(2-aminoethoxy)ethyl]ether, and the like. Examples of the siloxane diamine compound include dimethyl (poly) siloxane diamine such as Shin-Etsu Chemical Co., Ltd.'s brand name PAM-E, KF-8010, and X-22-161A. After the amide polycondensation reaction is completed, if necessary, the precipitate derived from the dehydration condensing agent and the like precipitated in the reaction solution are separated by filtration. Next, a poor solvent for polyamide, such as water, aliphatic lower alcohol, or a mixture thereof, is thrown into the reaction liquid to precipitate polyamide. Furthermore, the precipitated polyamide is redissolved in a solvent, and the reprecipitation operation is repeated for purification, followed by vacuum drying to isolate the target polyamide. Furthermore, in order to further improve the degree of purification, the polyamide solution can be passed through a column filled with ion exchange resin to remove ionic impurities. The polystyrene-equivalent weight average molecular weight of the polyamide by gel permeation chromatography (hereinafter referred to as "GPC") is preferably from 7,000 to 70,000, more preferably from 10,000 to 50,000. When the polystyrene-equivalent weight average molecular weight is 7,000 or more, the basic physical properties of the cured embossed pattern are ensured. Moreover, when polystyrene conversion weight average molecular weight is 70,000 or less, the image development solubility at the time of forming a relief pattern is ensured. As eluent for GPC, tetrahydrofuran or N-methyl-2-pyrrolidone is recommended. In addition, the weight average molecular weight value was calculated|required from the calibration curve prepared using the standard monodisperse polystyrene. As a standard monodisperse polystyrene, it is recommended to choose from the organic solvent-based standard sample STANDARD SM-105 manufactured by Showa Denko. [(A) Polyhydroxylamide] Another example of the preferred (A) resin in the photosensitive resin composition of the present invention has the following general formula (5): [Chemical 25]
Figure 02_image049
{where, Y 3 It is a tetravalent organic group having carbon atoms, preferably a tetravalent organic group having two or more carbon atoms, Y 4 、X 3 and X 4 Each independently is a divalent organic group having 2 or more carbon atoms, n 3 An integer from 1 to 1000, n 4 An integer from 0 to 500, n 3 /(n 3 +n 4 )>0.5, and contains X 3 and Y 3 of n 3 dihydroxydiamide units and containing X 4 and Y 4 of n 4 The arrangement order of the two diamide units is arbitrary} The polyhydroxyamide (polyoxazole precursor) of the structure represented by (hereinafter sometimes referred to as "polyoxazole) Precursor")). The polyoxazole precursor has the n in the above general formula (5) 3 A polymer of two dihydroxydiamide units (hereinafter sometimes referred to as dihydroxydiamide units) may also have n in the above general formula (5) 4 A diamide unit (hereinafter sometimes referred to as a diamide unit). x 3 The number of carbon atoms is preferably 2 or more and 40 or less based on the purpose of obtaining photosensitive properties, X 4 The number of carbon atoms is preferably 2 or more and 40 or less based on the purpose of obtaining photosensitive properties, Y 3 The number of carbon atoms is preferably 2 or more and 40 or less based on the purpose of obtaining photosensitive properties, and Y 4 The number of carbon atoms is preferably 2 or more and 40 or less for the purpose of obtaining photosensitive properties. The dihydroxydiamide unit can be obtained by having Y 3 (NH 2 ) 2 (OH) 2 The structure of the diamino dihydroxy compound (preferably bisaminophenol) with X 3 (COOH) 2 The structure of the dicarboxylic acid is formed by synthesis. Hereinafter, a typical aspect will be described by taking the case where the above-mentioned diaminodihydroxy compound is bisaminophenol as an example. The two groups of amine groups and hydroxyl groups of the bisaminophenol are respectively located in ortho positions, and the dihydroxydiamide unit is closed under heating at about 250-400° C. to transform into a heat-resistant polyoxazole structure. n in general formula (5) 3 It is 1 or more for the purpose of obtaining photosensitivity characteristics, and is 1000 or less for the purpose of obtaining photosensitivity characteristics. no 3 Preferably it is in the range of 2-1000, more preferably in the range of 3-50, most preferably in the range of 3-20. If necessary, it can also be condensed on the polyoxazole precursor 4 the above-mentioned diamide units. The diamide unit can be obtained by having Y 4 (NH 2 ) 2 The structure of the diamine with X 4 (COOH) 2 The structure of the dicarboxylic acid is formed by synthesis. n in general formula (5) 4 It is in the range of 0~500, by n 4 Good photosensitivity can be obtained if it is below 500. no 4 More preferably, it is in the range of 0-10. If the ratio of the diamide unit to the dihydroxydiamide unit is too high, the solubility in an alkaline aqueous solution used as a developer is reduced, so n in the general formula (5) 3 /(n 3 +n 4 ) is more than 0.5, more preferably 0.7 or more, most preferably 0.8 or more. About as having Y 3 (NH 2 ) 2 (OH) 2 The bisaminophenol of the diaminodihydroxy compound of the structure, for example, can include: 3,3'-dihydroxybenzidine, 3,3'-diamino-4,4'-dihydroxybiphenyl, 4, 4'-Diamino-3,3'-Dihydroxybiphenyl, 3,3'-Diamino-4,4'-Dihydroxydiphenyl, 4,4'-Diamino-3,3 '-Dihydroxydiphenylsulfone, bis-(3-amino-4-hydroxyphenyl)methane, 2,2-bis-(3-amino-4-hydroxyphenyl)propane, 2,2-bis -(3-amino-4-hydroxyphenyl)hexafluoropropane, 2,2-bis-(4-amino-3-hydroxyphenyl)hexafluoropropane, bis-(4-amino-3-hydroxy phenyl)methane, 2,2-bis-(4-amino-3-hydroxyphenyl)propane, 4,4'-diamino-3,3'-dihydroxybenzophenone, 3,3'-Diamino-4,4'-dihydroxybenzophenone,4,4'-diamino-3,3'-dihydroxydiphenyl ether, 3,3'-diamino-4,4' -Dihydroxydiphenyl ether, 1,4-diamino-2,5-dihydroxybenzene, 1,3-diamino-2,4-dihydroxybenzene, 1,3-diamino-4,6 -Dihydroxybenzene, etc. These bisaminophenols can be used individually or in combination of 2 or more types. As Y in the diaminophenol 3 The base, in terms of photosensitive properties, is preferably the following formula (37): [Chemical 26]
Figure 02_image051
{wherein, Rs1 and Rs2 each independently represent a hydrogen atom, a methyl group, an ethyl group, a propyl group, a cyclopentyl group, a cyclohexyl group, a phenyl group, or a trifluoromethyl group}. Also, as having Y 4 (NH 2 ) 2 The diamine of the structure includes aromatic diamine, silicon diamine, and the like. Among these, examples of aromatic diamines include m-phenylenediamine, p-phenylenediamine, 2,4-toluenediamine, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiamine Diphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenylene, 4,4'-diaminodiphenylene, 3,4'-diaminodiphenyl Diphenylmethane, 3,3'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane Aminodiphenyl sulfide, 3,3'-diaminobenzophenone, 4,4'-diaminobenzophenone, 3,4'-diaminobenzophenone, 2,2' -bis(4-aminophenyl)propane, 2,2'-bis(4-aminophenyl)hexafluoropropane, 1,3-bis(3-aminophenoxy)benzene, 1,3- Bis(4-aminophenoxy)benzene, 1,4-bis(4-aminophenoxy)benzene, 4-methyl-2,4-bis(4-aminophenoxy)-1-pentane ene, 4-methyl-2,4-bis(4-aminophenyl)-2-pentene, 1,4-bis(α,α-dimethyl-4-aminobenzyl)benzene, Amino di-p-phenylenediamine, 1,5-diaminonaphthalene, 2,6-diaminonaphthalene, 4-methyl-2,4-bis(4-aminophenyl)pentane, 5(or 6)-Amino-1-(4-aminophenyl)-1,3,3-trimethylindan, bis(p-aminophenyl)phosphine oxide, 4,4'-diaminoazo Benzene, 4,4'-diaminodiphenylurea, 4,4'-bis(4-aminophenoxy)biphenyl, 2,2-bis[4-(4-aminophenoxy) Phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, 2,2-bis[4-(3-aminophenoxy)phenyl]di Benzophenone, 4,4'-bis(4-aminophenoxy)diphenylphenone, 4,4'-bis[4-(α,α-dimethyl-4-aminobenzyl)benzene Oxy]benzophenone, 4,4'-bis[4-(α,α-dimethyl-4-aminobenzyl)phenoxy]diphenylphenone, 4,4'-diamino Biphenyl, 4,4'-diaminobenzophenone, phenylindane diamine, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-bis Methyl-4,4'-diaminobiphenyl, o-toluidine, 2,2-bis(4-aminophenoxyphenyl)propane, bis(4-aminophenoxyphenyl)pyridine , bis(4-aminophenoxyphenyl) sulfide, 1,4-(4-aminophenoxyphenyl)benzene, 1,3-(4-aminophenoxyphenyl)benzene, 9,9-bis(4-aminophenyl) fluorine, 4,4'-bis-(3-aminophenoxy)diphenylene, 4,4'-diaminobenzoylaniline, etc., And the hydrogen atoms of the aromatic nuclei of these aromatic diamines are replaced by at least one group or atom selected from the group consisting of chlorine atom, fluorine atom, bromine atom, methyl group, methoxyl group, cyano group and phenyl group compound. In addition, silicon diamine can be selected as the above-mentioned diamine in order to improve the adhesiveness with the base material. Examples of silicon diamines include bis(4-aminophenyl)dimethylsilane, bis(4-aminophenyl)tetramethylsiloxane, bis(4-aminophenyl)tetramethylsiloxane, and bis(4-aminophenyl)tetramethylsiloxane. Methyldisiloxane, bis(γ-aminopropyl)tetramethyldisiloxane, 1,4-bis(γ-aminopropyldimethylsilyl)benzene, bis(4-amino Butyl)tetramethyldisiloxane, bis(γ-aminopropyl)tetraphenyldisiloxane, etc. Also, as having x 3 (COOH) 2 or X 4 (COOH) 2 The preferred dicarboxylic acid of the structure, can enumerate X 3 and X 4 These are aliphatic groups or aromatic groups having a straight chain, branched chain or cyclic structure, respectively. Among them, an organic group having 2 or more and 40 or less carbon atoms that may contain an aromatic ring or an aliphatic ring is preferred, and X 3 and X 4 Respectively preferably from the following formula (38): [Chemical 27]
Figure 02_image053
{where, R 41 Indicates selected from -CH 2 -, -O-, -S-, -SO 2 -, -CO-, -NHCO- and -C(CF 3 ) 2 -Select from the aromatic groups represented by divalent group} in the group formed, and it is preferable in terms of photosensitive characteristics. The polyoxazole precursor can also be end-capped by a specific organic group. In the case of using a polyoxazole precursor terminated by an end-capping group, it is expected to change the mechanical properties (especially elongation) and the shape of the cured relief pattern of the coating film of the photosensitive resin composition of the present invention after heating and curing. well. As a preferred example of this end-capping group, the following formula (39) can be cited: [Chemical 28]
Figure 02_image055
Expressed. The weight average molecular weight in terms of polystyrene by gel permeation chromatography of the polyoxazole precursor is preferably from 3,000 to 70,000, more preferably from 6,000 to 50,000. The weight average molecular weight is preferably 3,000 or more from the viewpoint of the physical properties of the cured relief pattern. Also, from the viewpoint of resolution, it is preferably 70,000 or less. As developing solvents for gel permeation chromatography, tetrahydrofuran and N-methyl-2-pyrrolidone are recommended. In addition, molecular weight was calculated|required from the calibration curve prepared using the standard monodisperse polystyrene. As a standard monodisperse polystyrene, it is recommended to select from the organic solvent-based standard sample STANDARD SM-105 manufactured by Showa Denko. [(A) Polyimide] Another example of the preferred (A) resin in the photosensitive resin composition of the present invention has the above-mentioned general formula (6): [Chemical 29]
Figure 02_image057
{where, X 5 Represents an organic group with a valence of 4 to 14, Y 5 Represents an organic group with a valence of 2 to 12, R 10 and R 11 Represents an organic group having at least one group selected from phenolic hydroxyl group, sulfonic acid group or thiol group, and may be the same or different, n 5 is an integer from 3 to 200, and m 3 and m 4 is an integer of 0 to 10} the polyimide of the structure represented. Here, since the resin represented by the general formula (6) does not need to be chemically changed by a heat treatment step when expressing sufficient film properties, it is suitable for processing at a lower temperature, and is particularly preferable in this respect. X in the structural unit represented by the above general formula (6) 5 It is preferably a tetravalent to 14-valent organic group with 4 to 40 carbon atoms. In terms of both heat resistance and photosensitive properties, it is more preferably an organic group with 5 to 40 carbon atoms containing an aromatic ring or an aliphatic ring. The organic base. The polyimide represented by the above general formula (6) can combine tetracarboxylic acid, corresponding tetracarboxylic dianhydride, tetracarboxylic diester dichloride, etc. with diamine, corresponding diisocyanate compound, trimethylsilane It is obtained by reacting diamines. Polyimide can generally be obtained by subjecting polyamic acid, which is one of the polyimide precursors obtained by the reaction of tetracarboxylic dianhydride and diamine, to chemical treatment with heat or acid or alkali. And it is obtained by dehydration loop closure. Examples of suitable tetracarboxylic dianhydride include: pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-biphenyl 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 2,2',3,3'-benzophenone tetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydrate, 2,2-bis(2,3-dicarboxyphenyl ) propane dihydrate, 1,1-bis(3,4-dicarboxyphenyl)ethane dihydrate, 1,1-bis(2,3-dicarboxyphenyl)ethane dihydrate, bis( 3,4-dicarboxyphenyl)methane dihydrate, bis(2,3-dicarboxyphenyl)methane dihydrate, bis(3,4-dicarboxyphenyl)methane dihydrate, bis(3, 4-dicarboxyphenyl) ether dianhydrate, 1,2,5,6-naphthalene tetracarboxylic dianhydride, 9,9-bis(3,4-dicarboxyphenyl) fennelic dianhydride, 9,9 -Bis{4-(3,4-dicarboxyphenoxy)phenyl}stilbenic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic Aromatic tetracarboxylic dianhydrides such as acid dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydrate, or Butane tetracarboxylic dianhydride, 1,2,3,4-cyclopentane tetracarboxylic dianhydride and other aliphatic tetracarboxylic dianhydrides, 3,3',4,4'-diphenylene tetracarboxylic acid Dianhydride and the following general formula (40): [Chemical 30]
Figure 02_image059
{where, R 42 Indicates selected from oxygen atom, C(CF 3 ) 2 , C(CH 3 ) 2 or SO 2 Nakamoto, and R 43 and R 44 may be the same or different, and represent a compound represented by a group selected from a hydrogen atom, a hydroxyl group or a thiol group}. Among these, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-Biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 2,2',3,3'-benzophenone tetra Carboxylic acid dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dihydrate, 2,2-bis(2,3-dicarboxyphenyl)propane dihydrate, 1,1-bis (3,4-dicarboxyphenyl)ethane dihydrate, 1,1-bis(2,3-dicarboxyphenyl)ethane dihydrate, bis(3,4-dicarboxyphenyl)methane dihydrate Anhydrous, Bis(2,3-Dicarboxyphenyl)methane Dianhydrate, Bis(3,4-Dicarboxyphenyl)Phenyl Dianhydrate, Bis(3,4-Dicarboxyphenyl)Ether Dianhydrate , 2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydrate, 3,3',4,4'-diphenyl tetracarboxylic dianhydride, 9,9-bis(3 , 4-dicarboxyphenyl) oxalic dianhydride, 9,9-bis{4-(3,4-dicarboxyphenoxy) phenyl} oxalic dianhydride and the following general formula (41) [Chemical 31 ]
Figure 02_image061
{where, R 45 Indicates selected from oxygen atom, C(CF 3 ) 2 , C(CH 3 ) 2 or SO 2 Nakamoto, and R 46 and R 47 may be the same or different, and represent an acid dianhydride of a structure represented by a group} selected from a hydrogen atom, a hydroxyl group, or a thiol group. These can be used individually or in combination of 2 or more types. Y of the above general formula (6) 5 Represents a structural component of a diamine, and the diamine represents a 2-12-valent organic group containing an aromatic ring or an aliphatic ring, preferably an organic group having 5-40 carbon atoms. Specific examples of diamines include: 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4 '-Diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylsulfide, 4 ,4'-diaminodiphenyl sulfide, 1,4-bis(4-aminophenoxy)benzene, benzyne, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalene diamine, 2 ,6-naphthalenediamine, bis(4-aminophenoxyphenyl)pyridine, bis(3-aminophenoxyphenyl)bis(4-aminophenoxy)biphenyl, bis{ 4-(4-aminophenoxy)phenyl}ether, 1,4-bis(4-aminophenoxy)benzene, 2,2'-dimethyl-4,4'-diaminobis Benzene, 2,2'-diethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-diethyl -4,4'-diaminobiphenyl, 2,2',3,3'-tetramethyl-4,4'-diaminobiphenyl, 3,3',4,4'-tetramethyl -4,4'-diaminobiphenyl, 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 9,9-bis(4-aminophenyl) Or the compounds whose aromatic rings are substituted by alkyl or halogen atoms, or aliphatic cyclohexyldiamine, methylene bicyclohexylamine, and the following general formula (42): [Chemical 32]
Figure 02_image063
{where, R 48 Indicates selected from oxygen atom, C(CF 3 ) 2 , C(CH 3 ) 2 or SO 2 Nakamoto, and R 49 ~R 52 may be the same or different, and represent a diamine or the like selected from a structure represented by a hydrogen atom, a hydroxyl group, or a thiol group}. Among these, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'- Diaminodiphenylmethane, 3,4'-diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 3,4'-diaminodiphenylsulfide, 4,4 '-diaminodiphenyl sulfide, m-phenylenediamine, P-phenylenediamine, 1,4-bis(4-aminophenoxy)benzene, 9,9-bis(4-aminophenyl) Omega, and the following general formula (43): [Chemical 33]
Figure 02_image065
{where, R 53 Indicates selected from oxygen atom, C(CF 3 ) 2 , C(CH 3 ) 2 or SO 2 Nakamoto, and R 54 ~R 57 may be the same or different, and represent a diamine selected from a structure represented by a hydrogen atom, a hydroxyl group, or a thiol group}. Among these, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'- Diaminodiphenylmethane, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 1,4-bis(4-aminophenoxy)benzene, And the following general formula (44): [Chemical 34]
Figure 02_image067
{where, R 58 Indicates selected from oxygen atom, C(CF 3 ) 2 , C(CH 3 ) 2 or SO 2 Nakamoto, and R 59 and R 60 may be the same or different, and represent a diamine selected from a structure represented by a hydrogen atom, a hydroxyl group, or a thiol group}. These can be used individually or in combination of 2 or more types. R of general formula (6) 10 and R 11 Represents a phenolic hydroxyl group, a sulfonic acid group, or a thiol group. In the present invention, as R 10 and R 11 , phenolic hydroxyl groups, sulfonic acid groups and/or thiol groups may be mixed. By controlling R 10 and R 11 The amount of the alkali-soluble group changes the dissolution rate in the alkaline aqueous solution, so a photosensitive resin composition with an appropriate dissolution rate can be obtained through this adjustment. Furthermore, in order to improve the adhesion with the substrate, it can also be used as X within the range that does not reduce the heat resistance. 5 , Y 5 Copolymerize the aliphatic group with siloxane structure. Specifically, bis(3-aminopropyl)tetramethyldisiloxane, bis(p-aminophenyl)octamethylpentasiloxane and Alkanes, etc. have been copolymerized, etc. The above-mentioned polyimide can be obtained by using the following method to obtain the polyimide precursor, and then use a known imidization reaction method to completely imidize the polyimide precursor, or stop the imidization halfway. amination reaction to introduce a part of the imide structure (in this case polyamideimide), or by blending a fully imidized polymer with the polyimide precursor Synthesis is carried out by introducing a part of the imine structure. The above-mentioned method of obtaining the polyimide precursor is as follows: for example, tetracarboxylic dianhydride and diamine compound (a part is replaced by a terminal blocking agent as a monoamine) at low temperature Reaction; make tetracarboxylic dianhydride (a part is replaced by an end-capping agent as an acid anhydride or monoacyl chloride compound or a single active ester compound) and a diamine compound at low temperature; obtain dicarboxylic acid dianhydride and alcohol Esters, and then react with diamines (partially replaced by end-capping agents as monoamines) in the presence of condensing agents; diesters are obtained from tetracarboxylic dianhydrides and alcohols, and then the remaining dicarboxylic acids are Acyl chloride is reacted with diamine (part of which is replaced by end-capping agent as monoamine). It is preferable that the said polyimide has a polyimide so that the imidization rate may be 15 % or more with respect to the whole resin which comprises a photosensitive resin composition. Furthermore, it is more preferably 20% or more. Here, the imidization ratio means the ratio of imidization existing in the whole resin which comprises a photosensitive resin composition. If the imidization rate is lower than 15%, the shrinkage during thermosetting will increase, which is not suitable for thick film production. The imidization ratio can be easily calculated by the following method. First, measure the infrared absorption spectrum of the polymer, and confirm the presence of absorption peaks (around 1780 cm-1 and around 1377 cm-1) derived from the imide structure of polyimide. Then, heat treat the polymer at 350°C for 1 hour, measure the infrared absorption spectrum after heat treatment, compare the peak intensity near 1377 cm-1 with the intensity before heat treatment, and calculate the imidization rate. The molecular weight of the polyimide is preferably 3,000 to 200,000, more preferably 5,000 to 50,000 when measured as a polystyrene-equivalent weight average molecular weight by gel permeation chromatography. When the weight average molecular weight is 3,000 or more, the mechanical properties are good, and when the weight average molecular weight is 50,000 or less, the dispersibility in the developer is good, and the resolution performance of the relief pattern is good. As developing solvents for gel permeation chromatography, tetrahydrofuran and N-methyl-2-pyrrolidone are recommended. In addition, molecular weight was calculated|required from the calibration curve prepared using the standard monodisperse polystyrene. As a standard monodisperse polystyrene, it is recommended to select from the organic solvent-based standard sample STANDARD SM-105 manufactured by Showa Denko. Furthermore, in this invention, a phenolic resin can also be used preferably. [(A) Phenol resin] The phenol resin in this embodiment means the resin which has the repeating unit containing a phenolic hydroxyl group. (A) Phenolic resins do not undergo structural changes such as cyclization (imidization) of polyimide precursors during thermal curing, so they have the advantage of being curable at low temperatures (eg, below 250°C). In this embodiment, the weight average molecular weight of (A) phenolic resin becomes like this. Preferably it is 700-100,000, More preferably, it is 1,500-80,000, More preferably, it is 2,000-50,000. The weight average molecular weight is preferably 700 or more from the viewpoint of applicability to reflow processing of the cured film, and on the other hand, is preferably 100,000 or less from the viewpoint of alkali solubility of the photosensitive resin composition. The measurement of the weight-average molecular weight herein can be performed by gel permeation chromatography (GPC), and calculated from a calibration curve prepared using standard polystyrene. (A) The phenolic resin is preferably selected from novolac, polyhydroxystyrene, etc. from the viewpoint of solubility in alkaline aqueous solution, sensitivity and resolution when forming a resist pattern, and residual stress of a cured film. , has the following general formula (7): [Chemical 35]
Figure 02_image069
{In the formula, a is an integer from 1 to 3, b is an integer from 0 to 3, 1≦(a+b)≦4, R 12 Indicates a monovalent substituent selected from the group consisting of a monovalent organic group with 1 to 20 carbon atoms, a halogen atom, a nitro group, and a cyano group. When b is 2 or 3, plural R 12 They may be the same or different from each other, and X represents a divalent aliphatic group selected from a divalent aliphatic group with 2 to 10 carbon atoms which may have an unsaturated bond, a divalent alicyclic group with 3 to 20 carbon atoms, the following general formula ( 8): [Chem36]
Figure 02_image071
(wherein, p is an integer from 1 to 10), a divalent organic group consisting of a divalent alkylene group represented by a divalent organic group having an aromatic ring having 6 to 12 carbons. At least one kind of phenol resin among the phenol resin with the repeating unit represented by group} and the phenol resin modified by a compound having an unsaturated hydrocarbon group having 4 to 100 carbon atoms. (Novolac) Herein, novolac means the whole of a polymer obtained by condensing phenols and formaldehyde in the presence of a catalyst. In general, novolaks can be obtained by condensing 1 mole of phenols with less than 1 mole of formaldehyde relative to the phenols. Examples of the phenols include phenol, o-cresol, m-cresol, p-cresol, o-ethylphenol, m-ethylphenol, p-ethylphenol, o-butylphenol, m-butylphenol, p-butylphenol 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol , 2,3,5-trimethylphenol, 3,4,5-trimethylphenol, catechol, resorcinol, pyrogallol, α-naphthol, β-naphthol, etc. As a specific novolak, a phenol/formaldehyde condensation novolak resin, a cresol/formaldehyde condensation novolak resin, a phenol-naphthol/formaldehyde condensation novolac resin, etc. are mentioned, for example. The weight average molecular weight of the novolak is preferably from 700 to 100,000, more preferably from 1,500 to 80,000, still more preferably from 2,000 to 50,000. The weight average molecular weight is preferably 700 or more from the viewpoint of applicability to reflow processing of the cured film, and on the other hand, is preferably 100,000 or less from the viewpoint of alkali solubility of the photosensitive resin composition. (Polyhydroxystyrene) Herein, polyhydroxystyrene means the whole of a polymer containing hydroxystyrene as a polymerized unit. Preferable examples of polyhydroxystyrene include poly(p-vinylphenol). Poly(p-vinylphenol) means the whole of a polymer containing p-vinylphenol as a polymerized unit. Therefore, as long as the purpose of the present invention is not violated, polymerized units other than hydroxystyrene (such as p-vinylphenol) can be used to form polyhydroxystyrene (such as poly(p-vinylphenol)). In polyhydroxystyrene, the ratio of moles of hydroxystyrene units based on the moles of all polymerized units is preferably 10-99 moles, more preferably 20-97 moles, More preferably, it is 30 to 95 mol%. When the above ratio is 10 mol% or more, it is advantageous from the viewpoint of the alkali solubility of the photosensitive resin composition, and when it is 99 mol% or less, it is useful for hardening a composition containing the following copolymerization components It is advantageous from the viewpoint of reflow soldering applicability of the formed cured film. The polymerized unit other than hydroxystyrene (eg, p-vinylphenol) may be any polymerized unit that can be copolymerized with hydroxystyrene (eg, p-vinylphenol). The copolymerization component that forms polymerized units other than hydroxystyrene (such as p-vinylphenol) is not limited, and examples include methyl acrylate, methyl methacrylate, hydroxyethyl acrylate, butyl methacrylate, acrylic acid Octyl ester, 2-ethoxyethyl methacrylate, tert-butyl acrylate, 1,5-pentanediol diacrylate, N,N-diethylaminoethyl acrylate, ethylene glycol diacrylate , 1,3-Propanediol Diacrylate, Decanediol Diacrylate, Decanediol Dimethacrylate, 1,4-Cyclohexanediol Diacrylate, 2,2-Dimethylolpropane Diacrylate , Glycerin Diacrylate, Tripropylene Glycol Diacrylate, Glycerin Triacrylate, 2,2-Di(p-hydroxyphenyl)propane Dimethacrylate, Triethylene Glycol Diacrylate, Polyoxyethyl-2- 2-bis(p-hydroxyphenyl)propane dimethacrylate, triethylene glycol dimethacrylate, polyoxypropyltrimethylolpropane triacrylate, ethylene glycol dimethacrylate, butane dimethacrylate Alcohol Dimethacrylate, 1,3-Propanediol Dimethacrylate, Butanediol Dimethacrylate, 1,3-Propanediol Dimethacrylate, 1,2,4-Butanetriol Trimethyl Acrylates, 2,2,4-trimethyl-1,3-pentanediol dimethacrylate, pentaerythritol trimethacrylate, 1-phenylethylene glycol 1,2-dimethacrylate, pentaerythritol Esters of acrylic acid such as tetramethacrylate, trimethylolpropane trimethacrylate, 1,5-pentanediol dimethacrylate and 1,4-benzenediol dimethacrylate; benzene Ethylene and substituted styrenes such as 2-methylstyrene and vinyltoluene; vinyl ester monomers such as vinyl acrylate and vinyl methacrylate; and o-vinylphenol, m-vinylphenol Wait. Moreover, as the novolac and polyhydroxystyrene demonstrated above, it can use individually by 1 type or in combination of 2 or more types, respectively. The weight average molecular weight of polyhydroxystyrene becomes like this. Preferably it is 700-100,000, More preferably, it is 1,500-80,000, More preferably, it is 2,000-50,000. The weight average molecular weight is preferably 700 or more from the viewpoint of applicability to reflow treatment of the cured film, and on the other hand, is preferably 100,000 or less from the viewpoint of alkali solubility of the photosensitive resin composition. (Phenolic Resin Represented by General Formula (7)) In this embodiment, (A) phenolic resin also preferably contains the following general formula (7): [Chemical 37]
Figure 02_image073
{In the formula, a is an integer from 1 to 3, b is an integer from 0 to 3, 1≦(a+b)≦4, R 12 Indicates a monovalent substituent selected from the group consisting of a monovalent organic group with 1 to 20 carbon atoms, a halogen atom, a nitro group, and a cyano group. When b is 2 or 3, plural R 12 They may be the same or different from each other, and X represents a divalent aliphatic group selected from a divalent aliphatic group with 2 to 10 carbon atoms which may have an unsaturated bond, a divalent alicyclic group with 3 to 20 carbon atoms, the following general formula ( 8): [Chem38]
Figure 02_image075
(wherein, p is an integer from 1 to 10), a divalent organic group consisting of a divalent alkylene group represented by a divalent organic group having an aromatic ring having 6 to 12 carbons. The phenolic resin of the repeating unit represented by the group}. The phenolic resin having the above-mentioned repeating unit can be cured at a low temperature compared with, for example, polyimide resins and polybenzoxazole resins previously used, and can form a cured film having good elongation, and is especially special in this respect. favorable. The above-mentioned repeating units present in the phenol resin molecule may be 1 type or a combination of 2 or more types. In the above general formula (7), R 12 From the viewpoint of reactivity when synthesizing the resin of general formula (7), it is a monovalent substitution selected from the group consisting of a monovalent organic group with 1 to 20 carbons, a halogen atom, a nitro group, and a cyano group base. R 12 From the viewpoint of alkali solubility, it is preferably selected from halogen atoms, nitro groups, cyano groups, aliphatic groups with 1 to 10 carbon atoms which may have unsaturated bonds, aromatic groups with 6 to 20 carbon atoms, and The following general formula (45): [Chemical 39]
Figure 02_image077
{where, R 61 , R 62 and R 63 Each independently represents a hydrogen atom, an aliphatic group with 1 to 10 carbons that may have an unsaturated bond, an alicyclic group with 3 to 20 carbons, or an aromatic group with 6 to 20 carbons, and R 64 Represents a divalent aliphatic group with 1 to 10 carbons, a divalent alicyclic group with 3 to 20 carbons, or a divalent aromatic group with 6 to 20 carbons which may have an unsaturated bond} A monovalent substituent in a group composed of four groups. In the present embodiment, in the general formula (7), a is an integer of 1 to 3, but is preferably 2 from the viewpoint of alkali solubility and elongation. Also, when a is 2, the substitution positions of hydroxyl groups may be any of the ortho, meta and para positions. In addition, when a is 3, the substitution positions of hydroxyl groups may be arbitrary positions such as 1,2,3-position, 1,2,4-position, and 1,3,5-position. In this embodiment, in the above-mentioned general formula (7), when a is 1, in order to improve the alkali solubility, the phenolic resin having the repeating unit represented by the general formula (7) (hereinafter also referred to as (a1 ) resin) is further mixed with a phenol resin (hereinafter also referred to as (a2) resin) selected from novolac and polyhydroxystyrene. The mixing ratio of (a1) resin and (a2) resin is preferably in the range of (a1)/(a2)=10/90 to 90/10 in terms of mass ratio. The mixing ratio is preferably (a1)/(a2)=10/90 to 90/10, more preferably (a1)/ (a2)=20/80 to 80/20, more preferably (a1)/(a2)=30/70 to 70/30. Regarding the novolak and polyhydroxystyrene as the above (a2) resin, the same resins as those shown in the above (novolac) and (polyhydroxystyrene) can be used. In the present embodiment, in the general formula (7), b is an integer of 0 to 3, but is preferably 0 or 1 from the viewpoint of alkali solubility and elongation. Also, when b is 2 or 3, the plural R 12 They may be the same or different from each other. Furthermore, in the present embodiment, in the general formula (7), a and b satisfy the relationship of 1≦(a+b)≦4. In this embodiment, in the above-mentioned general formula (7), X is selected from divalent fats having 2 to 10 carbon atoms that may have unsaturated bonds from the viewpoint of the shape of the cured relief pattern and the elongation of the cured film. Composed of an aliphatic group, a divalent alicyclic group with 3 to 20 carbons, an alkoxyl group represented by the above general formula (8), and a divalent organic group with an aromatic ring with 6 to 12 carbons The 2-valent organic group in the group. Among these divalent organic groups, X is preferably selected from the following general formula (9) from the viewpoint of the toughness of the film after hardening:
Figure 02_image079
{where, R 13 , R 14 , R 15 and R 16 Each independently is a hydrogen atom, a monovalent aliphatic group with 1 to 10 carbons, or a monovalent aliphatic group with 1 to 10 carbons in which part or all of the hydrogen atoms are replaced by fluorine atoms, n 6 is an integer from 0 to 4, and n 6 R when it is an integer from 1 to 4 17 It is a halogen atom, a hydroxyl group, or a monovalent organic group with 1 to 12 carbon atoms, and at least one R 17 is hydroxyl, n 6 When it is an integer of 2 to 4, a plurality of R 17 may be the same or different from each other}, represented by divalent groups, and the following general formula (10): [Chemical 41]
Figure 02_image081
{where, R 18 , R 19 , R 20 and R twenty one Each independently represents a hydrogen atom, a monovalent aliphatic group with 1 to 10 carbons, or a monovalent aliphatic group with 1 to 10 carbons in which part or all of the hydrogen atoms are replaced by fluorine atoms, W is a single A bond selected from an aliphatic group with 1 to 10 carbons that may be substituted by a fluorine atom, an alicyclic group with 3 to 20 carbons that may be substituted by a fluorine atom, the following general formula (8): [Chem. 42]
Figure 02_image083
(wherein, p is an integer of 1 to 10), a divalent alkyleneoxy group represented by the following formula (11): [Chem. 43]
Figure 02_image085
The divalent organic group in the group formed by the represented divalent groups}The divalent organic group in the group formed by the represented divalent groups. The number of carbon atoms in the divalent organic group X having an aromatic ring having 6 to 12 carbon atoms is preferably from 8 to 75, more preferably from 8 to 40. Furthermore, the structure of the above-mentioned divalent organic group X having an aromatic ring with 6 to 12 carbons is generally different from that in the above-mentioned general formula (7) where an OH group and any R are bonded to the aromatic ring. 12 base structure. Furthermore, the divalent organic group represented by the above-mentioned general formula (10) is more preferably the following formula (12): [chem 44]
Figure 02_image087
The represented divalent organic group is more preferably the following formula (13): [Chemical 45]
Figure 02_image089
The divalent organic group represented. Among the structures represented by the general formula (7), X is preferably the structure represented by the above-mentioned formula (12) or (13), and the ratio of the positions represented by the structures represented by the formula (12) or (13) of X is From the viewpoint of elongation, it is preferably at least 20% by mass, more preferably at least 30% by mass. The above ratio is preferably at most 80% by mass, more preferably at most 70% by mass, from the viewpoint of the alkali solubility of the composition. Also, among the phenol resins having the structure represented by the above general formula (7), it is particularly preferable to have the following general formula in the same resin skeleton from the viewpoint of the alkali solubility of the composition and the elongation rate of the cured film. The structure represented by the formula (14) and the structure represented by the following general formula (15) are both structures. [chem 46]
Figure 02_image091
{where, R twenty one It is a monovalent group with 1 to 10 carbon atoms selected from the group consisting of hydrocarbon group and alkoxy group, n 7 is 2 or 3, n 8 is an integer from 0 to 2, m 5 It is an integer from 1 to 500, 2≦(n 7 +n 8 )≦4, at n 8 In the case of 2, multiple R twenty one may be the same or different from each other} [Chem.47]
Figure 02_image093
{where, R twenty two and R twenty three Each independently is a monovalent group with 1 to 10 carbon atoms selected from the group consisting of hydrocarbon groups and alkoxy groups, n 9 is an integer from 1 to 3, n 10 is an integer from 0 to 2, n 11 is an integer from 0 to 3, m 6 It is an integer from 1 to 500, 2≦(n 9 +n 10 )≦4, at n 10 In the case of 2, multiple R twenty two may be the same or different from each other, in n 11 In the case of 2 or 3, multiple R twenty three may be the same or different} m in the above general formula (14) 5 and m of the above general formula (15) 6 Indicates the total number of the respective repeating units in the main chain of the phenol resin. That is, in the (A) phenol resin, for example, the repeating unit in brackets in the structure represented by the above-mentioned general formula (14) and the repeating unit in the brackets in the structure represented by the above-mentioned general formula (15) can be randomly, embedded Arranged in the form of paragraphs or combinations thereof. m 5 and m 6 are independently an integer of 1 to 500, the lower limit is preferably 2, more preferably 3, and the upper limit is preferably 450, more preferably 400, and still more preferably 350. m 5 and m 6 From the viewpoint of the toughness of the cured film, each independently is preferably 2 or more, and from the viewpoint of solubility in an alkaline aqueous solution, it is preferably 450 or less. m 5 with m 6 The total is preferably 2 or more, more preferably 4 or more, and further preferably 6 or more from the viewpoint of the toughness of the film after curing, and is more preferably 2 or more from the viewpoint of solubility in an alkaline aqueous solution. It is 200 or less, more preferably 175 or less, still more preferably 150 or less. Among the (A) phenol resins having both the structure represented by the above-mentioned general formula (14) and the structure represented by the above-mentioned general formula (15) in the same resin skeleton, the structure represented by the above-mentioned general formula (14) is unique The higher the molar ratio, the better the physical properties of the film after hardening, and the better the heat resistance. On the other hand, the higher the molar ratio of the structure represented by the above general formula (15), the better the alkali solubility. The better the shape of the pattern. Therefore, the ratio m of the structure represented by the above general formula (14) relative to the structure represented by the above general formula (15) 5 /m 6 From the point of view of the physical properties of the film after curing, it is preferably 20/80 or more, more preferably 40/60 or more, and especially preferably 50/50 or more. From the viewpoint of alkali solubility and the shape of the cured embossed pattern, Preferably it is 90/10 or less, more preferably 80/20 or less, still more preferably 70/30 or less. A phenolic resin having a repeating unit represented by general formula (7) typically includes a phenolic compound and a copolymerization component (specifically, a compound selected from a compound having an aldehyde group (including a compound decomposed into an aldehyde compound such as trioxane) , a compound with a ketone group, a compound with two hydroxymethyl groups in the molecule, a compound with two alkoxymethyl groups in the molecule, and a compound with two haloalkyl groups in the molecule. The above compounds), more typically, can be synthesized by polymerizing monomer components comprising them. For example, the following phenol and/or phenol derivatives (hereinafter collectively referred to as "phenol compounds") can be combined with aldehyde compounds, ketone compounds, methylol compounds, alkoxymethyl compounds, diene compounds or haloalkyl compounds. Copolymerization components such as compounds are polymerized to obtain (A) phenol resin. In this case, in the above general formula (7), the aromatic ring is bonded with an OH group and any R 12 The part represented by the group structure is derived from the above-mentioned phenol compound, and the part represented by X is derived from the above-mentioned copolymerization component. From the standpoint of reaction control and the stability of the obtained (A) phenol resin and photosensitive resin composition, the addition molar ratio of the phenol compound and the above-mentioned copolymerization component (phenol compound): (copolymerization component) is preferably 5:1 to 1.01:1, more preferably 2.5:1 to 1.1:1. The weight-average molecular weight of the phenol resin having a repeating unit represented by general formula (7) is preferably from 700 to 100,000, more preferably from 1,500 to 80,000, and still more preferably from 2,000 to 50,000. The weight average molecular weight is preferably 700 or more from the viewpoint of applicability to reflow processing of the cured film, and on the other hand, is preferably 100,000 or less from the viewpoint of alkali solubility of the photosensitive resin composition. As the phenolic compound that can be used to obtain a phenol resin having a repeating unit represented by the general formula (7), for example, cresol, ethylphenol, propylphenol, butylphenol, amylphenol, cyclohexylphenol, hydroxyl Biphenyl, benzylphenol, nitrobenzylphenol, cyanobenzylphenol, adamantanephenol, nitrophenol, fluorophenol, chlorophenol, bromophenol, trifluoromethylphenol, N-(hydroxyphenyl)- 5-northene-2,3-dicarboxyimide, N-(hydroxyphenyl)-5-methyl-5-northene-2,3-dicarboxyimide, trifluoromethylphenol , hydroxybenzoic acid, methyl hydroxybenzoate, ethyl hydroxybenzoate, benzyl hydroxybenzoate, hydroxybenzamide, hydroxybenzaldehyde, hydroxyacetophenone, hydroxybenzophenone, hydroxybenzonitrile, m- Hydroquinone, xylenol, catechol, methyl catechol, ethyl catechol, hexyl catechol, benzyl catechol, nitrobenzyl catechol, methyl resorcinol, Ethyl Resorcinol, Hexyl Resorcinol, Benzyl Resorcinol, Nitrobenzyl Resorcinol, Hydroquinone, Caffeic Acid, Dihydroxybenzoic Acid, Methyl Dihydroxybenzoate, Dihydroxybenzene Ethyl Formate, Butyl Dihydroxybenzoate, Propyl Dihydroxybenzoate, Benzyl Dihydroxybenzoate, Dihydroxybenzamide, Dihydroxybenzaldehyde, Dihydroxyacetophenone, Dihydroxybenzophenone, Dihydroxybenzonitrile, N-(dihydroxyphenyl)-5-northene-2,3-dicarboxyimide, N-(dihydroxyphenyl)-5-methyl-5-northene -2,3-Dicarboxyimide, nitrocatechol, fluorocatechol, chlorocatechol, bromocatechol, trifluoromethyl catechol, nitroresorcinol, fluororesorcinol Diphenol, chlororesorcinol, bromoresorcinol, trifluoromethylresorcinol, pyrogallol, phloroglucinol, 1,2,4-trihydroxybenzene, trihydroxybenzoic acid, three Methyl Hydroxybenzoate, Ethyl Trihydroxybenzoate, Butyl Trihydroxybenzoate, Propyl Trihydroxybenzoate, Benzyl Trihydroxybenzoate, Trihydroxybenzamide, Trihydroxybenzaldehyde, Trihydroxyphenylethyl Ketones, trihydroxybenzophenones, trihydroxybenzonitriles, etc. Examples of the above-mentioned aldehyde compounds include acetaldehyde, propionaldehyde, trimethylacetaldehyde, butyraldehyde, valeraldehyde, hexanal, trioxane, glyoxal, cyclohexanal, diphenylacetaldehyde, ethyl Butyraldehyde, benzaldehyde, glyoxylic acid, 5-northene-2-carboxyaldehyde, malondialdehyde, succinaldehyde, glutaraldehyde, salicaldehyde, naphthalene formaldehyde, terephthalaldehyde, etc. Examples of the ketone compound include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, dicyclohexyl ketone, dibenzyl ketone, cyclopentanone, cyclohexanone, dicyclohexanone, cyclohexanone, Hexanedione, 3-butyn-2-one, 2-northone, adamantone, 2,2-bis(4-oxanyl)propane, etc. Examples of the methylol compound include: 2,6-bis(hydroxymethyl)-p-cresol, 2,6-bis(hydroxymethyl)-4-ethylphenol, 2,6-bis(hydroxymethyl) base)-4-propylphenol, 2,6-bis(hydroxymethyl)-4-n-butylphenol, 2,6-bis(hydroxymethyl)-4-tert-butylphenol, 2,6- Bis(hydroxymethyl)-4-methoxyphenol, 2,6-bis(hydroxymethyl)-4-ethoxyphenol, 2,6-bis(hydroxymethyl)-4-propoxyphenol, 2,6-bis(hydroxymethyl)-4-n-butoxyphenol, 2,6-bis(hydroxymethyl)-4-tert-butoxyphenol, 1,3-bis(hydroxymethyl)urea , ribitol, arabitol, allol, 2,2-bis(hydroxymethyl)butanoic acid, 2-benzyloxy-1,3-propanediol, 2,2-dimethyl-1,3-propanediol , 2,2-diethyl-1,3-propanediol, glyceryl monoacetate, 2-methyl-2-nitro-1,3-propanediol, 5-northene-2,2-dimethanol, 5 -Northene-2,3-dimethanol, pentaerythritol, 2-phenyl-1,3-propanediol, trimethylolethane, trimethylolpropane, 3,6-bis(hydroxymethyl)succinate Toluene, 2-nitrotere-xylylenedimethanol, 1,10-dihydroxydecane, 1,12-dihydroxydodecane, 1,4-bis(hydroxymethyl)cyclohexane, 1,4-bis( Hydroxymethyl)cyclohexene, 1,6-bis(hydroxymethyl)adamantane, 1,4-benzenedimethanol, 1,3-benzenedimethanol, 2,6-bis(hydroxymethyl)-1, 4-dimethoxybenzene, 2,3-bis(hydroxymethyl)naphthalene, 2,6-bis(hydroxymethyl)naphthalene, 1,8-bis(hydroxymethyl)anthracene, 2,2'-bis (Hydroxymethyl) diphenyl ether, 4,4'-bis(hydroxymethyl)diphenyl ether, 4,4'-bis(hydroxymethyl)diphenyl sulfide, 4,4'-bis(hydroxymethyl) ) benzophenone, 4-hydroxymethylbenzoic acid-4'-hydroxymethylphenyl ester, 4-hydroxymethylbenzoic acid-4'-hydroxymethylaniline, 4,4'-bis(hydroxymethyl) Phenylurea, 4,4'-bis(hydroxymethyl)phenylcarbamate, 1,8-bis(hydroxymethyl)anthracene, 4,4'-bis(hydroxymethyl)biphenyl, 2 ,2'-Dimethyl-4,4'-bis(hydroxymethyl)biphenyl, 2,2-bis(4-hydroxymethylphenyl)propane, ethylene glycol, diethylene glycol, triethylene glycol Alcohol, tetraethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, tetrapropylene glycol, etc. Examples of the alkoxymethyl compound include: 2,6-bis(methoxymethyl)-p-cresol, 2,6-bis(methoxymethyl)-4-ethylphenol, 2, 6-bis(methoxymethyl)-4-propylphenol, 2,6-bis(methoxymethyl)-4-n-butylphenol, 2,6-bis(methoxymethyl)- 4-tert-butylphenol, 2,6-bis(methoxymethyl)-4-methoxyphenol, 2,6-bis(methoxymethyl)-4-ethoxyphenol, 2, 6-bis(methoxymethyl)-4-propoxyphenol, 2,6-bis(methoxymethyl)-4-n-butoxyphenol, 2,6-bis(methoxymethyl) )-4-tert-butoxyphenol, 1,3-bis(methoxymethyl)urea, 2,2-bis(methoxymethyl)butanoic acid, 2,2-bis(methoxymethyl) base)-5-northene, 2,3-bis(methoxymethyl)-5-northene, 1,4-bis(methoxymethyl)cyclohexane, 1,4-bis( Methoxymethyl)cyclohexene, 1,6-bis(methoxymethyl)adamantane, 1,4-bis(methoxymethyl)benzene, 1,3-bis(methoxymethyl) ) benzene, 2,6-bis(methoxymethyl)-1,4-dimethoxybenzene, 2,3-bis(methoxymethyl)naphthalene, 2,6-bis(methoxymethyl) base) naphthalene, 1,8-bis(methoxymethyl)anthracene, 2,2'-bis(methoxymethyl)diphenyl ether, 4,4'-bis(methoxymethyl)diphenyl Ether, 4,4'-bis(methoxymethyl)diphenyl sulfide, 4,4'-bis(methoxymethyl)benzophenone, 4-methoxymethylbenzoic acid-4' -Methoxymethylphenyl, 4-methoxymethylbenzoic acid-4'-methoxymethylaniline, 4,4'-bis(methoxymethyl)phenylurea, 4,4' -Bis(methoxymethyl)phenylcarbamate, 1,8-bis(methoxymethyl)anthracene, 4,4'-bis(methoxymethyl)biphenyl, 2,2 '-Dimethyl-4,4'-bis(methoxymethyl)biphenyl, 2,2-bis(4-methoxymethylphenyl)propane, ethylene glycol dimethyl ether, diethylene glycol Alcohol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, propylene glycol dimethyl ether, dipropylene glycol dimethyl ether, tripropylene glycol dimethyl ether, tetrapropylene glycol dimethyl ether, etc. Examples of the diene compound include butadiene, pentadiene, hexadiene, heptadiene, octadiene, 3-methyl-1,3-butadiene, and 1,3-butanediol - Dimethacrylate, 2,4-Hexadiene-1-ol, Methylcyclohexadiene, Cyclopentadiene, Cyclohexadiene, Cycloheptadiene, Cyclooctadiene, Dicyclopentadiene ene, 1-hydroxydicyclopentadiene, 1-methylcyclopentadiene, methyldicyclopentadiene, diallyl ether, diallyl sulfide, diallyl adipate, 2, 5-nordiene, tetrahydroindene, 5-ethylidene-2-norrene, 5-vinyl-2-norrene, triallyl cyanurate, isocyanuric acid diene Propyl ester, triallyl isocyanurate, diallyl propyl isocyanurate, etc. Examples of the aforementioned haloalkyl compounds include dichloroxylene, dichloromethyldimethoxybenzene, dichloromethyldryne, dichloromethylbiphenyl, dichloromethyl-biphenylcarboxylate Acid, bischloromethyl-biphenyldicarboxylic acid, bischloromethyl-methylbiphenyl, bischloromethyl-dimethylbiphenyl, bischloromethylanthracene, ethylene glycol bis(chloroethyl) ether, diethylene glycol bis(chloroethyl) ether, triethylene glycol bis(chloroethyl) ether, tetraethylene glycol bis(chloroethyl) ether, etc. (A) Phenol resin can be obtained by condensing the above-mentioned phenolic compound and the copolymerization component by dehydration, dehydrohalogenation, or dealcoholization, or by polymerizing while breaking the unsaturated bond. A catalyst can also be used for polymerization. . Examples of acidic catalysts include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phosphorous acid, methanesulfonic acid, p-toluenesulfonic acid, dimethylsulfuric acid, diethylsulfuric acid, acetic acid, oxalic acid, 1-hydroxyethylene -1,1'-diphosphonic acid, zinc acetate, boron trifluoride, boron trifluoride-phenol complex, boron trifluoride-ether complex, etc. On the other hand, examples of alkaline catalysts include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, triethylamine, pyridine, 4-N,N- Dimethylaminopyridine, piperidine, piperidine, 1,4-diazabicyclo[2.2.2]octane, 1,8-diazabicyclo[5.4.0]-7-undecene, 1 ,5-diazabicyclo[4.3.0]-5-nonene, ammonia, hexamethylenetetramine, etc. Regarding the amount of the catalyst used to obtain the phenol resin with the repeating structure represented by the general formula (7), it is preferably an aldehyde compound, The total molar amount of the ketone compound, the methylol compound, the alkoxymethyl compound, the diene compound and the haloalkyl compound is 100 mol %, preferably in the range of 0.01 mol % to 100 mol %. (A) In the synthesis reaction of phenolic resin, the reaction temperature is generally preferably in the range of 40°C to 250°C, more preferably in the range of 100°C to 200°C, and the reaction time is preferably about 1 hour to 10 hours. A solvent capable of sufficiently dissolving the resin can be used as needed. Furthermore, the phenolic resin having the repeating structure represented by the general formula (7) may be further polymerized with a phenolic compound that does not become a raw material of the structure of the above general formula (7) within the range that does not impair the effects of the present invention. The range without impairing the effect of the present invention is, for example, 30% or less of the total molar number of phenolic compounds used as raw materials of (A) phenolic resin. (Phenol resin modified by a compound having an unsaturated hydrocarbon group having a carbon number of 4 to 100) The phenol resin modified by a compound having an unsaturated hydrocarbon group having a carbon number of 4 to 100 is phenol or its derivatives and a compound having a carbon number of 4 to 100 100 unsaturated hydrocarbon group compound (hereinafter sometimes referred to as "unsaturated hydrocarbon group-containing compound") reaction products (hereinafter also referred to as "unsaturated hydrocarbon group-modified phenol derivatives") and condensation polymerization products of aldehydes, or It is the reaction product of phenolic resin and compounds containing unsaturated hydrocarbon groups. As the phenol derivative, the same ones as those described above as the raw material of the phenol resin having the repeating unit represented by the general formula (7) can be used. The unsaturated hydrocarbon group of the unsaturated hydrocarbon group-containing compound preferably contains two or more unsaturated groups from the viewpoint of the residual stress of the cured film and reflow processing applicability. In addition, from the standpoint of compatibility when preparing a resin composition and residual stress of a cured film, the unsaturated hydrocarbon group preferably has 4 to 100 carbons, more preferably 8 to 80 carbons, and still more preferably 8 to 80 carbons. 10~60. Examples of unsaturated hydrocarbon group-containing compounds include: unsaturated hydrocarbons having 4 to 100 carbon atoms, polybutadiene having a carboxyl group, epoxidized polybutadiene, linolenic alcohol, oleyl alcohol, unsaturated fatty acids, and unsaturated fats esters. Examples of suitable unsaturated fatty acids include crotonic acid, myristic acid, palmitoleic acid, oleic acid, elaidic acid, vacantoleic acid, codoleic acid, erucic acid, tetradecenoic acid, and linoleic acid. , α-linolenic acid, linoleic acid, stearidonic acid, arachidonic acid, eicosapentaenoic acid, herring acid and docosahexaenoic acid. Among these, vegetable oil which is an unsaturated fatty acid ester is especially preferable from the viewpoint of the elongation rate of a cured film, and the flexibility of a cured film. Vegetable oils usually contain esters of glycerin and unsaturated fatty acids, and there are non-drying oils with an iodine value of 100 or less, semi-drying oils with an iodine value of more than 100 and less than 130, or drying oils with an iodine value of 130 or more. Examples of non-drying oils include olive oil, morning glory seed oil, Polygonum multiflorum oil, camellia oil, camellia oil, castor oil, and peanut oil. As a semi-dry oil, corn oil, cottonseed oil, and sesame oil are mentioned, for example. Examples of drying oils include tung oil, linseed oil, soybean oil, walnut oil, safflower oil, sunflower oil, jalapeno oil, and mustard oil. Moreover, the processed vegetable oil processed from these vegetable oils can also be used. Among the above-mentioned vegetable oils, non-drying oils are preferably used from the viewpoint of preventing gelation caused by excessive reaction and improving yield in the reaction of phenol or its derivatives or phenol resin and vegetable oil. On the other hand, from the viewpoint of improving the adhesiveness of the resist pattern, mechanical properties, and thermal shock resistance, it is preferable to use a drying oil. Among drying oils, tung oil, linseed oil, soybean oil, walnut oil, and safflower oil are preferable, and tung oil and linseed oil are more preferable because the effect of the present invention can be exhibited more effectively and reliably. These vegetable oils can be used individually by 1 type or in combination of 2 or more types. The reaction between phenol or its derivatives and an unsaturated hydrocarbon group-containing compound is preferably carried out at 50-130°C. Regarding the reaction ratio between phenol or its derivatives and the unsaturated hydrocarbon group-containing compound, from the viewpoint of reducing the residual stress of the cured film, the unsaturated hydrocarbon group-containing compound is preferably 1 with respect to 100 parts by mass of phenol or its derivatives. -100 parts by mass, more preferably 5-50 parts by mass. When the unsaturated hydrocarbon group-containing compound is less than 1 part by mass, the flexibility of the cured film tends to decrease, and when it exceeds 100 parts by mass, the heat resistance of the cured film tends to decrease. In the above reaction, p-toluenesulfonic acid, trifluoromethanesulfonic acid, etc. can also be used as a catalyst if necessary. A phenol resin modified with an unsaturated hydrocarbon group-containing compound is produced by polycondensing the unsaturated hydrocarbon group-modified phenol derivative and aldehydes produced by the above reaction. Aldehydes such as formaldehyde, acetaldehyde, furfural, benzaldehyde, hydroxybenzaldehyde, methoxybenzaldehyde, hydroxyphenylacetaldehyde, methoxyphenylacetaldehyde, crotonaldehyde, chloroacetaldehyde, chlorophenylacetaldehyde , acetone, glyceraldehyde, glyoxylic acid, methyl glyoxylate, phenyl glyoxylate, hydroxyphenyl glyoxylate, formyl acetic acid, methyl formyl acetate, 2-formyl propionic acid, 2 -Select from methyl formyl propionate, pyruvic acid, acetyl propionic acid, 4-acetyl butyric acid, acetone dicarboxylic acid and 3,3'-4,4'-benzophenone tetracarboxylic acid. In addition, formaldehyde precursors such as paraformaldehyde and trioxane can also be used. These aldehydes may be used alone or in combination of two or more. The reaction of the above-mentioned aldehydes with the above-mentioned unsaturated hydrocarbon group-modified phenol derivatives is a polycondensation reaction, and the previously known synthesis conditions of phenolic resins can be adopted. The reaction is preferably carried out in the presence of a catalyst such as an acid or an alkali, and it is more preferable to use an acid catalyst from the viewpoint of the degree of polymerization (molecular weight) of the resin. As an acid catalyst, hydrochloric acid, sulfuric acid, formic acid, acetic acid, p-toluenesulfonic acid, and oxalic acid are mentioned, for example. These acid catalysts can be used individually by 1 type or in combination of 2 or more types. The above reaction is usually preferably carried out at a reaction temperature of 100-120°C. In addition, although the reaction time varies depending on the type or amount of the catalyst used, it is usually 1 to 50 hours. After the reaction is finished, the phenol resin modified by the compound containing unsaturated hydrocarbon groups is obtained by dehydrating the reaction product under reduced pressure at a temperature below 200°C. In addition, solvents such as toluene, xylene, and methanol can be used during the reaction. A phenol resin modified with an unsaturated hydrocarbon group-containing compound can also be obtained by polycondensing a compound other than phenol such as m-xylene and aldehydes together with the above-mentioned unsaturated hydrocarbon group-modified phenol derivative. In this case, the added molar ratio of the compound other than phenol to the compound obtained by reacting the phenol derivative and the unsaturated hydrocarbon group-containing compound is preferably less than 0.5. A phenolic resin modified with an unsaturated hydrocarbon group-containing compound can also be obtained by reacting a phenol resin with an unsaturated hydrocarbon group-containing compound. The phenolic resin used in this case is a polycondensation product of a phenolic compound (ie, phenol and/or a phenol derivative) and an aldehyde. In this case, as the phenol derivative and aldehydes, the same ones as the above-mentioned phenol derivatives and aldehydes can be used, and the phenol resin can be synthesized under the above-mentioned previously known conditions. Specific examples of phenolic resins obtained from phenolic compounds and aldehydes suitable for forming phenolic resins modified with unsaturated hydrocarbon group-containing compounds include: phenol/formaldehyde novolak resins, cresol/formaldehyde novolak resins , Hydroquinone/formaldehyde novolac resin, resorcinol/formaldehyde novolak resin and phenol-naphthol/formaldehyde novolak resin. As the unsaturated hydrocarbon group-containing compound reacted with the phenol resin, the same unsaturated hydrocarbon group-containing compound involved in the production of the unsaturated hydrocarbon group-modified phenol derivative reacted with aldehydes can be used. The reaction between the phenol resin and the unsaturated hydrocarbon group-containing compound is usually preferably carried out at 50-130°C. Also, regarding the reaction ratio between the phenol resin and the unsaturated hydrocarbon group-containing compound, from the viewpoint of improving the flexibility of the cured film (resist pattern), the unsaturated hydrocarbon group-containing compound is preferable to 100 parts by mass of the phenol resin. It is 1-100 mass parts, More preferably, it is 2-70 mass parts, More preferably, it is 5-50 mass parts. If the unsaturated hydrocarbon group-containing compound is less than 1 part by mass, the flexibility of the cured film tends to decrease, and if it exceeds 100 parts by mass, the possibility of gelation during the reaction tends to increase, and the cured film tends to increase. Tendency to reduce heat resistance. p-toluenesulfonic acid, trifluoromethanesulfonic acid, etc. can also be used as catalysts when the phenol resin reacts with unsaturated hydrocarbon group-containing compounds if necessary. Furthermore, solvents such as toluene, xylene, methanol, tetrahydrofuran, etc. can be used during the reaction, which will be described in detail below. Acid-modified phenolic resins can also be used by reacting the remaining phenolic hydroxyl groups in the unsaturated hydrocarbon group-containing compound-modified phenolic resins produced by the above method with polybasic acid anhydrides. The solubility in an alkaline aqueous solution (used as a developer) is further improved by introducing a carboxyl group through acid modification with a polybasic acid anhydride. The polybasic acid anhydride will not be specifically limited as long as it has the acid anhydride group formed by the dehydration condensation of the carboxyl group of the polybasic acid containing several carboxyl groups. Examples of polybasic acid anhydrides include: phthalic anhydride, succinic anhydride, octenyl succinic anhydride, pentadecenyl succinic anhydride, maleic anhydride, itaconic anhydride, tetrahydrophthalic anhydride, hexahydro Phthalic anhydride, Methyltetrahydrophthalic anhydride, Methylhexahydrophthalic anhydride, Resilicate anhydride, 3,6-endomethylenetetrahydrophthalic anhydride, Methylinner Dibasic acid anhydrides such as methyl tetrahydrophthalic anhydride, tetrabromophthalic anhydride and trimellitic anhydride, biphenyl tetracarboxylic dianhydride, naphthalene tetracarboxylic dianhydride, diphenyl ether tetracarboxylic dicarboxylic acid Anhydride, butane tetracarboxylic dianhydride, cyclopentane tetracarboxylic dianhydride, pyromellitic dianhydride, and aromatic tetracarboxylic dianhydride such as benzophenone tetracarboxylic dianhydride. These can be used individually by 1 type or in combination of 2 or more types. Among them, the polybasic acid anhydride is preferably a dibasic acid anhydride, more preferably at least one selected from the group consisting of tetrahydrophthalic anhydride, succinic anhydride, and hexahydrophthalic anhydride. In this case, there is an advantage that a resist pattern with a better shape can be formed. The reaction between phenolic hydroxyl group and polybasic acid anhydride can be carried out at 50-130°C. In this reaction, preferably 0.10 to 0.80 moles of polybasic acid anhydride are reacted with respect to 1 mole of phenolic hydroxyl group, more preferably 0.15 to 0.60 moles are reacted, and further preferably 0.20 to 0.40 moles are reacted. The ear responds. When the polybasic acid anhydride is less than 0.10 mol, the developability tends to decrease, and when it exceeds 0.80 mol, the alkali resistance of the unexposed portion tends to decrease. In addition, from the viewpoint of advancing the reaction rapidly, a catalyst may be contained as necessary during the above-mentioned reaction. Examples of the catalyst include tertiary amines such as triethylamine, quaternary ammonium salts such as triethylbenzyl ammonium chloride, imidazole compounds such as 2-ethyl-4-methylimidazole, and phosphorus compounds such as triphenylphosphine. . Furthermore, the acid value of the phenolic resin modified with polybasic acid anhydride is preferably 30-200 mgKOH/g, more preferably 40-170 mgKOH/g, and still more preferably 50-150 mgKOH/g. If the acid value is less than 30 mgKOH/g, the time required for alkaline development tends to be longer than when the acid value is within the above range. There is a tendency that the developing solution resistance of the unexposed part tends to decrease. Regarding the molecular weight of the phenolic resin modified by the compound containing an unsaturated hydrocarbon group, considering the solubility in alkaline aqueous solution, or the balance between the photosensitive properties and the physical properties of the cured film, it is preferably 1,000 to 100,000 in terms of weight average molecular weight, more preferably Preferably, it is 2,000 to 100,000. As the (A) phenolic resin of this embodiment, it is also preferably selected from the phenolic resin having the repeating unit represented by the above-mentioned general formula (7) and the above-mentioned compound modified with an unsaturated hydrocarbon group having 4 to 100 carbons. A mixture of at least one phenol resin (hereinafter also referred to as (a3) resin) among phenol resins, and a phenol resin selected from novolac and polyhydroxystyrene (hereinafter also referred to as (a4) resin). The mixing ratio of (a3) resin and (a4) resin is the range of (a3)/(a4)=5/95-95/5 by mass ratio. The mixing ratio is preferably (a3)/( a4)=5/95-95/5, more preferably (a3)/(a4)=10/90-90/10, still more preferably (a3)/(a4)=15/85-85/15. Regarding the novolak and polyhydroxystyrene as the above (a4) resin, the same resins as those shown in the above (novolac) and (polyhydroxystyrene) can be used. (B) Cyclic compound having a carbonyl group (B) The compound is at least one compound selected from the group consisting of the following compounds. The compound is a cyclic compound having two or more carbonyl groups, and the carbonyl group is directly bonded to the above-mentioned In the case of a ring structure, in the case of a monocyclic compound, more than 1/3 of the atoms forming the ring structure are N atoms, and in the case of a condensed ring compound, more than 1/3 of the atoms forming the above-mentioned ring structure having the above-mentioned carbonyl group are N atoms N atoms. From the viewpoint of migration resistance, it is preferably at least one compound selected from the group consisting of compounds classified according to ring structures, namely, 5-membered ring compounds, 6-membered ring compounds, 5-membered ring compounds, and 5-membered ring compounds. Ring condensed ring compound, condensed ring compound of 5-membered ring and 6-membered ring, condensed ring compound of 6-membered ring and 6-membered ring. By having two or more carbonyl groups, the area of voids on the copper surface can be reduced. Furthermore, it is also preferable to have 2 or more carbonyl groups from viewpoints, such as developability, sensitivity, in-plane uniformity after hardening, and elongation after reflow. When there are two or more carbonyl groups, the area of voids on the copper surface becomes significantly smaller than when there is one carbonyl group. Also, from the viewpoint of developability, sensitivity, in-plane uniformity after curing, elongation after reflow, etc., the case where there are two or more carbonyl groups is better than the case where there is one carbonyl group. Specific examples of the compound (B) include 3-pyrazolone, 5-pyrazolone, 3-methyl-5-pyrazolone, 1,3-dimethyl Base-5-pyrazolone, 2-imidazolidinone, 1,3-dimethyl-2-imidazolidinone, hydantoin, allantoin, parabanic acid (parabanic acid), etc., as 6-membered Cyclic compounds, for example: tetrahydro-2-pyrimidinone, barbituric acid, 1,3-dimethylbarbituric acid, 1,3-dicyclohexylbarbituric acid, 5-aminobarbituric acid Acid (uramil), urine, cyanuric acid, isocyanuric acid tris (2-hydroxyethyl) ester, etc., as a condensed ring compound of a 5-membered ring and a 5-membered ring, glycoluril, etc. can be enumerated. Condensed ring compounds of one-membered and five-membered rings, such as: guanine, isoguanine, N-methylguanine, 7-(2-hydroxyethyl)guanine, N-(3-chlorophenyl)guanine Purine, N-(3-ethylphenyl)guanine, hypoxanthine, 8-aza-hypoxanthine, 7-deaza-hypoxanthine, xanthine, 1-methylxanthine, 3-methyl Xanthine, 8-bromo-3-methylxanthine, theobromine, theophylline, 7-(2-chloroethyl)theophylline, caffeine, uric acid, 8-azaxanthine, etc., as a 6-membered ring and Condensed cyclic compounds with 6-membered rings, such as: pterin, dioxytetrahydropteridine, 7,8-dimethylrole, 1,4-dihydro-6-methylquinoline-2,3 - Diketones, etc., and mixtures thereof are also mentioned. Among these, it is preferable to use a condensed ring compound. Furthermore, from the viewpoint of migration resistance, the compound (B) is preferably selected from the following general formula (60): [Chem. 48]
Figure 02_image095
{In the formula, Rs3, Rs4 and Rs5 are independently a hydrogen atom, a halogen atom, a hydroxyl group, an amino group that may be substituted by an aromatic group, an alkoxy group with 1 to 6 carbons, a hydroxyalkyl group, or an alkyl group with 1 to 10 carbons. Alkyl or aromatic group} The compound represented by the following general formula (61): [Chemical 49]
Figure 02_image097
{In the formula, Rs6, Rs7 and Rs8 are independently a hydrogen atom, a halogen atom, a hydroxyl group, an amino group that may be substituted by an aromatic group, an alkoxy group with 1 to 6 carbons, a hydroxyalkyl group, or an alkyl group with 1 to 10 carbons. Alkyl or aromatic group} The compound represented by the following general formula (62): [Chemical 50]
Figure 02_image099
{In the formula, Rs9, Rs10, Rs11 and Rs12 are independently a hydrogen atom, a halogen atom, a hydroxyl group, an amino group that may be substituted by an aromatic group, an alkoxy group with 1 to 6 carbons, a hydroxyalkyl group, or a hydroxyalkyl group with 1 to 6 carbons. The compound represented by the alkyl group or aromatic group} of 10, the following general formula (63): [Chemical 51]
Figure 02_image101
{where, R twenty one , R twenty two , R twenty three and R twenty four Represented independently by a hydrogen atom, a halogen atom, a hydroxyl group, an amino group that may be substituted by an aromatic group, an alkoxy group with 1 to 6 carbons, a hydroxyalkyl group, or an alkyl group with 1 to 10 carbons or an aromatic group} At least one compound in the group consisting of compounds. Specific examples of compounds represented by the above general formulas (60) to (63) include xanthine, 1-methylxanthine, 3-methylxanthine, theobromine, theophylline, caffeine, uric acid , 8-azaxanthine, dioxotetrahydropteridine, etc. and their derivatives. The compounding quantity of (B) compound is 0.01-10 mass parts with respect to 100 mass parts of (A) resins, Preferably it is 0.05-2 mass parts. From the viewpoint of migration resistance, it is more preferably at least 0.01 parts by mass, and from the viewpoint of solubility, it is more preferably less than 10 parts by mass. These (B) components are thought to change the surface state of copper by coordinating with copper through the carbonyl group or the nitrogen atom contained in the ring structure, thereby suppressing the migration of copper during the high-temperature storage test. It is considered that especially in the case of condensed rings, the migration resistance is improved by the synergistic effect of the plurality of carbonyl groups and nitrogen atoms. (C) Photosensitizer The (C) photosensitizer used in the present invention will be described. (C) Photosensitive agent The photosensitive resin composition according to the present invention is, for example, mainly using polyimide precursor and/or polyamide as the negative type of (A) resin, or is, for example, mainly using polyoxazole precursor, At least one of soluble polyimide and phenol resin is different as positive type of (A) resin. (C) The compounding quantity of a photosensitive agent in a photosensitive resin composition is 1-50 mass parts with respect to 100 mass parts of (A) resins. The above compounding amount is 1 part by mass or more from the viewpoint of photosensitivity or patternability, and 50 parts by mass or less from the viewpoint of the curability of the photosensitive resin composition or the physical properties of the cured photosensitive resin layer. [(C) Negative Photosensitive Agent: Photopolymerization Initiator and/or Photoacid Generator] First, the case where it is desired to be a negative photosensitive agent will be described. In this case, use photopolymerization initiator and/or photoacid generator as (C) photosensitizer, as photopolymerization initiator, preferably photoradical polymerization initiator, preferably enumerate: diphenyl Benzophenone derivatives such as methyl ketone, methyl o-benzoyl benzoate, 4-benzoyl-4'-methylbenzophenone, dibenzyl ketone, and ketone, 2,2'-diphenone Ethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, 1-hydroxycyclohexyl phenyl ketone and other acetophenone derivatives, 9-oxothiophenone
Figure 108121559-A0304-12-01
, 2-methyl 9-oxosulfur 𠮿
Figure 108121559-A0304-12-01
, 2-isopropyl 9-oxosulfur 𠮿
Figure 108121559-A0304-12-01
, Diethyl 9-oxosulfur 𠮿
Figure 108121559-A0304-12-01
9-oxosulfur
Figure 108121559-A0304-12-01
Derivatives, benzoyl derivatives such as benzoyl, benzoyl dimethyl ketal, benzoyl-β-methoxyethyl acetal and other benzoyl derivatives, benzoin, benzoin methyl ether and other benzoin derivatives, 1-phenyl -1,2-butanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl- 1,2-propanedione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-phthalyl)oxime, 1,3-diphenyl Propanetrione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-3-ethoxypropanetrione-2-(o-phthalyl)oxime and other oximes, N-phenylglycine N-aryl glycines, peroxides such as benzoyl perchloride, aromatic biimidazoles, titanocenes, α-(n-octylsulfonyloxyimino)-4-methyl Photoacid generators, such as oxybenzyl cyanide, etc. are mentioned, but it is not limited to these. Among the above-mentioned photopolymerization initiators, oximes are more preferable in terms of photosensitivity. In the case of using a photoacid generator as the photosensitive agent (C) in a negative photosensitive resin composition, it exhibits acidity under the irradiation of active light such as ultraviolet rays, and has the effect of causing the following interaction: The linking agent acts to crosslink the resin as component (A), or to polymerize the crosslinking agents. As examples of the photoacid generator, diaryl permeicium salts, triaryl permeic acid salts, dialkylbenzoylmethyl permeic acid salts, diaryl diazonium salts, aryl diazonium salts, aromatic tetracarboxylic Ester, aromatic sulfonate, nitrobenzyl ester, oxime sulfonate, aromatic N-oxyimide sulfonate, aromatic sulfonamide, halogen-containing alkyl hydrocarbon compounds, halogen-containing Alkyl heterocyclic compounds, naphthoquinonediazide-4-sulfonate, etc. Such a compound can be used in combination of 2 or more types as needed, or in combination with another sensitizer. Among the photoacid generators mentioned above, aromatic oxime sulfonate and aromatic N-oxyimide sulfonate are more preferable especially in terms of photosensitivity. The compounding quantity of these photosensitizers is 1-50 mass parts with respect to 100 mass parts of (A) resins, Preferably it is 2-15 mass parts from a viewpoint of the photosensitivity characteristic. When 1 mass part or more of (C) photosensitizers are mix|blended with respect to 100 mass parts of (A) resins, the photosensitivity is excellent, and when 50 mass parts or less are mix|blended, the thick-film curability is excellent. Furthermore, as described above, when the (A) resin represented by the general formula (1) is an ionomeric type, in order to impart a photopolymerizable group to the side chain of the (A) resin via an ionobond, a resin having an amine group is used. (meth)acrylic compounds. In this case, a (meth)acrylic compound having an amino group is used as the (C) photosensitive agent, such as dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, etc. , diethylaminoethyl acrylate, diethylaminoethyl methacrylate, dimethylaminopropyl acrylate, dimethylaminopropyl methacrylate, diethylaminopropyl acrylate, diethyl methacrylate Dialkylaminoalkyl acrylates such as aminopropyl, dimethylaminobutyl acrylate, dimethylaminobutyl methacrylate, diethylaminobutyl acrylate, diethylaminobutyl methacrylate, etc. Or dialkylaminoalkyl methacrylate, wherein, from the viewpoint of photosensitivity, it is preferable that the carbon number of the alkyl group on the amino group is 1-10, and the carbon number of the alkyl chain is 1-10 Dialkylaminoalkyl acrylate or dialkylaminoalkyl methacrylate. The compounding quantity of the (meth)acrylic-type compound which has these amino groups is 1-20 mass parts with respect to 100 mass parts of (A) resins, Preferably it is 2-15 mass parts from a viewpoint of the light sensitivity characteristic. parts by mass. By compounding 1 mass part or more of (meth)acrylic compound having an amino group as (C) photosensitizer with respect to 100 mass parts of (A) resin, the photosensitivity is excellent, and by compounding 20 mass parts or less, thick Excellent film curability. Next, the case where the expectation is positive will be described. In this case, a photoacid generator is used as the (C) photosensitive agent, specifically, a quinone diazo compound, an onium salt, a halogen-containing compound, etc. can be used, and from the viewpoint of solvent solubility and storage stability, Preferably, it is a compound having a quinone diazide structure. [(C) Positive photosensitive agent: compound having a quinonediazide group] Examples of the compound having a quinonediazide group (C) (hereinafter also referred to as "(C) quinonediazide compound") include Compounds with 1,2-benzoquinonediazide structure and compounds with 1,2-naphthoquinonediazide structure are US Patent No. 2,772,972, US Patent No. 2,797,213, and US Patent No. 3,669,658 etc. known substances. The (C) quinonediazide compound is preferably selected from 1,2-naphthoquinonediazide-4-sulfonic acid ester of polyhydroxyl compounds having a specific structure and 1 of the polyhydroxyl compounds described in detail below. At least one compound of the group consisting of 2-naphthoquinonediazide-5-sulfonate (hereinafter also referred to as "NQD compound"). The NQD compound is obtained by the following method: according to the conventional method, the naphthoquinone diazide sulfonate compound is subjected to sulfonyl chlorination with chlorosulfonic acid or thionyl chloride, and the obtained naphthoquinone diazide sulfonyl chloride Condensation reaction with polyhydroxy compounds. For example, it can be obtained by making polyhydroxy compound and specific amount of 1,2-naphthoquinonediazide-5-sulfonyl chloride or 1,2-naphthoquinonediazide-4-sulfonyl chloride in dioxet In solvents such as alkanes, acetone or tetrahydrofuran, react in the presence of triethylamine and other basic catalysts to carry out esterification, and the obtained product is washed with water and dried. In this embodiment, from the viewpoint of sensitivity and resolution when forming a resist pattern, (C) the compound having a quinone diazide group is preferably represented by the following general formulas (70) to (74) 1,2-Naphthoquinonediazide-4-sulfonate and/or 1,2-Naphthoquinonediazide-5-sulfonate of hydroxy compounds. General formula (70) by [chemical 52]
Figure 02_image103
{where, X 11 and X 12 Each independently represents a hydrogen atom or a monovalent organic group with 1 to 60 carbons (preferably 1 to 30 carbons), X 13 and X 14 Each independently represents a hydrogen atom or a monovalent organic group with a carbon number of 1 to 60 (preferably a carbon number of 1 to 30), r1, r2, r3 and r4 are each independently an integer of 0 to 5, and at least one of r3 and r4 Those are integers from 1 to 5, (r1+r3)≦5, and (r2+r4)≦5}. The general formula (71) is obtained by [Chemical 53]
Figure 02_image105
{In the formula, Z represents a tetravalent organic group with 1 to 20 carbons, and X 15 、X 16 、X 17 and X 18 Each independently represents a monovalent organic group with a carbon number of 1 to 30, r6 is an integer of 0 or 1, r5, r7, r8 and r9 are each independently an integer of 0 to 3, r10, r11, r12 and r13 are each independently 0 ~2 integers, and r10, r11, r12 and r13 are not all represented by 0}. And the general formula (72) is given by [Chemical 54]
Figure 02_image107
{In the formula, r14 represents an integer of 1 to 5, r15 represents an integer of 3 to 8, (r14×r15) Ls independently represent monovalent organic groups with carbon numbers of 1 to 20, (r15) T 1 and (r15) T 2 Each independently represents a hydrogen atom or a monovalent organic group with 1 to 20 carbon atoms}. And the general formula (73) is given by [Chemical 55]
Figure 02_image109
{In the formula, A represents an aliphatic 2-valent organic group comprising tertiary or quaternary carbon, and M represents a 2-valent organic group, preferably represented by the following chemical formula: [Chemical 56]
Figure 02_image111
The 2-valent base of the three bases represented by it is represented by}. Furthermore, the general formula (74) is obtained by [Chem. 57]
Figure 02_image113
{In the formula, r17, r18, r19 and r20 are independently integers from 0 to 2, at least one of r17, r18, r19 and r20 is 1 or 2, X 20 ~X 29 each independently represents a hydrogen atom, a halogen atom, a monovalent group selected from the group consisting of an alkyl group, an alkenyl group, an alkoxy group, an allyl group and an acyl group, and Y 10 , Y 11 and Y 12 Each independently represents a single bond, selected from -O-, -S-, -SO-, -SO 2 -, -CO-, -CO 2 -, a cyclopentylene group, a cyclohexylene group, a phenylene group, and a divalent organic group having 1 to 20 carbon atoms is represented by a divalent group}. In another embodiment, in the above general formula (74), Y 10 ~Y 12 Preferably independently from the following general formula: [Chemical 58]
Figure 02_image115
[Chemical 59]
Figure 02_image117
[Chemical 60]
Figure 02_image119
{where, X 30 and X 31 Each independently represents a hydrogen atom, at least one monovalent group selected from the group consisting of alkyl, alkenyl, aryl, and substituted aryl, X 32 、X 33 、X 34 and X 35 each independently represents a hydrogen atom or an alkyl group, r21 is an integer of 1 to 5, and X 36 、X 37 、X 38 and X 39 Each independently represents a hydrogen atom or an alkyl group} to select from three divalent organic groups represented. Examples of the compound represented by the general formula (70) include hydroxy compounds represented by the following formulas (75) to (79). Here, the general formula (75) is [Chemical 61]
Figure 02_image121
{In the formula, r16 are independently integers from 0 to 2, and X 40 Each independently represents a hydrogen atom or a monovalent organic group with 1 to 20 carbons, in X 40 When there are plural cases, the plural X 40 may be the same or different from each other, and X 40 Preferably it is the following general formula: [Chemical 62]
Figure 02_image123
(where r18 is an integer from 0 to 2, X 41 Represents a hydrogen atom, a monovalent organic group selected from the group consisting of an alkyl group and a cycloalkyl group, and when r18 is 2, two X 41 may be the same or different from each other), the monovalent organic group represented by }, the general formula (76) is obtained from [化63]
Figure 02_image125
{where, X 42 represents a hydrogen atom, and is represented by a monovalent organic group selected from the group consisting of an alkyl group having 1 to 20 carbons, an alkoxy group having 1 to 20 carbons, and a cycloalkyl group having 1 to 20 carbons. Again, the general formula (77) is [Chemical 64]
Figure 02_image127
{In the formula, r19 are independently integers from 0 to 2, X 43 Respectively independently represent a hydrogen atom or the following general formula: [Chemical 65]
Figure 02_image129
(In the formula, r20 is an integer from 0 to 2, X 45 selected from the group consisting of a hydrogen atom, an alkyl group and a cycloalkyl group, and when r20 is 2, two X 45 may be the same or different), and X 44 Selected from the group consisting of a hydrogen atom, an alkyl group having 1 to 20 carbons, and a cycloalkyl group having 1 to 20 carbons}, the formulas (78) and (79) are the following structures. [chem 66]
Figure 02_image131
[chem 67]
Figure 02_image133
The compound represented by the above-mentioned general formula (70) is preferably the following formula (80) in terms of high sensitivity when it is made into an NQD compound and low precipitation in the photosensitive resin composition. The hydroxyl compound represented by ~(82). The structures of formulas (80) to (82) are shown below. [chem 68]
Figure 02_image135
[chem 69]
Figure 02_image137
[chem 70]
Figure 02_image139
As the compound represented by the above-mentioned general formula (76), the following formula (83) is preferable in terms of high sensitivity when used as an NQD compound and low precipitation in the photosensitive resin composition. : [chem 71]
Figure 02_image141
The hydroxyl compound represented. The compound represented by the above-mentioned general formula (77) is preferably the following formula (84) in terms of high sensitivity when it is made into an NQD compound and low precipitation in the photosensitive resin composition. The hydroxyl compound represented by ~(86). The structures of formulas (84) to (86) are shown below. [chem 72]
Figure 02_image143
[chem 73]
Figure 02_image145
[chem 74]
Figure 02_image147
In the above-mentioned general formula (71), Z is not particularly limited as long as it is a tetravalent organic group having 1 to 20 carbon atoms. From the viewpoint of sensitivity, it is preferable to have the following formula: [化75]
Figure 02_image149
The tetravalent basis of the structure represented. Among the compounds represented by the above-mentioned general formula (71), the following formula (87) is preferable in terms of high sensitivity when used as an NQD compound and low precipitation in the photosensitive resin composition )~(90) the hydroxyl compound represented. The structures of formulas (87) to (90) are shown below. [chem 76]
Figure 02_image151
[chem 77]
Figure 02_image153
[chem 78]
Figure 02_image155
[chem 79]
Figure 02_image157
The compound represented by the above-mentioned general formula (72) is preferably the following formula (91) in terms of high sensitivity when used as an NQD compound and low precipitation in the photosensitive resin composition. : [CH80]
Figure 02_image159
{wherein, r40 are each independently an integer of 0 to 9} the hydroxyl compound represented. As the compound represented by the above-mentioned general formula (73), the following formula (92) is preferable in terms of high sensitivity when used as an NQD compound and low precipitation in the photosensitive resin composition. and the hydroxy compound represented by (93). The structures of formulas (92) and (93) are shown below. [chem 81]
Figure 02_image161
[chem 82]
Figure 02_image163
As the compound represented by the above-mentioned general formula (74), the following formula (94) is specifically preferable in terms of high sensitivity and low leaching property in the photosensitive resin composition: 83]
Figure 02_image165
NQD compound of the represented polyhydroxy compound. In the case where (C) the compound having a quinonediazide group has a 1,2-naphthoquinonediazidesulfonyl group, the group may be 1,2-naphthoquinonediazide-5-sulfonyl or 1 , any of 2-naphthoquinonediazide-4-sulfonyl. 1,2-Naphthoquinonediazide-4-sulfonyl can absorb the i-ray region of the mercury lamp, so it is suitable for exposure with i-rays. On the other hand, 1,2-naphthoquinonediazide-5-sulfonyl can absorb even the g-ray region of a mercury lamp, and thus is suitable for exposure with g-rays. In this embodiment, it is preferable to select one of 1,2-naphthoquinonediazide-4-sulfonate compound and 1,2-naphthoquinonediazide-5-sulfonate compound according to the wavelength of exposure or both. Also, 1,2-naphthoquinone diazide having 1,2-naphthoquinonediazide-4-sulfonyl and 1,2-naphthoquinonediazide-5-sulfonyl in the same molecule can also be used. As the nitrogen sulfonate compound, a 1,2-naphthoquinonediazide-4-sulfonate compound and a 1,2-naphthoquinonediazide-5-sulfonate compound may be used in combination. (C) Among the compounds having a quinonediazide group, the average esterification rate of the naphthoquinonediazidesulfonyl ester of the hydroxy compound is preferably 10% to 100%, and more preferably 20% to 100%. From the viewpoint of cured film physical properties such as sensitivity and elongation, preferred examples of NQD compounds include, for example, those represented by the following general formula group. [chem 84]
Figure 02_image167
Can enumerate {wherein, Q is a hydrogen atom, or the following formula group: [Chemical 85]
Figure 02_image169
The naphthoquinone diazide sulfonate group represented by any one of them, but Q cannot all be represented by hydrogen atoms at the same time}. In this case, as the NQD compound, a naphthoquinonediazidesulfonyl ester compound having a 4-naphthoquinonediazidosulfonyl group and a 5-naphthoquinonediazidosulfonyl group in the same molecule can also be used. The 4-naphthoquinonesulfonyl diazide compound and the 5-naphthoquinonesulfonyl diazide compound can be used in combination. Among the naphthoquinone diazide sulfonate groups described in the above paragraph [0196], the following general formula (95) is particularly preferred: [Chemical 86]
Figure 02_image171
Expressed. Examples of the above-mentioned onium salts include: iodonium salts, phosphonium salts, hosihonium salts, phosphonium salts, ammonium salts, and diazonium salts. Onium salts in the group formed. Examples of the above-mentioned halogen-containing compound include halogen-alkyl-containing hydrocarbon compounds and the like, and trichloromethyltrimethanone is preferred. The compounding quantity of these photoacid generators is 1-50 mass parts with respect to 100 mass parts of (A) resins, Preferably it is 5-30 mass parts. If the blending amount of the photoacid generator as the (C) photosensitive agent is 1 mass part or more, the patternability of the photosensitive resin composition is good, and if it is 50 mass parts or less, the photosensitive resin composition after hardening The tensile elongation of the film was good, and the development residue (scum) of the exposed part was less. The above NQD compounds may be used alone or in combination of two or more. In this embodiment, the compounding quantity of (C) the compound which has a quinone diazide group in a photosensitive resin composition is 0.1 mass part - 70 mass parts with respect to 100 mass parts of (A) resins, Preferably it is 1 mass part - 40 mass parts, More preferably, it is 3 mass parts - 30 mass parts, More preferably, it is 5 mass parts - 30 mass parts. Favorable sensitivity will be acquired as this compounding quantity is 0.1 mass part or more, and on the other hand, if it is 70 mass parts or less, the mechanical property of a cured film will become favorable. The photosensitive resin composition of this invention may further contain components other than said (A)-(C)component. The preferable one of this component differs depending on (A) resin, for example, a negative type using a polyimide precursor, polyamide, etc., or a positive type using a polyoxazole precursor, a soluble polyimide, or the like. In this embodiment, the above-mentioned polyimide precursor resin composition and polyamide resin composition as a negative resin composition, or the polyoxazole resin composition and soluble polyamide resin composition as a positive photosensitive resin composition The imine resin composition and the phenol resin composition may contain a solvent for dissolving these resins. Examples of solvents include: amides, sulfides, ureas, ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons, alcohols, etc. For example, N-methyl-2 -Pyrrolidone, N,N-Dimethylacetamide, N,N-Dimethylformamide, Dimethylsulfoxide, Tetramethylurea, Acetone, Methyl Ethyl Ketone, Methyl Isobutyl ketone, cyclopentanone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate, diethyl oxalate, ethyl lactate, methyl lactate, butyl lactate, γ-butyrolactone, propylene glycol monomethyl ether Acetate, Propylene Glycol Monomethyl Ether, Benzyl Alcohol, Phenylethylene Glycol, Tetrahydrofuran Methanol, Ethylene Glycol Dimethyl Ether, Diethylene Glycol Dimethyl Ether, Tetrahydrofuran, Methionine, Dichloromethane, 1,2-Dichloro Ethane, 1,4-dichlorobutane, chlorobenzene, o-dichlorobenzene, anisole, hexane, heptane, benzene, toluene, xylene, mesitylene, etc. Among them, from the viewpoint of the solubility of the resin, the stability of the resin composition, and the adhesiveness to the substrate, N-methyl-2-pyrrolidone, dimethylsulfene, and tetramethylurea are preferred. , butyl acetate, ethyl lactate, gamma-butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, diethylene glycol dimethyl ether, benzyl alcohol, phenylethylene glycol and tetrahydrofuran methanol. Among such solvents, those that can completely dissolve the resulting polymer are particularly preferred, for example, N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylacetamide Methylformamide, dimethylsulfoxide, tetramethylurea, γ-butyrolactone, etc. Examples of solvents suitable for the above-mentioned phenol resins include: bis(2-methoxyethyl) ether, methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, Ethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, cyclohexanone, cyclopentanone, toluene, xylene, γ-butyrolactone, N-methyl-2-pyrrolidone, etc. In the photosensitive resin composition of the present invention, the amount of the solvent used is preferably 100 to 1,000 parts by mass, more preferably 120 to 700 parts by mass, and still more preferably 125 to 100 parts by mass of the (A) resin. 500 parts by mass. The photosensitive resin composition of this invention may further contain components other than said (A)-(C)component. For example, when using the photosensitive resin composition of the present invention to form a cured film on a substrate containing copper or copper alloy, nitrogen-containing heterocyclic rings such as azole compounds and purine derivatives can be arbitrarily formulated in order to suppress discoloration on the copper. compound. Examples of azole compounds include: 1H-triazole, 5-methyl-1H-triazole, 5-ethyl-1H-triazole, 4,5-dimethyl-1H-triazole, 5-phenyl -1H-triazole, 4-tert-butyl-5-phenyl-1H-triazole, 5-hydroxyphenyl-1H-triazole, phenyltriazole, p-ethoxyphenyltriazole, 5- Phenyl-1-(2-dimethylaminoethyl)triazole, 5-benzyl-1H-triazole, hydroxyphenyltriazole, 1,5-dimethyltriazole, 4,5-di Ethyl-1H-triazole, 1H-benzotriazole, 2-(5-methyl-2-hydroxyphenyl)benzotriazole, 2-[2-hydroxy-3,5-bis(α,α -Dimethylbenzyl)phenyl]-benzotriazole, 2-(3,5-di-tert-butyl-2-hydroxyphenyl)benzotriazole, 2-(3-tert-butyl- 5-methyl-2-hydroxyphenyl)-benzotriazole, 2-(3,5-di-tert-pentyl-2-hydroxyphenyl)benzotriazole, 2-(2'-hydroxy-5 '-Tertioctylphenyl)benzotriazole, hydroxyphenylbenzotriazole, tolyltriazole, 5-methyl-1H-benzotriazole, 4-methyl-1H-benzotriazole , 4-carboxy-1H-benzotriazole, 5-carboxy-1H-benzotriazole, 1H-tetrazole, 5-methyl-1H-tetrazole, 5-phenyl-1H-tetrazole, 5- Amino-1H-tetrazole, 1-methyl-1H-tetrazole, etc. Particularly preferred examples include tolutriazole, 5-methyl-1H-benzotriazole, and 4-methyl-1H-benzotriazole. Moreover, these azole compounds can be used 1 type or as a mixture of 2 or more types. Specific examples of purine derivatives include: purine, adenine, guanine, hypoxanthine, xanthine, theobromine, caffeine, uric acid, isoguanine, 2,6-diaminopurine, 9-methanopurine, Base adenine, 2-hydroxyadenine, 2-methyladenine, 1-methyladenine, N-methyladenine, N,N-dimethyladenine, 2-fluoroadenine, 9-( 2-Hydroxyethyl)adenine, Guanoxime, N-(2-Hydroxyethyl)adenine, 8-aminoadenine, 6-amino‐8-phenyl‐9H-purine, 1-ethyl Adenine, 6-ethylaminopurine, 1-benzyladenine, N-methylguanine, 7-(2-hydroxyethyl)guanine, N-(3-chlorophenyl)guanine, N -(3-Ethylphenyl)guanine, 2-azaadenine, 5-azaadenine, 8-azaadenine, 8-azaguanine, 8-azapurine, 8-aza Xanthine, 8-azahypoxanthine, etc. and their derivatives. When the photosensitive resin composition of the present invention contains the above-mentioned azole compound or purine derivative, the compounding amount is preferably 0.1 to 20 parts by mass with respect to 100 parts by mass of (A) resin, from the viewpoint of photosensitivity characteristics More preferably, it is 0.5-5 mass parts. When the compounding amount of the azole compound is 0.1 parts by mass or more with respect to 100 parts by mass of the (A) resin, when the photosensitive resin composition of the present invention is formed on copper or copper alloy, generation of Discoloration, on the other hand, if it is 20 mass parts or less, it will be excellent in photosensitivity. In addition, a hindered phenol compound may be arbitrarily formulated to suppress discoloration on the copper surface. Examples of hindered phenol compounds include: 2,6-di-tert-butyl-4-methylphenol, 2,5-di-tert-butyl-hydroquinone, 3-(3,5-di-tert-butyl- Octadecyl 4-hydroxyphenyl)propionate, isooctyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, 4,4'-methylenebis(2 ,6-di-tert-butylphenol), 4,4'-thio-bis(3-methyl-6-tert-butylphenol), 4,4'-butylene-bis(3-methyl- 6-tert-butylphenol), triethylene glycol-bis[3-(3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol- Bis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate], 2,2-thio-diethylene bis[3-(3,5-di-tert-butyl) yl-4-hydroxyphenyl)propionate], N,N'-hexamethylenebis(3,5-di-tert-butyl-4-hydroxy-phenylacrylamide), 2,2'- Methyl-bis(4-methyl-6-tert-butylphenol), 2,2'-methylene-bis(4-ethyl-6-tert-butylphenol), tetrakis[3-(3 ,5-di-tert-butyl-4-hydroxyphenyl) propionate] pentaerythritol, tri-(3,5-di-tert-butyl-4-hydroxybenzyl) isocyanurate, 1,3,5 -Trimethyl-2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)benzene, 1,3,5-tris(3-hydroxy-2,6-dimethyl -4-isopropylbenzyl)-1,3,5-tri(4-tert-butyl)-2,4,6-(1H,3H,5H)-trione -3-Hydroxy-2,6-dimethylbenzyl)-1,3,5-tri-2,4,6-(1H,3H,5H)-trione, 1,3,5-tri( 4-Second-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-tri-2,4,6-(1H,3H,5H)-trione, 1, 3,5-tris[4-(1-ethylpropyl)-3-hydroxy-2,6-dimethylbenzyl]-1,3,5-tris[4-(1-ethylpropyl)-2,4,6-(1H, 3H,5H)-triketone, 1,3,5-tris[4-triethylmethyl-3-hydroxy-2,6-dimethylbenzyl]-1,3,5-tris-triketone-2, 4,6-(1H,3H,5H)-trione, 1,3,5-tris(3-hydroxy-2,6-dimethyl-4-phenylbenzyl)-1,3,5-tris 𠯤-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,5,6-trimethylbenzyl) -1,3,5-tris-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-tert-butyl-5-ethyl-3-hydroxyl -2,6-Dimethylbenzyl)-1,3,5-tri-2,4,6-(1H,3H,5H)-trione, 1,3,5-tri(4-third Butyl-6-ethyl-3-hydroxy-2-methylbenzyl)-1,3,5-trimethalone-2,4,6-(1H,3 H,5H)-trione, 1,3,5-tris(4-tert-butyl-6-ethyl-3-hydroxy-2,5-dimethylbenzyl)-1,3,5-tris 𠯤-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-tert-butyl-5,6-diethyl-3-hydroxy-2-methyl Benzyl)-1,3,5-tri-(2,4,6-(1H,3H,5H)-trione, 1,3,5-tri(4-tert-butyl-3-hydroxy-2 -Methylbenzyl)-1,3,5-tris-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-tert-butyl-3- Hydroxy-2,5-dimethylbenzyl)-1,3,5-tris-2,4,6-(1H,3H,5H)-trione, 1,3,5-tris(4-th Tributyl-5‐ethyl-3-hydroxy-2-methylbenzyl)-1,3,5-tri-2,4,6-(1H,3H,5H)-trione, etc., but not Not limited to this. Among them, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)-1,3,5-tris-2,4 , 6-(1H,3H,5H)-trione, etc. The compounding quantity of a hindered phenol compound is preferably 0.1-20 mass parts with respect to 100 mass parts of (A) resins, More preferably, it is 0.5-10 mass parts from a viewpoint of the photosensitivity characteristic. If the blending amount of the hindered phenol compound is 0.1 parts by mass or more with respect to 100 parts by mass of the (A) resin, for example, when the photosensitive resin composition of the present invention is formed on copper or copper alloy, the generation of copper or copper alloy can be prevented. Discoloration or corrosion, on the other hand, if it is 20 parts by mass or less, the photosensitivity will be excellent. The photosensitive resin composition of the present invention may also contain a crosslinking agent. The cross-linking agent can be used to cross-link the (A) resin when the relief pattern formed by using the photosensitive resin composition of the present invention is heated and hardened, or the cross-linking agent itself can form a cross-linked network structure. agent. The crosslinking agent can further enhance the heat resistance and chemical resistance of the cured film formed from the photosensitive resin composition. As a crosslinking agent, for example, Cymel (registered trademark) 300, 301, 303, 370, 325, 327, 701, 266, 267, 238, which are compounds containing a hydroxymethyl group and/or an alkoxymethyl group, 1141, 272, 202, 1156, 1158, 1123, 1170, 1174, UFR 65, 300, Micoat 102, 105 (the above are manufactured by Mitsui Cytec); NIKALAC (registered trademark) MX-270, -280, -290, NIKALAC MS-11, NIKALAC MW-30, -100, -300, -390, -750 (manufactured by SANWA CHEMICAL); DML-OCHP, DML-MBPC, DML-BPC, DML-PEP, DML-34X, DML -PSBP, DML-PTBP, DML-PCHP, DML-POP, DML-PFP, DML-MBOC, BisCMP-F, DML-BisOC-Z, DML-BisOCHP-Z, DML-BisOC-P, DMOM-PTBT, TMOM -BP, TMOM-BPA, TML-BPAF-MF (the above are manufactured by Honshu Chemical Industry Co., Ltd.); benzenedimethanol, bis(hydroxymethyl)cresol, bis(hydroxymethyl)dimethoxybenzene, bis(hydroxymethyl) Methyl)diphenyl ether, bis(hydroxymethyl)benzophenone, hydroxymethylphenyl hydroxymethylbenzoate, bis(hydroxymethyl)biphenyl, dimethylbis(hydroxymethyl)biphenyl, Bis(methoxymethyl)benzene, bis(methoxymethyl)cresol, bis(methoxymethyl)dimethoxybenzene, bis(methoxymethyl)diphenyl ether, bis(methoxymethyl)diphenyl ether, bis(methoxymethyl)cresol Oxymethyl)benzophenone, methoxymethylphenyl methoxymethylbenzoate, bis(methoxymethyl)biphenyl, dimethylbis(methoxymethyl)biphenyl, etc. . In addition, examples of ethylene oxide compounds include phenol novolac epoxy resins, cresol novolak epoxy resins, bisphenol epoxy resins, triphenol epoxy resins, tetraphenol epoxy resins, Phenol-xylylene type epoxy resin, naphthol-xylylene type epoxy resin, phenol-naphthol type epoxy resin, phenol-dicyclopentadiene type epoxy resin, alicyclic epoxy resin , aliphatic epoxy resin, diethylene glycol diglycidyl ether, sorbitol polyglycidyl ether, propylene glycol diglycidyl ether, trimethylolpropane polyglycidyl ether, 1,1,2,2-tetra( Hydroxyphenyl)ethane tetraglycidyl ether, glycerol triglycidyl ether, o-second butylphenyl glycidyl ether, 1,6-bis(2,3-epoxypropoxy)naphthalene, diglycerol polyglycidyl ether Glyceryl ether, polyethylene glycol glycidyl ether, YDB-340, YDB-412, YDF-2001, YDF-2004 (the above are trade names, manufactured by Nippon Steel Chemical Co., Ltd.), NC-3000-H, EPPN- 501H, EOCN-1020, NC-7000L, EPPN-201L, XD-1000, EOCN-4600 (the above are trade names, manufactured by Nippon Kayaku Co., Ltd.), Epikote (registered trademark) 1001, Epikote 1007, Epikote 1009, Epikote 5050, Epikote 5051, Epikote 1031S, Epikote 180S65, Epikote 157H70, YX-315-75 (the above are trade names, manufactured by Japan Epoxy Resins Co., Ltd.), EHPE3150, PLACCEL G402, PUE101, PUE105 (the above are trade names, manufactured by Diacel Chemical Industries Co., Ltd.), EPICLON (registered trademark) 830, 850, 1050, N-680, N-690, N-695, N-770, HP-7200, HP-820, EXA-4850-1000 (the above are Product name, manufactured by DIC Corporation), DENACOL (registered trademark) EX-201, EX-251, EX-203, EX-313, EX-314, EX-321, EX-411, EX-511, EX-512, EX -612, EX-614, EX-614B, EX-711, EX-731, EX-810, EX-911, EM-150 (the above are product names, manufactured by Nagase ChemteX Co., Ltd.), Epolight (registered trademark) 70P, Epolight 100MF (the above are trade names, manufactured by Kyoeisha Chemical Co., Ltd.) and the like. Also, examples of isocyanate group-containing compounds include 4,4'-diphenylmethane diisocyanate, toluene diisocyanate, 1,3-xylylene diisocyanate, dicyclohexylmethane-4,4'- Diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, Takenate (registered trademark) 500, 600, Cosmonate (registered trademark) NBDI, ND (the above are trade names, manufactured by Mitsui Chemicals Co., Ltd.), Duranate (registered trademark) ) 17B-60PX, TPA-B80E, MF-B60X, MF-K60X, E402-B80T (the above are trade names, manufactured by Asahi Kasei Chemicals), etc. Also, examples of bismaleimide compounds include 4,4'-diphenylmethanebismaleimide, phenylmethanemaleimide, m-phenylenebis Maleimide, bisphenol A diphenyl ether bismaleimide, 3,3'-dimethyl-5,5'-diethyl-4,4'-diphenylmethane Bismaleimide, 4-methyl-1,3-phenylenebismaleimide, 1,6'-bismaleimide-(2,2,4 -Trimethyl)hexane, 4,4'-diphenyl ether bismaleimide, 4,4'-diphenylbismaleimide, 1,3-bis(3 -maleimidephenoxy)benzene, 1,3-bis(4-maleimidephenoxy)benzene, BMI-1000, BMI-1100, BMI-2000, BMI-2300 , BMI-3000, BMI-4000, BMI-5100, BMI-7000, BMI-TMH, BMI-6000, BMI-8000 (the above are trade names, manufactured by Daiwa Chemical Industry Co., Ltd.), etc., as long as they are as mentioned above Compounds that generally undergo thermal crosslinking are not limited to these. About the compounding quantity at the time of using a crosslinking agent, Preferably it is 0.5-20 mass parts with respect to 100 mass parts of (A) resins, More preferably, it is 2-10 mass parts. When the compounding amount is 0.5 parts by mass or more, good heat resistance and chemical resistance are exhibited, and on the other hand, when it is 20 parts by mass or less, storage stability is excellent. The photosensitive resin composition of the present invention may also contain an organic titanium compound. By including an organic titanium compound, even when it hardens|cures at the low temperature of about 250 degreeC, the photosensitive resin layer excellent in chemical resistance can be formed. In addition, especially by making the photosensitive resin composition contain both (B) a cyclic compound having a carbonyl group and an organotitanium compound, the cured resin layer has not only excellent substrate adhesion but also excellent chemical resistance. Effect. Examples of organic titanium compounds that can be used include those in which an organic chemical substance is bonded to a titanium atom via a covalent bond or an ionic bond. Specific examples of organic titanium compounds are shown in the following I) to VII): 1) Titanium chelate compound: Among them, in terms of storage stability of the negative photosensitive resin composition and the aspect of obtaining a good pattern, more preferably Titanium chelates with more than 2 alkoxyl groups, specific examples are as follows: bis(triethanolamine) titanium diisopropoxide, bis(2,4-pentanedioic acid) di-n-butoxide titanium, bis(2,4 - Titanium glutarate) diisopropoxide, bis(tetramethylpimelate) titanium diisopropoxide, bis(ethylacetylacetate) titanium diisopropoxide, and the like. II) Tetraalkoxytitanium compounds: such as titanium tetra(n-butoxide), titanium tetraethoxide, titanium tetrakis(2-ethylhexyloxide), titanium tetraisobutoxide, titanium tetraisopropoxide, titanium tetramethoxide, Titanium methoxypropoxide, titanium tetramethylphenoxide, titanium tetra(n-nonyloxide), titanium tetra(n-propoxide), titanium tetrastearate, tetrakis[bis{2,2-(allyloxymethyl) ) Butanol}] Titanium, etc. III) titanocene compounds: such as (pentamethylcyclopentadienyl)titanium trimethoxide, bis(η 5 -2,4-cyclopentadien-1-yl)bis(2,6-difluorophenyl)titanium, bis(η 5 -2,4-cyclopentadien-1-yl)bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium, etc. IV) Titanium monoalkoxide compounds: for example, titanium tris(dioctylphosphate)isopropoxide, titanium tris(dodecylbenzenesulfonate)isopropoxide, and the like. V) Oxytitanium compounds: such as bis(glutaric acid)oxytitanium, bis(tetramethylpimelate)oxytitanium, phthalocyaninyltitanium and the like. VI) Titanium tetraacetylpyruvate compound: such as titanium tetraacetylpyruvate and the like. VII) Titanate coupling agent: for example, isopropyl tris(dodecylbenzenesulfonyl) titanate and the like. Among them, from the viewpoint of exhibiting better chemical resistance, the organic titanium compound is preferably selected from the above-mentioned I) titanium chelate compound, II) tetraalkoxytitanium compound and III) titanocene compound At least one compound in the group formed. Especially preferred are bis(ethyl acetyl acetate) titanium diisopropoxide, tetra(n-butoxide) titanium, and bis(η 5 -2,4-cyclopentadien-1-yl)bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium. The compounding quantity when compounding an organic titanium compound is preferable with respect to 100 mass parts of (A) resins, Preferably it is 0.05-10 mass parts, More preferably, it is 0.1-2 mass parts. When the compounding amount is 0.05 parts by mass or more, favorable heat resistance and chemical resistance are exhibited, and on the other hand, when it is 10 parts by mass or less, storage stability is excellent. Furthermore, in order to improve the adhesiveness of the film formed using the photosensitive resin composition of this invention, and a base material, you may mix|blend an adhesive auxiliary agent arbitrarily. Examples of adhesive additives include: γ-aminopropyldimethoxysilane, N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane, γ-glycidyloxysilane propylmethyldimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, 3-methacryloxypropyldimethoxymethylsilane, 3-methacryloxy Propyltrimethoxysilane, Dimethoxymethyl-3-piperidylpropylsilane, Diethoxy-3-glycidyloxypropylmethylsilane, N-(3-diethoxymethylsilane silylpropyl) succinimide, N-[3-(triethoxysilyl)propyl]phthalimide, benzophenone-3,3'-bis(N-[ 3-triethoxysilyl]propylamide)-4,4'-dicarboxylic acid, benzene-1,4-bis(N-[3-triethoxysilyl]propylamide)- 2,5-dicarboxylic acid, 3-(triethoxysilyl)propylsuccinic anhydride, N-phenylaminopropyltrimethoxysilane, 3-ureidopropyltrimethoxysilane, 3- Silane coupling agents such as ureidopropyltriethoxysilane, 3-(trialkoxysilyl)propyl succinic anhydride, and tris(ethylacetylacetate)aluminum, tris(acetylpyruvate)aluminum, ethyl Aluminum-based adhesive additives such as ethyl aluminum diisopropyl acyl acetate, etc. Among these adhesive aids, it is more preferable to use a silane coupling agent in terms of adhesive force. When the photosensitive resin composition contains an adhesive auxiliary agent, it is preferable that the compounding quantity of an adhesive auxiliary agent is the range of 0.5-25 mass parts with respect to 100 mass parts of (A) resins. Examples of the silane coupling agent include: 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: trade name KBM803, Chisso Co., Ltd.: trade name Sila-Ace S810), 3-mercaptopropyl trimethoxysilane Ethoxysilane (manufactured by Azmax Co., Ltd.: trade name SIM6475.0), 3-mercaptopropylmethyldimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.: trade name LS1375, manufactured by Azmax Co., Ltd.: commodity SIM6474.0), mercaptomethyltrimethoxysilane (manufactured by Azmax Co., Ltd.: trade name SIM6473.5C), mercaptomethylmethyldimethoxysilane (manufactured by Azmax Co., Ltd.: trade name SIM6473.0) , 3-mercaptopropyldiethoxymethoxysilane, 3-mercaptopropylethoxydimethoxysilane, 3-mercaptopropyltripropoxysilane, 3-mercaptopropyldiethoxypropane Oxysilane, 3-Mercaptopropylethoxydipropoxysilane, 3-Mercaptopropyldimethoxypropoxysilane, 3-Mercaptopropylmethoxydipropoxysilane, 2-Mercaptoethyl Trimethoxysilane, 2-Mercaptoethyldiethoxymethoxysilane, 2-Mercaptoethylethoxydimethoxysilane, 2-Mercaptoethyltripropoxysilane, 2-Mercaptoethyl Tripropoxysilane, 2-Mercaptoethylethoxydipropoxysilane, 2-Mercaptoethyldimethoxypropoxysilane, 2-Mercaptoethylmethoxydipropoxysilane, 4- Mercaptobutyltrimethoxysilane, 4-mercaptobutyltriethoxysilane, 4-mercaptobutyltripropoxysilane, N-(3-triethoxysilylpropyl)urea (Shin-Etsu Chemical Co., Ltd. Co., Ltd.: product name LS3610, Azmax Co., Ltd.: product name SIU9055.0), N-(3-trimethoxysilylpropyl) urea (Azmax Co., Ltd. product name: SIU9058.0), N -(3-diethoxymethoxysilylpropyl)urea, N-(3-ethoxydimethoxysilylpropyl)urea, N-(3-tripropoxysilylpropyl) ) urea, N-(3-diethoxypropoxysilylpropyl)urea, N-(3-ethoxydipropoxysilylpropyl)urea, N-(3-dimethoxy Propoxysilylpropyl)urea, N-(3-methoxydipropoxysilylpropyl)urea, N-(3-trimethoxysilylethyl)urea, N-(3-ethyl Oxydimethoxysilylethyl)urea, N-(3-tripropoxysilylethyl)urea, N-(3-tripropoxysilylethyl)urea, N-(3- Ethoxydipropoxysilylethyl)urea, N-(3-dimethoxypropoxysilylethyl)urea, N-(3-methoxydipropoxysilylethyl) Urea, N-(3-trimethoxysilylbutyl)urea, N-(3-triethoxysilylbutyl)urea, N-(3-tripropoxysilylbutyl)urea, 3 -(m-Aminophenoxy)propyltrimethoxysilane (Azmax stock Co., Ltd.: product name SLA0598.0), m-aminophenyltrimethoxysilane (manufactured by Azmax Co., Ltd.: product name SLA0599.0), p-aminophenyltrimethoxysilane (manufactured by Azmax Co., Ltd. : brand name SLA0599.1), aminophenyltrimethoxysilane (manufactured by Azmax Co., Ltd.: product name SLA0599.2), 2-(trimethoxysilylethyl)pyridine (manufactured by Azmax Co., Ltd.: product name SIT8396.0), 2-(triethoxysilylethyl)pyridine, 2-(dimethoxysilylmethylethyl)pyridine, 2-(diethoxysilylmethylethyl) Pyridine, (3-triethoxysilylpropyl) tertiary butyl carbamate, (3-glycidoxypropyl) triethoxysilane, tetramethoxysilane, tetraethoxysilane, Tetra-n-propoxysilane, tetraisopropoxysilane, tetra-n-butoxysilane, tetraisobutoxysilane, tetra-tertiary butoxysilane, tetra(methoxyethoxysilane), tetra(methoxysilane) oxyn-propoxysilane), tetrakis(ethoxyethoxysilane), tetrakis(methoxyethoxyethoxysilane), bis(trimethoxysilyl)ethane, bis(trimethoxy silyl)hexane, bis(triethoxysilyl)methane, bis(triethoxysilyl)ethane, bis(triethoxysilyl)ethylene, bis(triethoxysilyl)octyl alkane, bis(triethoxysilyl)octadiene, bis[3-(triethoxysilyl)propyl] disulfide, bis[3-(triethoxysilyl)propyl] tetra Thioether, di-tert-butoxydiacetoxysilane, diisobutoxyaluminumoxytriethoxysilane, bis(glutarate)titanium-O,O'-bis(oxyethyl) - Aminopropyltriethoxysilane, Phenylsilanetriol, Methylphenylsilanediol, Ethylphenylsilanediol, n-Propylphenylsilanediol, Isopropylphenylsilanediol , n-butylphenylsilanediol, isobutylphenylsilanediol, tertiary butylphenylsilanediol, diphenylsilanediol, dimethoxydiphenylsilane, diethoxydiol Phenylsilane, Dimethoxydi-p-tolylsilane, Ethylmethylphenylsilanol, n-Propylmethylphenylsilanol, Isopropylmethylphenylsilanol, n-Butylmethylphenylsilanol , isobutylmethylphenylsilanol, tertiary butylmethylphenylsilanol, ethyl n-propylphenylsilanol, ethylisopropylphenylsilanol, n-butylethylphenylsilanol, isobutyl Ethylethylphenylsilanol, tert-butylethylphenylsilanol, methyldiphenylsilanol, ethyldiphenylsilanol, n-propyldiphenylsilanol, isopropyldiphenylsilanol Silanol, n-butyldiphenylsilanol, isobutyldiphenylsilanol, tert-butyldiphenylsilanol, triphenylsilanol, etc., but not limited thereto. These may be used alone or in combination of plural kinds. As the silane coupling agent, among the above-mentioned silane coupling agents, from the viewpoint of storage stability, phenylsilanetriol, trimethoxyphenylsilane, trimethoxy(p-tolyl)silane, diphenylsilane Silanediol, dimethoxydiphenylsilane, diethoxydiphenylsilane, dimethoxydi-p-tolylsilane, triphenylsilanol, and silane coupling agents represented by the following structures. [chem 87]
Figure 02_image173
It is preferable that it is 0.01-20 mass parts with respect to 100 mass parts of (A) resins with respect to the compounding quantity at the time of using a silane coupling agent. The photosensitive resin composition of the present invention may further contain components other than the above components. Preferable ones of this component are based on (A) resins such as negative types using polyimide precursors and polyamides, or positive types using polyoxazole precursors, soluble polyimides, and phenolic resins, etc. different. In the case of using a polyimide precursor or polyamide as the negative type of (A) resin, a sensitizer can be arbitrarily blended in order to increase the photosensitivity. Examples of the sensitizer include Michelerone, 4,4'-bis(diethylamino)benzophenone, 2,5-bis(4'-diethylaminobenzylidene ) cyclopentane, 2,6-bis(4'-diethylaminobenzylidene)cyclohexanone, 2,6-bis(4'-diethylaminobenzylidene)-4-methyl Cyclohexanone, 4,4'-bis(dimethylamino)chalcone, 4,4'-bis(diethylamino)chalcone, p-dimethylaminocinnamoindanone , p-Dimethylaminobenzylidene indanone, 2-(p-Dimethylaminophenylbiphenylene)benzothiazole, 2-(p-Dimethylaminophenylvinylidene)benzothiazole , 2-(p-dimethylaminophenylvinylidene) isonaphthothiazole, 1,3-bis(4'-dimethylaminobenzylidene)acetone, 1,3-bis(4'-di Ethylaminobenzylidene) acetone, 3,3'-carbonyl-bis(7-diethylaminocoumarin), 3-acetyl-7-dimethylaminocoumarin, 3- Ethoxycarbonyl-7-dimethylaminocoumarin, 3-benzyloxycarbonyl-7-dimethylaminocoumarin, 3-methoxycarbonyl-7-diethylaminocoumarin element, 3-ethoxycarbonyl-7-diethylaminocoumarin, N-phenyl-N'-ethylethanolamine, N-phenyldiethanolamine, N-p-tolyldiethanolamine, N-benzene 2-mercaptobenzimidazole, 2-mercaptobenzimidazole, 1-phenyl-5-mercapto Tetrazole, 2-mercaptobenzothiazole, 2-(p-dimethylaminostyryl) benzothiazole, 2-(p-dimethylaminostyryl) benzothiazole, 2-(p-two Methylaminostyryl)naphtho(1,2-d)thiazole, 2-(p-dimethylaminobenzoyl)styrene and the like. These can be used alone or in combination of, for example, 2 to 5 of them. It is preferable that it is 0.1-25 mass parts with respect to 100 mass parts of (A) resins with respect to the compounding quantity when the photosensitive resin composition contains the sensitizer for raising photosensitivity. Moreover, in order to improve the resolution of a relief pattern, the monomer which has a photopolymerizable unsaturated bond can be arbitrarily blended. As such a monomer, it is preferably a (meth)acrylic compound that undergoes a radical polymerization reaction through a photopolymerization initiator, and is not particularly limited to the following, for example: diethylene glycol dimethyl Mono- or di-acrylates and methacrylates of ethylene glycol or polyethylene glycol such as tetraethylene glycol dimethacrylate, mono- or di-acrylates and methacrylates of propylene glycol or polypropylene glycol, Glycerin mono-, di- or triacrylates and methacrylates, cyclohexane diacrylates and dimethacrylates, 1,4-butanediol diacrylates and dimethacrylates, 1,6- Diacrylate and dimethacrylate of hexanediol, diacrylate and dimethacrylate of neopentyl glycol, mono- or diacrylate and methacrylate of bisphenol A, benzenetrimethacrylate , isoacrylate and isomethacrylate, acrylamide and its derivatives, methacrylamide and its derivatives, trimethylolpropane triacrylate and methacrylate, two or three glycerol Acrylates and methacrylates, di-, tri-, or tetra-acrylates and methacrylates of pentaerythritol, and ethylene oxide or propylene oxide adducts of these compounds. When the photosensitive resin composition contains the above-mentioned monomer having a photopolymerizable unsaturated bond for improving the resolution of the relief pattern, the compounding amount of the monomer having a photopolymerizable unsaturated bond is as follows: Preferably it is 1-50 mass parts with respect to 100 mass parts of (A) resins. Also, when using a polyimide precursor or the like as the negative type of the (A) resin, especially in order to improve the stability of the viscosity and photosensitivity of the photosensitive resin composition when it is stored in a solution state containing a solvent , can be arbitrarily formulated thermal polymerization inhibitor. As thermal polymerization inhibitors, hydroquinone, N-nitrosodiphenylamine, p-tert-butylcatechol, phenanthrene, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1, 2-cyclohexanediaminetetraacetic acid, glycol ether diaminetetraacetic acid, 2,6-di-tert-butyl-p-cresol, 5-nitroso-8-hydroxyquinoline, 1-nitroso-2 -naphthol, 2-nitroso-1-naphthol, 2-nitroso-5-(N-ethyl-N-sulfopropylamino)phenol, N-nitroso-N-phenylhydroxy Amine ammonium salt, N-nitroso-N(1-naphthyl)hydroxylamine ammonium salt, etc. The compounding quantity at the time of compounding a thermal polymerization inhibitor in a photosensitive resin composition is preferable with respect to 100 mass parts of (A) resins, It is preferable that it is the range of 0.005-12 mass parts. On the other hand, in the photosensitive resin composition of the present invention, when a polyoxazole precursor or the like is used as the positive type of the (A) resin, a dye previously used as an additive of the photosensitive resin composition may be added if necessary. , surfactants, and thermal acid generators, dissolution accelerators, adhesive aids to improve adhesion with substrates, etc. <Dyes, Surfactants, Adhesive Auxiliaries> When the above-mentioned additives are more specifically described, examples of dyes include methyl violet, crystal violet, malachite green, and the like. In addition, examples of surfactants include nonionic surfactants containing polyglycols such as polypropylene glycol and polyoxyethylene lauryl ether, or derivatives thereof, such as Fluorad (trade name, manufactured by Sumitomo 3M), MEGAFAC ( Fluorinated surfactants such as brand name, Dainippon Ink & Chemical Industry) or Lumiflon (trade name, Asahi Glass Co., Ltd.), such as KP341 (trade name, Shin-Etsu Chemical Industry Co., Ltd.), DBE (trade name, Chisso Co., Ltd.) Organosiloxane surfactants such as Glanol (trade name, manufactured by Kyoeisha Chemical Co., Ltd.). Examples of adhesive aids include: alkyl imidazoline, butyric acid, alkyl acid, polyhydroxystyrene, polyvinyl methyl ether, tertiary butyl novolac, epoxy silane, epoxy polymer, etc., and Various silane coupling agents. It is preferable that it is 0.1-30 mass parts with respect to 100 mass parts of (A) resins with respect to the compounding quantity of the said dye and surfactant. In addition, a thermal acid generator can be arbitrarily formulated from the viewpoint of exhibiting good thermal and mechanical properties of a cured product even when the curing temperature is lowered. From the viewpoint of exhibiting good thermal and mechanical properties of the cured product even when the curing temperature is lowered, it is preferable to mix a thermal acid generator. Examples of the thermal acid generator include salts of strong acids and bases, such as onium salts that have a function of generating acids by heat, and imidesulfonic acid esters. Examples of onium salts include diaryl iodonium salts such as aryl diazonium salts and diphenyl iodonium salts; di(alkylaryl) iodonium salts such as bis(tertiary butylphenyl) iodonium salts; Trialkylconium salts such as methyl permeate; dialkylmonoaryl permeate such as dimethylphenyl permeate; diaryl monoalkyl permeate such as diphenylmethyl permeate; triaryl permeate salt etc. Among them, bis(tertiary butylphenyl)iodonium salt of p-toluenesulfonic acid, bis(tertiary butylphenyl)iodonium salt of trifluoromethanesulfonic acid, and trifluoromethanesulfonic acid trifluoromethanesulfonic acid are preferred. Methyl permeic acid salt, trifluoromethanesulfonic acid dimethylphenyl permeic acid salt, trifluoromethanesulfonic acid diphenylmethyl permeic acid salt, nonafluorobutanesulfonic acid bis(tertiary butylphenyl)iodonium salt , Diphenylonium salt of camphorsulfonic acid, diphenylonium salt of ethanesulfonic acid, dimethylphenylonium salt of benzenesulfonic acid, diphenylmethyliumium salt of toluenesulfonic acid, etc. Moreover, as a salt formed of a strong acid and a base, besides the above-mentioned onium salt, a salt formed of a strong acid and a base such as a pyridinium salt can also be used. Examples of strong acids include arylsulfonic acids such as p-toluenesulfonic acid and benzenesulfonic acid, perfluoroalkylsulfonic acids such as camphorsulfonic acid, trifluoromethanesulfonic acid, and nonafluorobutanesulfonic acid, and methanesulfonic acid. , Alkanesulfonic acid such as ethanesulfonic acid and butanesulfonic acid, etc. Examples of the base include pyridine, alkylpyridines such as 2,4,6-collidine, N-alkylpyridines such as 2-chloro-N-methylpyridine, and halogenated-N-alkylpyridines. Wait. As the imide sulfonate, for example, naphthyl imide sulfonate, phthalimide sulfonate and the like can be used, and there is no limitation as long as it is a compound that generates an acid under the action of heat. The compounding amount in the case of using a thermal acid generator is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 10 parts by mass, further preferably 1 to 5 parts by mass with respect to 100 parts by mass of the (A) resin . In the case of a positive-type photosensitive resin composition, in order to promote the removal of useless resin after exposure, a dissolution accelerator can be used. Preferable is, for example, a compound having a hydroxyl group or a carboxyl group. Examples of compounds having a hydroxyl group include: ballast agents used for the above-mentioned naphthoquinone diazide compounds, and straight chains such as p-cumylphenol, bisphenols, resorcinols, and MtrisPC and MtetraPC. Non-linear phenolic compounds such as TrisP-HAP, TrisP-PHBA, and TrisP-PA (all manufactured by Honshu Chemical Industry Co., Ltd.), 2 to 5 phenolic substitutions of diphenylmethane, 3,3-bis 1 to 5 phenol substituents of phenylpropane, 2,2-bis-(3-amino-4-hydroxyphenyl)hexafluoropropane and 5-northene-2,3-dicarboxylic anhydride A compound obtained by reacting bis-(3-amino-4-hydroxyphenyl)sulfone and 1,2-cyclohexyldicarboxylic anhydride at a molar ratio of 1:2 Compounds, N-hydroxysuccinimide, N-hydroxyphthalimide, N-hydroxy 5-northene-2,3-dicarboximide, etc. Examples of compounds having a carboxyl group include: 3-phenyllactic acid, 4-hydroxyphenyllactic acid, 4-hydroxymandelic acid, 3,4-dihydroxymandelic acid, 4-hydroxy-3-methoxy Mandelic acid, 2-methoxy-2-(1-naphthyl)propionic acid, mandelic acid, 2-phenyllactic acid, alpha-methoxyphenylacetic acid, O-acetylmandelic acid, Icon Acid etc. It is preferable that it is 0.1-30 mass parts with respect to 100 mass parts of (A) resins with respect to the compounding quantity at the time of using a dissolution accelerator. (Aspect B) In another aspect of this embodiment, (B) a sulfur-containing compound can be used instead of the above-mentioned (B) cyclic compound having a carbonyl group. More specifically, there is provided a photosensitive resin composition comprising (A) selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid salt, polyhydroxyamide, polyaminoamide, polyamide At least one resin selected from the group consisting of amine, polyamideimide, polyimide, polybenzoxazole, and novolac, polyhydroxystyrene, and phenolic resin: 100 parts by mass, (B) containing sulfur Compound: 0.01-10 parts by mass based on 100 parts by mass of the above-mentioned (A) resin, and (C) photosensitive agent: 1-50 parts by mass based on 100 parts by mass of the above-mentioned (A) resin. In this aspect, the (A) resin is preferably selected from polyimide precursors comprising the above general formula (1), polyamides comprising the above general formula (4), and polyimides comprising the above general formula (5). At least one of the polyoxazole precursor, the polyimide containing the above general formula (6), and the group consisting of novolac, polyhydroxystyrene and the phenol resin containing the above general formula (7). Also, it is preferable that the photosensitive resin composition comprises a phenol resin having a repeating unit represented by the above-mentioned general formula (7), and X in the above-mentioned general formula (7) is selected from divalent compounds represented by the above-mentioned general formula (9). and a divalent organic group in the group consisting of divalent groups represented by the above-mentioned general formula (10). By compounding a sulfur-containing compound in the photosensitive resin composition, it is possible to obtain a photosensitive resin composition capable of forming a cured film in which generation of voids at the interface in contact with the Cu layer after a high-temperature storage test is suppressed. (B) The sulfur-containing compound is an organic compound containing sulfur, preferably sulfur and nitrogen, and sulfur is preferably contained in the form of an atom forming a ring structure or a thiocarbonyl group. Regarding those that can be used as (B) sulfur-containing compounds, those that contain sulfur as one atom forming a 5-membered ring structure include, for example: thiazole, 2-aminothiazole, 2-(4-thiazolyl)benzo Imidazole, 1,3,4-thiadiazole, 2-amino-1,3,4-thiadiazole, 5-amino-1,2,3-thiadiazole, 2,4-thiazolidinedione , benzothiazole, 2-aminobenzothiazole, etc., as those containing sulfur in the form of one of the atoms forming a 6-membered ring structure, for example: phenanthrene, N-methylphenanthrene, etc., as sulfur Those containing sulfur in the form of the carbonyl group include, for example: rhodamine, N-allyl rhodamine, diethylthiourea, dibutylthiourea, dicyclohexylthiourea, diphenylthiourea, 2- Thiouracil, 4-thiouracil, 2,4-dimercaptopyrimidine, 2-9-oxothiourea
Figure 108121559-A0304-12-01
, 2-mercapto-4(3H)-quinazolinone, etc. Among them, it is preferable to use a compound having a thiourea structure. The compounding quantity of (B) sulfur-containing compound is 0.01-10 mass parts with respect to 100 mass parts of (A) resins, Preferably it is 0.05-2 mass parts. From the viewpoint of migration resistance, it is more preferably at least 0.01 parts by mass, and from the viewpoint of solubility, it is more preferably less than 10 parts by mass. Sulfur-containing compounds, especially thiourea, can coordinate with copper via the sulfur atom. Thereby, the state of the copper surface is changed, and the occurrence of copper migration in the high-temperature storage test is suppressed. (Aspect C) In another aspect of this embodiment, (B) can be replaced by at least one compound selected from the following general formulas (B-1), (B-2) and (B-3) The above (B) is a cyclic compound having a carbonyl group. More specifically, there is provided a photosensitive resin composition comprising (A) selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid salt, polyhydroxyamide, polyaminoamide, polyamide At least one resin selected from the group consisting of amine, polyamideimide, polyimide, polybenzoxazole, and novolac, polyhydroxystyrene, and phenolic resin: 100 parts by mass, (B) selected from The following general formula (B-1): [Chemical 88]
Figure 02_image175
{where, R q1 Represents an organic group with a carbon number of 1 to 10 formed by a carbon atom, a hydrogen atom, a nitrogen atom, and an oxygen atom}, the following general formula (B-2): [Chemical 89]
Figure 02_image177
{where, R q2 , R q3 Respectively represent an organic group selected from a hydroxyl group, an alkyl group with 1 to 10 carbons or an alkoxy group, 11 represents an integer selected from 1 to 10}, and the following general formula (B-3): [Chemical 90]
Figure 02_image179
{where, R q4 , R q5 Respectively represent organic groups selected from hydroxyl, alkyl or alkoxy groups with 1 to 10 carbons, X S Represents a divalent hydrocarbon group with 1 to 10 carbons, mm and nn represent at least one compound selected from an integer of 1 to 10}: 0.01 to 10 parts by mass based on 100 parts by mass of the resin (A) above, and (C) Photosensitive agent: 1-50 mass parts based on 100 mass parts of said (A) resins. In this aspect, the (A) resin is preferably selected from polyimide precursors comprising the above general formula (1), polyamides comprising the above general formula (4), and polyimides comprising the above general formula (5). At least one of the polyoxazole precursor, the polyimide containing the above general formula (6), and the group consisting of novolac, polyhydroxystyrene and the phenol resin containing the above general formula (7). Also, it is preferable that the photosensitive resin composition comprises a phenol resin having a repeating unit represented by the above-mentioned general formula (7), and X in the above-mentioned general formula (7) is selected from divalent compounds represented by the above-mentioned general formula (9). and a divalent organic group in the group consisting of divalent groups represented by the above-mentioned general formula (10). (B) Compounds represented by general formulas (B-1), (B-2) and (B-3), preferably compounds represented by (B-1) The surface interaction occurs, which can change the surface state of copper. Therefore, occurrence of copper migration during a high-temperature storage test is suppressed. As a specific example, (B-1) is an organic compound formed of a carbon atom, a hydrogen atom, a nitrogen atom, and an oxygen atom having a urea group, for example, methyl urea, ethyl urea, butyl urea, phenyl urea, Urea, hydroxyethylurea, hydantoin, allantoin, citrulline, etc. and mixtures thereof. (B-2) is a polycondensate of ethylene glycol or its terminal etherification product, for example: diethylene glycol, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl Ether, triethylene glycol, triethylene glycol monoethyl ether, triethylene glycol diethyl ether, tetraethylene glycol, tetraethylene glycol dimethyl ether, etc. and their mixtures. Furthermore, (B-3) is an ester of alkoxypolyethylene oxide or alkoxyethyl ester of a dicarboxylic acid, for example, bis(2-methoxyethyl) adipate, hexane Bis(2-butoxyethyl) diacid, bis(2-ethoxyethyl) sebacate, etc., and mixtures thereof. These (B) are selected from at least one compound in the general formula (B-1), (B-2) and (B-3), and the compound represented by the general formula (B-1) can be preferably used . Regarding (B) the blending amount of at least one compound selected from the general formulas (B-1), (B-2) and (B-3), it is preferably 0.01 to 10 parts by mass relative to 100 parts by mass of the resin (A). parts by mass, more preferably 0.05 to 2 parts by mass. From the viewpoint of migration resistance, it is more preferably at least 0.01 parts by mass, and from the viewpoint of solubility, it is more preferably at most 10 parts by mass. (Aspect D) In another aspect of this embodiment, (B) an aromatic amine compound selected from aniline derivatives represented by the following general formula (I), the following general formula (II) can be used At least one of the group consisting of the triazole derivative represented and the triazole derivative represented by the following general formula (III) replaces the cyclic compound having a carbonyl group in (B) above. More specifically, there is provided a photosensitive resin composition comprising (A) selected from the group consisting of polyamic acid, polyamic acid ester, polyamic acid salt, polyhydroxyamide, polyaminoamide, polyamide At least one resin from the group consisting of amine, polyamideimide, polyimide, and polybenzoxazole: 100 parts by mass, (B) aromatic amine compound, namely the following general formula (I) : [Chemical 91]
Figure 02_image181
{Ra1~Ra5 may be the same or different, and they are hydrogen atoms or hydroxyl groups, or saturated hydrocarbon groups, unsaturated hydrocarbon groups, aromatic groups or amido groups with carbon numbers ranging from 1 to 15, and Ra6~Ra7 can be the same It can also be different, a hydrogen atom or an aniline derivative represented by a hydrogen atom or a saturated hydrocarbon group, an unsaturated hydrocarbon group, or an aromatic group whose carbon number is an integer of 1 to 5, or the following general formula (II): ]
Figure 02_image183
{Ra8~Ra10 may be the same or different, and they are hydrogen atoms or hydroxyl groups, or saturated hydrocarbon groups, unsaturated hydrocarbon groups, aromatic groups, or amido groups with carbon numbers ranging from 1 to 15.} Triazole derivatives represented by or the following general formula (III): [Chemical 93]
Figure 02_image185
{R11~R13 may be the same or different, and they are hydrogen atoms or hydroxyl groups, or saturated hydrocarbon groups, unsaturated hydrocarbon groups, aromatic groups or amido groups with carbon numbers ranging from 1 to 15} Represented triazole derivatives At least one of these: 0.01 to 15 parts by mass based on 100 parts by mass of the (A) resin, and (C) photosensitive agent: 1 to 50 parts by mass based on 100 parts by mass of the above (A) resin. In this aspect, the (A) resin is preferably selected from polyimide precursors comprising the above general formula (1), polyamides comprising the above general formula (4), and polyimides comprising the above general formula (5). At least one of the group consisting of a polyoxazole precursor and a polyimide of the above general formula (6). In the aspect using (B) an aromatic amine compound, as the photosensitive resin, polyamic acid, polyamic acid ester, polyamic acid salt, polyhydroxyamide, polyaminoamide, polyamide Amines, polyamideimides, polyimides, and polybenzoxazoles, among them, polyamide acid, polyamide Amino acid esters, polyamide salts, polyamides, polyhydroxyamides, and polyimide resins, preferably polyimide precursors and polyimide resins. By using (B) an aromatic amine compound, generation|occurrence|production of voids at the interface of the Cu layer and resin layer which rewiring after a high-temperature storage test can be suppressed. The reason for this has not been determined, but it is considered to be due to the following effect: the active Cu reaction site is blocked by the coordination of the lone electron pair of the aromatic amine compound with the Cu element on the surface of the Cu layer, thereby suppressing the generation of voids. As (B) aromatic amine compound, the following general formula (I) can be preferably used: [Chemical 94]
Figure 02_image187
{Ra1~Ra5 may be the same or different, and they are hydrogen atoms or hydroxyl groups, or saturated hydrocarbon groups, unsaturated hydrocarbon groups, aromatic groups or amido groups with carbon numbers ranging from 1 to 15, and Ra6~Ra7 can be the same It may be different, and may be an aniline derivative represented by a hydrogen atom or a saturated hydrocarbon group, an unsaturated hydrocarbon group, or an aromatic group} having a carbon number of an integer of 1 to 5. As examples of compounds suitably used among the aniline derivatives represented by the general formula (I), N-phenylbenzylamine, salicylaniline, naphthol AS, 2-acetamide, Oxyaniline, N-allylaniline, N-methylaniline, N-ethylaniline, indoline, N-butylaniline, 2-anilinoethanol, 4-methoxyacetylaniline, Acetyl acetaniline, 1,2,3,4-tetrahydroquinoline, tert-butylphenyl carbamate, (3-hydroxyphenyl) tert-butyl carbamate, oxalyl aniline, N,N'-diphenylethane-1,2-diamine, etc. Among them, N-phenylbenzylamine ((B)-1), N,N'-diphenylethane-1,2-diamine ((B)-2), carbamic acid tert-butylphenyl ester ((B)-3), tert-butyl (3-hydroxyphenyl)carbamate ((B)-4). [chem 95]
Figure 02_image189
[chem 96]
Figure 02_image191
[chem 97]
Figure 02_image193
[chem 98]
Figure 02_image195
As (B) triazole derivatives, the following general formula (II) can be preferably used: [Chemical 99]
Figure 02_image197
{Ra8~Ra10 may be the same or different, and they are hydrogen atoms or hydroxyl groups, or saturated hydrocarbon groups, unsaturated hydrocarbon groups, aromatic groups, or amido groups with carbon numbers ranging from 1 to 15.} Triazole derivatives represented by or the following general formula (III): [Chem. 100]
Figure 02_image199
{Ra11~Ra13 may be the same or different, and they are hydrogen atoms or hydroxyl groups, or saturated hydrocarbon groups, unsaturated hydrocarbon groups, aromatic groups or amido groups with carbon numbers ranging from 1 to 15.} Triazole derivatives represented by thing. As specific examples of the triazole derivatives represented by the above general formula (II), benzotriazole, 1-hydroxybenzotriazole, 1-aminobenzotriazole, 5-methyl -1H-benzotriazole, 1H-1,2,3-triazole, 2-hydroxy-N-(1H-1,2,4-triazol-3-yl)benzamide (ADEKA Co., Ltd. Manufactured, Adekastab CDA-1), 2-(2H-Benzo[d][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentane-2- base) phenol (manufactured by ADEKA Co., Ltd., Adekastab LA-29), 2-(2'-hydroxy-3',5'-ditriaminophenyl)benzotriazole, 2-(2'-hydroxy -5'-methylphenyl)benzotriazole. Among them, 2-hydroxy-N-(1H-1,2,4-triazol-3-yl)benzamide ((B)-5), 2-(2H-benzo[d ][1,2,3]triazol-2-yl)-4-(2,4,4-trimethylpentan-2-yl)phenol ((B)-6). [Chemical 101]
Figure 02_image201
[chemical 102]
Figure 02_image203
As a specific compound example of the triazole derivative represented by the above general formula (III), (4-((1H-1,2,4-triazol-1-ylmethyl)phenyl)methanol , Trisazole, 1,2,4-1H-triazole, triapenthenol, bitertanol, 4-(1H-1,2,4-triazol-1-yl)benzaldehyde , 4-(1H-1,2,4-triazol-1-yl)benzoic acid, 3-(1H-1,2,4-triazol-1-ylmethyl)benzoic acid, 4-[(1H -1,2,4-triazol-1-ylmethyl)phenyl]methanol, 3-(1H-1,2,4-triazol-1-yl)benzaldehyde, 3-(1H-1,2 ,4-triazol-1-ylmethyl)benzaldehyde, 3-(1H-1,2,4-triazol-1-yl)benzoic acid, 2-(1H-1,2,4-triazole- 1-yl)aniline. Among them, (4-((1H-1,2,4-triazol-1-ylmethyl)phenyl)methanol ((B)-7) can be used especially preferably. [Chem. 103 ]
Figure 02_image205
(B) In the aromatic amine compound, it is preferable that any one of the amine atoms constituting the aniline derivative or the triazole derivative is a secondary amine in terms of coordination ability with Cu element. The content of (B) the aromatic amine compound is preferably 0.01 to 15 parts by mass, more preferably 0.1 to 10 parts by mass, and still more preferably 1 to 8 parts by mass, based on 100 parts by mass of the resin (A). When the content is more than the range, the storage stability is lowered, which is unfavorable, and when the content is less than the range, voids are likely to be generated between the copper surface and the copper surface. <Manufacturing method of hardened relief pattern and semiconductor device> Moreover, the present invention provides a kind of manufacturing method of hardened relief pattern, which includes: (1) by coating the above-mentioned photosensitive resin composition of the present invention on the substrate, The step of forming a resin layer on the substrate; (2) the step of exposing the resin layer; (3) the step of developing the exposed resin layer to form a relief pattern; The step of heat-treating the pattern to form a hardened relief pattern. Typical aspects of each step are described below. (1) Step of forming a resin layer on a substrate by coating the photosensitive resin composition on the substrate In this step, the photosensitive resin composition of the present invention is coated on the substrate, and then dried if necessary to form a resin layer. As the coating method, a method previously used for coating a photosensitive resin composition, such as using a spin coater, a bar coater, a blade coater, a curtain coater, a screen printing machine, etc., can be used. A method of coating, a method of spray coating using a spray coater, and the like. The coating film containing a photosensitive resin composition can be dried as needed. As a drying method, methods such as air drying, heat drying using an oven or a hot plate, and vacuum drying can be used. Specifically, when air drying or heat drying is performed, drying can be performed at 20° C. to 140° C. for 1 minute to 1 hour. The resin layer can be formed on the substrate by the above method. (2) The step of exposing the resin layer In this step, exposure devices such as contact exposure machines, mirror projection exposure machines, and steppers are used to pass through a patterned photomask or reticle, Or directly expose the resin layer formed above by an ultraviolet light source or the like. Thereafter, post-exposure baking (PEB) and/or pre-development baking may be performed at any combination of temperature and time in order to increase photosensitivity and the like as necessary. The range of baking conditions is preferably temperature: 40-120° C., time: 10 seconds to 240 seconds, but they are not limited to this range as long as the properties of the photosensitive resin composition of the present invention are not impaired. (3) The step of developing the exposed resin layer to form a relief pattern In this step, the exposed part or the unexposed part of the exposed photosensitive resin layer is developed and removed. When using a negative-type photosensitive resin composition (for example, when using a polyimide precursor or polyamide as the (A) resin), remove the unexposed part by development, and use a positive-type photosensitive resin In the case of a composition (such as the case of using a polyoxazole precursor or a soluble polyimide as the (A) resin), the exposed part is developed and removed. As the developing method, any method can be selected from conventionally known photoresist developing methods, such as the rotary spray method, the flooding method, the dipping method with ultrasonic treatment, and the like. Moreover, after image development, in order to adjust the shape of an embossed pattern, etc., you may implement post-image development baking under conditions of arbitrary combinations of temperature and time as needed. As a developing solution used for image development, it is preferable that it is a good solvent for a photosensitive resin composition, or the combination of this good solvent and a poor solvent. For example, in the case of a photosensitive resin composition insoluble in an alkaline aqueous solution, N-methylpyrrolidone, N-cyclohexyl-2-pyrrolidone, N,N-dimethyl Acetamide, cyclopentanone, cyclohexanone, γ-butyrolactone, α-acetyl-γ-butyrolactone, etc., as a poor solvent, preferably toluene, xylene, methanol, ethanol, isopropanol , ethyl lactate, propylene glycol methyl ether acetate and water. When using a good solvent and a poor solvent in mixture, it is preferable to adjust the ratio of a poor solvent to a good solvent according to the solubility of the polymer in a photosensitive resin composition. Moreover, each solvent of 2 or more types, for example, several types of solvents may be used in combination. On the other hand, in the case of a photosensitive resin composition soluble in an alkaline aqueous solution, the developer used for development is one that dissolves and removes an alkaline aqueous solution-soluble polymer, and is typically an alkaline compound in which an alkaline compound is dissolved. aqueous solution. The basic compound dissolved in the developer may be either an inorganic basic compound or an organic basic compound. Examples of the inorganic basic compound include lithium hydroxide, sodium hydroxide, potassium hydroxide, diammonium hydrogenphosphate, dipotassium hydrogenphosphate, disodium hydrogenphosphate, lithium silicate, sodium silicate, potassium silicate, Lithium carbonate, sodium carbonate, potassium carbonate, lithium borate, sodium borate, potassium borate, and ammonia, etc. In addition, as the organic basic compound, for example, tetramethylammonium hydroxide, tetraethylammonium hydroxide, trimethylhydroxyethylammonium hydroxide, methylamine, dimethylamine, trimethylamine, monoethylamine , diethylamine, triethylamine, n-propylamine, di-n-propylamine, isopropylamine, diisopropylamine, methyldiethylamine, dimethylethanolamine, ethanolamine, and triethanolamine, etc. Further, water-soluble organic solvents such as methanol, ethanol, propanol, or ethylene glycol, surfactants, storage stabilizers, and resin dissolution inhibitors can be added in appropriate amounts to the above-mentioned alkaline aqueous solution as needed. The embossed pattern can be formed by the above method. (4) Step of forming a hardened relief pattern by heat-treating the relief pattern In this step, the relief pattern obtained by the above-mentioned development is converted into a hardened relief pattern by heating. As the method of heating and hardening, various methods such as those using a heating plate, those using an oven, and those using a temperature-intensive oven with programmable temperature control can be selected. The heating can be performed, for example, at 180° C. to 400° C. for 30 minutes to 5 hours. Air can be used as the ambient gas during heating and hardening, and inert gases such as nitrogen and argon can also be used. <Semiconductor Device> The present invention also provides a semiconductor device including a hardened relief pattern obtained by the method for producing a hardened relief pattern of the present invention described above. The present invention also provides a semiconductor device comprising a base material as a semiconductor element, and a cured relief pattern of a resin formed on the base material by the method for producing a hardened relief pattern. In addition, the present invention is also applicable to a method of manufacturing a semiconductor device that uses a semiconductor element as a substrate and includes the above-mentioned method of manufacturing a hardened relief pattern as a part of the steps. The semiconductor device of the present invention can be formed as a surface protection film, an interlayer insulating film, an insulating film for rewiring, a protective film for flip-chip devices, or a hardened relief pattern formed by the above-mentioned hardened relief pattern manufacturing method. The protective film and the like of semiconductor devices with a bump structure are manufactured in combination with known semiconductor device manufacturing methods. The photosensitive resin composition of the present invention is not only suitable for semiconductor devices as mentioned above, but also can be used for interlayer insulation of multilayer circuits, protective coating of flexible copper-clad boards, solder resist films, and liquid crystal alignment films. In addition, the aspect A to the aspect D are described separately above, but the present invention also includes combinations of the aspects. EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to this. In Examples, Comparative Examples, and Production Examples, the physical properties of the photosensitive resin composition were measured and evaluated by the following methods. (1) Weight average molecular weight The weight average molecular weight (Mw) of each resin was measured by gel permeation chromatography (standard polystyrene conversion). The column used for the measurement is the trade name "Shodex 805M/806M series" manufactured by Showa Denko Co., Ltd., and the standard monodisperse polystyrene system is selected as the trade name "Shodex STANDARD SM-105" manufactured by Showa Denko Co., Ltd. The solvent was N-methyl-2-pyrrolidone, and the detector used was the trade name "Shodex RI-930" manufactured by Showa Denko Co., Ltd. (2) The production of hardened embossed patterns on Cu uses a sputtering device (L-440S-FHL type, manufactured by Canon Anelva Company), on a 6-inch silicon wafer (manufactured by Fujimi Electronic Industry Co., Ltd., thickness 625 ± 25 μm) were sequentially sputtered with 200 nm thick Ti and 400 nm thick Cu. Next, using a Coater Developer (D-Spin60A type, manufactured by SOKUDO Co., Ltd.), the photosensitive resin composition prepared by the following method was spin-coated on the wafer and dried to form Coating film with a thickness of 6-10 μm. Using a photomask with a test pattern, irradiate the coating film with 300 mJ/cm using a parallel photomask alignment exposure machine (PLA-501FA type, manufactured by Canon Corporation). 2 of energy. Then, use cyclopentanone as the developing solution in the case of the negative type, and use 2.38% TMAH (tetramethylammonium hydroxide, tetramethylammonium hydroxide) as the developing solution in the case of the positive type, and use a coating developer (D-Spin60A type, manufactured by SOKUDO Co., Ltd.) spray-developed the coating film, rinsed with propylene glycol methyl ether acetate in the case of negative type, and rinsed with pure water in the case of positive type, thereby obtaining embossment on Cu pattern. Using a temperature-rising program type curing furnace (VF-2000 type, manufactured by Koyo Lindberg), under a nitrogen atmosphere, the wafer with the embossed pattern formed on the Cu was carried out for 2 hours at the temperature recorded in each embodiment. , thereby obtaining a hardened relief pattern comprising a resin with a thickness of about 6-7 μm on Cu. (3) High temperature storage (high temperature storage) test and subsequent evaluation of hardened embossed patterns on Cu using a temperature-programmed curing furnace (VF-2000, manufactured by Koyo Lindberg) in air at 150° C. The wafer with the hardened relief pattern formed on Cu was heated for 168 hours. Then, using a plasma surface treatment device (EXAM type, manufactured by Shinko Seiki Co., Ltd.), the entire resin layer on Cu was removed by plasma etching. The plasma etching conditions are as follows. Output: 133 W Gas Type, Flow: O 2 : 40ml/min+CF 4 : 1 ml/min Gas pressure: 50 Pa Mode: Hard mode Etching time: 1800 seconds Using FE-SEM (field emission-scanning electron microscope, field emission scanning electron microscope) (S-4800 type, Hitachi High -Technologies Co., Ltd.) observe the Cu surface where the resin layer has been completely removed, and use image analysis software (A Xiangjun, manufactured by Asahi Kasei Co., Ltd.) to calculate the area ratio of the voids on the surface of the Cu layer. (4) Evaluation of varnish storage stability The photosensitive resin compositions obtained in Examples and Comparative Examples were placed in an environment of 23° C. and 50% Rh for 3 weeks, and changes in viscosity were observed. Viscosity was measured using a TV-25 viscometer (manufactured by Toki Sangyo) to measure the viscosity at 23°C. ○: The viscosity change rate (described below) of the composition after standing is within 10%. ×: The viscosity change rate of the composition after standing is greater than 10%. Viscosity change rate (%)={(initial viscosity)-(absolute value of (viscosity after standing)}×100/(initial viscosity) Example A <Manufacturing Example A1> ((A) Polymerization as a polyimide precursor Synthesis of material A) Put 155.1 g of 4,4'-oxydiphthalic dianhydride (ODPA) in a 2 L separable flask, add 131.2 g of 2-hydroxyethyl methacrylate (HEMA) 400 ml of γ-butyrolactone was stirred at room temperature, and 81.5 g of pyridine was added while stirring to obtain a reaction mixture. After the exothermic heat generated by the reaction ended, it was allowed to stand and cool to room temperature for 16 hours. Next, a solution obtained by dissolving 206.3 g of dicyclohexylcarbodiimide (DCC) in 180 ml of γ-butyrolactone was added to the reaction mixture over 40 minutes while stirring, and then stirred. What was obtained by suspending 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in 350 ml of γ-butyrolactone was added over 60 minutes. Furthermore, after stirring at room temperature for 2 hours, 30 ml of ethanol was added and stirred for 1 hour, and then, 400 ml of γ-butyrolactone was added. The precipitate generated in the reaction mixture was removed by filtration to obtain a reaction liquid. The obtained reaction solution was added to 3 L of ethanol to generate a precipitate containing a crude polymer. The generated crude polymer was separated by filtration, and dissolved in 1.5 L of tetrahydrofuran to obtain a crude polymer solution. The obtained crude polymer solution was added dropwise to 28 L of water to precipitate the polymer. After the obtained precipitate was separated by filtration, it was vacuum-dried to obtain a powdery polymer (polymer A). The molecular weight of polymer A was measured by gel permeation chromatography (standard polystyrene conversion), and the weight average molecular weight (Mw) was 20,000. In addition, the weight average molecular weight of the resin obtained in each manufacture example was measured by gel permeation chromatography (GPC) under the following conditions, and the weight average molecular weight in conversion of standard polystyrene was calculated|required. Pump: JASCO PU-980 Detector: JASCO RI-930 Column oven: JASCO CO-965 40℃ Column: 2 pieces of Shodex KD-806M in series Mobile phase: 0.1 mol/L LiBr/NMP (N-methylpyrrolidone, N- Methylpyrrolidone) Flow rate: 1 ml/min. <Manufacturing Example A2> ((A) Synthesis of Polymer B as Polyimide Precursor) Using 3,3',4,4'-Biphenyl 147.1 g of tetracarboxylic dianhydride (BPDA) was substituted for 155.1 g of 4,4'-oxydiphthalic dianhydride (ODPA) in Production Example A1. The reaction is carried out in a manner to obtain polymer B. The molecular weight of the polymer B was measured by gel permeation chromatography (standard polystyrene conversion), and the weight average molecular weight (Mw) was 22,000. <Production Example A3> ((A) Synthesis of Polymer C as a Polyimide Precursor) 147.8 g of 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl (TFMB) was used Except having replaced 93.0 g of 4,4'- diaminodiphenyl ether (DADPE) of manufacture example A1, it reacted similarly to the method of the said manufacture example A1, and obtained the polymer C. The molecular weight of the polymer C was measured by gel permeation chromatography (standard polystyrene conversion), and the weight average molecular weight (Mw) was 21,000. <Production Example A4> ((A) Synthesis of polymer D as polyamide) (Synthesis of phthalic acid compound-capped body AIPA-MO) Put 5-amino group in a 5 L separable flask 543.5 g of phthalic acid {hereinafter abbreviated as AIPA} and 1700 g of N-methyl-2-pyrrolidone were mixed and stirred, and heated to 50° C. in a water bath. Use the dropping funnel to add dropwise the obtained product obtained by diluting 512.0 g (3.3 mol) of 2-methacryloxyethyl isocyanate with 500 g of γ-butyrolactone, and directly stir at 50°C for about 2 hours . After confirming the completion of the reaction (disappearance of 5-aminoisophthalic acid) by low molecular weight gel permeation chromatography (hereinafter referred to as low molecular weight GPC), the reaction solution was poured into 15 L of ion-exchanged water and stirred. Let it stand still, and after crystallization and precipitation of the reaction product appear, separate it by filtration, wash it with water, and dry it in vacuum at 40°C for 48 hours, thereby obtaining the amino group and isocyanate of 5-aminoisophthalic acid AIPA-MO obtained by the action of the isocyanate group of 2-methacryloxyethyl ester. The low molecular weight GPC purity of the obtained AIPA-MO is about 100%. (Synthesis of Polymer D) 100.89 g (0.3 mol) of AIPA-MO obtained, 71.2 g (0.9 mol) of pyridine, GBL (butyrolactone, γ-butyrolactone) 400 g, mixed, cooled to 5°C by ice bath. Under cooling in an ice bath, add dropwise dicyclohexylcarbodiimide (DCC) 125.0 g (0.606 mol) in 125 g of GBL to it over a period of about 20 minutes, and then add dropwise over a period of about 20 minutes 103.16 g (0.28 mol) of 4,4'-bis(4-aminophenoxy)biphenyl {herein referred to as BAPB} was dissolved in 168 g of NMP, kept in an ice bath for 3 hours without reaching 5°C, and then The ice bath was removed and stirred at room temperature for 5 hours. The precipitate generated in the reaction mixture was removed by filtration to obtain a reaction liquid. A mixed liquid of 840 g of water and 560 g of isopropanol was added dropwise to the obtained reaction liquid, and the precipitated polymer was separated and redissolved in 650 g of NMP. The obtained crude polymer solution was added dropwise to 5 L of water to precipitate the polymer, and the obtained precipitate was separated by filtration and vacuum-dried to obtain a powdery polymer (polymer E). The molecular weight of the polymer D was measured by gel permeation chromatography (standard polystyrene conversion), and the weight average molecular weight (Mw) was 34,700. <Production Example A5> ((A) Synthesis of Polymer E as a Precursor of Polyoxazole) 2,2-bis(3-amino-4-hydroxyphenyl) was placed in a 3 L separable flask - 183.1 g of hexafluoropropane, 640.9 g of N,N-dimethylacetamide (DMAc), and 63.3 g of pyridine were mixed and stirred at room temperature (25° C.) to prepare a homogeneous solution. What dissolved 118.0 g of 4,4'-diphenyl ether dimethyl chlorides in 354 g of diethylene glycol dimethyl ethers (DMDG) was added dropwise thereto using the dropping funnel. At this time, the separable flask was cooled in a water bath at 15-20°C. The time required for dripping is 40 minutes, and the temperature of the reaction liquid is up to 30°C. After 3 hours from the end of the dropping, add 30.8 g (0.2 mol) of 1,2-cyclohexyl dicarboxylic anhydride to the reaction liquid, and stir at room temperature for 15 hours, so that 99% of the total number of polymer chains is amine The end groups are capped with carboxycyclohexylamide groups. The reaction rate at this time can be easily calculated by tracking the residual amount of 1,2-cyclohexyl dicarboxylic acid anhydride charged by high performance liquid chromatography (HPLC). Thereafter, the above-mentioned reaction solution was added dropwise to 2 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water, dehydrated, and vacuum-dried to obtain the polymer by gel permeation chromatography (GPC). ) crude polybenzoxazole precursor with a weight average molecular weight of 9,000 (in terms of polystyrene) as measured by the method. After the crude polybenzoxazole precursor obtained above was redissolved in γ-butyrolactone (GBL), it was treated with cation exchange resin and anion exchange resin, and the obtained solution was poured into ion exchange water , the precipitated polymer was separated by filtration, washed with water and dried in vacuum to obtain a refined polybenzoxazole precursor (polymer E). <Manufacture Example A6> ((A) Synthesis of Polymer F as Polyimide) A dean-star was attached to a glass separable four-necked flask equipped with a Teflon (registered trademark) anchor stirrer. The cooling tube of the gram separator. While blowing nitrogen gas, the above-mentioned flask was immersed in a silicone oil bath for stirring. Add 72.28 g (280 mmol) of 2,2-bis(3-amino-4-hydroxyphenyl)propane (manufactured by Clariant Japan Co., Ltd.) (hereinafter referred to as BAP), 5-(2,5-dioxotetrahydro -3-furyl)-3-methyl-cyclohexene-1,2 dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) (hereinafter referred to as MCTC) 70.29 g (266 mmol), γ-butyrolactone 254.6 g, 60 g of toluene, after stirring at 100 rpm at room temperature for 4 hours, add 4.6 g (28 mmol) of 5-northene-2,3-dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) Heat and stir at 100 rpm for 8 hours at a temperature of 50°C in a silicon bath while injecting nitrogen gas. Thereafter, it was heated to a silicon bath temperature of 180° C., and heated and stirred at 100 rpm for 2 hours. Toluene and water distilled off during the reaction were removed. Return to room temperature after the imidization reaction. Thereafter, the above-mentioned reaction solution was added dropwise to 3 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water appropriately, and then vacuum-dried after dehydration to obtain the polymer by gel permeation chromatography (GPC). Crude polyimide (polymer F) having a weight average molecular weight of 23,000 (in terms of polystyrene) as measured by the method. <Manufacture Example A7> ((A) Synthesis of Polymer G as Phenolic Resin) In a separable flask with a Dean-Stark apparatus with a capacity of 0.5 L, 128.3 of methyl 3,5-dihydroxybenzoate g (0.76 mol), 4,4'-bis(methoxymethyl)biphenyl (hereinafter also referred to as "BMMB") 121.2 g (0.5 mol), diethylsulfuric acid 3.9 g (0.025 mol), diethyl 140 g of glycol dimethyl ether was mixed and stirred at 70° C. to dissolve the solid matter. The mixed solution was heated to 140° C. with an oil bath, and it was confirmed that methanol was produced from the reaction solution. The reaction solution was directly stirred at 140° C. for 2 hours. Then, the reaction container was cooled in the air, and 100 g of tetrahydrofuran was added thereto and stirred. The above reaction diluent was added dropwise to 4 L of water under high-speed stirring to disperse and precipitate the resin, which was recovered, washed with water, dehydrated, and then vacuum-dried to obtain 3,5-dihydroxy Copolymer of methyl benzoate/BMMB (polymer G). The weight average molecular weight calculated|required by the standard polystyrene conversion of the GPC method of this polymer G was 21,000. <Manufacture Example A8> ((A) Synthesis of Polymer H as a Phenolic Resin) Nitrogen was replaced with a 1.0 L volume separable flask with a Dean-Stark apparatus, and then, in the separable flask Resorcinol 81.3 g (0.738 mol), BMMB 84.8 g (0.35 mol), p-toluenesulfonic acid 3.81 g (0.02 mol), propylene glycol monomethyl ether (hereinafter also referred to as PGME) 116 g were carried out at 50 ° C Mix and stir to dissolve the solids. The mixed solution was heated to 120° C. with an oil bath, and it was confirmed that methanol was generated from the reaction solution. The reaction solution was directly stirred at 120° C. for 3 hours. Then, in another container, 24.9 g (0.150 mol) of 2,6-bis(hydroxymethyl)-p-cresol and 249 g of PGME were mixed and stirred to dissolve them uniformly, and the obtained solution was mixed and stirred over a period of time using a dropping funnel. It was dripped in this separable flask for 1 hour, and stirred for 2 hours after dripping. After the reaction, the same treatment as in Production Example A7 was performed to obtain a copolymer (polymer H) containing resorcinol/BMMB/2,6-bis(hydroxymethyl)-p-cresol with a yield of 77%. The weight average molecular weight calculated|required by the standard polystyrene conversion of the GPC method of this polymer H was 9,900. <Example A1> Using polymers A and B, a negative photosensitive resin composition was prepared by the following method, and the prepared photosensitive resin composition was evaluated. Mix 50 g of polymer A and 50 g of polymer B (corresponding to (A) resin) and 0.2 g of xanthine (corresponding to (B) cyclic compound having a carbonyl group) as polyimide precursors, 1-phenyl- 1,2-propanedione-2-(O-ethoxycarbonyl)-oxime (referred to as "PDO" in Table 1) (equivalent to (C) photosensitizer) 4 g, tetraethylene glycol dimethacrylic acid 8 g of ester and 1.5 g of N-[3-(triethoxysilyl)propyl]phthalic acid were dissolved together in 80 g and 20 g of ethyl lactate as a mixed solvent. Furthermore, the viscosity of the obtained solution was adjusted to about 35 poise by adding a small amount of said mixed solvent, and the negative photosensitive resin composition was prepared. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.2% was obtained. <Example A2> In said Example A1, except having changed the addition amount of xanthine into 0.05 g as (B) component, the negative photosensitive resin composition solution was prepared in the same manner as Example A1. For this composition, hardened embossed patterns were produced on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.4% was obtained. <Example A3> In said Example A1, except having changed the addition amount of xanthine into 5 g as (B) component, the negative photosensitive resin composition solution was prepared in the same manner as Example A1. This composition was cured at 230° C. by the above method to form a hardened relief pattern on the Cu layer. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.9% was obtained. <Example A4> In the above-mentioned Example A1, as (B) component, except having used 8-azaxanthine instead of xanthine, a negative photosensitive resin composition solution was prepared in the same manner as Example A1 . For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.1% was obtained. <Example A5> In said Example A1, except having used uric acid instead of xanthine as (B) component, the negative photosensitive resin composition solution was prepared in the same manner as Example A1. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.4% was obtained. <Example A6> In the above-mentioned Example A1, as the (B) component, except that dioxytetrahydropteridine was used instead of xanthine, a negative-type photosensitive resin composition solution was prepared in the same manner as in Example A1 . For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.5% was obtained. <Example A7> In said Example A1, except having used barbituric acid instead of xanthine as (B) component, the negative photosensitive resin composition solution was prepared in the same manner as Example A1. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 7.3% was obtained. <Example A8> A negative photosensitive resin composition solution was prepared in the same manner as in Example A1 above, and the composition was cured at 350°C by the above-mentioned method to form a hardened relief pattern on the Cu layer. After the high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.5% was obtained. <Example A9> In the above-mentioned Example A1, as (A) resin, 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer A, and as (C) component, 4 g of PDO was changed to 1 , 2-octanedione-1-{4-(phenylthio)-2-(O-benzoyl oxime)} (Irgacure OXE01 (manufactured by BASF, trade name)) 2.5 g, in addition, A negative photosensitive resin composition solution was prepared in the same manner as in Example A1. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.1% was obtained. <Example A10> In the above-mentioned Example A1, as (A) resin, 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer A, and as (C) component, 4 g of PDO was changed to 1 , 2-octanedione-1-{4-(phenylthio)-2-(O-benzoyl oxime)} (Irgacure OXE01 (manufactured by BASF, trade name)) 2.5 g, and then change the solvent to Except for 85 g of γ-butyrolactone and 15 g of dimethylsulfoxide, a negative photosensitive resin composition solution was prepared in the same manner as in Example A1. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.2% was obtained. <Example A11> In the above-mentioned Example A1, as the (A) resin, except that 50 g of the polymer A and 50 g of the polymer B were changed to 100 g of the polymer C, by the same method as in the example A1 A negative photosensitive resin composition solution was prepared. This composition was cured at 350° C. by the above method to form a hardened relief pattern on the Cu layer. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.9% was obtained. <Example A12> In the above-mentioned Example A1, as (A) resin, except that 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer D, by the same method as Example A1 A negative photosensitive resin composition solution was prepared. This composition was cured at 250° C. by the above method to form a hardened relief pattern on the Cu layer. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.0% was obtained. <Example A13> Using the polymer E, a positive-type photosensitive resin composition was prepared by the following method, and the prepared photosensitive resin composition was evaluated. Mix 100 g of polymer E (corresponding to (A) resin) as a polyoxazole precursor with the following formula (96): [Chem. 104]
Figure 02_image207
The photosensitive diazide quinone compound (manufactured by Toyosei Co., equivalent to (C) photosensitizer) (C1) 20 g, yellow Dissolve 0.2 g of purine (equivalent to (B) a cyclic compound having a carbonyl group) and 6 g of 3-tertiary butoxycarbonylaminopropyl triethoxysilane in γ-butyrolactone (as a solvent) 100 g. The viscosity of the obtained solution was adjusted to about 20 poise by further adding a small amount of γ-butyrolactone to prepare a positive photosensitive resin composition. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 350° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.5% was obtained. <Example A14> In the above-mentioned Example A13, as the (A) resin, except that 100 g of polymer E was changed to 100 g of polymer F, a positive-type photosensitive resin was prepared in the same manner as in Example A13 Composition solution. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 250° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.7% was obtained. <Example A15> In the above-mentioned Example A13, as (A) resin, except that 100 g of polymer E was changed to 100 g of polymer G, a positive-type photosensitive resin was prepared in the same manner as in Example A13 Composition solution. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 220° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.3% was obtained. <Example A16> In the above-mentioned Example A13, as (A) resin, except that 100 g of polymer E was changed to 100 g of polymer H, a positive-type photosensitive resin was prepared in the same manner as in Example A13 Composition solution. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 220° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.2% was obtained. <Comparative Example A1> In the composition of Example A1, except that 0.2 g of benzotriazole was added instead of xanthine 0.2 g, a negative photosensitive resin composition was prepared in the same manner as in Example A1, and carried out The same evaluation as in Example A1. Since the compound (B) of the present invention was not contained, the evaluation result was 15.2%. <Comparative example A2> Except not having added xanthine to the composition of Example A1, the negative photosensitive resin composition was prepared in the same manner as Example A1, and it evaluated similarly to Example A1. Since the compound (B) of the present invention was not contained, the evaluation result was 14.3%. <Comparative example A3> Except not having added xanthine to the composition of Example A10, the negative photosensitive resin composition was prepared in the same manner as Example A10, and the same evaluation as Example A10 was performed. Since the compound (B) of the present invention was not contained, the evaluation result was 15.7%. <Comparative example A4> Except not adding xanthine to the composition of Example A11, the negative photosensitive resin composition was prepared in the same manner as Example A11, and the same evaluation as Example A11 was performed. Since the compound (B) of the present invention was not contained, the evaluation result was 14.9%. The results of these Examples A1-16 and Comparative Examples A1-4 are collectively shown in Table 1. Example B <Production Example B1> ((A) Synthesis of Polymer A as a Polyimide Precursor) Put 4,4'-oxydiphthalic acid diphthalate in a 2 L separable flask 155.1 g of anhydride (ODPA), 131.2 g of 2-hydroxyethyl methacrylate (HEMA) and 400 ml of γ-butyrolactone were added and stirred at room temperature, and 81.5 g of pyridine was added while stirring to obtain a reaction mixture. After the exothermic heat generated by the reaction ended, it was allowed to stand and cool to room temperature for 16 hours. Next, a solution obtained by dissolving 206.3 g of dicyclohexylcarbodiimide (DCC) in 180 ml of γ-butyrolactone was added to the reaction mixture over 40 minutes while stirring, and then stirred. What was obtained by suspending 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in 350 ml of γ-butyrolactone was added over 60 minutes. Furthermore, after stirring at room temperature for 2 hours, 30 ml of ethanol was added and stirred for 1 hour, and then, 400 ml of γ-butyrolactone was added. The precipitate generated in the reaction mixture was removed by filtration to obtain a reaction liquid. The obtained reaction solution was added to 3 L of ethanol to generate a precipitate containing a crude polymer. The generated crude polymer was separated by filtration, and dissolved in 1.5 L of tetrahydrofuran to obtain a crude polymer solution. The obtained crude polymer solution was added dropwise to 28 L of water to precipitate the polymer. After the obtained precipitate was separated by filtration, it was vacuum-dried to obtain a powdery polymer (polymer A). The molecular weight of polymer A was measured by gel permeation chromatography (standard polystyrene conversion), and the weight average molecular weight (Mw) was 20,000. In addition, the weight average molecular weight of the resin obtained in each manufacture example B was measured by gel permeation chromatography (GPC) under the following conditions, and the weight average molecular weight in conversion of standard polystyrene was calculated|required. Pump: JASCO PU-980 Detector: JASCO RI-930 Column oven: JASCO CO-965 40℃ Column: 2 Shodex KD-806M in series Mobile phase: 0.1 mol/L LiBr/NMP Flow rate: 1 ml/min. <Production Example B2> ((A) Synthesis of Polymer B as a Polyimide Precursor) Instead of Production Example, 147.1 g of 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) was used Except having 155.1 g of 4,4'-oxydiphthalic dianhydride (ODPA) of B1, it reacted similarly to the method as described in the said manufacture example B1, and obtained the polymer B. The molecular weight of the polymer B was measured by gel permeation chromatography (standard polystyrene conversion), and the weight average molecular weight (Mw) was 22,000. <Production Example B3> ((A) Synthesis of Polymer C as a Polyimide Precursor) 147.8 g of 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl (TFMB) was used Except having replaced 93.0 g of 4,4'- diaminodiphenyl ether (DADPE) of manufacture example B1, it reacted similarly to the method as described in the said manufacture example B1, and obtained the polymer C. The molecular weight of the polymer C was measured by gel permeation chromatography (standard polystyrene conversion), and the weight average molecular weight (Mw) was 21,000. <Production Example B4> ((A) Synthesis of polymer D as polyamide) (Synthesis of phthalic acid compound-capped body AIPA-MO) Put 5-amino group in a 5 L separable flask 543.5 g of phthalic acid {hereinafter abbreviated as AIPA} and 1700 g of N-methyl-2-pyrrolidone were mixed and stirred, and heated to 50° C. in a water bath. Use the dropping funnel to add dropwise the obtained product obtained by diluting 512.0 g (3.3 mol) of 2-methacryloxyethyl isocyanate with 500 g of γ-butyrolactone, and directly stir at 50°C for about 2 hours . After confirming the completion of the reaction (disappearance of 5-aminoisophthalic acid) by low molecular weight gel permeation chromatography (hereinafter referred to as low molecular weight GPC), the reaction solution was poured into 15 L of ion-exchanged water and stirred. Let it stand still, and after crystallization and precipitation of the reaction product appear, separate it by filtration, wash it with water, and dry it in vacuum at 40°C for 48 hours, thereby obtaining the amino group and isocyanate of 5-aminoisophthalic acid AIPA-MO obtained by the action of the isocyanate group of 2-methacryloxyethyl ester. The low molecular weight GPC purity of the obtained AIPA-MO is about 100%. (Synthesis of Polymer D) 100.89 g (0.3 mol) of AIPA-MO, 71.2 g (0.9 mol) of pyridine, and 400 g of GBL were put into a separable flask with a volume of 2 L, mixed, and cooled by ice bath Cool to 5 °C. Under cooling in an ice bath, add dropwise dicyclohexylcarbodiimide (DCC) 125.0 g (0.606 mol) in 125 g of GBL to it over a period of about 20 minutes, and then add dropwise over a period of about 20 minutes 103.16 g (0.28 mol) of 4,4'-bis(4-aminophenoxy)biphenyl {herein referred to as BAPB} was dissolved in 168 g of NMP, kept in an ice bath for 3 hours without reaching 5°C, and then The ice bath was removed and stirred at room temperature for 5 hours. The precipitate generated in the reaction mixture was removed by filtration to obtain a reaction liquid. A mixed liquid of 840 g of water and 560 g of isopropanol was added dropwise to the obtained reaction liquid, and the precipitated polymer was separated and redissolved in 650 g of NMP. The obtained crude polymer solution was added dropwise to 5 L of water to precipitate the polymer, and the obtained precipitate was separated by filtration and vacuum-dried to obtain a powdery polymer (polymer E). The molecular weight of the polymer D was measured by gel permeation chromatography (standard polystyrene conversion), and the weight average molecular weight (Mw) was 34,700. <Production Example B5> ((A) Synthesis of Polymer E as a Precursor of Polyoxazole) 2,2-bis(3-amino-4-hydroxyphenyl) was placed in a 3 L separable flask - 183.1 g of hexafluoropropane, 640.9 g of N,N-dimethylacetamide (DMAc), and 63.3 g of pyridine were mixed and stirred at room temperature (25° C.) to prepare a homogeneous solution. What dissolved 118.0 g of 4,4'-diphenyl ether dimethyl chlorides in 354 g of diethylene glycol dimethyl ethers (DMDG) was added dropwise thereto using the dropping funnel. At this time, the separable flask was cooled in a water bath at 15-20°C. The time required for dripping is 40 minutes, and the temperature of the reaction liquid is up to 30°C. After 3 hours from the end of the dropping, add 30.8 g (0.2 mol) of 1,2-cyclohexyl dicarboxylic anhydride to the reaction liquid, and stir at room temperature for 15 hours, so that 99% of the total number of polymer chains is amine The end groups are capped with carboxycyclohexylamide groups. The reaction rate at this time can be easily calculated by tracking the residual amount of 1,2-cyclohexyl dicarboxylic acid anhydride charged by high performance liquid chromatography (HPLC). Thereafter, the above-mentioned reaction solution was added dropwise to 2 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water, dehydrated, and vacuum-dried to obtain the polymer by gel permeation chromatography (GPC). ) crude polybenzoxazole precursor with a weight average molecular weight of 9,000 (in terms of polystyrene) as measured by the method. After the crude polybenzoxazole precursor obtained above was redissolved in γ-butyrolactone (GBL), it was treated with cation exchange resin and anion exchange resin, and the obtained solution was poured into ion exchange water , the precipitated polymer was separated by filtration, washed with water and dried in vacuum to obtain a refined polybenzoxazole precursor (polymer E). <Manufacturing Example B6> ((A) Synthesis of Polymer F as Polyimide) Attached Dean-Star to a glass separable four-necked flask equipped with a Teflon (registered trademark) anchor stirrer The cooling tube of the gram separator. While blowing nitrogen gas, the above-mentioned flask was immersed in a silicone oil bath for stirring. Add 72.28 g (280 mmol) of 2,2-bis(3-amino-4-hydroxyphenyl)propane (manufactured by Clariant Japan Co., Ltd.) (hereinafter referred to as BAP), 5-(2,5-dioxotetrahydro -3-furyl)-3-methyl-cyclohexene-1,2 dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) (hereinafter referred to as MCTC) 70.29 g (266 mmol), γ-butyrolactone 254.6 g, 60 g of toluene, after stirring at 100 rpm at room temperature for 4 hours, add 4.6 g (28 mmol) of 5-northene-2,3-dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) Heat and stir at 100 rpm for 8 hours at a temperature of 50°C in a silicon bath while injecting nitrogen gas. Thereafter, it was heated to a silicon bath temperature of 180° C., and heated and stirred at 100 rpm for 2 hours. Toluene and water distilled off during the reaction were removed. Return to room temperature after the imidization reaction. Thereafter, the above-mentioned reaction solution was added dropwise to 3 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water appropriately, and then vacuum-dried after dehydration to obtain the polymer by gel permeation chromatography (GPC). Crude polyimide (polymer F) having a weight average molecular weight of 23,000 (in terms of polystyrene) as measured by the method. <Manufacturing Example B7> ((A) Synthesis of Polymer G as Phenolic Resin) In a 0.5 L volume separable flask with a Dean-Stark apparatus, 128.3 of methyl 3,5-dihydroxybenzoate g (0.76 mol), 4,4'-bis(methoxymethyl)biphenyl (hereinafter also referred to as "BMMB") 121.2 g (0.5 mol), diethylsulfuric acid 3.9 g (0.025 mol), diethyl 140 g of glycol dimethyl ether was mixed and stirred at 70° C. to dissolve the solid matter. The mixed solution was heated to 140° C. with an oil bath, and it was confirmed that methanol was produced from the reaction solution. The reaction solution was directly stirred at 140° C. for 2 hours. Then, the reaction container was cooled in the air, and 100 g of tetrahydrofuran was added thereto and stirred. The above reaction diluent was added dropwise to 4 L of water under high-speed stirring to disperse and precipitate the resin, which was recovered, washed with water, dehydrated, and then vacuum-dried to obtain 3,5-dihydroxy Copolymer of methyl benzoate/BMMB (polymer G). The weight average molecular weight calculated|required by the standard polystyrene conversion of the GPC method of this polymer G was 21,000. <Manufacturing Example B8> ((A) Synthesis of Polymer H as Phenolic Resin) Nitrogen was replaced with a 1.0 L volume separable flask with a Dean-Stark apparatus, and then, in the separable flask Resorcinol 81.3 g (0.738 mol), BMMB 84.8 g (0.35 mol), p-toluenesulfonic acid 3.81 g (0.02 mol), propylene glycol monomethyl ether (hereinafter also referred to as PGME) 116 g were carried out at 50 ° C Mix and stir to dissolve the solids. The mixed solution was heated to 120° C. with an oil bath, and it was confirmed that methanol was generated from the reaction solution. The reaction solution was directly stirred at 120° C. for 3 hours. Then, in another container, 24.9 g (0.150 mol) of 2,6-bis(hydroxymethyl)-p-cresol and 249 g of PGME were mixed and stirred to dissolve them uniformly, and the obtained solution was mixed and stirred over a period of time using a dropping funnel. It was dripped in this separable flask for 1 hour, and stirred for 2 hours after dripping. After the reaction, the same treatment as in Production Example B7 was performed to obtain a copolymer (polymer H) containing resorcinol/BMMB/2,6-bis(hydroxymethyl)-p-cresol with a yield of 77%. The weight average molecular weight calculated|required by the standard polystyrene conversion of the GPC method of this polymer H was 9,900. <Example B1> Using polymers A and B, a negative photosensitive resin composition was prepared by the following method, and the prepared photosensitive resin composition was evaluated. Mix 50 g of polymer A and 50 g of polymer B (corresponding to (A) resin) and 0.5 g of dicyclohexylthiourea (corresponding to (B) sulfur-containing compound) as polyimide precursors, 1-phenyl- 1,2-propanedione-2-(O-ethoxycarbonyl)-oxime (referred to as "PDO" in Table 2) (equivalent to (C) photosensitizer) 4 g, tetraethylene glycol dimethacrylic acid 8 g of ester and 1.5 g of N-[3-(triethoxysilyl)propyl]phthalic acid were dissolved together in 80 g and 20 g of ethyl lactate as a mixed solvent. Furthermore, the viscosity of the obtained solution was adjusted to about 35 poise by adding a small amount of said mixed solvent, and the negative photosensitive resin composition was prepared. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.5% was obtained. <Example B2> In the above-mentioned Example B1, as the (B) component, except that the addition amount of dicyclohexylthiourea was changed to 0.1 g, a negative photosensitive resin combination was prepared in the same manner as in Example B1. substance solution. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230°C by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.9% was obtained. <Example B3> In the above-mentioned Example B1, as the (B) component, except that the addition amount of dicyclohexylthiourea was changed to 4 g, a negative photosensitive resin combination was prepared in the same manner as in Example B1 substance solution. For this composition, a cured embossed pattern was formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.8% was obtained. <Example B4> In the above-mentioned Example B1, except that benzothiazole was used instead of dicyclohexylthiourea as the (B) component, a negative photosensitive resin composition solution was prepared in the same manner as in Example B1 . For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 7.3% was obtained. <Example B5> In the above-mentioned Example B1, as the (B) component, except that rhodaneline was used instead of dicyclohexylthiourea, a negative photosensitive resin composition solution was prepared in the same manner as in Example B1 . For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 7.2% was obtained. <Example B6> In the above-mentioned Example B1, 2-9-oxosulfur was used as the component (B)
Figure 108121559-A0304-12-01
Instead of dicyclohexylthiourea, a negative photosensitive resin composition solution was prepared in the same manner as in Example B1 except that. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 7.3% was obtained. <Example B7> A negative photosensitive resin composition solution was prepared in the same manner as in Example B1 above, and the composition was cured at 350°C by the above method to form a hardened embossed pattern on the Cu layer. After the high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.9% was obtained. <Example B8> In the above-mentioned Example B1, as (A) resin, 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer A, and as (C) component, 4 g of PDO was changed to 1 , 2-octanedione-1-{4-(phenylthio)-2-(O-benzoyl oxime)} (Irgacure OXE01 (manufactured by BASF, trade name)) 2.5 g, in addition, A negative photosensitive resin composition solution was prepared in the same manner as in Example B1. This composition was cured at 230° C. by the above method to form a hardened relief pattern on the Cu layer. After a high temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.7% was obtained. <Example B9> In the above-mentioned Example B1, as (A) resin, 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer A, and as (C) component, 4 g of PDO was changed to 1 , 2-octanedione-1-{4-(phenylthio)-2-(O-benzoyl oxime)} (Irgacure OXE01 (manufactured by BASF, trade name)) 2.5 g, and then change the solvent to Except for 85 g of γ-butyrolactone and 15 g of dimethylsulfoxide, a negative photosensitive resin composition solution was prepared in the same manner as in Example B1. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.6% was obtained. <Example B10> In the above-mentioned Example B1, as (A) resin, except that 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer C, by the same method as Example B1 A negative photosensitive resin composition solution was prepared. This composition was cured at 350° C. by the above method to form a hardened relief pattern on the Cu layer. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.9% was obtained. <Example B11> In the above-mentioned Example B1, as (A) resin, except that 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer D, by the same method as Example B1 A negative photosensitive resin composition solution was prepared. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 250° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.3% was obtained. <Example B12> Using polymer E, a positive photosensitive resin composition was prepared by the following method, and the prepared photosensitive resin composition was evaluated. Mix 100 g of polymer E (corresponding to (A) resin) as a polyoxazole precursor with the following formula (96): [Chem. 105]
Figure 02_image209
The photosensitive diazide quinone compound (manufactured by Toyosei Co., Ltd., equivalent to (C) photosensitizer) (C1) 15 g, two Dissolve 0.5 g of cyclohexylthiourea (corresponding to (B) sulfur-containing compound) and 6 g of 3-tert-butoxycarbonylaminopropyltriethoxysilane in γ-butyrolactone (as a solvent) 100 g. The viscosity of the obtained solution was adjusted to about 20 poise by further adding a small amount of γ-butyrolactone to prepare a positive photosensitive resin composition. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 350° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.4% was obtained. <Example B13> In the above-mentioned Example B12, as (A) resin, except that 100 g of polymer E was changed to 100 g of polymer F, a positive-type photosensitive resin was prepared in the same manner as in Example B12 Composition solution. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 250°C by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.5% was obtained. <Example B14> In the above-mentioned Example B12, as the (A) resin, except that 100 g of polymer E was changed to 100 g of polymer G, a positive-type photosensitive resin was prepared in the same manner as in Example B12 Composition solution. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 220° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.7% was obtained. <Example B15> In the above-mentioned Example B12, as (A) resin, except that 100 g of polymer E was changed to 100 g of polymer H, a positive-type photosensitive resin was prepared in the same manner as in Example B12 Composition solution. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 220° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.6% was obtained. <Comparative Example B1> In the composition of Example B1, except that dicyclohexylthiourea was not added, a negative photosensitive resin composition was prepared in the same manner as in Example B1, and the same process as in Example B1 was carried out. evaluation. Since the compound (B) of the present invention was not contained, the evaluation result was 14.3%. <Comparative Example B2> In the composition of Example B11, except that dicyclohexylthiourea was not added, a negative photosensitive resin composition was prepared in the same manner as in Example B11, and the same process as in Example B11 was carried out. evaluation. Since the compound (B) of the present invention was not contained, the evaluation result was 15.5%. <Comparative Example B3> Except that no dicyclohexylthiourea was added to the composition of Example B12, a positive-type photosensitive resin composition was prepared in the same manner as in Example B12, and the same process as in Example B12 was carried out. evaluation. Since the compound (B) of the present invention was not contained, the evaluation result was 14.6%. The results of these Examples B1-15 and Comparative Examples B1-3 are collectively shown in Table 2. Example C <Production Example C1> ((A) Synthesis of Polymer A as a Polyimide Precursor) 4,4'-Oxydiphthalic acid dicarboxylate was placed in a 2 L separable flask 155.1 g of anhydride (ODPA), 131.2 g of 2-hydroxyethyl methacrylate (HEMA) and 400 ml of γ-butyrolactone were added and stirred at room temperature, and 81.5 g of pyridine was added while stirring to obtain a reaction mixture. After the exothermic heat generated by the reaction ended, it was allowed to stand and cool to room temperature for 16 hours. Next, a solution obtained by dissolving 206.3 g of dicyclohexylcarbodiimide (DCC) in 180 ml of γ-butyrolactone was added to the reaction mixture over 40 minutes while stirring, and then stirred. What was obtained by suspending 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in 350 ml of γ-butyrolactone was added over 60 minutes. Furthermore, after stirring at room temperature for 2 hours, 30 ml of ethanol was added and stirred for 1 hour, and then, 400 ml of γ-butyrolactone was added. The precipitate generated in the reaction mixture was removed by filtration to obtain a reaction liquid. The obtained reaction solution was added to 3 L of ethanol to generate a precipitate containing a crude polymer. The generated crude polymer was separated by filtration, and dissolved in 1.5 L of tetrahydrofuran to obtain a crude polymer solution. The obtained crude polymer solution was added dropwise to 28 L of water to precipitate the polymer. After the obtained precipitate was separated by filtration, it was vacuum-dried to obtain a powdery polymer (polymer A). The molecular weight of polymer A was measured by gel permeation chromatography (standard polystyrene conversion), and the weight average molecular weight (Mw) was 20,000. In addition, the weight average molecular weight of the resin obtained in each Production Example C was measured by gel permeation chromatography (GPC) under the following conditions, and the weight average molecular weight in terms of standard polystyrene was calculated|required. Pump: JASCO PU-980 Detector: JASCO RI-930 Column oven: JASCO CO-965 40℃ Column: 2 Shodex KD-806M in series Mobile phase: 0.1 mol/L LiBr/NMP Flow rate: 1 ml/min. <Production Example C2> ((A) Synthesis of Polymer B as a Polyimide Precursor) Instead of Production Example, 147.1 g of 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) was used Except having 155.1 g of 4,4'-oxydiphthalic dianhydride (ODPA) of C1, it reacted similarly to the method as described in the said manufacture example C1, and obtained the polymer B. The molecular weight of the polymer B was measured by gel permeation chromatography (standard polystyrene conversion), and the weight average molecular weight (Mw) was 22,000. <Production Example C3> ((A) Synthesis of Polymer C as a Polyimide Precursor) 147.8 g of 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl (TFMB) was used Except having replaced 93.0 g of 4,4'- diamino diphenyl ether (DADPE) of manufacture example C1, it reacted similarly to the method as described in the said manufacture example C1, and obtained the polymer C. The molecular weight of the polymer C was measured by gel permeation chromatography (standard polystyrene conversion), and the weight average molecular weight (Mw) was 21,000. <Production Example C4> ((A) Synthesis of polymer D as polyamide) (Synthesis of phthalic acid compound-capped body AIPA-MO) Put 5-amino group in a 5 L separable flask 543.5 g of phthalic acid {hereinafter abbreviated as AIPA} and 1700 g of N-methyl-2-pyrrolidone were mixed and stirred, and heated to 50° C. in a water bath. Use the dropping funnel to add dropwise the obtained product obtained by diluting 512.0 g (3.3 mol) of 2-methacryloxyethyl isocyanate with 500 g of γ-butyrolactone, and directly stir at 50°C for about 2 hours . After confirming the completion of the reaction (disappearance of 5-aminoisophthalic acid) by low molecular weight gel permeation chromatography (hereinafter referred to as low molecular weight GPC), the reaction solution was poured into 15 L of ion-exchanged water and stirred. Let it stand still, and after crystallization and precipitation of the reaction product appear, separate it by filtration, wash it with water, and dry it in vacuum at 40°C for 48 hours, thereby obtaining the amino group and isocyanate of 5-aminoisophthalic acid AIPA-MO obtained by the action of the isocyanate group of 2-methacryloxyethyl ester. The low molecular weight GPC purity of the obtained AIPA-MO is about 100%. (Synthesis of Polymer D) 100.89 g (0.3 mol) of AIPA-MO, 71.2 g (0.9 mol) of pyridine, and 400 g of GBL were put into a separable flask with a volume of 2 L, mixed, and cooled by ice bath Cool to 5 °C. Under cooling in an ice bath, add dropwise dicyclohexylcarbodiimide (DCC) 125.0 g (0.606 mol) in 125 g of GBL to it over a period of about 20 minutes, and then add dropwise over a period of about 20 minutes 103.16 g (0.28 mol) of 4,4'-bis(4-aminophenoxy)biphenyl {herein referred to as BAPB} was dissolved in 168 g of NMP, kept in an ice bath for 3 hours without reaching 5°C, and then The ice bath was removed and stirred at room temperature for 5 hours. The precipitate generated in the reaction mixture was removed by filtration to obtain a reaction liquid. A mixed liquid of 840 g of water and 560 g of isopropanol was added dropwise to the obtained reaction liquid, and the precipitated polymer was separated and redissolved in 650 g of NMP. The obtained crude polymer solution was added dropwise to 5 L of water to precipitate the polymer, and the obtained precipitate was separated by filtration and vacuum-dried to obtain a powdery polymer (polymer E). The molecular weight of the polymer D was measured by gel permeation chromatography (standard polystyrene conversion), and the weight average molecular weight (Mw) was 34,700. <Production Example C5> ((A) Synthesis of Polymer E as a Precursor of Polyoxazole) 2,2-bis(3-amino-4-hydroxyphenyl) was placed in a 3 L separable flask - 183.1 g of hexafluoropropane, 640.9 g of N,N-dimethylacetamide (DMAc), and 63.3 g of pyridine were mixed and stirred at room temperature (25° C.) to prepare a homogeneous solution. What dissolved 118.0 g of 4,4'-diphenyl ether dimethyl chlorides in 354 g of diethylene glycol dimethyl ethers (DMDG) was added dropwise thereto using the dropping funnel. At this time, the separable flask was cooled in a water bath at 15-20°C. The time required for dripping is 40 minutes, and the temperature of the reaction liquid is up to 30°C. After 3 hours from the end of the dropping, add 30.8 g (0.2 mol) of 1,2-cyclohexyl dicarboxylic anhydride to the reaction liquid, and stir at room temperature for 15 hours, so that 99% of the total number of polymer chains is amine The end groups are capped with carboxycyclohexylamide groups. The reaction rate at this time can be easily calculated by tracking the residual amount of 1,2-cyclohexyl dicarboxylic acid anhydride charged by high performance liquid chromatography (HPLC). Thereafter, the above-mentioned reaction solution was added dropwise to 2 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water, dehydrated, and vacuum-dried to obtain the polymer by gel permeation chromatography (GPC). ) crude polybenzoxazole precursor with a weight average molecular weight of 9,000 (in terms of polystyrene) as measured by the method. After the crude polybenzoxazole precursor obtained above was redissolved in γ-butyrolactone (GBL), it was treated with cation exchange resin and anion exchange resin, and the obtained solution was poured into ion exchange water , the precipitated polymer was separated by filtration, washed with water and dried in vacuum to obtain a refined polybenzoxazole precursor (polymer E). <Manufacture Example C6> ((A) Synthesis of Polymer F as Polyimide) Dean-Sta The cooling tube of the gram separator. While blowing nitrogen gas, the above-mentioned flask was immersed in a silicone oil bath for stirring. Add 72.28 g (280 mmol) of 2,2-bis(3-amino-4-hydroxyphenyl)propane (manufactured by Clariant Japan Co., Ltd.) (hereinafter referred to as BAP), 5-(2,5-dioxotetrahydro -3-furyl)-3-methyl-cyclohexene-1,2 dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) (hereinafter referred to as MCTC) 70.29 g (266 mmol), γ-butyrolactone 254.6 g, 60 g of toluene, after stirring at 100 rpm at room temperature for 4 hours, add 4.6 g (28 mmol) of 5-northene-2,3-dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) Heat and stir at 100 rpm for 8 hours at a temperature of 50°C in a silicon bath while injecting nitrogen gas. Thereafter, it was heated to a silicon bath temperature of 180° C., and heated and stirred at 100 rpm for 2 hours. Toluene and water distilled off during the reaction were removed. Return to room temperature after the imidization reaction. Thereafter, the above-mentioned reaction solution was added dropwise to 3 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water appropriately, and then vacuum-dried after dehydration to obtain the polymer by gel permeation chromatography (GPC). Crude polyimide (polymer F) having a weight average molecular weight of 23,000 (in terms of polystyrene) as measured by the method. <Production Example C7> ((A) Synthesis of Polymer G as a Phenolic Resin) In a 0.5 L volume separable flask with a Dean-Stark apparatus, 128.3 of methyl 3,5-dihydroxybenzoate g (0.76 mol), 4,4'-bis(methoxymethyl)biphenyl (hereinafter also referred to as "BMMB") 121.2 g (0.5 mol), diethylsulfuric acid 3.9 g (0.025 mol), diethyl 140 g of glycol dimethyl ether was mixed and stirred at 70° C. to dissolve the solid matter. The mixed solution was heated to 140° C. with an oil bath, and it was confirmed that methanol was produced from the reaction solution. The reaction solution was directly stirred at 140° C. for 2 hours. Then, the reaction container was cooled in the air, and 100 g of tetrahydrofuran was added thereto and stirred. The above reaction diluent was added dropwise to 4 L of water under high-speed stirring to disperse and precipitate the resin, which was recovered, washed with water, dehydrated, and then vacuum-dried to obtain 3,5-dihydroxy Copolymer of methyl benzoate/BMMB (polymer G). The weight average molecular weight calculated|required by the standard polystyrene conversion of the GPC method of this polymer G was 21,000. <Manufacturing Example C8> ((A) Synthesis of Polymer H as Phenolic Resin) Nitrogen was replaced with a 1.0 L volume separable flask with a Dean-Stark apparatus, and then, in the separable flask Resorcinol 81.3 g (0.738 mol), BMMB 84.8 g (0.35 mol), p-toluenesulfonic acid 3.81 g (0.02 mol), propylene glycol monomethyl ether (hereinafter also referred to as PGME) 116 g were carried out at 50 ° C Mix and stir to dissolve the solids. The mixed solution was heated to 120° C. with an oil bath, and it was confirmed that methanol was generated from the reaction solution. The reaction solution was directly stirred at 120° C. for 3 hours. Then, in another container, 24.9 g (0.150 mol) of 2,6-bis(hydroxymethyl)-p-cresol and 249 g of PGME were mixed and stirred to dissolve them uniformly, and the obtained solution was mixed and stirred over a period of time using a dropping funnel. It was dripped in this separable flask for 1 hour, and stirred for 2 hours after dripping. After the reaction, the same treatment as in Production Example C7 was performed to obtain a copolymer (polymer H) containing resorcinol/BMMB/2,6-bis(hydroxymethyl)-p-cresol with a yield of 77%. The weight average molecular weight calculated|required by the standard polystyrene conversion of the GPC method of this polymer H was 9,900. <Example C1> Using polymers A and B, a negative photosensitive resin composition was prepared by the following method, and the prepared photosensitive resin composition was evaluated. 50 g of polymer A and 50 g of polymer B (corresponding to (A) resin) and 1 g of butylurea (corresponding to (B-1) compound) as a polyimide precursor, 1-phenyl-1, 2-propanedione-2-(O-ethoxycarbonyl)-oxime (referred to as "PDO" in Table 3) (equivalent to (C) photosensitizer) 4 g, tetraethylene glycol dimethacrylate 8 g, 1.5 g of N-[3-(triethoxysilyl)propyl]phthalic acid were dissolved in 80 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and A mixed solvent of 20 g of ethyl lactate. Furthermore, the viscosity of the obtained solution was adjusted to about 35 poise by adding a small amount of said mixed solvent, and the negative photosensitive resin composition was prepared. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.5% was obtained. <Example C2> In the above-mentioned Example C1, except that the addition amount of butylurea was changed to 0.1 g as the (B) component, a negative photosensitive resin composition solution was prepared in the same manner as in Example C1 . For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230°C by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.8% was obtained. <Example C3> In the above-mentioned Example C1, except that the addition amount of butylurea was changed to 5 g as the (B) component, a negative photosensitive resin composition solution was prepared in the same manner as in Example C1 . For this composition, a cured embossed pattern was formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.8% was obtained. <Example C4> In the above-mentioned Example C1, as (B) component, except using tetraethylene glycol (corresponding to (B-2) compound) instead of butylurea, by the same method as Example C1 A negative photosensitive resin composition solution was prepared. For this composition, a cured embossed pattern was formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.2% was obtained. <Example C5> In the above-mentioned Example C1, as the component (B), except that bis(2-methoxyethyl) adipate (corresponding to the compound (B-3)) was used instead of butylurea, , A negative photosensitive resin composition solution was prepared in the same manner as in Example C1. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.3% was obtained. <Example C6> A negative photosensitive resin composition solution was prepared in the same manner as in Example C1 above, and the composition was cured at 350°C by the above method to form a hardened relief pattern on the Cu layer. After the high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.7% was obtained. <Example C7> In the above-mentioned Example C1, as (A) resin, 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer A, and as (C) component, 4 g of PDO was changed to 1 , 2-octanedione-1-{4-(phenylthio)-2-(O-benzoyl oxime)} (Irgacure OXE01 (manufactured by BASF, trade name)) 2.5 g, in addition, A negative photosensitive resin composition solution was prepared in the same manner as in Example C1. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.4% was obtained. <Example C8> In the above-mentioned Example C1, as (A) resin, 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer A, and as (C) component, 4 g of PDO was changed to 1 , 2-octanedione-1-{4-(phenylthio)-2-(O-benzoyl oxime)} (Irgacure OXE01 (manufactured by BASF, trade name)) 2.5 g, and then change the solvent to Except for 85 g of γ-butyrolactone and 15 g of dimethylsulfoxide, a negative photosensitive resin composition solution was prepared in the same manner as in Example C1. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.5% was obtained. <Example C9> In the above-mentioned Example C1, as (A) resin, except that 50 g of polymer A and 50 g of polymer B were changed to 100 g of polymer C, by the same method as Example C1 A negative photosensitive resin composition solution was prepared. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 350°C by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.7% was obtained. <Example C10> In the above-mentioned Example C1, as the (A) resin, except that 50 g of the polymer A and 50 g of the polymer B were changed to 100 g of the polymer D, by the same method as in the example C1 A negative photosensitive resin composition solution was prepared. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 250° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.8% was obtained. <Example C11> Using the polymer E, a positive-type photosensitive resin composition was prepared by the following method, and the prepared photosensitive resin composition was evaluated. Mix 100 g of polymer E (corresponding to (A) resin) as a precursor of polyoxazole with the following formula (96): [Chem. 106]
Figure 02_image211
The photosensitive diazoquinone compound (manufactured by Toyosei Co., equivalent to (C) photosensitizer) in which 77% of the phenolic hydroxyl groups are esterified with naphthoquinonediazide-4-sulfonate (C1) 15 g, 1 g of urea (corresponding to compound (B-1)) and 6 g of 3-tert-butoxycarbonylaminopropyltriethoxysilane were dissolved in 100 g of γ-butyrolactone (as a solvent). The viscosity of the obtained solution was adjusted to about 20 poise by further adding a small amount of γ-butyrolactone to prepare a positive photosensitive resin composition. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 350° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.6% was obtained. <Example C12> In the above-mentioned Example C11, as (A) resin, except that 100 g of polymer E was changed to 100 g of polymer F, a positive-type photosensitive resin was prepared in the same manner as in Example C11 Composition solution. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 250° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.9% was obtained. <Example C13> In the above-mentioned Example C11, as the (A) resin, except that 100 g of polymer E was changed to 100 g of polymer G, a positive-type photosensitive resin was prepared in the same manner as in Example C11 Composition solution. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 220° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.5% was obtained. <Example C14> In the above-mentioned Example C11, as (A) resin, except that 100 g of polymer E was changed to 100 g of polymer H, a positive-type photosensitive resin was prepared in the same manner as in Example C13 Composition solution. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 220° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.4% was obtained. <Comparative Example C1> In the composition of Example C1, except that butylurea was not added, a negative photosensitive resin composition was prepared in the same manner as in Example C1, and the same evaluation as in Example C1 was performed . Since the compound (B) of the present invention was not contained, the evaluation result was 14.3%. <Comparative Example C2> Except that butylurea was not added to the composition of Example C12, a positive-type photosensitive resin composition was prepared in the same manner as Example C12, and the same evaluation as Example C12 was performed. . Since the compound (B) of the present invention was not contained, the evaluation result was 15.5%. <Comparative Example C3> Except that butylurea was not added to the composition of Example C13, a positive-type photosensitive resin composition was prepared in the same manner as Example C13, and the same evaluation as Example C11 was performed. . Since the compound (B) of the present invention was not contained, the evaluation result was 15.7%. Example D <Manufacturing Example D1> ((A) Synthesis of Polymer (A)-1 as Polyimide Precursor) 4,4'-Oxydiol was placed in a 2 L separable flask Add 155.1 g of phthalic dianhydride (ODPA), add 131.2 g of 2-hydroxyethyl methacrylate (HEMA) and 400 ml of γ-butyrolactone, stir at room temperature, and add 81.5 g of pyridine while stirring to obtain a reaction mixture. After the exothermic heat generated by the reaction ended, it was allowed to stand and cool to room temperature for 16 hours. Next, a solution obtained by dissolving 206.3 g of dicyclohexylcarbodiimide (DCC) in 180 ml of γ-butyrolactone was added to the reaction mixture over 40 minutes while stirring, and then stirred. What was obtained by suspending 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in 350 ml of γ-butyrolactone was added over 60 minutes. Furthermore, after stirring at room temperature for 2 hours, 30 ml of ethanol was added and stirred for 1 hour, and then, 400 ml of γ-butyrolactone was added. The precipitate generated in the reaction mixture was removed by filtration to obtain a reaction liquid. The obtained reaction solution was added to 3 L of ethanol to generate a precipitate containing a crude polymer. The generated crude polymer was separated by filtration, and dissolved in 1.5 L of tetrahydrofuran to obtain a crude polymer solution. The obtained crude polymer solution was added dropwise to 28 L of water to precipitate the polymer, and the obtained precipitate was separated by filtration and vacuum-dried to obtain a powdery polymer (polymer (A)-1). When the molecular weight of the polymer (A)-1 was measured by gel permeation chromatography (standard polystyrene conversion), the weight average molecular weight (Mw) was 20,000. In addition, the weight average molecular weight of the resin obtained in each manufacture example D was measured by gel permeation chromatography (GPC) under the following conditions, and the weight average molecular weight in conversion of standard polystyrene was calculated|required. Pump: JASCO PU-980 Detector: JASCO RI-930 Column oven: JASCO CO-965 40℃ Column: 2 Shodex KD-806M in series Mobile phase: 0.1 mol/L LiBr/NMP Flow rate: 1 ml/min. <Production Example D2> ((A) Synthesis of Polymer (A)-2 as Polyimide Precursor) Using 3,3',4,4'-Biphenyltetracarboxylic Dianhydride (BPDA) 147.1 g instead of 155.1 g of 4,4'-oxydiphthalic dianhydride (ODPA) in Production Example D1, and react in the same manner as described in Production Example D1 above to obtain a polymer (A)-2. When the molecular weight of the polymer (A)-2 was measured by gel permeation chromatography (standard polystyrene conversion), the weight average molecular weight (Mw) was 22,000. <Production Example D3> ((A) Synthesis of Polymer (A)-3 as Polyimide Precursor) Using 2,2'-bistrifluoromethyl-4,4'-diaminobiphenyl ( 147.8 g of TFMB) instead of 93.0 g of 4,4'-diaminodiphenyl ether (DADPE) in Production Example D1, except that, react in the same manner as described in Production Example D1 above to obtain polymerization Object (A)-3. When the molecular weight of the polymer (A)-3 was measured by gel permeation chromatography (standard polystyrene conversion), the weight average molecular weight (Mw) was 21,000. <Production Example D4> ((A) Synthesis of polymer (A)-4 as polyamide) (Synthesis of phthalic acid compound-terminated AIPA-MO) Put 5 in a separable flask with a capacity of 5 L - 543.5 g of aminoisophthalic acid {hereinafter abbreviated as AIPA} and 1700 g of N-methyl-2-pyrrolidone were mixed and stirred, and heated to 50° C. in a water bath. Use the dropping funnel to add dropwise the obtained product obtained by diluting 512.0 g (3.3 mol) of 2-methacryloxyethyl isocyanate with 500 g of γ-butyrolactone, and directly stir at 50°C for about 2 hours . After confirming the completion of the reaction (disappearance of 5-aminoisophthalic acid) by low molecular weight gel permeation chromatography (hereinafter referred to as low molecular weight GPC), the reaction solution was poured into 15 L of ion-exchanged water and stirred. Let it stand still, and after crystallization and precipitation of the reaction product appear, separate it by filtration, wash it with water, and dry it in vacuum at 40°C for 48 hours, thereby obtaining the amino group and isocyanate of 5-aminoisophthalic acid AIPA-MO obtained by the action of the isocyanate group of 2-methacryloxyethyl ester. The low molecular weight GPC purity of the obtained AIPA-MO is about 100%. (Synthesis of Polymer (A)-4) 100.89 g (0.3 mol) of the obtained AIPA-MO, 71.2 g (0.9 mol) of pyridine, and 400 g of GBL were put into a separable flask with a capacity of 2 L, and mixed. Cool to 5 °C by ice bath. Under cooling in an ice bath, add dropwise dicyclohexylcarbodiimide (DCC) 125.0 g (0.606 mol) in 125 g of GBL to it over a period of about 20 minutes, and then add dropwise over a period of about 20 minutes 103.16 g (0.28 mol) of 4,4'-bis(4-aminophenoxy)biphenyl {herein referred to as BAPB} was dissolved in 168 g of NMP, kept in an ice bath for 3 hours without reaching 5°C, and then The ice bath was removed and stirred at room temperature for 5 hours. The precipitate generated in the reaction mixture was removed by filtration to obtain a reaction liquid. A mixed liquid of 840 g of water and 560 g of isopropanol was added dropwise to the obtained reaction liquid, and the precipitated polymer was separated and redissolved in 650 g of NMP. The obtained crude polymer solution was added dropwise to 5 L of water to precipitate the polymer, and the obtained precipitate was separated by filtration and vacuum-dried to obtain a powdery polymer (polymer (A)-4). When the molecular weight of the polymer (A)-4 was measured by gel permeation chromatography (standard polystyrene conversion), the weight average molecular weight (Mw) was 34,700. <Production Example D5> ((A) Synthesis of Polymer (A)-5 as a Precursor of Polyoxazole) 2,2-bis(3-amino-4- 183.1 g of hydroxyphenyl)-hexafluoropropane, 640.9 g of N,N-dimethylacetamide (DMAc), and 63.3 g of pyridine were mixed and stirred at room temperature (25° C.) to prepare a homogeneous solution. What dissolved 118.0 g of 4,4'-diphenyl ether dimethyl chlorides in 354 g of diethylene glycol dimethyl ethers (DMDG) was added dropwise thereto using the dropping funnel. At this time, the separable flask was cooled in a water bath at 15-20°C. The time required for dripping is 40 minutes, and the temperature of the reaction liquid is up to 30°C. After 3 hours from the end of the dropping, add 30.8 g (0.2 mol) of 1,2-cyclohexyl dicarboxylic anhydride to the reaction liquid, and stir at room temperature for 15 hours, so that 99% of the total number of polymer chains is amine The end groups are capped with carboxycyclohexylamide groups. The reaction rate at this time can be easily calculated by tracking the residual amount of 1,2-cyclohexyl dicarboxylic acid anhydride charged by high performance liquid chromatography (HPLC). Thereafter, the above-mentioned reaction solution was added dropwise to 2 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water, dehydrated, and vacuum-dried to obtain the polymer by gel permeation chromatography (GPC). ) crude polybenzoxazole precursor with a weight average molecular weight of 9,000 (in terms of polystyrene) as measured by the method. After the crude polybenzoxazole precursor obtained above was redissolved in γ-butyrolactone (GBL), it was treated with cation exchange resin and anion exchange resin, and the obtained solution was poured into ion exchange water , the precipitated polymer was separated by filtration, washed with water and dried in vacuum to obtain a refined polybenzoxazole precursor (polymer (A)-5). <Production Example D6> ((A) Synthesis of Polymer (A)-6 as Polyimide) Attached to a glass separable four-necked flask equipped with a Teflon (registered trademark) anchor stirrer Cooling tubes for Ann-Stark separators. While blowing nitrogen gas, the above-mentioned flask was immersed in a silicone oil bath for stirring. Add 72.28 g (280 mmol) of 2,2-bis(3-amino-4-hydroxyphenyl)propane (manufactured by Clariant Japan Co., Ltd.) (hereinafter referred to as BAP), 5-(2,5-dioxotetrahydro -3-furyl)-3-methyl-cyclohexene-1,2 dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) (hereinafter referred to as MCTC) 70.29 g (266 mmol), γ-butyrolactone 254.6 g, 60 g of toluene, after stirring at 100 rpm at room temperature for 4 hours, add 4.6 g (28 mmol) of 5-northene-2,3-dicarboxylic anhydride (manufactured by Tokyo Chemical Industry Co., Ltd.) Heat and stir at 100 rpm for 8 hours at a temperature of 50°C in a silicon bath while injecting nitrogen gas. Thereafter, it was heated to a silicon bath temperature of 180° C., and heated and stirred at 100 rpm for 2 hours. Toluene and water distilled off during the reaction were removed. Return to room temperature after the imidization reaction. Thereafter, the above-mentioned reaction solution was added dropwise to 3 L of water under high-speed stirring to disperse and precipitate the polymer, which was recovered, washed with water appropriately, and then vacuum-dried after dehydration to obtain the polymer by gel permeation chromatography (GPC). Crude polyimide (polymer (A)-6) having a weight average molecular weight of 23,000 (in terms of polystyrene) as measured by the method. <Example D1> Using polymers (A)-1 and (A)-2, a negative photosensitive resin composition was prepared by the following method, and the photosensitive resin composition was evaluated. Polymers (A)-1 50 g and (A)-2 50 g (corresponding to (A) resin) as polyimide precursors were mixed with N-phenylbenzylamine (manufactured by Tokyo Chemical Industry Co., Ltd. , corresponding to (B)-1) 3 g, 1-phenyl-1,2-propanedione-2-(O-ethoxycarbonyl)-oxime (marked as "PDO" in Table 4) (equivalent to (C) Sensitizer) 4 g, tetraethylene glycol dimethacrylate 8 g, N-[3-(triethoxysilyl) propyl] phthalic acid 1.5 g were dissolved in the containing A mixed solvent of 80 g of N-methyl-2-pyrrolidone (hereinafter referred to as NMP) and 20 g of ethyl lactate. Furthermore, the viscosity of the obtained solution was adjusted to about 35 poise by adding a small amount of said mixed solvent, and the negative photosensitive resin composition was prepared. This composition was cured at 230° C. by the above method to form a hardened relief pattern on the Cu layer. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.5% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D2> In the above-mentioned Example D1, except that the (B) component was changed to N,N'-diphenylethane-1,2-diamine (manufactured by Tokyo Chemical Industry Co., Ltd.), A negative photosensitive resin composition solution was prepared in the same manner as in Example D1. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230°C by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.2% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D3> In the above-mentioned Example D1, except that the (B) component was changed to tertiary butylphenyl carbamate (manufactured by Tokyo Chemical Industry Co., Ltd.), by the same method as Example D1 A negative photosensitive resin composition solution was prepared. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.1% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D4> In the above-mentioned Example D1, except that the (B) component was changed to (3-hydroxyphenyl) tertiary butyl carbamate (manufactured by Tokyo Chemical Industry Co., Ltd.), by carrying out A negative photosensitive resin composition solution was prepared in the same manner as Example D1. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.8% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D5> In the above-mentioned Example D1, the component (B) was changed to 2-hydroxy-N-(1H-1,2,4-triazol-3-yl)benzamide (manufactured by ADEKA Co., Ltd. , Adekastab CDA-1), except that, a negative photosensitive resin composition solution was prepared in the same manner as in Example D1. For this composition, a cured embossed pattern was formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.8% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D6> In the above-mentioned Example D1, the component (B) was changed to 2-(2H-benzo[d][1,2,3]triazol-2-yl)-4-(2,4, A negative photosensitive resin composition solution was prepared in the same manner as in Example D1 except that 4-trimethylpentan-2-yl)phenol (manufactured by ADEKA Co., Ltd., Adekastab LA-29). For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230°C by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.2% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D7> In the above-mentioned Example D1, the component (B) was changed to (4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)methanol (Tokyo Chemical Industry Co., Ltd. Co., Ltd.), except that, a negative photosensitive resin composition solution was prepared in the same manner as in Example D1. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 230° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.1% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D8> In said Example D1, except having changed the addition amount of (B)-1 component into 1 g, the negative photosensitive resin composition solution was prepared in the same manner as Example D1. This composition was cured at 230°C by the above-mentioned method to form a hardened relief pattern on the Cu layer. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 8.5% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D9> In said Example D1, except having changed the addition amount of (B)-1 component into 6 g, the negative photosensitive resin composition solution was prepared in the same manner as Example D1. This composition was cured at 230° C. by the above method to form a hardened relief pattern on the Cu layer. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.9% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D10> In said Example D1, except having changed the addition amount of (B)-1 component into 10 g, the negative photosensitive resin composition solution was prepared in the same manner as Example D1. This composition was cured at 230° C. by the above method to form a hardened relief pattern on the Cu layer. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.0% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D11> In the above-mentioned Example D1, except having changed the curing temperature from 230° C. to 350° C., a negative photosensitive resin composition solution was prepared in the same manner as in Example D1. With regard to this composition, a cured embossed pattern was formed on the Cu layer, and after a high-temperature storage test was performed, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.1% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D12> In the above-mentioned Example D1, as (A) resin, 50 g of polymer (A)-1 and 50 g of polymer (A)-2 were changed to 100 g of polymer (A)-1, and (C) The component is changed from PDO to 1,2-octanedione-1-{4-(phenylthio)-2-(O-benzoyl oxime)} (Irgacure OXE01 (manufactured by BASF, trade name )) 2.5 g, except that, a negative photosensitive resin composition solution was prepared in the same manner as in Example D1. With regard to this composition, a cured embossed pattern was formed on the Cu layer, and after a high-temperature storage test was performed, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.8% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D13> In the above-mentioned Example D12, except that the solvent was changed to 85 g of γ-butyrolactone and 15 g of dimethylsulfoxide, a negative-type photosensitive resin was prepared in the same manner as in Example D12 Composition solution. With regard to this composition, a cured embossed pattern was formed on the Cu layer, and after a high-temperature storage test was performed, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 5.4% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D14> In the above-mentioned Example D1, as the (A) resin, 50 g of polymer (A)-1 and 50 g of polymer (A)-2 were changed to 100 g of polymer (A)-3, and Except that the curing temperature was changed from 230° C. to 350° C., a negative photosensitive resin composition solution was prepared in the same manner as in Example D1. With regard to this composition, a hardened embossed pattern was formed on the Cu layer, and after a high-temperature storage test was performed, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 7.2% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D15> In the above-mentioned Example D1, as the (A) resin, polymer (A)-1 50 g and polymer (A)-2 50 g were changed to polymer (A)-4 100 g, except Otherwise, a negative photosensitive resin composition solution was prepared in the same manner as in Example D1. For this composition, a cured embossed pattern was formed on the Cu layer, and after a high-temperature storage test was performed, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 4.9% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D16> Using the polymer (A)-5, a positive-type photosensitive resin composition was prepared by the following method, and the prepared photosensitive resin composition was evaluated. Mix 100 g of polymer (A)-5 (corresponding to (A) resin) as a precursor of polyoxazole with the following formula (96): [Chem. 107]
Figure 02_image213
Dissolve 15 g of a photosensitive diazoquinone compound (manufactured by Toyosei Co., equivalent to component (C)) (C1) in which 77% of the phenolic hydroxyl groups are esterified with naphthoquinonediazide-4-sulfonate - Butyrolactone (as solvent) 100 g. The viscosity of the obtained solution was adjusted to about 20 poise by further adding a small amount of γ-butyrolactone to prepare a positive photosensitive resin composition. For this composition, hardened embossed patterns were formed on the Cu layer by curing at 350° C. by the above-mentioned method. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.9% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Example D17> In the above-mentioned Example D16, as the (A) resin, except that 100 g of the polymer (A)-5 was changed to 100 g of the polymer (A)-6, by the same method as in Example D12 The positive photosensitive resin composition solution was prepared in the same way. This composition was cured at 250° C. by the above method to form a hardened relief pattern on the Cu layer. After a high-temperature storage test, the area ratio of voids on the surface of the Cu layer was evaluated, and a result of 6.0% was obtained. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Comparative Example D1> In the composition of Example D1, except that the component (B)-1 was not added, a negative photosensitive resin composition was prepared in the same manner as in Example D1, and the same process as in Example D1 was carried out. same evaluation. Since the component (B) of the present invention was not contained, the evaluation result was 15.2%. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Comparative Example D2> In the composition of Example D15, except that the component (B)-1 was not added, a negative photosensitive resin composition was prepared in the same manner as in Example D15, and carried out as in Example D15 same evaluation. Since the component (B) of the present invention was not contained, the evaluation result was 14.3%. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Comparative Example D3> In the composition of Example D13, except that the component (B)-1 was not added, a negative photosensitive resin composition was prepared in the same manner as in Example D13, and carried out as in Example D13 same evaluation. Since the component (B) of the present invention was not contained, the evaluation result was 15.7%. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Comparative Example D4> In the composition of Example D17, except that component (B)-1 was not added, a positive-type photosensitive resin composition was prepared in the same manner as in Example D17, and carried out as in Example D17 same evaluation. Since the component (B) of the present invention was not contained, the evaluation result was 16.3%. In addition, the viscosity change rate of the obtained varnish after the storage stability test was within 10%. <Comparative Example D5> In the composition of Example D1, except that the addition amount of the (B)-1 component was changed to 25 g, a negative photosensitive resin composition was prepared in the same manner as in Example D1, and The same evaluation as in Example D1 was performed. The evaluation result was 7.2%. Moreover, the viscosity change rate after the storage stability test of the obtained varnish was 10% or more. The results of these Examples D1-17 and Comparative Examples D1-5 are collectively shown in Table 4. [Table 1] Table 1
Figure 108121559-A0304-0001
[Table 2] Table 2
Figure 108121559-A0304-0002
[Table 3] Table 3
Figure 108121559-A0304-0003
[Table 4] Table 4
Figure 108121559-A0304-0004
Figure 108121559-A0304-0005
[Industrial Applicability] The photosensitive resin composition of the present invention can be preferably used in the field of photosensitive materials useful for the production of electrical and electronic materials such as semiconductor devices and multilayer wiring boards.

Claims (7)

一種感光性樹脂組合物,其包含:(A)選自由聚醯胺酸、聚醯胺酸酯、聚醯胺酸鹽、聚羥基醯胺、聚胺基醯胺、聚醯胺、聚醯胺醯亞胺、聚醯亞胺、聚苯并
Figure 108121559-A0305-02-0169-12
唑、以及酚醛清漆、聚羥基苯乙烯及酚樹脂所組成之群中之至少一種樹脂:100質量份;(B)含硫化合物:以上述(A)樹脂100質量份為基準計0.01~10質量份;以及(C)感光劑:以上述(A)樹脂100質量份為基準計1~50質量份;且上述(B)含硫化合物包含選自由若丹林、N-烯丙基若丹林、2-硫脲嘧啶、4-硫脲嘧啶、2,4-二巰基嘧啶、2-9-氧硫
Figure 108121559-A0305-02-0169-14
、2-巰基-4(3H)-喹唑啉酮所組成之群中之至少一種。
A photosensitive resin composition, which comprises: (A) selected from polyamide acid, polyamide ester, polyamide acid salt, polyhydroxyamide, polyaminoamide, polyamide, polyamide imide, polyimide, polybenzo
Figure 108121559-A0305-02-0169-12
Azole, and at least one resin from the group consisting of novolac, polyhydroxystyrene, and phenolic resin: 100 parts by mass; (B) sulfur-containing compound: 0.01 to 10 parts by mass based on 100 parts by mass of the above (A) resin and (C) photosensitizer: 1 to 50 parts by mass based on 100 parts by mass of the above-mentioned (A) resin; , 2-thiouracil, 4-thiouracil, 2,4-dimercaptopyrimidine, 2-9-oxysulfur
Figure 108121559-A0305-02-0169-14
, at least one of the group consisting of 2-mercapto-4(3H)-quinazolinone.
如請求項1之感光性樹脂組合物,其中上述(A)樹脂為選自由包含下述通式(1)之聚醯亞胺前驅物、包含下述通式(4)之聚醯胺、包含下述通式(5)之聚
Figure 108121559-A0305-02-0169-15
唑前驅物、包含下述通式(6)之聚醯亞胺、以及酚醛清漆、聚羥基苯乙烯及包含下述通式(7)之酚樹脂所組成之群中之至少一種,其中,下述通式(1)為
Figure 108121559-A0305-02-0169-1
{式中,X1為4價之有機基,Y1為2價之有機基,n1為2~150之整數,並且R1及R2分別獨立為氫原子、碳數1~30之飽和脂肪族基、芳香族基、或下述通式(2):
Figure 108121559-A0305-02-0170-2
(式中,R3、R4及R5分別獨立為氫原子或碳數1~3之有機基,並且m1為2~10之整數)所表示之1價之有機基、或碳數1~4之飽和脂肪族基、或下述通式(3):
Figure 108121559-A0305-02-0170-3
(式中,R6、R7及R8分別獨立為氫原子或碳數1~3之有機基,並且m2為2~10之整數)所表示之一價之銨離子}所表示之作為聚醯亞胺前驅物之聚醯胺酸、聚醯胺酸酯或聚醯胺酸鹽,下述通式(4)為具有
Figure 108121559-A0305-02-0170-4
{式中,X2為碳數6~15之3價之有機基,Y2為碳數6~35之2價之有 機基,且可為同一結構或具有複數種結構,R9為具有至少一個碳數3~20之自由基聚合性之不飽和鍵結基的有機基,並且n2為1~1000之整數}所表示之結構之聚醯胺,下述通式(5)為具有
Figure 108121559-A0305-02-0171-5
{式中,Y3為具有碳原子之4價之有機基,Y4、X3及X4分別獨立為具有2個以上之碳原子之2價之有機基,n3為1~1000之整數,n4為0~500之整數,n3/(n3+n4)>0.5,並且包含X3及Y3之n3個二羥基二醯胺單元以及包含X4及Y4之n4個二醯胺單元之排列順序為任意}所表示之結構之作為聚
Figure 108121559-A0305-02-0171-16
唑前驅物之聚羥基醯胺,下述通式(6)為具有
Figure 108121559-A0305-02-0171-7
{式中,X5為4~14價之有機基,Y5為2~12價之有機基,R10及R11分別獨立地表示具有至少一個選自酚性羥基、磺酸基或硫醇基中之基的有機基,n5為3~200之整數,並且m3及m4表示0~10之整數} 所表示之結構之聚醯亞胺,並且下述通式(7)為
Figure 108121559-A0305-02-0172-8
{式中,a為1~3之整數,b為0~3之整數,1≦(a+b)≦4,R12表示選自由碳數1~20之1價之有機基、鹵素原子、硝基及氰基所組成之群中之1價之取代基,於b為2或3之情形時,複數個R12相互可相同或亦可不同,X表示選自由可具有不飽和鍵之碳數2~10之2價之脂肪族基、碳數3~20之2價之脂環式基、下述通式(8):[化8]-CpH2pO- (8)(式中,p為1~10之整數)所表示之2價之伸烷氧基、及具有碳數6~12之芳香族環之2價之有機基所組成之群中之2價之有機基}所表示之酚樹脂。
Such as the photosensitive resin composition of claim 1, wherein the above-mentioned (A) resin is selected from polyimide precursors comprising the following general formula (1), polyamides comprising the following general formula (4), comprising Polymerization of the following general formula (5)
Figure 108121559-A0305-02-0169-15
At least one of the group consisting of azole precursors, polyimides comprising the following general formula (6), and novolaks, polyhydroxystyrene, and phenol resins comprising the following general formula (7), wherein the following The general formula (1) is
Figure 108121559-A0305-02-0169-1
{In the formula, X 1 is a tetravalent organic group, Y 1 is a divalent organic group, n 1 is an integer from 2 to 150, and R 1 and R 2 are independently a hydrogen atom and a saturated carbon number of 1 to 30 Aliphatic group, aromatic group, or the following general formula (2):
Figure 108121559-A0305-02-0170-2
(wherein, R 3 , R 4 and R 5 are each independently a hydrogen atom or an organic group with 1 to 3 carbons, and m 1 is an integer of 2 to 10) represented by a monovalent organic group or a carbon number 1 ~4 saturated aliphatic groups, or the following general formula (3):
Figure 108121559-A0305-02-0170-3
(wherein, R 6 , R 7 and R 8 are each independently a hydrogen atom or an organic group with 1 to 3 carbons, and m 2 is an integer of 2 to 10) represents a monovalent ammonium ion} as represented by The polyamic acid of polyimide precursor, polyamic acid ester or polyamic acid salt, following general formula (4) has
Figure 108121559-A0305-02-0170-4
{In the formula, X 2 is a trivalent organic group with 6 to 15 carbons, Y 2 is a divalent organic group with 6 to 35 carbons, and may have the same structure or multiple structures, R 9 is an organic group with at least A polyamide having a structure represented by a free radical polymerizable unsaturated bonded organic group with a carbon number of 3 to 20, and n 2 being an integer of 1 to 1000}, the following general formula (5) has
Figure 108121559-A0305-02-0171-5
{In the formula, Y 3 is a tetravalent organic group with carbon atoms, Y 4 , X 3 and X 4 are each independently a divalent organic group with 2 or more carbon atoms, and n 3 is an integer ranging from 1 to 1000 , n 4 is an integer from 0 to 500, n 3 /(n 3 +n 4 )>0.5, and n 3 dihydroxydiamide units including X 3 and Y 3 and n 4 including X 4 and Y 4 The arrangement order of the two diamide units is arbitrary} The structure represented by the polyamide
Figure 108121559-A0305-02-0171-16
The polyhydroxyamide of azole precursor, following general formula (6) has
Figure 108121559-A0305-02-0171-7
{wherein, X5 is an organic group with a valence of 4 to 14 , Y5 is an organic group with a valence of 2 to 12 , and R10 and R11 independently represent at least one group selected from a phenolic hydroxyl group, a sulfonic acid group or a thiol The organic group of the base in the base, n 5 is an integer of 3 to 200, and m 3 and m 4 represent an integer of 0 to 10} The polyimide of the structure represented, and the following general formula (7) is
Figure 108121559-A0305-02-0172-8
{In the formula, a is an integer of 1 to 3, b is an integer of 0 to 3, 1≦(a+b)≦4, R12 represents a monovalent organic group selected from 1 to 20 carbon numbers, a halogen atom, As a monovalent substituent in the group consisting of nitro and cyano, when b is 2 or 3, the plurality of R 12 may be the same or different from each other, and X represents a group selected from carbons that may have unsaturated bonds A divalent aliphatic group with a number of 2 to 10, a divalent alicyclic group with a carbon number of 3 to 20, and the following general formula (8): [Chemical 8] -C p H 2p O- (8) (Formula wherein, p is an integer of 1 to 10), a divalent organic group in the group consisting of a divalent alkoxyl group represented by a divalent organic group having an aromatic ring with 6 to 12 carbons} Represented phenolic resin.
如請求項1或2之感光性樹脂組合物,其中上述感光性樹脂組合物包含具有上述通式(7)所表示之重複單元之酚樹脂,上述通式(7)中之X為選自由下述通式(9):[化9]
Figure 108121559-A0305-02-0173-9
{式中,R13、R14、R15及R16分別獨立為氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,n6為0~4之整數,且n6為1~4之整數之情形時之R17為鹵素原子、羥基、或碳數1~12之1價之有機基,至少1個R17為羥基,n6為2~4之整數之情形時之複數個R17相互可相同或亦可不同}所表示之2價之基、及下述通式(10):
Figure 108121559-A0305-02-0173-10
{式中,R18、R19、R20及R21分別獨立表示氫原子、碳數1~10之1價之脂肪族基、或氫原子之一部分或全部被取代為氟原子而成之碳數1~10之1價之脂肪族基,W為單鍵、選自由可經氟原子取代之碳數1~10之脂肪族基、可經氟原子取代之碳數3~20之脂環式基、下述通式(8):[化11]-CpH2pO- (8)(式中,p為1~10之整數)所表示之2價之伸烷氧基、及下述式(11):[化12]
Figure 108121559-A0305-02-0174-11
所表示之2價之基所組成之群中之2價之基}所表示之2價之基所組成之群中之2價之有機基。
The photosensitive resin composition as claimed in item 1 or 2, wherein the above-mentioned photosensitive resin composition comprises a phenol resin having a repeating unit represented by the above-mentioned general formula (7), and X in the above-mentioned general formula (7) is selected from the following Describe general formula (9): [Chemical 9]
Figure 108121559-A0305-02-0173-9
{In the formula, R 13 , R 14 , R 15 and R 16 are each independently a hydrogen atom, a monovalent aliphatic group with 1 to 10 carbons, or a carbon in which part or all of the hydrogen atoms are replaced by fluorine atoms A monovalent aliphatic group with a number of 1 to 10, n 6 is an integer of 0 to 4, and when n 6 is an integer of 1 to 4, R 17 is a halogen atom, a hydroxyl group, or 1 of 1 to 12 carbons A valent organic group, at least one R 17 is a hydroxyl group, and when n 6 is an integer of 2 to 4, the plurality of R 17 may be the same or different from each other} a divalent group represented by the following general formula (10):
Figure 108121559-A0305-02-0173-10
{In the formula, R 18 , R 19 , R 20 and R 21 independently represent a hydrogen atom, a monovalent aliphatic group with 1 to 10 carbons, or a carbon in which part or all of the hydrogen atoms are replaced by fluorine atoms A monovalent aliphatic group with a number of 1 to 10, W is a single bond, selected from an aliphatic group with a carbon number of 1 to 10 that may be substituted by a fluorine atom, and an alicyclic group with a carbon number of 3 to 20 that may be substituted by a fluorine atom group, the following general formula (8): [Chemical 11]-C p H 2p O- (8) (wherein, p is an integer of 1 to 10) represented by a divalent alkyleneoxy group, and the following Formula (11): [chemical 12]
Figure 108121559-A0305-02-0174-11
The divalent organic group in the group formed by the divalent groups represented by} the divalent organic group in the group formed by the divalent groups represented.
如請求項1或2之感光性樹脂組合物,其中上述(B)含硫化合物為硫脲衍生物。 The photosensitive resin composition according to claim 1 or 2, wherein the above-mentioned (B) sulfur-containing compound is a thiourea derivative. 一種硬化浮凸圖案之製造方法,其包括:(1)藉由於基板上塗佈如請求項1至4中任一項之感光性樹脂組合物而於上述基板上形成感光性樹脂層之步驟;(2)對上述感光性樹脂層進行曝光之步驟;(3)將上述曝光後之感光性樹脂層進行顯影而形成浮凸圖案之步驟;及(4)藉由對上述浮凸圖案進行加熱處理而形成硬化浮凸圖案之步驟。 A method for manufacturing a hardened relief pattern, comprising: (1) a step of forming a photosensitive resin layer on the substrate by coating the photosensitive resin composition according to any one of claims 1 to 4 on the substrate; (2) a step of exposing the above-mentioned photosensitive resin layer; (3) a step of developing the above-mentioned exposed photosensitive resin layer to form a relief pattern; and (4) by heat-treating the above-mentioned relief pattern And the step of forming a hardened relief pattern. 如請求項5之方法,其中上述基板係由銅或銅合金形成。 The method according to claim 5, wherein the above-mentioned substrate is formed of copper or copper alloy. 一種半導體裝置,其包含藉由如請求項5或6之製造方法所獲得之硬化浮凸圖案。 A semiconductor device comprising a hardened relief pattern obtained by the manufacturing method according to claim 5 or 6.
TW108121559A 2016-04-14 2017-03-30 Photosensitive resin composition, method for producing hardened relief pattern, and semiconductor device TWI782214B (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP??2016-081114 2016-04-14
JP2016081114 2016-04-14
JP??2016-082965 2016-04-18
JP2016083018 2016-04-18
JP2016082965 2016-04-18
JP??2016-083018 2016-04-18
JP2016083889 2016-04-19
JP??2016-083889 2016-04-19

Publications (2)

Publication Number Publication Date
TW201936722A TW201936722A (en) 2019-09-16
TWI782214B true TWI782214B (en) 2022-11-01

Family

ID=60156054

Family Applications (4)

Application Number Title Priority Date Filing Date
TW111139414A TW202305039A (en) 2016-04-14 2017-03-30 Photosensitive resin composition, method for producing cured relief pattern and semiconductor device
TW108121559A TWI782214B (en) 2016-04-14 2017-03-30 Photosensitive resin composition, method for producing hardened relief pattern, and semiconductor device
TW106110714A TWI662365B (en) 2016-04-14 2017-03-30 Photosensitive resin composition, method for producing hardened relief pattern, and semiconductor device
TW107112595A TWI666233B (en) 2016-04-14 2017-03-30 Photosensitive resin composition, method for producing hardened relief pattern, and semiconductor device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111139414A TW202305039A (en) 2016-04-14 2017-03-30 Photosensitive resin composition, method for producing cured relief pattern and semiconductor device

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW106110714A TWI662365B (en) 2016-04-14 2017-03-30 Photosensitive resin composition, method for producing hardened relief pattern, and semiconductor device
TW107112595A TWI666233B (en) 2016-04-14 2017-03-30 Photosensitive resin composition, method for producing hardened relief pattern, and semiconductor device

Country Status (2)

Country Link
JP (3) JP6947519B2 (en)
TW (4) TW202305039A (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003913A1 (en) * 2017-06-30 2019-01-03 住友ベークライト株式会社 Photosensitive resin composition, resin film, and electronic device
CN111902457B (en) * 2018-03-28 2023-03-28 三菱瓦斯化学株式会社 Polyimide resin, polyimide varnish, and polyimide film
JP7351637B2 (en) * 2018-05-29 2023-09-27 旭化成株式会社 Resin composition and method for producing cured film
JP7210588B2 (en) * 2018-07-31 2023-01-23 旭化成株式会社 Negative photosensitive resin composition, and method for producing polyimide and cured relief pattern using the same
WO2020079772A1 (en) * 2018-10-17 2020-04-23 日立化成株式会社 Photosensitive resin composition, patterned cured film and method for producing same, semiconductor device and electronic device
JP7241502B2 (en) * 2018-10-18 2023-03-17 旭化成株式会社 Photosensitive resin composition, method for producing cured relief pattern
JP7219654B2 (en) * 2019-03-28 2023-02-08 東京応化工業株式会社 Composition and method for forming insulation
CN111848954B (en) * 2019-04-25 2023-10-17 北京鼎材科技有限公司 Modified polyimide precursor resin, photosensitive resin composition and application thereof
JP7319381B2 (en) * 2019-10-18 2023-08-01 富士フイルム株式会社 Negative curable composition, cured film, laminate, method for producing cured film, and semiconductor device
KR20220108029A (en) * 2019-11-29 2022-08-02 에이치디 마이크로시스템즈 가부시키가이샤 Resin composition, manufacturing method of cured product, cured product, cover coat layer, surface protective film and electronic component
JP7451969B2 (en) 2019-11-29 2024-03-19 Hdマイクロシステムズ株式会社 Resin composition, method for producing cured product, cured product, cover coat layer, surface protective film, and electronic components
JP7451970B2 (en) 2019-11-29 2024-03-19 Hdマイクロシステムズ株式会社 Resin composition, method for producing cured product, cured product, cover coat layer, surface protective film, and electronic components
JP7488659B2 (en) * 2020-01-30 2024-05-22 旭化成株式会社 Negative-type photosensitive resin composition, and method for producing polyimide and cured relief pattern using the same
TWI827901B (en) * 2020-01-29 2024-01-01 日商旭化成股份有限公司 Negative photosensitive resin composition, polyimide and hardened relief pattern manufacturing method using the same
JP7443970B2 (en) 2020-07-22 2024-03-06 Hdマイクロシステムズ株式会社 Photosensitive resin composition, cured product, method for producing patterned cured product, and electronic components
KR20220015327A (en) * 2020-07-30 2022-02-08 주식회사 엘지화학 Binder resin, positive-type photosensitive resin composition, insulating film and semiconductor device
TW202224929A (en) * 2020-12-25 2022-07-01 律勝科技股份有限公司 Laminate and manufacturing method thereof
TWI817316B (en) * 2021-01-12 2023-10-01 日商旭化成股份有限公司 Polyimide precursor resin composition and manufacturing method thereof
CN114805794B (en) * 2022-03-31 2023-08-29 金发科技股份有限公司 Application of compound in improving molecular weight of nylon
WO2024095573A1 (en) * 2022-11-02 2024-05-10 Hdマイクロシステムズ株式会社 Polyimide precursor and resin composition
CN116874703B (en) * 2023-09-08 2023-12-08 西南石油大学 Photoresponse benzoxazine material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201546119A (en) * 2014-03-17 2015-12-16 Asahi Kasei E Materials Corp Photosensitive resin composition, cured-relief-pattern production method, and semiconductor device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995620B1 (en) 2006-04-28 2010-11-22 아사히 가세이 가부시키가이샤 Photosensitive resin composition and photosensitive film
WO2009145158A1 (en) * 2008-05-29 2009-12-03 旭化成イーマテリアルズ株式会社 Photosensitive resin composition, process for producing cured relief pattern, and semiconductor device
JP5571990B2 (en) * 2009-06-04 2014-08-13 旭化成イーマテリアルズ株式会社 Negative photosensitive resin composition, cured relief pattern forming / manufacturing method, and semiconductor device
TWI413860B (en) * 2010-02-16 2013-11-01 Asahi Kasei E Materials Corp A negative photosensitive resin composition, a method for manufacturing a hardened embossed pattern, and a semiconductor device
TWI430024B (en) * 2010-08-05 2014-03-11 Asahi Kasei E Materials Corp A photosensitive resin composition, a method for manufacturing a hardened bump pattern, and a semiconductor device
TWI481657B (en) 2010-09-15 2015-04-21 Asahi Kasei E Materials Corp A phenol resin composition and a hardened embossed pattern, and a method for manufacturing the semiconductor
JP6108869B2 (en) * 2013-02-22 2017-04-05 旭化成株式会社 Photosensitive resin composition, method for producing cured relief pattern, semiconductor device and display device
JP6116954B2 (en) * 2013-03-22 2017-04-19 旭化成株式会社 Photosensitive resin composition and method for producing cured relief pattern
JP2015147907A (en) * 2014-02-07 2015-08-20 日立化成デュポンマイクロシステムズ株式会社 Resin composition, method of producing cured film using resin composition and electronic component

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201546119A (en) * 2014-03-17 2015-12-16 Asahi Kasei E Materials Corp Photosensitive resin composition, cured-relief-pattern production method, and semiconductor device

Also Published As

Publication number Publication date
TW201740199A (en) 2017-11-16
TW202305039A (en) 2023-02-01
JP7293299B2 (en) 2023-06-19
TWI662365B (en) 2019-06-11
JP6947519B2 (en) 2021-10-13
TW201936722A (en) 2019-09-16
JP2022008428A (en) 2022-01-13
TW201825557A (en) 2018-07-16
JP2017194677A (en) 2017-10-26
JP2023111975A (en) 2023-08-10
TWI666233B (en) 2019-07-21

Similar Documents

Publication Publication Date Title
TWI782214B (en) Photosensitive resin composition, method for producing hardened relief pattern, and semiconductor device
JP6878515B2 (en) Photosensitive resin composition, method for manufacturing cured relief pattern, and semiconductor device
JP6923334B2 (en) Method for manufacturing photosensitive resin composition and cured relief pattern
JP2024043132A (en) Photosensitive resin composition and method for producing cured relief pattern