WO2024095573A1 - Polyimide precursor and resin composition - Google Patents

Polyimide precursor and resin composition Download PDF

Info

Publication number
WO2024095573A1
WO2024095573A1 PCT/JP2023/030381 JP2023030381W WO2024095573A1 WO 2024095573 A1 WO2024095573 A1 WO 2024095573A1 JP 2023030381 W JP2023030381 W JP 2023030381W WO 2024095573 A1 WO2024095573 A1 WO 2024095573A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
structural unit
polyimide precursor
tetracarboxylic dianhydride
aromatic ring
Prior art date
Application number
PCT/JP2023/030381
Other languages
French (fr)
Japanese (ja)
Inventor
真吾 田原
修学 串田
Original Assignee
Hdマイクロシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hdマイクロシステムズ株式会社 filed Critical Hdマイクロシステムズ株式会社
Publication of WO2024095573A1 publication Critical patent/WO2024095573A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors

Definitions

  • This disclosure relates to a polyimide precursor and a resin composition.
  • Such a protective film (cured film) using a polyimide resin can be obtained by applying a polyimide precursor or a resin composition containing a polyimide precursor onto a substrate, drying the applied resin film, and then heating the resulting film to cure it.
  • the present disclosure has been made in consideration of the above-mentioned conventional circumstances, and aims to provide a polyimide precursor that can reduce stress when cured, and a resin composition containing the same.
  • a polyimide precursor which is at least one selected from the group consisting of polyamic acids and polyamic acid esters, the polyimide precursor contains a structural unit (A) derived from a tetracarboxylic dianhydride and a structural unit (B) derived from a diamine compound, and contains a compound having a nonvolatile crosslinking group at a main chain terminal;
  • the structural unit (A) is a polyimide precursor that includes a structural unit (A1-1) in which the two acid anhydride groups contained in the tetracarboxylic dianhydride are not bonded to an aromatic ring.
  • a polyimide precursor which is at least one selected from the group consisting of polyamic acids and polyamic acid esters, the polyimide precursor contains a structural unit (A) derived from a tetracarboxylic dianhydride and a structural unit (B) derived from a diamine compound, and contains a compound having a nonvolatile crosslinking group at a main chain terminal;
  • the structural unit (A) is a polyimide precursor that contains a structural unit (A1-2) that does not contain an aromatic ring or in which the ratio of the number of aromatic rings contained in the tetracarboxylic dianhydride to the molecular weight of the tetracarboxylic dianhydride is less than 0.0068.
  • ⁇ 3> The polyimide precursor according to ⁇ 1> or ⁇ 2>, wherein at least a part of the structural unit (A) has an unsaturated double bond.
  • ⁇ 4> The polyimide precursor according to ⁇ 1> or ⁇ 3>, wherein a content of the structural unit (A1-1) in the structural unit (A) is 25 mol % or more relative to the structural unit (A).
  • ⁇ 5> The polyimide precursor according to ⁇ 2> or ⁇ 3>, wherein a content of the structural unit (A) of the structural unit (A1-2) is 25 mol % or more relative to the structural unit (A).
  • ⁇ 6> The polyimide precursor according to any one of ⁇ 1> to ⁇ 5>, wherein the tetracarboxylic dianhydride includes at least one of compounds represented by the following chemical formulas (A-1) to (A-6):
  • X represents a tetravalent organic group
  • Y represents a divalent organic group.
  • R 6 and R 7 are each independently a hydrogen atom, a group represented by the following general formula (7), or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and at least one of R 6 and R 7 is a group represented by the following general formula (7).
  • the tetravalent organic group represented by X does not contain an aromatic ring, or if it contains an aromatic ring, the aromatic ring is not bonded to four carbonyl groups.
  • R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and q represents an integer of 1 to 10.
  • the nonvolatile crosslinking group is derived from at least one compound selected from the group consisting of maleic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, itaconic anhydride, methacrylic anhydride, 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl acrylate, 4-ethynylphthalic anhydride, 4-vinylphthalic anhydride, and di-t-butyl dicarbonate.
  • a resin composition comprising the polyimide precursor according to any one of ⁇ 1> to ⁇ 9>.
  • the present disclosure provides a polyimide precursor that can reduce stress when cured, and a resin composition containing the polyimide precursor.
  • FIGS. 1A to 1C are diagrams illustrating a manufacturing process for an electronic component according to an embodiment of the present disclosure.
  • the numerical range indicated using “to” includes the numerical values before and after “to” as the minimum and maximum values, respectively.
  • the upper or lower limit value described in one numerical range may be replaced with the upper or lower limit value of another numerical range described in stages.
  • the upper or lower limit value of the numerical range may be replaced with a value shown in the examples.
  • each component may contain multiple types of corresponding substances. When multiple types of substances corresponding to each component are present in the composition, the content or amount of each component means the total content or amount of the multiple substances present in the composition, unless otherwise specified.
  • the terms “layer” and “film” include cases where the layer or film is formed over the entire area when the area in which the layer or film is present is observed, as well as cases where the layer or film is formed over only a portion of the area.
  • the constituent unit (A) derived from a tetracarboxylic dianhydride may be any constituent unit having a structure formed by ring-opening of a tetracarboxylic dianhydride, and the raw material of the polyimide precursor of the present disclosure is not limited to a tetracarboxylic dianhydride and may be a tetracarboxylic acid or a tetracarboxylic acid derivative.
  • the constituent unit (B) derived from a diamine compound may be any constituent unit having a structure in which one hydrogen atom has been removed from each of two amino groups, and the raw material for the polyimide precursor of the present disclosure is not limited to a diamine compound and may be a derivative of a diamine compound.
  • the polyimide precursor of the present disclosure is at least one type selected from the group consisting of polyamic acids and polyamic acid esters.
  • the polyimide precursor contains a structural unit (A) derived from a tetracarboxylic dianhydride and a structural unit (B) derived from a diamine compound, and contains a compound having a nonvolatile crosslinking group at a main chain terminal, and satisfies the following (1) or (2): (1)
  • the structural unit (A) contains a structural unit (A1-1) in which the two acid anhydride groups contained in the tetracarboxylic dianhydride are not bonded to an aromatic ring.
  • the structural unit (A) contains a structural unit (A1-2) that does not contain an aromatic ring, or in which the ratio of the number of aromatic rings contained in the tetracarboxylic dianhydride to the molecular weight of the tetracarboxylic dianhydride is less than 0.0068.
  • the polyimide precursor of the present disclosure is at least one selected from the group consisting of polyamic acid and polyamic acid ester, and includes a compound having a nonvolatile crosslinking group at the end of the main chain. This makes it possible to reduce stress when the polyimide precursor and a resin composition containing the polyimide precursor are cured.
  • the compound contained in the polyimide precursor may be one or more polyamic acids, one or more polyamic acid esters, or one or more polyamic acids and one or more polyamic acid esters.
  • the polyimide precursor of the present disclosure tends to have excellent light transmittance. Therefore, by using a resin composition containing the polyimide precursor, it is possible to form an excellent pattern shape.
  • the reason for this is not clear, but is presumed to be as follows. First, when the light transmittance of the polyimide precursor and the resin composition containing the polyimide precursor is insufficient, when the photosensitive film containing the polyimide precursor applied to the substrate or the like is subjected to pattern exposure, the bottom of the photosensitive film is difficult to be irradiated with light. Therefore, it is difficult to obtain a patterned cured film having a highly accurate pattern shape corresponding to the pattern exposure.
  • the polyimide precursor of the present disclosure has a low content of aromatic rings by having the structural unit (A1-1) or the structural unit (A1-2).
  • the light transmittance of the polyimide precursor and the resin composition containing the same is improved.
  • light transmittance when a photosensitive film containing a polyimide precursor applied to a substrate or the like is subjected to pattern exposure, light is irradiated to the bottom of the photosensitive film.
  • the structural unit (A1-1) may contain an aromatic ring that is not bonded to an acid anhydride group, as long as the two acid anhydride groups are not bonded to an aromatic ring. Even if the structural unit (A1-1) contains an aromatic ring, the aromatic ring is not bonded to the two acid anhydride groups, and another functional group, other structure, etc. is bonded to the two acid anhydride groups. This is presumably to reduce the proportion of aromatic rings in the structural unit (A1-1), improving the light transmittance of the polyimide precursor and the resin composition containing it.
  • the polyimide precursor of the present disclosure may be used in materials that require photosensitivity (e.g., negative or positive photosensitive resin compositions, preferably negative photosensitive resin compositions), or may be used in materials that do not require photosensitivity.
  • materials that require photosensitivity e.g., negative or positive photosensitive resin compositions, preferably negative photosensitive resin compositions
  • the polyimide precursor and a resin composition containing the same may be used in materials that require photosensitivity.
  • the polyimide precursor of the present disclosure is at least one selected from the group consisting of polyamic acids and polyamic acid esters.
  • the polyamic acid ester is not particularly limited as long as it is a compound having an ester bond in which at least a portion of the hydrogen atoms of the carboxyl groups in the polyamic acid are substituted with a monovalent organic group.
  • the polyamic acid ester may contain a compound in which at least a portion of the structural unit (A) has an unsaturated double bond.
  • the structural unit (A) constituting the polyimide precursor has the following structural unit (A1-1) or structural unit (A1-2).
  • Structural unit (A1-1) A structural unit in which the two acid anhydride groups contained in the tetracarboxylic dianhydride are not bonded to an aromatic ring.
  • Structural unit (A1-2) A structural unit in which the aromatic ring is not contained, or the ratio of the number of aromatic rings contained in the tetracarboxylic dianhydride to the molecular weight of the tetracarboxylic dianhydride is less than 0.0068.
  • the ratio of the number of aromatic rings contained in the tetracarboxylic dianhydride to the molecular weight of the tetracarboxylic dianhydride is also referred to as the "aromatic ring content 1."
  • the two acid anhydride groups contained in the tetracarboxylic dianhydride may be linked by a single bond, or may be linked by a linking group, a composite linking group combining two or more types of linking groups, etc.
  • linking group examples include an alkylene group, a halogenated alkylene group, a phenylene group (however, not bonded to an acid anhydride group), a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a silylene bond (-Si(R A ) 2 -; each R A independently represents a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O-(Si(R B ) 2 -O-) n ; each independently represents a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.
  • the structural units (A1-1) and (A1-2) preferably contain an alicyclic structure.
  • the structural units may contain one alicyclic structure or two or more alicyclic structures.
  • two alicyclic structures may be bonded at two positions by at least one of a single bond and a linking group to form a five- or six-membered ring containing a linking group between the two alicyclic structures.
  • the alicyclic ring may have a substituent or may be unsubstituted. Examples of the substituent include an alkyl group, a fluorine atom, a halogenated alkyl group, a hydroxyl group, and an amino group.
  • Alicyclic structures include the tricyclodecane skeleton, cyclohexane skeleton, cyclopentane skeleton, cyclobutene skeleton, 1,3-adamantane skeleton, hydrogenated bisphenol A skeleton, hydrogenated bisphenol F skeleton, hydrogenated bisphenol S skeleton, and isobornyl skeleton.
  • the aromatic ring content 1 may be 0.0060 or less, 0.0050 or less, 0.0040 or less, or may be 0, meaning that no aromatic rings are contained.
  • the structural unit (A1-1) may or may not contain an aromatic ring that is not bonded to the two acid anhydride groups contained in the tetracarboxylic dianhydride. It is preferable that the structural unit (A1-1) does not contain an aromatic ring that is not bonded to the two acid anhydride groups.
  • each aromatic ring may have a substituent or may be unsubstituted.
  • substituent on the aromatic ring include an alkyl group, a fluorine atom, a halogenated alkyl group, a hydroxyl group, and an amino group.
  • the number of aromatic rings within the structural unit (A1-1) is preferably 1 to 4, more preferably 1 to 3, even more preferably 1 or 2, and particularly preferably 1.
  • the aromatic rings may be linked by a single bond, or may be linked by a linking group, a composite linking group combining two or more types of linking groups, or the like.
  • linking group examples include an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a silylene bond (-Si(R A ) 2 -;
  • R A each independently represents a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O-(Si(R B ) 2 -O-) n ;
  • R B each independently represents a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more).
  • two benzene rings may be linked at two points by at least one of a single bond and a linking group to form a five- or six-membered ring containing a linking group between the two aromatic rings.
  • the tetracarboxylic dianhydride preferably contains at least one of the compounds represented by the following chemical formulas (A-1) to (A-6).
  • the compounds represented by the following chemical formulas (A-1) to (A-6) are preferred examples of the tetracarboxylic dianhydride constituting the structural unit (A1-1) and the tetracarboxylic dianhydride constituting the structural unit (A1-2).
  • the compound represented by the chemical formula (A-1) and the compound represented by the chemical formula (A-5) are tetracarboxylic dianhydrides containing an aromatic ring that is not bonded to two acid anhydride groups.
  • the compounds represented by the chemical formulas (A-2) to (A-4) and the compound represented by the chemical formula (A-6) are tetracarboxylic dianhydrides containing no aromatic ring.
  • the tetracarboxylic dianhydride preferably contains at least one of the compounds represented by the chemical formula (A-2), the compounds represented by the chemical formula (A-4), and the compounds represented by the chemical formula (A-6).
  • the structural unit (A) may have a structural unit (A2) in which two acid anhydride groups contained in the tetracarboxylic dianhydride are bonded to an aromatic ring.
  • the inclusion of the structural unit (A2) improves the durability of the cured product. Even when the structural unit (A) contains the structural unit (A2), the proportion of aromatic rings in the entire structural unit (A) is low because the structural unit (A1-1) or (A1-2) is included, and as a result, the polyimide precursor and the resin composition containing it tend to have excellent light transmittance.
  • the preferred forms of the aromatic ring contained in the structural unit (A2) are the same as the preferred forms of the aromatic ring that can be contained in the structural unit (A1-1).
  • the number of aromatic rings in the structural unit (A2) is preferably 1 to 4, more preferably 1 to 3, even more preferably 1 or 2, and particularly preferably 1.
  • the aromatic ring content 1 may be 0.0045 or more, 0.0050 or more, or 0.0060 or more.
  • the upper limit may be, for example, 0.0100, 0.0080, or 0.0070.
  • the structural unit (A2) may contain groups represented by the following general formulas (A) to (E):
  • a and B each independently represent a single bond, a methylene group, a halogenated methylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-) or a silylene bond (-Si(R A ) 2 -; each of R A independently represents a hydrogen atom, an alkyl group or a phenyl group), and both A and B are not single bonds.
  • C represents a single bond, an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a silylene bond (-Si(R A ) 2 -;
  • R A each independently represents a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O-(Si(R B ) 2 -O-) n ;
  • R B each independently represents a hydrogen atom, an alkyl group, or a phenyl group, and n is an integer of 1 or 2 or more), or a divalent group comprising at least two of these in combination.
  • C may also have a structure represented by formula (C1) below.
  • the alkylene group represented by C in general formula (E) is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 5 carbon atoms, and even more preferably an alkylene group having 1 or 2 carbon atoms.
  • alkylene group represented by C in the general formula (E) include linear alkylene groups such as a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group; a methylmethylene group, a methylethylene group, an ethylmethylene group, a dimethylmethylene group, a 1,1-dimethylethylene group, a 1-methyltrimethylene group, a 2-methyltrimethylene group, an ethylethylene group, a 1-methyltetramethylene group, a 2-methyltetramethylene group, a 1-ethyltrimethylene group, a 2-ethyltrimethylene group, a 1,1-dimethyl branched alkylene groups such as ethyltrimethylene group, 1,2-dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene
  • the halogenated alkylene group represented by C in general formula (E) is preferably a halogenated alkylene group having 1 to 10 carbon atoms, more preferably a halogenated alkylene group having 1 to 5 carbon atoms, and even more preferably a halogenated alkylene group having 1 to 3 carbon atoms.
  • Specific examples of the halogenated alkylene group represented by C in the general formula (E) include alkylene groups in which at least one hydrogen atom contained in the alkylene group represented by C in the above-mentioned general formula (E) is substituted with a halogen atom such as a fluorine atom or a chlorine atom.
  • a fluoromethylene group, a difluoromethylene group, a hexafluorodimethylmethylene group, etc. are preferred.
  • the alkyl group represented by R A or R B contained in the silylene bond or siloxane bond is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and even more preferably an alkyl group having 1 or 2 carbon atoms.
  • Specific examples of the alkyl group represented by R A or R B include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, and the like.
  • the combination of A and B in formula (D) is not particularly limited, and a combination of a methylene group and an ether bond, a combination of a methylene group and a sulfide bond, a combination of a carbonyl group and an ether bond, and the like are preferred.
  • C is preferably a single bond, an ether bond, a carbonyl group, or the like.
  • the tetracarboxylic dianhydride of the structural unit (A2) may be pyromellitic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3',4,4'-biphenyl tetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 1,2,5,6-naphthalene tetracarboxylic dianhydride, 2,3,5,6-pyridine tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 3,4,9,10-perylene tetracarboxylic dianhydride, m-terphenyl-3,3',4,4'-tetracarboxylic dianhydride, p-terphenyl-3,3',4,4'-tetracarboxylic dianhydride, 1,1,1,
  • the content of the structural unit (A1-1) in the structural unit (A) and the content of the structural unit (A1-2) in the structural unit (A) are each independently preferably 25 mol% or more, more preferably 30 mol% or more, and even more preferably 40 mol% or more.
  • the polyimide precursor contains a structural unit (B) derived from a diamine compound.
  • a structural unit (B) derived from a diamine compound.
  • the structural unit (B) contains an aromatic ring.
  • the structural unit (B) preferably contains a structural unit represented by the formula -NH-Y-NH-, where Y is a divalent organic group.
  • the divalent organic group represented by Y preferably has 6 to 25 carbon atoms, more preferably 6 to 14 carbon atoms, and even more preferably 12 to 14 carbon atoms.
  • the divalent organic group represented by Y may be a divalent aliphatic group or a divalent aromatic group. From the viewpoint of heat resistance and high elasticity, the divalent organic group represented by Y is preferably a divalent aromatic group.
  • divalent aromatic group represented by Y examples include groups represented by the following general formula (F) and the following general formula (G).
  • each R independently represents an alkyl group, an alkoxy group, a halogenated alkyl group, or a phenyl group, and each n independently represents an integer of 0 to 4.
  • D represents a single bond, or an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a silylene bond (-Si(R A ) 2 -;
  • R A each independently represents a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O-(Si(R B ) 2 -O-) n ;
  • R B each independently represents a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more), or a divalent group combining at least
  • the alkyl group represented by R in general formula (F) or general formula (G) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, and further preferably an alkyl group having 1 or 2 carbon atoms.
  • Specific examples of the alkyl group represented by R in general formula (F) or general formula (G) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
  • the alkoxy group represented by R in the general formula (F) or the general formula (G) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and further preferably an alkoxy group having 1 or 2 carbon atoms.
  • Specific examples of the alkoxy group represented by R in the general formula (F) or (G) include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, an s-butoxy group, and a t-butoxy group.
  • the halogenated alkyl group represented by R in the general formula (F) or (G) is preferably a halogenated alkyl group having 1 to 5 carbon atoms, more preferably a halogenated alkyl group having 1 to 3 carbon atoms, and further preferably a halogenated alkyl group having 1 or 2 carbon atoms.
  • Specific examples of the halogenated alkyl group represented by R in general formula (F) or general formula (G) include alkyl groups in which at least one hydrogen atom contained in the alkyl group represented by R in general formula (F) or general formula (G) is substituted with a halogen atom such as a fluorine atom or a chlorine atom.
  • a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, etc. are preferred.
  • n is preferably 0 to 2, more preferably 0 or 1, and even more preferably 0.
  • divalent aliphatic group represented by Y examples include linear or branched alkylene groups, cycloalkylene groups, divalent groups having a polyalkylene oxide structure, and divalent groups having a polysiloxane structure.
  • the linear or branched alkylene group represented by Y is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 15 carbon atoms, and even more preferably an alkylene group having 1 to 10 carbon atoms.
  • alkylene group represented by Y examples include a tetramethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, a decamethylene group, an undecamethylene group, a dodecamethylene group, a 2-methylpentamethylene group, a 2-methylhexamethylene group, a 2-methylheptamethylene group, a 2-methyloctamethylene group, a 2-methylnonamethylene group, and a 2-methyldecamethylene group.
  • the cycloalkylene group represented by Y is preferably a cycloalkylene group having 3 to 10 carbon atoms, and more preferably a cycloalkylene group having 3 to 6 carbon atoms.
  • Specific examples of the cycloalkylene group represented by Y include a cyclopropylene group, a cyclohexylene group, and the like.
  • the unit structure contained in the divalent group having a polyalkylene oxide structure represented by Y is preferably an alkylene oxide structure having 1 to 10 carbon atoms, more preferably an alkylene oxide structure having 1 to 8 carbon atoms, and even more preferably an alkylene oxide structure having 1 to 4 carbon atoms.
  • the polyalkylene oxide structure is preferably a polyethylene oxide structure or a polypropylene oxide structure.
  • the alkylene group in the alkylene oxide structure may be linear or branched.
  • the unit structure in the polyalkylene oxide structure may be of one type or two or more types.
  • Examples of the divalent group having a polysiloxane structure represented by Y include divalent groups having a polysiloxane structure in which a silicon atom in the polysiloxane structure is bonded to a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 18 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms bonded to a silicon atom in the polysiloxane structure include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-octyl group, a 2-ethylhexyl group, an n-dodecyl group, etc.
  • a methyl group is preferable.
  • the aryl group having 6 to 18 carbon atoms bonded to the silicon atom in the polysiloxane structure may be unsubstituted or substituted with a substituent.
  • substituent when the aryl group has a substituent include a halogen atom, an alkoxy group, and a hydroxy group.
  • aryl group having 6 to 18 carbon atoms include a phenyl group, a naphthyl group, and a benzyl group. Of these, a phenyl group is preferred.
  • the alkyl group having 1 to 20 carbon atoms or the aryl group having 6 to 18 carbon atoms in the polysiloxane structure may be of one type or of two or more types.
  • the silicon atom constituting the divalent group having a polysiloxane structure represented by Y may be bonded to the NH group in general formula (6) via an alkylene group such as a methylene group or an ethylene group, or an arylene group such as a phenylene group.
  • diamine compound of the structural unit (B) examples include 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 1,5-diaminonaphthalene, benzidine, 2,2'-bis(trifluoromethyl)benzidine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,4
  • the polyimide precursor may contain, for example, a compound having a structural unit represented by the following general formula (6):
  • X represents a tetravalent organic group
  • Y represents a divalent organic group
  • R 6 and R 7 are each independently a hydrogen atom, a group represented by the following general formula (7), or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and the tetravalent organic group represented by X does not contain an aromatic ring, or if it contains an aromatic ring, the aromatic ring is not bonded to four carbonyl groups.
  • the compound having a constitutional unit represented by general formula (6) is a polyamic acid ester having an unsaturated double bond
  • it is preferable that at least one of R 6 and R 7 is a group represented by the following general formula (7).
  • R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms; q represents an integer of 1 to 10.
  • the number of carbon atoms in the aliphatic hydrocarbon group represented by R6 and R7 in general formula (6) is 1 to 4, and preferably 1 or 2.
  • Specific examples of the aliphatic hydrocarbon group represented by R6 and R7 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and the like.
  • R 6 and R 7 may be a group represented by the general formula (7), or both of R 6 and R 7 may be a group represented by the general formula (7).
  • the carbon number of the aliphatic hydrocarbon group represented by R 8 to R 10 in general formula (7) is 1 to 3, and preferably 1 or 2.
  • Specific examples of the aliphatic hydrocarbon group represented by R 8 to R 10 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, etc., and a methyl group is preferred.
  • R 8 to R 10 in the general formula (7) a combination in which R 8 and R 9 are hydrogen atoms and R 10 is a hydrogen atom or a methyl group is preferred.
  • q is preferably an integer from 1 to 10, more preferably an integer from 2 to 5, and even more preferably 2 or 3.
  • Y has the same meaning as Y explained in relation to the structural unit (B).
  • X in the general formula (6) may be any of the linking groups and composite linking groups described in relation to the structural units (A1-1) and (A1-2).
  • the tetravalent organic group represented by X preferably has 4 to 25 carbon atoms, more preferably 4 to 13 carbon atoms, and even more preferably 6 to 12 carbon atoms.
  • the tetravalent organic group represented by X may contain an aromatic ring. If X contains an aromatic ring, the aromatic ring is not bonded to four carbonyl groups.
  • X corresponds to a residue derived from a tetracarboxylic dianhydride
  • specific examples of the tetracarboxylic dianhydride that is the source of the residue include the tetracarboxylic dianhydrides exemplified for the structural units (A1-1) and (A1-2).
  • the compound contained in the polyimide precursor may further have a structural unit represented by the following general formula (6-1) in addition to the structural unit represented by the general formula (6).
  • X 1 represents a tetravalent organic group
  • Y represents a divalent organic group
  • R 6 and R 7 are each independently a hydrogen atom, a group represented by the following general formula (7), or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and at least one of R 6 and R 7 is a group represented by the following general formula (7), and the tetravalent organic group represented by X 1 contains an aromatic ring.
  • the four carbonyl groups in the general formula (6-1) are bonded to the aromatic ring contained in X 1 , and it is more preferable that the two carbonyl groups in the general formula (6-1) are bonded to one aromatic ring (first aromatic ring) contained in X 1 , and the remaining two carbonyl groups are bonded to another aromatic ring (second aromatic ring) contained in X 1 .
  • Y, R 6 and R 7 in formula (6-1) have the same meanings as Y, R 6 and R 7 in formula (6), respectively.
  • X1 in the general formula (6-1) include the general formulae (A) to (E) described in relation to the structural unit (A2).
  • X corresponds to a residue derived from a tetracarboxylic dianhydride
  • specific examples of the tetracarboxylic dianhydride that is the source of the residue include the tetracarboxylic dianhydrides described in relation to the structural unit (A2).
  • the polyimide precursor may have other structural units in addition to general formula (6) and general formula (6-1).
  • the polyimide precursor may contain a structural unit represented by general formula (6) (hereinafter also referred to as structural unit 1) and a structural unit represented by general formula (6-1) (hereinafter also referred to as structural unit 2). Furthermore, in the polyimide precursor, the ratio of structural unit 1 to the total of structural units 1 and 2 is preferably 25 mol% or more, more preferably 30 mol% or more, and even more preferably 40 mol% or more. There is no particular upper limit to this ratio, and the upper limit is not particularly limited, and it may be 100 mol%, 80 mol% or less, or 60 mol% or less.
  • the polyimide precursor includes a compound that contains structural unit (A) and structural unit (B) and has a nonvolatile crosslinking group at the end of the main chain.
  • the non-volatile crosslinking group is a functional group capable of crosslinking reaction that is located at the end of the main chain of the compound contained in the polyimide precursor and does not volatilize due to heating, drying, etc.
  • the non-volatile crosslinking group may be a functional group that contains an unsaturated double bond.
  • Examples of compounds used when forming a nonvolatile crosslinking group at the main chain end of a compound contained in a polyimide precursor include maleic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, itaconic anhydride, methacrylic anhydride, 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl acrylate, 4-ethynylphthalic anhydride, 4-vinylphthalic anhydride, di-t-butyl dicarbonate, etc.
  • non-volatile crosslinking group-forming compounds react with amino groups derived from a diamine compound to obtain a compound having a nonvolatile crosslinking group at the main chain end.
  • the non-volatile crosslinking group-forming compound from the viewpoint of reducing stress in the cured product when the polyimide precursor or a resin composition containing the polyimide precursor is cured at high temperature (e.g., 350°C), maleic anhydride and 5-norbornene-2,3-dicarboxylic acid anhydride are preferred, and from the viewpoint of reducing stress in the cured product when the cured product is produced using a photopolymerization initiator in particular, maleic anhydride is more preferred.
  • the non-volatile crosslinking group-forming compounds may be used alone or in combination of two or more.
  • the polyimide precursor may be synthesized using a tetracarboxylic dianhydride, a diamine compound, and a non-volatile cross-linking group-forming compound, or may be synthesized using a tetracarboxylic dianhydride that is at least one of the compounds represented by chemical formulas (A-1) to (A-6), a tetracarboxylic dianhydride of the aforementioned structural unit (A2), a diamine compound, and a non-volatile cross-linking group-forming compound.
  • the polyimide precursor may be synthesized using a tetracarboxylic acid instead of a tetracarboxylic dianhydride.
  • the polyamic acid can be obtained, for example, by reacting a tetracarboxylic dianhydride, a diamine compound, and a non-volatile cross-linking group-forming compound in an organic solvent.
  • the polyamic acid ester can be obtained, for example, by the following method (1) or (2).
  • a tetracarboxylic dianhydride is reacted with a compound represented by R—OH in an organic solvent to form a diester derivative, and then the diester derivative is reacted with a diamine compound and a non-volatile crosslinking group-forming compound.
  • R in the compound represented by R-OH represents a group represented by general formula (7) or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and specific and preferred examples are the same as those of R6 and R7 in general formula (6).
  • a polyamic acid ester can be obtained by reacting a compound represented by R-OH with a tetracarboxylic dianhydride to form a diester derivative, then reacting the diester with a chlorinating agent such as thionyl chloride to convert it to an acid chloride, and then reacting a diamine compound, the acid chloride, and a non-volatile crosslinking group-forming compound.
  • a chlorinating agent such as thionyl chloride
  • the polyamic acid ester can be obtained by reacting a compound represented by R-OH with a tetracarboxylic dianhydride to form a diester derivative, and then reacting the diamine compound, the diester derivative, and a non-volatile crosslinking group-forming compound in the presence of a carbodiimide compound.
  • the polyamic acid ester can be obtained by reacting a tetracarboxylic dianhydride with a diamine compound to form a polyamic acid, isoimidizing the polyamic acid in the presence of trifluoroacetic anhydride, and then reacting the compound represented by R-OH and a non-volatile crosslinking group forming compound.
  • the compound represented by R-OH may be reacted in advance with a part of the tetracarboxylic dianhydride, and the partially esterified tetracarboxylic dianhydride may be reacted with the diamine compound to form a polyamic acid.
  • Compounds represented by R-OH that are used in the synthesis of polyamic acid esters include methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, etc.
  • the molar ratio of the amount of tetracarboxylic dianhydride used to the amount of non-volatile cross-linking group-forming compound used may be 0.7:0.3 to 0.95:0.05, 0.75:0.25 to 0.95:0.05, or 0.8:0.2 to 0.9:0.1.
  • the molar ratio of the total amount of the tetracarboxylic dianhydride and the non-volatile cross-linking group-forming compound used to the amount of the diamine compound used (tetracarboxylic dianhydride and the non-volatile cross-linking group-forming compound:diamine compound) may be 1.0:0.75 to 1.0:1.0, 1.0:0.8 to 1.0:0.95, or 1.0:0.85 to 1:0.95.
  • the tetracarboxylic dianhydride, diamine compound, non-volatile crosslinking group-forming compound, and compound represented by R-OH may each be used alone or in combination of two or more.
  • the molecular weight of the polyimide precursor is not particularly limited, and may be, for example, 10,000 to 200,000, 20,000 to 150,000, or 30,000 to 100,000 in weight average molecular weight.
  • the weight average molecular weight can be measured, for example, by gel permeation chromatography, and can be calculated using a standard polystyrene calibration curve.
  • the weight average molecular weight of the polyimide precursor may be 10,000 or more, 20,000 or more, 30,000 or more, or 40,000 or more.
  • the weight average molecular weight of the polyimide precursor may be 100,000 or less, 60,000 or less, 50,000 or less, or 30,000 or less, from the viewpoints of developability and pattern resolution in a lithography process.
  • the resin composition of the present disclosure includes the polyimide precursor of the present disclosure.
  • the resin composition may include other components other than the polyimide precursor of the present disclosure.
  • the other components include resin components other than the polyimide precursor of the present disclosure, polymerizable monomers, photopolymerization initiators, thermal polymerization initiators, solvents, sensitizers, stabilizers, coupling agents, surfactants, leveling agents, and rust inhibitors.
  • Polymerizable monomers include polymerizable monomers having a (meth)acrylic group, styrene, divinylbenzene, 4-vinyltoluene, 4-vinylpyridine, N-vinylpyrrolidone, methylenebisacrylamide, N,N-dimethylacrylamide, and N-methylolacrylamide.
  • photopolymerization initiator examples include benzophenone derivatives, acetophenone derivatives, thioxanthone derivatives, benzyl derivatives, benzoin derivatives, oxime derivatives, N-arylglycines; peroxides; aromatic biimidazoles; acylphosphine oxide derivatives, Irgacure OXE03 (manufactured by BASF Corporation), and Irgacure OXE04 (manufactured by BASF Corporation).
  • oxime derivatives are preferred from the viewpoint of not containing a metal element, having high reactivity and high sensitivity.
  • examples of the oxime derivatives that can be used include 1-phenyl-1,2-butanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-benzoyl)oxime, 1,3-diphenylpropanetrione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-3-ethoxypropanetrione-2-(o-benzoyl)oxime, and 1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(o-benzoyloxime) (e.g., Irgacure OXE01).
  • Solvents include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, benzyl acetate, n-butyl acetate, ethoxyethyl propionate, methyl 3-methoxypropionate, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphorylamide, tetramethylene sulfone, cyclohexanone, cyclopentanone, diethyl ketone, diisobutyl ketone, methyl amyl ketone, N-dimethylmorpholine, 3-methoxy-N,N-dimethylpropanamide, etc., and there are no particular limitations as long as they can sufficiently dissolve each component contained in the resin composition.
  • the resin composition of the present disclosure may be a photosensitive resin composition, or may be a thermosetting resin composition that is cured by heating.
  • the resin composition of the present disclosure may be, for example, a composition that can provide a cured product by irradiation with light, heating, etc.
  • a patterned cured product may be formed using the photosensitive resin composition.
  • the cured product obtained from the resin composition of the present disclosure can be used as an interlayer insulating film, a cover coat layer, or a surface protective film. Furthermore, the cured product can be used as a passivation film, a buffer coat film, etc. Using one or more selected from the group consisting of the above passivation films, buffer coat films, interlayer insulating films, cover coat layers, and surface protection films, etc., highly reliable electronic components such as semiconductor devices, multilayer wiring boards, various electronic devices, and stacked devices (multi-die fan-out wafer level packages, etc.) can be manufactured.
  • the electronic component of the present disclosure includes a cured product obtained by curing the resin composition of the present disclosure described above.
  • FIG. 1 is a manufacturing process diagram of an electronic component having a multilayer wiring structure according to an embodiment of the present disclosure.
  • a semiconductor substrate 1 such as a Si substrate having circuit elements is covered with a protective film 2 such as a silicon oxide film except for a predetermined portion of the circuit elements, and a first conductor layer 3 is formed on the exposed circuit elements.
  • a first conductor layer 3 is formed on the exposed circuit elements.
  • an interlayer insulating film 4 is formed on the semiconductor substrate 1.
  • the interlayer insulating film 4 from which the window 6A is exposed is selectively etched to provide a window 6B.
  • the photosensitive resin layer 5 is removed using an etching solution that corrodes the photosensitive resin layer 5 without corroding the first conductor layer 3 exposed through the windows 6B.
  • a second conductor layer 7 is formed by using a known photolithography technique, and is electrically connected to the first conductor layer 3 .
  • the above steps can be repeated to form each layer.
  • the resin composition of the present disclosure is used to open windows 6C by pattern exposure to form a surface protective film 8.
  • the surface protective film 8 protects the second conductor layer 7 from external stress, ⁇ -rays, and the like, and the obtained electronic component has excellent reliability.
  • the interlayer insulating film 4 can also be formed using the resin composition of the present disclosure.
  • polyamic acid solution 1 which contains a structural unit (A) derived from sBPDA and CpODA and a structural unit (B) derived from PPD, and contains polyamic acid 1 having a nonvolatile crosslinking group derived from MA at the main chain end.
  • polyamic acid 1 solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain polyamic acid 1.
  • the weight average molecular weight of polyamic acid 1 calculated in terms of standard polystyrene was 15,900.
  • GPC gel permeation chromatography
  • the viscosity of the polyamic acid 1 solution was measured at 25°C using an E-type viscometer. The results are shown in Table 1.
  • polyamic acid solution 8 which contains a structural unit (A) derived from sBPDA and CpODA and a structural unit (B) derived from PPD, and which contains a polyamic acid 8 having a nonvolatile crosslinking group derived from NA at the main chain end.
  • Polyamic acid 8 was obtained from polyamic acid solution 8 in the same manner as above.
  • the weight average molecular weight of polyamic acid 8 was calculated in terms of standard polystyrene, and the viscosity of polyamic acid solution 8 was determined. The results are shown in Table 1.
  • Stress measurement 1 The aforementioned polyamic acid solutions 1 to 14 were applied onto a 6-inch silicon wafer by spin coating at 1000 rpm (revolutions per minute), and heated on a hot plate at 120° C. for 200 seconds to volatilize the solvent and obtain a coating film having a thickness of about 10 ⁇ m after curing. This was then heated and cured at 350° C. for 1 hour in a nitrogen atmosphere using a vertical diffusion furnace manufactured by Koyo Lindberg, to obtain a polyimide film (cured film). The residual stress of the cured polyimide film was measured at room temperature using a thin film stress measurement device FLX-2320 manufactured by KLATencor. The results are shown in Table 2.
  • Stress measurement 2 The aforementioned polyamic acid solutions 1 to 13 were applied onto a 6-inch silicon wafer by spin coating at 1000 rpm (revolutions per minute), and heated on a hot plate at 120° C. for 200 seconds to volatilize the solvent and obtain a coating film having a thickness of about 10 ⁇ m after curing. This was then heated and cured for 2 hours at 280° C., 250° C. or 200° C. in a nitrogen atmosphere using a vertical diffusion furnace manufactured by Koyo Lindberg, to obtain a polyimide film (cured film). The residual stress of the cured polyimide film was measured in the same manner as in Stress Measurement 1. The results are shown in Table 2.
  • Resin compositions 1 to 13 were prepared using the above-mentioned polyamic acid solutions 1 to 13, respectively. Specifically, Irgacure OXE-01 (1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(O-benzoyloxime)), a photopolymerization initiator having a solid content concentration of 1.5% by mass, was added to the polyamic acid solutions 1 to 13 to prepare the resin compositions 1 to 13.
  • Irgacure OXE-01 1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(O-benzoyloxime)
  • a photopolymerization initiator having a solid content concentration of 1.5% by mass
  • Stress measurement 3 The above-mentioned resin compositions 1 to 13 were applied onto a 6-inch silicon wafer by spin coating at 1000 rpm (revolutions per minute), and heated on a hot plate at 120°C for 200 seconds to volatilize the solvent and obtain a coating film having a thickness of about 10 ⁇ m after curing.
  • the coating film was irradiated with broadband light at 400 mJ/ cm2 .
  • the coating film after light irradiation was heated and cured in a nitrogen atmosphere at 350°C for 1 hour or at 250°C for 2 hours using a vertical diffusion furnace manufactured by Koyo Lindberg, to obtain a polyimide film (cured film).
  • the residual stress of the cured polyimide film was measured in the same manner as in Stress Measurement 1. The results are shown in Table 3.
  • polyamic acid solutions 1 to 6 and 8 to 13 which contain polyamic acid having MA-derived or NA-derived nonvolatile crosslinking groups at the ends of the main chain, had reduced stress in the polyimide film after curing at 350°C compared to polyamic acid solution 7, which contains polyamic acid that does not contain nonvolatile crosslinking groups at the ends of the main chain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

This polyimide precursor is at least one selected from the group consisting of a polyamic acid and a polyamic acid ester. The polyimide precursor includes a structural unit (A) derived from a tetracarboxylic dianhydride and a structural unit (B) derived from a diamine compound, and also includes a compound having a non-volatile crosslinking group in a main chain end thereof, wherein the following (1) or (2) is satisfied. (1) The structural unit (A) includes a structural unit (A1-1) in which two acid anhydride groups contained in the tetracarboxylic dianhydride are not bonded to an aromatic ring. (2) The structural unit (A) includes a structural unit (A1-2) which does not contain an aromatic ring, or in which the ratio of the number of aromatic rings contained in the tetracarboxylic dianhydride to the molecular weight of the tetracarboxylic dianhydride is less than 0.0068.

Description

ポリイミド前駆体及び樹脂組成物Polyimide precursor and resin composition
 本開示は、ポリイミド前駆体及び樹脂組成物に関する。 This disclosure relates to a polyimide precursor and a resin composition.
 近年、半導体集積回路(LSI)の保護膜材料として、ポリイミド樹脂等の高い耐熱性を有する有機材料が広く適用されている(例えば、特許文献1参照)。
 このようなポリイミド樹脂を用いた保護膜(硬化膜)は、ポリイミド前駆体又はポリイミド前駆体を含有する樹脂組成物を基板上に塗布及び乾燥して形成した樹脂膜を、加熱して硬化することで得られる。
In recent years, organic materials having high heat resistance, such as polyimide resins, have been widely used as protective film materials for semiconductor integrated circuits (LSIs) (see, for example, Patent Document 1).
Such a protective film (cured film) using a polyimide resin can be obtained by applying a polyimide precursor or a resin composition containing a polyimide precursor onto a substrate, drying the applied resin film, and then heating the resulting film to cure it.
特開2016-199662号公報JP 2016-199662 A
 半導体の有機パッシベーション層用途等において、高弾性、低応力、高い解像性能等を有するポリイミドの硬化物が求められている。
 ポリイミド前駆体を含む樹脂組成物の組成、ポリイミド前駆体の分子量、エステル化率等のポリイミド前駆体の特性などがこれらの硬化物の物性に影響を及ぼすことが知られている。
 例えば、ポリイミド前駆体の分子量が高いほど、ポリイミドの硬化物が高弾性及び低応力となりやすい。しかし、分子量の高いポリイミド前駆体を使用すると、リソグラフィプロセスでの現像性及びパターン解像性が低下するため、トレードオフの関係がある。そのため、分子量の高いポリイミド前駆体を使用する手法以外に、硬化物としたときの応力低減が可能となるポリイミド前駆体及びこれを含む樹脂組成物が求められている。
In applications such as organic passivation layers for semiconductors, there is a demand for cured polyimides that have high elasticity, low stress, high resolution, and other properties.
It is known that the composition of the resin composition containing the polyimide precursor, the molecular weight of the polyimide precursor, the esterification rate, and other properties of the polyimide precursor affect the physical properties of the cured product.
For example, the higher the molecular weight of the polyimide precursor, the more likely the cured polyimide will have high elasticity and low stress. However, when a polyimide precursor with a high molecular weight is used, the developability and pattern resolution in the lithography process are reduced, so there is a trade-off. Therefore, in addition to the method of using a polyimide precursor with a high molecular weight, there is a demand for a polyimide precursor and a resin composition containing the same that can reduce stress when cured.
 本開示は、上記従来の事情に鑑みてなされたものであり、硬化物としたときの応力低減が可能となるポリイミド前駆体及びこれを含む樹脂組成物を提供することを目的とする。 The present disclosure has been made in consideration of the above-mentioned conventional circumstances, and aims to provide a polyimide precursor that can reduce stress when cured, and a resin composition containing the same.
 前記課題を達成するための具体的手段は以下の通りである。
<1> ポリアミック酸及びポリアミック酸エステルからなる群より選択される少なくとも1種であるポリイミド前駆体であって、
 前記ポリイミド前駆体は、テトラカルボン酸二無水物に由来する構成単位(A)及びジアミン化合物に由来する構成単位(B)を含み、かつ、主鎖末端に不揮発性架橋基を有する化合物を含み、
 前記構成単位(A)は、前記テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合していない構成単位(A1-1)を含むポリイミド前駆体。
<2> ポリアミック酸及びポリアミック酸エステルからなる群より選択される少なくとも1種であるポリイミド前駆体であって、
 前記ポリイミド前駆体は、テトラカルボン酸二無水物に由来する構成単位(A)及びジアミン化合物に由来する構成単位(B)を含み、かつ、主鎖末端に不揮発性架橋基を有する化合物を含み、
 前記構成単位(A)は、芳香環を含まないか、あるいは、テトラカルボン酸二無水物の分子量に対するテトラカルボン酸二無水物に含まれる芳香環の数の割合が0.0068未満である構成単位(A1-2)を含むポリイミド前駆体。
<3> 前記構成単位(A)の少なくとも一部は、不飽和二重結合を有する<1>又は<2>のポリイミド前駆体。
<4> 前記構成単位(A)に占める前記構成単位(A1-1)の含有率は、前記構成単位(A)に対して、25モル%以上である、<1>又は<3>に記載のポリイミド前駆体。
<5> 前記構成単位(A)に占める前記構成単位(A1-2)の含有率は、前記構成単位(A)に対して、25モル%以上である、<2>又は<3>に記載のポリイミド前駆体。
<6> 前記テトラカルボン酸二無水物は、下記化学式(A-1)~化学式(A-6)で表される化合物の内の少なくとも1つを含む<1>~<5>のいずれか1つに記載のポリイミド前駆体。
Specific means for achieving the above object are as follows.
<1> A polyimide precursor which is at least one selected from the group consisting of polyamic acids and polyamic acid esters,
the polyimide precursor contains a structural unit (A) derived from a tetracarboxylic dianhydride and a structural unit (B) derived from a diamine compound, and contains a compound having a nonvolatile crosslinking group at a main chain terminal;
The structural unit (A) is a polyimide precursor that includes a structural unit (A1-1) in which the two acid anhydride groups contained in the tetracarboxylic dianhydride are not bonded to an aromatic ring.
<2> A polyimide precursor which is at least one selected from the group consisting of polyamic acids and polyamic acid esters,
the polyimide precursor contains a structural unit (A) derived from a tetracarboxylic dianhydride and a structural unit (B) derived from a diamine compound, and contains a compound having a nonvolatile crosslinking group at a main chain terminal;
The structural unit (A) is a polyimide precursor that contains a structural unit (A1-2) that does not contain an aromatic ring or in which the ratio of the number of aromatic rings contained in the tetracarboxylic dianhydride to the molecular weight of the tetracarboxylic dianhydride is less than 0.0068.
<3> The polyimide precursor according to <1> or <2>, wherein at least a part of the structural unit (A) has an unsaturated double bond.
<4> The polyimide precursor according to <1> or <3>, wherein a content of the structural unit (A1-1) in the structural unit (A) is 25 mol % or more relative to the structural unit (A).
<5> The polyimide precursor according to <2> or <3>, wherein a content of the structural unit (A) of the structural unit (A1-2) is 25 mol % or more relative to the structural unit (A).
<6> The polyimide precursor according to any one of <1> to <5>, wherein the tetracarboxylic dianhydride includes at least one of compounds represented by the following chemical formulas (A-1) to (A-6):
<7> 前記構成単位(A)は、前記テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合している構成単位(A2)を有する<1>~<6>のいずれか1つに記載のポリイミド前駆体。
<8> 下記一般式(6)で表される構成単位を有する化合物を含む<1>~<7>のいずれか1つに記載のポリイミド前駆体。
<7> The polyimide precursor according to any one of <1> to <6>, wherein the structural unit (A) has a structural unit (A2) in which two acid anhydride groups contained in the tetracarboxylic dianhydride are bonded to an aromatic ring.
<8> The polyimide precursor according to any one of <1> to <7>, further comprising a compound having a structural unit represented by the following general formula (6):
(一般式(6)中、Xは4価の有機基を表し、Yは2価の有機基を表す。R及びRは、それぞれ独立に、水素原子、下記一般式(7)で表される基、又は炭素数1~4の脂肪族炭化水素基であり、R及びRの少なくとも一方が、下記一般式(7)で表される基であり、Xで表される4価の有機基は、芳香環を含まないか、芳香環を含む場合には芳香環は4つのカルボニル基に結合していない。) (In general formula (6), X represents a tetravalent organic group, and Y represents a divalent organic group. R 6 and R 7 are each independently a hydrogen atom, a group represented by the following general formula (7), or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and at least one of R 6 and R 7 is a group represented by the following general formula (7). The tetravalent organic group represented by X does not contain an aromatic ring, or if it contains an aromatic ring, the aromatic ring is not bonded to four carbonyl groups.)
(一般式(7)中、R~R10は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基を表し、qは1~10の整数を表す。)
<9> 前記不揮発性架橋基は、無水マレイン酸、5-ノルボルネン-2,3-ジカルボン酸無水物、無水イタコン酸、無水メタクリル酸、2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリレート、4-エチニル無水フタル酸、4-ビニル無水フタル酸及びジt-ブチルジカーボネートからなる群より選択される少なくとも1つの化合物に由来する<1>~<8>のいずれか1つに記載のポリイミド前駆体。
<10> <1>~<9>のいずれか1つに記載のポリイミド前駆体を含む樹脂組成物。
(In formula (7), R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and q represents an integer of 1 to 10.)
<9> The polyimide precursor according to any one of <1> to <8>, wherein the nonvolatile crosslinking group is derived from at least one compound selected from the group consisting of maleic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, itaconic anhydride, methacrylic anhydride, 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl acrylate, 4-ethynylphthalic anhydride, 4-vinylphthalic anhydride, and di-t-butyl dicarbonate.
<10> A resin composition comprising the polyimide precursor according to any one of <1> to <9>.
 本開示によれば、硬化物としたときの応力低減が可能となるポリイミド前駆体及びこれを含む樹脂組成物を提供することができる。 The present disclosure provides a polyimide precursor that can reduce stress when cured, and a resin composition containing the polyimide precursor.
本開示の一実施形態に係る電子部品の製造工程図である。1A to 1C are diagrams illustrating a manufacturing process for an electronic component according to an embodiment of the present disclosure.
 以下、本開示を実施するための形態について詳細に説明する。但し、本開示は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示を制限するものではない。 Below, the form for implementing this disclosure will be described in detail. However, this disclosure is not limited to the following embodiments. In the following embodiments, the components (including element steps, etc.) are not essential unless specifically stated otherwise. The same applies to numerical values and their ranges, and they do not limit this disclosure.
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、各成分には、該当する物質が複数種含まれていてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において、テトラカルボン酸二無水物に由来する構成単位(A)は、テトラカルボン酸二無水物が開環してなる構造を有する構成単位であればよく、本開示のポリイミド前駆体の原料は、テトラカルボン酸二無水物に限定されず、テトラカルボン酸、あるいはテトラカルボン酸誘導体であってもよい。
 本開示において、ジアミン化合物に由来する構成単位(B)は、2つのアミノ基からそれぞれ1つの水素原子を除いた構造を有する構成単位であればよく、本開示のポリイミド前駆体の原料は、ジアミン化合物に限定されず、ジアミン化合物の誘導体であってもよい。
In the present disclosure, the numerical range indicated using "to" includes the numerical values before and after "to" as the minimum and maximum values, respectively.
In the numerical ranges described in the present disclosure in stages, the upper or lower limit value described in one numerical range may be replaced with the upper or lower limit value of another numerical range described in stages. In addition, in the numerical ranges described in the present disclosure, the upper or lower limit value of the numerical range may be replaced with a value shown in the examples.
In the present disclosure, each component may contain multiple types of corresponding substances. When multiple types of substances corresponding to each component are present in the composition, the content or amount of each component means the total content or amount of the multiple substances present in the composition, unless otherwise specified.
In the present disclosure, the terms "layer" and "film" include cases where the layer or film is formed over the entire area when the area in which the layer or film is present is observed, as well as cases where the layer or film is formed over only a portion of the area.
In the present disclosure, the constituent unit (A) derived from a tetracarboxylic dianhydride may be any constituent unit having a structure formed by ring-opening of a tetracarboxylic dianhydride, and the raw material of the polyimide precursor of the present disclosure is not limited to a tetracarboxylic dianhydride and may be a tetracarboxylic acid or a tetracarboxylic acid derivative.
In the present disclosure, the constituent unit (B) derived from a diamine compound may be any constituent unit having a structure in which one hydrogen atom has been removed from each of two amino groups, and the raw material for the polyimide precursor of the present disclosure is not limited to a diamine compound and may be a derivative of a diamine compound.
<ポリアミック酸>
 本開示のポリイミド前駆体は、ポリアミック酸及びポリアミック酸エステルからなる群より選択される少なくとも1種であり、ポリイミド前駆体は、テトラカルボン酸二無水物に由来する構成単位(A)及びジアミン化合物に由来する構成単位(B)を含み、かつ、主鎖末端に不揮発性架橋基を有する化合物を含み、下記(1)又は(2)を満たす。
(1)構成単位(A)は、前記テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合していない構成単位(A1-1)を含む。
(2)構成単位(A)は、芳香環を含まないか、あるいは、テトラカルボン酸二無水物の分子量に対するテトラカルボン酸二無水物に含まれる芳香環の数の割合が0.0068未満である構成単位(A1-2)を含む。
<Polyamic Acid>
The polyimide precursor of the present disclosure is at least one type selected from the group consisting of polyamic acids and polyamic acid esters. The polyimide precursor contains a structural unit (A) derived from a tetracarboxylic dianhydride and a structural unit (B) derived from a diamine compound, and contains a compound having a nonvolatile crosslinking group at a main chain terminal, and satisfies the following (1) or (2):
(1) The structural unit (A) contains a structural unit (A1-1) in which the two acid anhydride groups contained in the tetracarboxylic dianhydride are not bonded to an aromatic ring.
(2) The structural unit (A) contains a structural unit (A1-2) that does not contain an aromatic ring, or in which the ratio of the number of aromatic rings contained in the tetracarboxylic dianhydride to the molecular weight of the tetracarboxylic dianhydride is less than 0.0068.
 本開示のポリイミド前駆体は、ポリアミック酸及びポリアミック酸エステルからなる群より選択される少なくとも1種であり、主鎖末端に不揮発性架橋基を有する化合物を含む。これにより、ポリイミド前駆体及びこれを含む樹脂組成物を硬化物としたときの応力低減が可能となる。 The polyimide precursor of the present disclosure is at least one selected from the group consisting of polyamic acid and polyamic acid ester, and includes a compound having a nonvolatile crosslinking group at the end of the main chain. This makes it possible to reduce stress when the polyimide precursor and a resin composition containing the polyimide precursor are cured.
 ポリイミド前駆体に含まれる化合物は、1種以上のポリアミック酸であってもよく、1種以上のポリアミック酸エステルであってもよく、1種以上のポリアミック酸及び1種以上のポリアミック酸エステルであってもよい。 The compound contained in the polyimide precursor may be one or more polyamic acids, one or more polyamic acid esters, or one or more polyamic acids and one or more polyamic acid esters.
 さらに、本開示のポリイミド前駆体は、光透過性に優れる傾向にある。そのため、ポリイミド前駆体を含む樹脂組成物を用いることで優れたパターン形状を形成可能である。これらの理由は明確ではないが、以下のように推察される。
 まず、ポリイミド前駆体及びこれを含む樹脂組成物の光透過性が不充分である場合、基板等に塗布されたポリイミド前駆体を含む感光性膜にパターン露光を施した際、当該感光性膜の底部まで光が照射されにくくなる。そのため、パターン露光に対応した高精度のパターン形状を有するパターン硬化膜を得ることが難しい。例えば、ネガ型の感光性膜である場合、得られるパターン硬化膜が逆テーパー形状となりやすく、ポジ型の感光性膜である場合、得られるパターン硬化膜がテーパー形状となりやすい。
 一方、本開示のポリイミド前駆体は、構成単位(A1-1)又は構成単位(A1-2)を有することで、芳香環の含有量が少ない。このようなポリイミド前駆体を用いることで、ポリイミド前駆体及びこれを含む樹脂組成物の光透過性が向上する。また、光透過性が向上することで、基板等に塗布されたポリイミド前駆体を含む感光性膜にパターン露光を施した際、当該感光性膜の底部まで光が照射される。これにより、パターン露光に対応した高精度のパターン形状を有するパターン硬化膜を得ることができる。
 さらに、構成単位(A1-1)及び(A1-2)が脂環構造を含む場合、硬化物の高弾性化が可能となり、硬化物の耐久性が向上する傾向にある。
Furthermore, the polyimide precursor of the present disclosure tends to have excellent light transmittance. Therefore, by using a resin composition containing the polyimide precursor, it is possible to form an excellent pattern shape. The reason for this is not clear, but is presumed to be as follows.
First, when the light transmittance of the polyimide precursor and the resin composition containing the polyimide precursor is insufficient, when the photosensitive film containing the polyimide precursor applied to the substrate or the like is subjected to pattern exposure, the bottom of the photosensitive film is difficult to be irradiated with light. Therefore, it is difficult to obtain a patterned cured film having a highly accurate pattern shape corresponding to the pattern exposure. For example, when the photosensitive film is a negative type, the patterned cured film obtained tends to have a reverse taper shape, and when the photosensitive film is a positive type, the patterned cured film obtained tends to have a taper shape.
On the other hand, the polyimide precursor of the present disclosure has a low content of aromatic rings by having the structural unit (A1-1) or the structural unit (A1-2). By using such a polyimide precursor, the light transmittance of the polyimide precursor and the resin composition containing the same is improved. In addition, by improving the light transmittance, when a photosensitive film containing a polyimide precursor applied to a substrate or the like is subjected to pattern exposure, light is irradiated to the bottom of the photosensitive film. This makes it possible to obtain a patterned cured film having a highly accurate pattern shape corresponding to the pattern exposure.
Furthermore, when the structural units (A1-1) and (A1-2) each contain an alicyclic structure, the elasticity of the cured product can be increased, and the durability of the cured product tends to be improved.
 また、構成単位(A1-1)は、2つの酸無水物基が芳香環に結合していなければよく、酸無水物基と結合しない芳香環を含んでいてもよい。構成単位(A1-1)が芳香環を含む場合であっても、芳香環が2つの酸無水物基に結合せずに他の官能基、他の構造等が2つの酸無水物基に結合している。これにより、構成単位(A1-1)中の芳香環の割合が低下し、ポリイミド前駆体及びこれを含む樹脂組成物の光透過性が向上する、と推測される。 Furthermore, the structural unit (A1-1) may contain an aromatic ring that is not bonded to an acid anhydride group, as long as the two acid anhydride groups are not bonded to an aromatic ring. Even if the structural unit (A1-1) contains an aromatic ring, the aromatic ring is not bonded to the two acid anhydride groups, and another functional group, other structure, etc. is bonded to the two acid anhydride groups. This is presumably to reduce the proportion of aromatic rings in the structural unit (A1-1), improving the light transmittance of the polyimide precursor and the resin composition containing it.
 本開示のポリイミド前駆体は、感光性が要求される材料(例えば、ネガ型又はポジ型の感光性樹脂組成物、好ましくはネガ型の感光性樹脂組成物)に用いられてもよく、感光性が要求されない材料に用いられてもよい。本開示のポリイミド前駆体として、不飽和二重結合を有するポリアミック酸エステルを用いた場合、当該ポリイミド前駆体及びこれを含む樹脂組成物を感光性が要求される材料に用いてもよい。 The polyimide precursor of the present disclosure may be used in materials that require photosensitivity (e.g., negative or positive photosensitive resin compositions, preferably negative photosensitive resin compositions), or may be used in materials that do not require photosensitivity. When a polyamic acid ester having an unsaturated double bond is used as the polyimide precursor of the present disclosure, the polyimide precursor and a resin composition containing the same may be used in materials that require photosensitivity.
 本開示のポリイミド前駆体は、ポリアミック酸及びポリアミック酸エステルからなる群より選択される少なくとも1種である。
 ポリアミック酸エステルは、ポリアミック酸における少なくとも一部のカルボキシ基の水素原子が1価の有機基に置換されたエステル結合を有する化合物であれば、特に限定されない。ポリアミック酸エステルは、構成単位(A)の少なくとも一部が不飽和二重結合を有する化合物を含んでいてもよい。
The polyimide precursor of the present disclosure is at least one selected from the group consisting of polyamic acids and polyamic acid esters.
The polyamic acid ester is not particularly limited as long as it is a compound having an ester bond in which at least a portion of the hydrogen atoms of the carboxyl groups in the polyamic acid are substituted with a monovalent organic group. The polyamic acid ester may contain a compound in which at least a portion of the structural unit (A) has an unsaturated double bond.
 ポリイミド前駆体を構成する構成単位(A)は、下記構成単位(A1-1)又は構成単位(A1-2)を有する。
 構成単位(A1-1)・・・テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合していない構成単位
 構成単位(A1-2)・・・芳香環を含まないか、あるいは、テトラカルボン酸二無水物の分子量に対するテトラカルボン酸二無水物に含まれる芳香環の数の割合が0.0068未満である構成単位
The structural unit (A) constituting the polyimide precursor has the following structural unit (A1-1) or structural unit (A1-2).
Structural unit (A1-1): A structural unit in which the two acid anhydride groups contained in the tetracarboxylic dianhydride are not bonded to an aromatic ring. Structural unit (A1-2): A structural unit in which the aromatic ring is not contained, or the ratio of the number of aromatic rings contained in the tetracarboxylic dianhydride to the molecular weight of the tetracarboxylic dianhydride is less than 0.0068.
 以下、テトラカルボン酸二無水物の分子量に対するテトラカルボン酸二無水物に含まれる芳香環の数の割合を「芳香環量1」ともいう。 Hereinafter, the ratio of the number of aromatic rings contained in the tetracarboxylic dianhydride to the molecular weight of the tetracarboxylic dianhydride is also referred to as the "aromatic ring content 1."
 構成単位(A1-1)及び(A1-2)において、テトラカルボン酸二無水物に含まれる2つの酸無水物基は、単結合により連結されていてもよいし、連結基、連結基を2種以上組み合わせた複合連結基等により結合されていてもよい。連結基としては、アルキレン基、ハロゲン化アルキレン基、フェニレン基(但し、酸無水物基とは結合していない)、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、シリレン結合(-Si(R-;Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);Rは、
それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)等が挙げられる。
In the structural units (A1-1) and (A1-2), the two acid anhydride groups contained in the tetracarboxylic dianhydride may be linked by a single bond, or may be linked by a linking group, a composite linking group combining two or more types of linking groups, etc. Examples of the linking group include an alkylene group, a halogenated alkylene group, a phenylene group (however, not bonded to an acid anhydride group), a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a silylene bond (-Si(R A ) 2 -; each R A independently represents a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O-(Si(R B ) 2 -O-) n ;
each independently represents a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more.
 構成単位(A1-1)及び(A1-2)は、硬化物としたときの耐久性の観点から、脂環構造を含むことが好ましい。脂環構造は1つ含んでいても、2以上含んでいてもよい。脂環構造を2以上含む場合、2つの脂環が単結合及び連結基の少なくとも一方により2箇所で結合されて、2つの脂環の間に連結基を含む5員環又は6員環が形成されていてもよい。
 脂環は、置換基を有していてもよいし、無置換であってもよい。置換基としては、アルキル基、フッ素原子、ハロゲン化アルキル基、水酸基、アミノ基等が挙げられる。
From the viewpoint of durability when formed into a cured product, the structural units (A1-1) and (A1-2) preferably contain an alicyclic structure. The structural units may contain one alicyclic structure or two or more alicyclic structures. When the structural units contain two or more alicyclic structures, two alicyclic structures may be bonded at two positions by at least one of a single bond and a linking group to form a five- or six-membered ring containing a linking group between the two alicyclic structures.
The alicyclic ring may have a substituent or may be unsubstituted. Examples of the substituent include an alkyl group, a fluorine atom, a halogenated alkyl group, a hydroxyl group, and an amino group.
 脂環構造としては、トリシクロデカン骨格、シクロヘキサン骨格、シクロペンタン骨格、シクロブテン骨格、1,3-アダマンタン骨格、水添ビスフェノールA骨格、水添ビスフェノールF骨格、水添ビスフェノールS骨格、イソボルニル骨格等が挙げられる。 Alicyclic structures include the tricyclodecane skeleton, cyclohexane skeleton, cyclopentane skeleton, cyclobutene skeleton, 1,3-adamantane skeleton, hydrogenated bisphenol A skeleton, hydrogenated bisphenol F skeleton, hydrogenated bisphenol S skeleton, and isobornyl skeleton.
 構成単位(A1-2)では、芳香環量1は、0.0060以下であってもよく、0.0050以下であってもよく、0.0040以下であってもよく、0であること、つまり芳香環を含まなくてもよい。 In the structural unit (A1-2), the aromatic ring content 1 may be 0.0060 or less, 0.0050 or less, 0.0040 or less, or may be 0, meaning that no aromatic rings are contained.
 構成単位(A1-1)は、テトラカルボン酸二無水物に含まれる2つの酸無水物基に芳香環が結合していなければよく、2つの酸無水物基に結合しない芳香環を含んでいてもよく、含んでいなくてもよい。構成単位(A1-1)は、2つの酸無水物基に結合しない芳香環を含まないことが好ましい。 The structural unit (A1-1) may or may not contain an aromatic ring that is not bonded to the two acid anhydride groups contained in the tetracarboxylic dianhydride. It is preferable that the structural unit (A1-1) does not contain an aromatic ring that is not bonded to the two acid anhydride groups.
 構成単位(A1-1)が芳香環を含む場合、芳香環としては、ベンゼン環、ナフタレン環、フェナントレン環等が挙げられる。これらの中でも、ポリイミド前駆体の紫外領域における光透過性を向上する観点から、ベンゼン環が好ましい。
 構成単位(A1-1)が芳香環を含む場合、各芳香環は、置換基を有していてもよいし、無置換であってもよい。芳香環の置換基としては、アルキル基、フッ素原子、ハロゲン化アルキル基、水酸基、アミノ基等が挙げられる。
When the structural unit (A1-1) contains an aromatic ring, examples of the aromatic ring include a benzene ring, a naphthalene ring, a phenanthrene ring, etc. Of these, a benzene ring is preferred from the viewpoint of improving the light transmittance of the polyimide precursor in the ultraviolet region.
When the structural unit (A1-1) contains an aromatic ring, each aromatic ring may have a substituent or may be unsubstituted. Examples of the substituent on the aromatic ring include an alkyl group, a fluorine atom, a halogenated alkyl group, a hydroxyl group, and an amino group.
 構成単位(A1-1)が芳香環を含む場合、構成単位(A1-1)中の芳香環の個数は、1個~4個であることが好ましく、1個~3個であることがより好ましく、1個又は2個であることがさらに好ましく、1個であることが特に好ましい。
 構成単位(A1-1)が2個以上の芳香環を含む場合、各芳香環は、単結合により連結されていてもよいし、連結基、連結基を2種以上組み合わせた複合連結基等により結合されていてもよい。連結基としては、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、シリレン結合(-Si(R-;Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)等が挙げられる。また、2つのベンゼン環が単結合及び連結基の少なくとも一方により2箇所で結合されて、2つの芳香環の間に連結基を含む5員環又は6員環が形成されていてもよい。
When the structural unit (A1-1) contains an aromatic ring, the number of aromatic rings within the structural unit (A1-1) is preferably 1 to 4, more preferably 1 to 3, even more preferably 1 or 2, and particularly preferably 1.
When the structural unit (A1-1) contains two or more aromatic rings, the aromatic rings may be linked by a single bond, or may be linked by a linking group, a composite linking group combining two or more types of linking groups, or the like. Examples of the linking group include an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a silylene bond (-Si(R A ) 2 -; R A each independently represents a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O-(Si(R B ) 2 -O-) n ; R B each independently represents a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more). In addition, two benzene rings may be linked at two points by at least one of a single bond and a linking group to form a five- or six-membered ring containing a linking group between the two aromatic rings.
 テトラカルボン酸二無水物は、下記化学式(A-1)~化学式(A-6)で表される化合物の内の少なくとも1つを含むことが好ましい。下記化学式(A-1)~化学式(A-6)で表される化合物は、構成単位(A1-1)を構成するテトラカルボン酸二無水物及び構成単位(A1-2)を構成するテトラカルボン酸二無水物の好ましい例である。 The tetracarboxylic dianhydride preferably contains at least one of the compounds represented by the following chemical formulas (A-1) to (A-6). The compounds represented by the following chemical formulas (A-1) to (A-6) are preferred examples of the tetracarboxylic dianhydride constituting the structural unit (A1-1) and the tetracarboxylic dianhydride constituting the structural unit (A1-2).
 なお、化学式(A-1)で表される化合物及び(A-5)で表される化合物は、2つの酸無水物基に結合しない芳香環を含むテトラカルボン酸二無水物である。
 化学式(A-2)~(A-4)で表される化合物及び化学式(A-6)で表される化合物は、芳香環を含まないテトラカルボン酸二無水物である。
The compound represented by the chemical formula (A-1) and the compound represented by the chemical formula (A-5) are tetracarboxylic dianhydrides containing an aromatic ring that is not bonded to two acid anhydride groups.
The compounds represented by the chemical formulas (A-2) to (A-4) and the compound represented by the chemical formula (A-6) are tetracarboxylic dianhydrides containing no aromatic ring.
 テトラカルボン酸二無水物は、前記化学式(A-2)で表される化合物、前記化学式(A-4)で表される化合物及び前記化学式(A-6)で表される化合物の内の少なくとも1つを含むことが好ましい。当該化合物に由来する構成単位を含むポリイミド前駆体を用いることで、低応力の硬化物が得られやすくなる。 The tetracarboxylic dianhydride preferably contains at least one of the compounds represented by the chemical formula (A-2), the compounds represented by the chemical formula (A-4), and the compounds represented by the chemical formula (A-6). By using a polyimide precursor containing a structural unit derived from the compound, it becomes easier to obtain a cured product with low stress.
 構成単位(A)は、テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合している構成単位(A2)を有していてもよい。構成単位(A2)を含むことで、硬化物としたときの耐久性が向上する。なお、構成単位(A)が構成単位(A2)を含む場合であっても、構成単位(A1-1)又は構成単位(A1-2)を含むため、構成単位(A)全体中の芳香環の占める割合が低くなり、結果、ポリイミド前駆体及びこれを含む樹脂組成物は光透過性に優れる傾向にある。 The structural unit (A) may have a structural unit (A2) in which two acid anhydride groups contained in the tetracarboxylic dianhydride are bonded to an aromatic ring. The inclusion of the structural unit (A2) improves the durability of the cured product. Even when the structural unit (A) contains the structural unit (A2), the proportion of aromatic rings in the entire structural unit (A) is low because the structural unit (A1-1) or (A1-2) is included, and as a result, the polyimide precursor and the resin composition containing it tend to have excellent light transmittance.
 構成単位(A2)に含まれる芳香環の好ましい形態は、構成単位(A1-1)に含まれ得る芳香環の好ましい形態と同様である。
 構成単位(A2)中の芳香環の個数は、1個~4個であることが好ましく、1個~3個であることがより好ましく、1個又は2個であることがさらに好ましく、1個であることが特に好ましい。
The preferred forms of the aromatic ring contained in the structural unit (A2) are the same as the preferred forms of the aromatic ring that can be contained in the structural unit (A1-1).
The number of aromatic rings in the structural unit (A2) is preferably 1 to 4, more preferably 1 to 3, even more preferably 1 or 2, and particularly preferably 1.
 構成単位(A2)では、芳香環量1は、0.0045以上であってもよく、0.0050以上であってもよく、0.0060以上であってもよい。上限値としては、例えば、0.0100であってもよく、0.0080であってもよく、0.0070であってもよい。 In the structural unit (A2), the aromatic ring content 1 may be 0.0045 or more, 0.0050 or more, or 0.0060 or more. The upper limit may be, for example, 0.0100, 0.0080, or 0.0070.
 構成単位(A2)は、下記一般式(A)~下記一般式(E)で表される基を含んでもよい。 The structural unit (A2) may contain groups represented by the following general formulas (A) to (E):

 
 

 
 
 一般式(D)において、A及びBは、それぞれ独立に、単結合、メチレン基、ハロゲン化メチレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)又はシリレン結合(-Si(R-;Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)を表し、A及びBの両方が単結合となることはない。 In general formula (D), A and B each independently represent a single bond, a methylene group, a halogenated methylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-) or a silylene bond (-Si(R A ) 2 -; each of R A independently represents a hydrogen atom, an alkyl group or a phenyl group), and both A and B are not single bonds.
 一般式(E)において、Cは、単結合、又は、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、シリレン結合(-Si(R-;Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)若しくはこれらを少なくとも2つ組み合わせた2価の基を表す。また、Cは、下記式(C1)で表される構造であってもよい。 In general formula (E), C represents a single bond, an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a silylene bond (-Si(R A ) 2 -; R A each independently represents a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O-(Si(R B ) 2 -O-) n ; R B each independently represents a hydrogen atom, an alkyl group, or a phenyl group, and n is an integer of 1 or 2 or more), or a divalent group comprising at least two of these in combination. C may also have a structure represented by formula (C1) below.

 
 

 
 
 一般式(E)におけるCで表されるアルキレン基としては、炭素数が1~10のアルキレン基であることが好ましく、炭素数が1~5のアルキレン基であることがより好ましく、炭素数が1又は2のアルキレン基であることがさらに好ましい。
 一般式(E)におけるCで表されるアルキレン基の具体例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等の直鎖状アルキレン基;メチルメチレン基、メチルエチレン基、エチルメチレン基、ジメチルメチレン基、1,1-ジメチルエチレン基、1-メチルトリメチレン基、2-メチルトリメチレン基、エチルエチレン基、1-メチルテトラメチレン基、2-メチルテトラメチレン基、1-エチルトリメチレン基、2-エチルトリメチレン基、1,1-ジメチルトリメチレン基、1,2-ジメチルトリメチレン基、2,2-ジメチルトリメチレン基、1-メチルペンタメチレン基、2-メチルペンタメチレン基、3-メチルペンタメチレン基、1-エチルテトラメチレン基、2-エチルテトラメチレン基、1,1-ジメチルテトラメチレン基、1,2-ジメチルテトラメチレン基、2,2-ジメチルテトラメチレン基、1,3-ジメチルテトラメチレン基、2,3-ジメチルテトラメチレン基、1,4-ジメチルテトラメチレン基等の分岐鎖状アルキレン基;などが挙げられる。これらの中でも、メチレン基が好ましい。
The alkylene group represented by C in general formula (E) is preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 5 carbon atoms, and even more preferably an alkylene group having 1 or 2 carbon atoms.
Specific examples of the alkylene group represented by C in the general formula (E) include linear alkylene groups such as a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group; a methylmethylene group, a methylethylene group, an ethylmethylene group, a dimethylmethylene group, a 1,1-dimethylethylene group, a 1-methyltrimethylene group, a 2-methyltrimethylene group, an ethylethylene group, a 1-methyltetramethylene group, a 2-methyltetramethylene group, a 1-ethyltrimethylene group, a 2-ethyltrimethylene group, a 1,1-dimethyl branched alkylene groups such as ethyltrimethylene group, 1,2-dimethyltrimethylene group, 2,2-dimethyltrimethylene group, 1-methylpentamethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, 1-ethyltetramethylene group, 2-ethyltetramethylene group, 1,1-dimethyltetramethylene group, 1,2-dimethyltetramethylene group, 2,2-dimethyltetramethylene group, 1,3-dimethyltetramethylene group, 2,3-dimethyltetramethylene group, and 1,4-dimethyltetramethylene group; and the like. Among these, a methylene group is preferred.
 一般式(E)におけるCで表されるハロゲン化アルキレン基としては、炭素数が1~10のハロゲン化アルキレン基であることが好ましく、炭素数が1~5のハロゲン化アルキレン基であることがより好ましく、炭素数が1~3のハロゲン化アルキレン基であることがさらに好ましい。
 一般式(E)におけるCで表されるハロゲン化アルキレン基の具体例としては、上述の一般式(E)におけるCで表されるアルキレン基に含まれる少なくとも1つの水素原子がフッ素原子、塩素原子等のハロゲン原子で置換されたアルキレン基が挙げられる。これらの中でも、フルオロメチレン基、ジフルオロメチレン基、ヘキサフルオロジメチルメチレン基等が好ましい。
The halogenated alkylene group represented by C in general formula (E) is preferably a halogenated alkylene group having 1 to 10 carbon atoms, more preferably a halogenated alkylene group having 1 to 5 carbon atoms, and even more preferably a halogenated alkylene group having 1 to 3 carbon atoms.
Specific examples of the halogenated alkylene group represented by C in the general formula (E) include alkylene groups in which at least one hydrogen atom contained in the alkylene group represented by C in the above-mentioned general formula (E) is substituted with a halogen atom such as a fluorine atom or a chlorine atom. Among these, a fluoromethylene group, a difluoromethylene group, a hexafluorodimethylmethylene group, etc. are preferred.
 上記シリレン結合又はシロキサン結合に含まれるR又はRで表されるアルキル基としては、炭素数が1~5のアルキル基であることが好ましく、炭素数が1~3のアルキル基であることがより好ましく、炭素数が1又は2のアルキル基であることがさらに好ましい。R又はRで表されるアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基等が挙げられる。 The alkyl group represented by R A or R B contained in the silylene bond or siloxane bond is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and even more preferably an alkyl group having 1 or 2 carbon atoms. Specific examples of the alkyl group represented by R A or R B include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, a t-butyl group, and the like.
 一般式(D)におけるA及びBの組み合わせは特に限定されるものではなく、メチレン基とエーテル結合との組み合わせ、メチレン基とスルフィド結合との組み合わせ、カルボニル基とエーテル結合との組み合わせ等が好ましい。
 一般式(E)におけるCとしては、単結合、エーテル結合、カルボニル基等が好ましい。
The combination of A and B in formula (D) is not particularly limited, and a combination of a methylene group and an ether bond, a combination of a methylene group and a sulfide bond, a combination of a carbonyl group and an ether bond, and the like are preferred.
In formula (E), C is preferably a single bond, an ether bond, a carbonyl group, or the like.
 構成単位(A2)のテトラカルボン酸二無水物としては、ピロメリット酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、m-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、p-ターフェニル-3,3’,4,4’-テトラカルボン酸二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス{4’-(2,3-ジカルボキシフェノキシ)フェニル}プロパン二無水物、2,2-ビス{4’-(3,4-ジカルボキシフェノキシ)フェニル}プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス{4’-(2,3-ジカルボキシフェノキシ)フェニル}プロパン二無水物、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス{4’-(3,4-ジカルボキシフェノキシ)フェニル}プロパン二無水物、4,4’-オキシジフタル酸二無水物、4,4’-スルホニルジフタル酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物等が挙げられる。 The tetracarboxylic dianhydride of the structural unit (A2) may be pyromellitic dianhydride, 2,3,6,7-naphthalene tetracarboxylic dianhydride, 3,3',4,4'-biphenyl tetracarboxylic dianhydride, 3,3',4,4'-benzophenone tetracarboxylic dianhydride, 1,2,5,6-naphthalene tetracarboxylic dianhydride, 2,3,5,6-pyridine tetracarboxylic dianhydride, 1,4,5,8-naphthalene tetracarboxylic dianhydride, 3,4,9,10-perylene tetracarboxylic dianhydride, m-terphenyl-3,3',4,4'-tetracarboxylic dianhydride, p-terphenyl-3,3',4,4'-tetracarboxylic dianhydride, 1,1,1,3,3,3-hexafluoro-2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 1,1,1,3,3,3-hexafluoro-2,2-bis (3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis{4'-(2,3-dicarboxyphenoxy)phenyl}propane dianhydride, 2,2-bis{4'-(3,4-dicarboxyphenoxy)phenyl}propane dianhydride, 1,1,1,3,3,3-hexa Examples include fluoro-2,2-bis{4'-(2,3-dicarboxyphenoxy)phenyl}propane dianhydride, 1,1,1,3,3,3-hexafluoro-2,2-bis{4'-(3,4-dicarboxyphenoxy)phenyl}propane dianhydride, 4,4'-oxydiphthalic dianhydride, 4,4'-sulfonyldiphthalic dianhydride, and 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride.
 構成単位(A)に占める構成単位(A1-1)の含有率及び構成単位(A)に占める構成単位(A1-2)の含有率は、それぞれ独立に、25モル%以上であることが好ましく、30モル%以上であることがより好ましく、40モル%以上であることがさらに好ましい。当該割合の上限値は特に制限はなく、上限は特に限定されず、100モル%でもよく、80モル%以下であってもよく、60モル%以下であってもよい。 The content of the structural unit (A1-1) in the structural unit (A) and the content of the structural unit (A1-2) in the structural unit (A) are each independently preferably 25 mol% or more, more preferably 30 mol% or more, and even more preferably 40 mol% or more. There is no particular upper limit to the proportions, and the upper limit is not particularly limited, and may be 100 mol%, 80 mol% or less, or 60 mol% or less.
 ポリイミド前駆体は、ジアミン化合物に由来する構成単位(B)を含む。構成単位(B)としては、ジアミン化合物に由来する構成を含んでいれば特に限定されず、芳香環を含んでいても、含んでいなくてもよく、硬化物としたときの耐久性の観点から、芳香環を含むことが好ましい。 The polyimide precursor contains a structural unit (B) derived from a diamine compound. There are no particular limitations on the structural unit (B) as long as it contains a structure derived from a diamine compound, and it may or may not contain an aromatic ring. From the viewpoint of durability when made into a cured product, it is preferable that the structural unit (B) contains an aromatic ring.
 構成単位(B)は、-NH-Y-NH-で表される構成単位を含むことが好ましい。Yは、2価の有機基である。
 Yで表される2価の有機基は、炭素数が6~25であることが好ましく、6~14であることがより好ましく、12~14であることがさらに好ましい。
 Yで表される2価の有機基は、2価の脂肪族基であってもよく、2価の芳香族基であってもよい。耐熱性及び高弾性の観点から、Yで表される2価の有機基は、2価の芳香族基であることが好ましい。
The structural unit (B) preferably contains a structural unit represented by the formula -NH-Y-NH-, where Y is a divalent organic group.
The divalent organic group represented by Y preferably has 6 to 25 carbon atoms, more preferably 6 to 14 carbon atoms, and even more preferably 12 to 14 carbon atoms.
The divalent organic group represented by Y may be a divalent aliphatic group or a divalent aromatic group. From the viewpoint of heat resistance and high elasticity, the divalent organic group represented by Y is preferably a divalent aromatic group.
 Yで表される2価の芳香族基の具体例としては、下記一般式(F)及び下記一般式(G)で表される基を挙げることができる。 Specific examples of the divalent aromatic group represented by Y include groups represented by the following general formula (F) and the following general formula (G).

 
 

 
 
 一般式(F)又は一般式(G)において、Rは、それぞれ独立に、アルキル基、アルコキシ基、ハロゲン化アルキル基又はフェニル基を表し、nは、それぞれ独立に、0~4の整数を表す。
 一般式(G)において、Dは、単結合、又は、アルキレン基、ハロゲン化アルキレン基、カルボニル基、スルホニル基、エーテル結合(-O-)、スルフィド結合(-S-)、シリレン結合(-Si(R-;Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表す。)、シロキサン結合(-O-(Si(R-O-);Rは、それぞれ独立に、水素原子、アルキル基又はフェニル基を表し、nは1又は2以上の整数を表す。)若しくはこれらを少なくとも2つ組み合わせた2価の基を表す。また、Dは、上記式(C1)で表される構造であってもよい。一般式(G)におけるDの具体例は、一般式(E)におけるCの具体例と同様である。
 一般式(G)におけるDとしては、単結合が好ましい。
In general formula (F) or general formula (G), each R independently represents an alkyl group, an alkoxy group, a halogenated alkyl group, or a phenyl group, and each n independently represents an integer of 0 to 4.
In general formula (G), D represents a single bond, or an alkylene group, a halogenated alkylene group, a carbonyl group, a sulfonyl group, an ether bond (-O-), a sulfide bond (-S-), a silylene bond (-Si(R A ) 2 -; R A each independently represents a hydrogen atom, an alkyl group, or a phenyl group), a siloxane bond (-O-(Si(R B ) 2 -O-) n ; R B each independently represents a hydrogen atom, an alkyl group, or a phenyl group, and n represents an integer of 1 or 2 or more), or a divalent group combining at least two of these. D may also be a structure represented by the above formula (C1). Specific examples of D in general formula (G) are the same as the specific examples of C in general formula (E).
D in formula (G) is preferably a single bond.
 一般式(F)又は一般式(G)におけるRで表されるアルキル基としては、炭素数が1~10のアルキル基であることが好ましく、炭素数が1~5のアルキル基であることがより好ましく、炭素数が1又は2のアルキル基であることがさらに好ましい。
 一般式(F)又は一般式(G)におけるRで表されるアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基等が挙げられる。
The alkyl group represented by R in general formula (F) or general formula (G) is preferably an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms, and further preferably an alkyl group having 1 or 2 carbon atoms.
Specific examples of the alkyl group represented by R in general formula (F) or general formula (G) include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an s-butyl group, and a t-butyl group.
 一般式(F)又は一般式(G)におけるRで表されるアルコキシ基としては、炭素数が1~10のアルコキシ基であることが好ましく、炭素数が1~5のアルコキシ基であることがより好ましく、炭素数が1又は2のアルコキシ基であることがさらに好ましい。
 一般式(F)又は一般式(G)におけるRで表されるアルコキシ基の具体例としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、s-ブトキシ基、t-ブトキシ基等が挙げられる。
The alkoxy group represented by R in the general formula (F) or the general formula (G) is preferably an alkoxy group having 1 to 10 carbon atoms, more preferably an alkoxy group having 1 to 5 carbon atoms, and further preferably an alkoxy group having 1 or 2 carbon atoms.
Specific examples of the alkoxy group represented by R in the general formula (F) or (G) include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, an s-butoxy group, and a t-butoxy group.
 一般式(F)又は一般式(G)におけるRで表されるハロゲン化アルキル基としては、炭素数が1~5のハロゲン化アルキル基であることが好ましく、炭素数が1~3のハロゲン化アルキル基であることがより好ましく、炭素数が1又は2のハロゲン化アルキル基であることがさらに好ましい。
 一般式(F)又は一般式(G)におけるRで表されるハロゲン化アルキル基の具体例としては、一般式(F)又は一般式(G)におけるRで表されるアルキル基に含まれる少なくとも1つの水素原子がフッ素原子、塩素原子等のハロゲン原子で置換されたアルキル基が挙げられる。これらの中でも、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基等が好ましい。
The halogenated alkyl group represented by R in the general formula (F) or (G) is preferably a halogenated alkyl group having 1 to 5 carbon atoms, more preferably a halogenated alkyl group having 1 to 3 carbon atoms, and further preferably a halogenated alkyl group having 1 or 2 carbon atoms.
Specific examples of the halogenated alkyl group represented by R in general formula (F) or general formula (G) include alkyl groups in which at least one hydrogen atom contained in the alkyl group represented by R in general formula (F) or general formula (G) is substituted with a halogen atom such as a fluorine atom or a chlorine atom. Among these, a fluoromethyl group, a difluoromethyl group, a trifluoromethyl group, etc. are preferred.
 一般式(F)又は一般式(G)におけるnは、それぞれ独立に、0~2が好ましく、0又は1がより好ましく、0がさらに好ましい。 In general formula (F) or general formula (G), n is preferably 0 to 2, more preferably 0 or 1, and even more preferably 0.
 Yで表される2価の脂肪族基の具体例としては、直鎖状又は分岐鎖状のアルキレン基、シクロアルキレン基、ポリアルキレンオキサイド構造を有する2価の基、ポリシロキサン構造を有する2価の基等が挙げられる。 Specific examples of the divalent aliphatic group represented by Y include linear or branched alkylene groups, cycloalkylene groups, divalent groups having a polyalkylene oxide structure, and divalent groups having a polysiloxane structure.
 Yで表される直鎖状又は分岐鎖状のアルキレン基としては、炭素数が1~20のアルキレン基であることが好ましく、炭素数が1~15のアルキレン基であることがより好ましく、炭素数が1~10のアルキレン基であることがさらに好ましい。
 Yで表されるアルキレン基の具体例としては、テトラメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、2-メチルペンタメチレン基、2-メチルヘキサメチレン基、2-メチルヘプタメチレン基、2-メチルオクタメチレン基、2-メチルノナメチレン基、2-メチルデカメチレン基等が挙げられる。
The linear or branched alkylene group represented by Y is preferably an alkylene group having 1 to 20 carbon atoms, more preferably an alkylene group having 1 to 15 carbon atoms, and even more preferably an alkylene group having 1 to 10 carbon atoms.
Specific examples of the alkylene group represented by Y include a tetramethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nonamethylene group, a decamethylene group, an undecamethylene group, a dodecamethylene group, a 2-methylpentamethylene group, a 2-methylhexamethylene group, a 2-methylheptamethylene group, a 2-methyloctamethylene group, a 2-methylnonamethylene group, and a 2-methyldecamethylene group.
 Yで表されるシクロアルキレン基としては、炭素数が3~10のシクロアルキレン基であることが好ましく、炭素数が3~6のシクロアルキレン基であることがより好ましい。
 Yで表されるシクロアルキレン基の具体例としては、シクロプロピレン基、シクロヘキシレン基等が挙げられる。
The cycloalkylene group represented by Y is preferably a cycloalkylene group having 3 to 10 carbon atoms, and more preferably a cycloalkylene group having 3 to 6 carbon atoms.
Specific examples of the cycloalkylene group represented by Y include a cyclopropylene group, a cyclohexylene group, and the like.
 Yで表されるポリアルキレンオキサイド構造を有する2価の基に含まれる単位構造としては、炭素数1~10のアルキレンオキサイド構造が好ましく、炭素数1~8のアルキレンオキサイド構造がより好ましく、炭素数1~4のアルキレンオキサイド構造がさらに好ましい。なかでも、ポリアルキレンオキサイド構造としてはポリエチレンオキサイド構造又はポリプロピレンオキサイド構造が好ましい。アルキレンオキサイド構造中のアルキレン基は直鎖状であっても分岐状であってもよい。ポリアルキレンオキサイド構造中の単位構造は1種類でもよく、2種類以上であってもよい。 The unit structure contained in the divalent group having a polyalkylene oxide structure represented by Y is preferably an alkylene oxide structure having 1 to 10 carbon atoms, more preferably an alkylene oxide structure having 1 to 8 carbon atoms, and even more preferably an alkylene oxide structure having 1 to 4 carbon atoms. Of these, the polyalkylene oxide structure is preferably a polyethylene oxide structure or a polypropylene oxide structure. The alkylene group in the alkylene oxide structure may be linear or branched. The unit structure in the polyalkylene oxide structure may be of one type or two or more types.
 Yで表されるポリシロキサン構造を有する2価の基としては、ポリシロキサン構造中のケイ素原子が水素原子、炭素数1~20のアルキル基又は炭素数6~18のアリール基と結合しているポリシロキサン構造を有する2価の基が挙げられる。
 ポリシロキサン構造中のケイ素原子と結合する炭素数1~20のアルキル基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、n-オクチル基、2-エチルヘキシル基、n-ドデシル基等が挙げられる。これらの中でも、メチル基が好ましい。
 ポリシロキサン構造中のケイ素原子と結合する炭素数6~18のアリール基は、無置換でも置換基で置換されていてもよい。アリール基が置換基を有する場合の置換基の具体例としては、ハロゲン原子、アルコキシ基、ヒドロキシ基等が挙げられる。炭素数6~18のアリール基の具体例としては、フェニル基、ナフチル基、ベンジル基等が挙げられる。これらの中でも、フェニル基が好ましい。
 ポリシロキサン構造中の炭素数1~20のアルキル基又は炭素数6~18のアリール基は、1種類でもよく、2種類以上であってもよい。
 Yで表されるポリシロキサン構造を有する2価の基を構成するケイ素原子は、メチレン基、エチレン基等のアルキレン基、フェニレン基等のアリーレン基などを介して一般式(6)中のNH基と結合していてもよい。
Examples of the divalent group having a polysiloxane structure represented by Y include divalent groups having a polysiloxane structure in which a silicon atom in the polysiloxane structure is bonded to a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 18 carbon atoms.
Specific examples of the alkyl group having 1 to 20 carbon atoms bonded to a silicon atom in the polysiloxane structure include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a t-butyl group, an n-octyl group, a 2-ethylhexyl group, an n-dodecyl group, etc. Among these, a methyl group is preferable.
The aryl group having 6 to 18 carbon atoms bonded to the silicon atom in the polysiloxane structure may be unsubstituted or substituted with a substituent. Specific examples of the substituent when the aryl group has a substituent include a halogen atom, an alkoxy group, and a hydroxy group. Specific examples of the aryl group having 6 to 18 carbon atoms include a phenyl group, a naphthyl group, and a benzyl group. Of these, a phenyl group is preferred.
The alkyl group having 1 to 20 carbon atoms or the aryl group having 6 to 18 carbon atoms in the polysiloxane structure may be of one type or of two or more types.
The silicon atom constituting the divalent group having a polysiloxane structure represented by Y may be bonded to the NH group in general formula (6) via an alkylene group such as a methylene group or an ethylene group, or an arylene group such as a phenylene group.
 構成単位(B)のジアミン化合物としては、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、2,2’-ジフルオロ-4,4’-ジアミノビフェニル、p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、m-キシリレンジアミン、1,5-ジアミノナフタレン、ベンジジン、2,2’-ビス(トリフルオロメチル)ベンジジン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、2,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、2,4’-ジアミノジフェニルスルホン、2,2’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、2,4’-ジアミノジフェニルスルフィド、2,2’-ジアミノジフェニルスルフィド、o-トリジン、o-トリジンスルホン、4,4’-メチレンビス(2,6-ジエチルアニリン)、4,4’-メチレンビス(2,6-ジイソプロピルアニリン)、2,4-ジアミノメシチレン、1,5-ジアミノナフタレン、4,4’-ベンゾフェノンジアミン、ビス-{4-(4’-アミノフェノキシ)フェニル}スルホン、2,2-ビス{4-(4’-アミノフェノキシ)フェニル}プロパン、3,3’-ジメチル-4,4’-ジアミノジフェニルメタン、3,3’,5,5’-テトラメチル-4,4’-ジアミノジフェニルメタン、ビス{4-(3’-アミノフェノキシ)フェニル}スルホン、2,2-ビス(4-アミノフェニル)プロパン、9,9-ビス(4-アミノフェニル)フルオレン、1,4-ジアミノブタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカン、2-メチル-1,5-ジアミノペンタン、2-メチル-1,6-ジアミノヘキサン、2-メチル-1,7-ジアミノヘプタン、2-メチル-1,8-ジアミノオクタン、2-メチル-1,9-ジアミノノナン、2-メチル-1,10-ジアミノデカン、1,4-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、ジアミノポリシロキサン等が挙げられる。
 ジアミン化合物は、1種を単独で用いても2種以上を併用してもよい。
Examples of the diamine compound of the structural unit (B) include 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl, 2,2'-difluoro-4,4'-diaminobiphenyl, p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, m-xylylenediamine, 1,5-diaminonaphthalene, benzidine, 2,2'-bis(trifluoromethyl)benzidine, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 2,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 2,4'-diaminodiphenyl sulfone, 2,2'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfide, 3,4'-diaminodiphenyl sulfide, 3,3'-diaminodiphenyl sulfide, 2,4'-diaminodiphenyl sulfide, 2,2'-diaminodiphenyl sulfide, o-tolidine, o-tolidine sulfone, 4,4'-methylenebis(2,6-diethylaniline), 4,4'-methylenebis(2,6-di isopropylaniline), 2,4-diaminomesitylene, 1,5-diaminonaphthalene, 4,4'-benzophenonediamine, bis-{4-(4'-aminophenoxy)phenyl}sulfone, 2,2-bis{4-(4'-aminophenoxy)phenyl}propane, 3,3'-dimethyl-4,4'-diaminodiphenylmethane, 3,3',5,5'-tetramethyl-4,4'-diaminodiphenylmethane, bis{4-(3'-aminophenoxy)phenyl}sulfone, 2,2-bis(4-aminophenyl)propane, 9,9-bis(4-aminophenyl)fluorene, 1,4-diamino Nobutane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, 2-methyl-1,5-diaminopentane, 2-methyl-1,6-diaminohexane, 2-methyl-1,7-diaminoheptane, 2-methyl-1,8-diaminooctane, 2-methyl-1,9-diaminononane, 2-methyl-1,10-diaminodecane, 1,4-cyclohexanediamine, 1,3-cyclohexanediamine, diaminopolysiloxane, and the like.
The diamine compounds may be used alone or in combination of two or more kinds.
 ポリイミド前駆体は、例えば、下記一般式(6)で表される構成単位を有する化合物を含んでいてもよい。 The polyimide precursor may contain, for example, a compound having a structural unit represented by the following general formula (6):

 
 

 
 
 一般式(6)中、Xは4価の有機基を表し、Yは2価の有機基を表す。R及びRは、それぞれ独立に、水素原子、下記一般式(7)で表される基、又は炭素数1~4の脂肪族炭化水素基であり、Xで表される4価の有機基は、芳香環を含まないか、芳香環を含む場合には芳香環は4つのカルボニル基に結合していない。一般式(6)で表される構成単位を有する化合物が不飽和二重結合を有するポリアミック酸エステルである場合、R及びRの少なくとも一方が、下記一般式(7)で表される基であることが好ましい。 In general formula (6), X represents a tetravalent organic group, and Y represents a divalent organic group. R 6 and R 7 are each independently a hydrogen atom, a group represented by the following general formula (7), or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and the tetravalent organic group represented by X does not contain an aromatic ring, or if it contains an aromatic ring, the aromatic ring is not bonded to four carbonyl groups. When the compound having a constitutional unit represented by general formula (6) is a polyamic acid ester having an unsaturated double bond, it is preferable that at least one of R 6 and R 7 is a group represented by the following general formula (7).

 
 

 
 
 一般式(7)中、R~R10は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基を表し、qは1~10の整数を表す。 In formula (7), R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms; q represents an integer of 1 to 10.
 一般式(6)におけるR及びRで表される脂肪族炭化水素基の炭素数は、1~4であり、1又は2であることが好ましい。R及びRで表される脂肪族炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。 The number of carbon atoms in the aliphatic hydrocarbon group represented by R6 and R7 in general formula (6) is 1 to 4, and preferably 1 or 2. Specific examples of the aliphatic hydrocarbon group represented by R6 and R7 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and the like.
 一般式(6)においては、R及びRの少なくとも一方が、前記一般式(7)で表される基であってもよく、R及びRの両方が前記一般式(7)で表される基であってもよい。 In the general formula (6), at least one of R 6 and R 7 may be a group represented by the general formula (7), or both of R 6 and R 7 may be a group represented by the general formula (7).
 一般式(7)におけるR~R10で表される脂肪族炭化水素基の炭素数は1~3であり、1又は2であることが好ましい。R~R10で表される脂肪族炭化水素基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基等が挙げられ、メチル基が好ましい。 The carbon number of the aliphatic hydrocarbon group represented by R 8 to R 10 in general formula (7) is 1 to 3, and preferably 1 or 2. Specific examples of the aliphatic hydrocarbon group represented by R 8 to R 10 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, etc., and a methyl group is preferred.
 一般式(7)におけるR~R10の組み合わせとしては、R及びRが水素原子であり、R10が水素原子又はメチル基の組み合わせが好ましい。 As a combination of R 8 to R 10 in the general formula (7), a combination in which R 8 and R 9 are hydrogen atoms and R 10 is a hydrogen atom or a methyl group is preferred.
 一般式(7)におけるqは1~10の整数であることが好ましく、2~5の整数であることがより好ましく、2又は3であることがさらに好ましい。 In general formula (7), q is preferably an integer from 1 to 10, more preferably an integer from 2 to 5, and even more preferably 2 or 3.
 一般式(6)におけるYは、構成単位(B)で説明したYと同義である。
 一般式(6)におけるXは、構成単位(A1-1)及び(A1-2)で説明した連結基及び複合連結基が挙げられる。
In formula (6), Y has the same meaning as Y explained in relation to the structural unit (B).
X in the general formula (6) may be any of the linking groups and composite linking groups described in relation to the structural units (A1-1) and (A1-2).
 一般式(6)において、Xで表される4価の有機基は、炭素数が4~25であることが好ましく、4~13であることがより好ましく、6~12であることがさらに好ましい。 In general formula (6), the tetravalent organic group represented by X preferably has 4 to 25 carbon atoms, more preferably 4 to 13 carbon atoms, and even more preferably 6 to 12 carbon atoms.
 Xで表される4価の有機基は、芳香環を含んでもよい。Xが芳香環を含む場合、当該芳香環は、4つのカルボニル基に結合していない。 The tetravalent organic group represented by X may contain an aromatic ring. If X contains an aromatic ring, the aromatic ring is not bonded to four carbonyl groups.
 一般式(6)において、Xの具体例としては、下記で表される基を挙げることができるが、本開示は下記具体例に限定されるものではない。 In general formula (6), specific examples of X include the groups shown below, but the present disclosure is not limited to the specific examples below.
 Xがテトラカルボン酸二無水物由来の残基に該当する場合、当該残基の元となるテトラカルボン酸二無水物の具体例としては、構成単位(A1-1)及び(A1-2)で例示したテトラカルボン酸二無水物が挙げられる。 When X corresponds to a residue derived from a tetracarboxylic dianhydride, specific examples of the tetracarboxylic dianhydride that is the source of the residue include the tetracarboxylic dianhydrides exemplified for the structural units (A1-1) and (A1-2).
 一般式(6)において、-COOR基と-CONH-基とは互いにオルト位置にあり、-COOR基と-CO-基とは互いにオルト位置にあることが好ましい。 In formula (6), it is preferred that the --COOR 6 group and the --CONH-- group are in the ortho position relative to each other, and the --COOR 7 group and the --CO-- group are in the ortho position relative to each other.
 ポリイミド前駆体に含まれる化合物は、一般式(6)で表される構成単位に加えて、下記一般式(6-1)で表される構成単位をさらに有してもよい。 The compound contained in the polyimide precursor may further have a structural unit represented by the following general formula (6-1) in addition to the structural unit represented by the general formula (6).
 一般式(6-1)中、Xは4価の有機基を表し、Yは2価の有機基を表す。R及びRは、それぞれ独立に、水素原子、下記一般式(7)で表される基、又は炭素数1~4の脂肪族炭化水素基であり、R及びRの少なくとも一方が、下記一般式(7)で表される基であり、Xで表される4価の有機基は芳香環を含む。一般式(6-1)中の4つのカルボニル基は、Xに含まれる芳香環と結合することが好ましく、一般式(6-1)中の2つのカルボニル基はXに含まれる1つの芳香環(第1の芳香環)と結合し、残り2つのカルボニル基はXに含まれる他の1つの芳香環(第2の芳香環)と結合していることがより好ましい。 In the general formula (6-1), X 1 represents a tetravalent organic group, and Y represents a divalent organic group. R 6 and R 7 are each independently a hydrogen atom, a group represented by the following general formula (7), or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and at least one of R 6 and R 7 is a group represented by the following general formula (7), and the tetravalent organic group represented by X 1 contains an aromatic ring. It is preferable that the four carbonyl groups in the general formula (6-1) are bonded to the aromatic ring contained in X 1 , and it is more preferable that the two carbonyl groups in the general formula (6-1) are bonded to one aromatic ring (first aromatic ring) contained in X 1 , and the remaining two carbonyl groups are bonded to another aromatic ring (second aromatic ring) contained in X 1 .
 一般式(6-1)におけるY、R、Rは、一般式(6)におけるY、R、Rと、それぞれ同義である。 Y, R 6 and R 7 in formula (6-1) have the same meanings as Y, R 6 and R 7 in formula (6), respectively.
 一般式(6-1)中のXの具体例としては、構成単位(A2)で説明した一般式(A)~一般式(E)を挙げることができる。 Specific examples of X1 in the general formula (6-1) include the general formulae (A) to (E) described in relation to the structural unit (A2).
 Xがテトラカルボン酸二無水物由来の残基に該当する場合、当該残基の元となるテトラカルボン酸二無水物の具体例としては、構成単位(A2)で説明したテトラカルボン酸二無水物が挙げられる。 When X corresponds to a residue derived from a tetracarboxylic dianhydride, specific examples of the tetracarboxylic dianhydride that is the source of the residue include the tetracarboxylic dianhydrides described in relation to the structural unit (A2).
 ポリイミド前駆体は、一般式(6)及び一般式(6-1)以外のその他の構成単位を有していてもよい。 The polyimide precursor may have other structural units in addition to general formula (6) and general formula (6-1).
 ポリイミド前駆体は、一般式(6)で表される構成単位(以下、構成単位1とも称する。)及び一般式(6-1)で表される構成単位(以下、構成単位2とも称する。)を含んでいてもよい。さらに、ポリイミド前駆体では、構成単位1の比率は、構成単位1及び構成単位2の合計に対して、25モル%以上であることが好ましく、30モル%以上であることがより好ましく、40モル%以上であることがさらに好ましい。当該割合の上限値は特に制限はなく、上限は特に限定されず、100モル%でもよく、80モル%以下であってもよく、60モル%以下であってもよい。 The polyimide precursor may contain a structural unit represented by general formula (6) (hereinafter also referred to as structural unit 1) and a structural unit represented by general formula (6-1) (hereinafter also referred to as structural unit 2). Furthermore, in the polyimide precursor, the ratio of structural unit 1 to the total of structural units 1 and 2 is preferably 25 mol% or more, more preferably 30 mol% or more, and even more preferably 40 mol% or more. There is no particular upper limit to this ratio, and the upper limit is not particularly limited, and it may be 100 mol%, 80 mol% or less, or 60 mol% or less.
 ポリイミド前駆体は、構成単位(A)及び構成単位(B)を含み、かつ主鎖末端に不揮発性架橋基を有する化合物を含む。 The polyimide precursor includes a compound that contains structural unit (A) and structural unit (B) and has a nonvolatile crosslinking group at the end of the main chain.
 不揮発性架橋基は、ポリイミド前駆体に含まれる化合物の主鎖末端に位置し、加熱、乾燥等により揮発しない架橋反応可能な官能基である。不揮発性架橋基は、不飽和二重結合を含む官能基であってもよい。 The non-volatile crosslinking group is a functional group capable of crosslinking reaction that is located at the end of the main chain of the compound contained in the polyimide precursor and does not volatilize due to heating, drying, etc. The non-volatile crosslinking group may be a functional group that contains an unsaturated double bond.
 ポリイミド前駆体に含まれる化合物の主鎖末端に不揮発性架橋基を形成する際に用いる化合物(以下、不揮発性架橋基形成化合物ともいう。)としては、例えば、無水マレイン酸、5-ノルボルネン-2,3-ジカルボン酸無水物、無水イタコン酸、無水メタクリル酸、2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリレート、4-エチニル無水フタル酸、4-ビニル無水フタル酸、ジt-ブチルジカーボネート等が挙げられる。これらの化合物が、ジアミン化合物に由来するアミノ基と反応することで主鎖末端に不揮発性架橋基を有する化合物が得られる。
 不揮発性架橋基形成化合物としては、高温(例えば、350℃)にてポリイミド前駆体又はこれを含む樹脂組成物を硬化した際、硬化物の応力低減の観点から、無水マレイン酸及び5-ノルボルネン-2,3-ジカルボン酸無水物が好ましく、特に光重合開始剤を使用して硬化物を作製したときの硬化物の応力低減の観点から、無水マレイン酸がより好ましい。
 不揮発性架橋基形成化合物は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Examples of compounds used when forming a nonvolatile crosslinking group at the main chain end of a compound contained in a polyimide precursor (hereinafter also referred to as a nonvolatile crosslinking group forming compound) include maleic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, itaconic anhydride, methacrylic anhydride, 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl acrylate, 4-ethynylphthalic anhydride, 4-vinylphthalic anhydride, di-t-butyl dicarbonate, etc. These compounds react with amino groups derived from a diamine compound to obtain a compound having a nonvolatile crosslinking group at the main chain end.
As the non-volatile crosslinking group-forming compound, from the viewpoint of reducing stress in the cured product when the polyimide precursor or a resin composition containing the polyimide precursor is cured at high temperature (e.g., 350°C), maleic anhydride and 5-norbornene-2,3-dicarboxylic acid anhydride are preferred, and from the viewpoint of reducing stress in the cured product when the cured product is produced using a photopolymerization initiator in particular, maleic anhydride is more preferred.
The non-volatile crosslinking group-forming compounds may be used alone or in combination of two or more.
 ポリイミド前駆体は、テトラカルボン酸二無水物と、ジアミン化合物と、不揮発性架橋基形成化合物と、を用いて合成されたものであってもよく、化学式(A-1)~化学式(A-6)で表される化合物の内の少なくとも1つであるテトラカルボン酸二無水物と、前述の構成単位(A2)のテトラカルボン酸二無水物と、ジアミン化合物と、不揮発性架橋基形成化合物と、を用いて合成されたものであってもよい。なお、ポリイミド前駆体は、テトラカルボン酸二無水物に替えて、テトラカルボン酸を用いて合成されたものであってもよい。 The polyimide precursor may be synthesized using a tetracarboxylic dianhydride, a diamine compound, and a non-volatile cross-linking group-forming compound, or may be synthesized using a tetracarboxylic dianhydride that is at least one of the compounds represented by chemical formulas (A-1) to (A-6), a tetracarboxylic dianhydride of the aforementioned structural unit (A2), a diamine compound, and a non-volatile cross-linking group-forming compound. Note that the polyimide precursor may be synthesized using a tetracarboxylic acid instead of a tetracarboxylic dianhydride.
 ポリアミック酸は、例えば、テトラカルボン酸二無水物と、ジアミン化合物と、不揮発性架橋基形成化合物とを有機溶剤中にて反応させることで得ることが可能である。
 ポリアミック酸エステルは、例えば、以下の(1)又は(2)の方法で得ることができる。
(1)テトラカルボン酸二無水物と、R-OHで表される化合物と、を有機溶剤中にて反応させジエステル誘導体とした後、ジエステル誘導体とジアミン化合物と、不揮発性架橋基形成化合物とを反応させる。
(2)テトラカルボン酸二無水物と、ジアミン化合物と、不揮発性架橋基形成化合物とを有機溶剤中にて反応させポリアミック酸を得て、当該ポリアミック酸を含む有機溶剤中にR-OHで表される化合物を加え、当該有機溶剤中で反応させエステル基を導入する。
 R-OHで表される化合物におけるRは、一般式(7)で表される基、又は炭素数1~4の脂肪族炭化水素基を表し、具体例及び好ましい例は、一般式(6)におけるR及びRの場合と同様である。
The polyamic acid can be obtained, for example, by reacting a tetracarboxylic dianhydride, a diamine compound, and a non-volatile cross-linking group-forming compound in an organic solvent.
The polyamic acid ester can be obtained, for example, by the following method (1) or (2).
(1) A tetracarboxylic dianhydride is reacted with a compound represented by R—OH in an organic solvent to form a diester derivative, and then the diester derivative is reacted with a diamine compound and a non-volatile crosslinking group-forming compound.
(2) A tetracarboxylic dianhydride, a diamine compound, and a non-volatile cross-linking group-forming compound are reacted in an organic solvent to obtain a polyamic acid, and a compound represented by R-OH is added to the organic solvent containing the polyamic acid, and an ester group is introduced by reacting them in the organic solvent.
R in the compound represented by R-OH represents a group represented by general formula (7) or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and specific and preferred examples are the same as those of R6 and R7 in general formula (6).
 また、ポリアミック酸エステルは、テトラカルボン酸二無水物にR-OHで表される化合物を作用させてジエステル誘導体とした後、塩化チオニル等の塩素化剤を作用させて酸クロリドに変換し、次いで、ジアミン化合物と酸クロリドと不揮発性架橋基形成化合物とを反応させることで得ることができる。
 さらに、ポリアミック酸エステルは、テトラカルボン酸二無水物にR-OHで表される化合物を作用させてジエステル誘導体とした後、カルボジイミド化合物の存在下でジアミン化合物とジエステル誘導体と不揮発性架橋基形成化合物を反応させることで得ることができる。
 さらに、ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミン化合物とを反応させてポリアミック酸とした後、トリフルオロ酢酸無水物の存在下でポリアミック酸をイソイミド化し、次いでR-OHで表される化合物及び不揮発性架橋基形成化合物を作用させて得ることができる。この場合、テトラカルボン酸二無水物の一部に予めR-OHで表される化合物を作用させて、部分的にエステル化されたテトラカルボン酸二無水物とジアミン化合物とを反応させてポリアミック酸としてもよい。
Also, a polyamic acid ester can be obtained by reacting a compound represented by R-OH with a tetracarboxylic dianhydride to form a diester derivative, then reacting the diester with a chlorinating agent such as thionyl chloride to convert it to an acid chloride, and then reacting a diamine compound, the acid chloride, and a non-volatile crosslinking group-forming compound.
Furthermore, the polyamic acid ester can be obtained by reacting a compound represented by R-OH with a tetracarboxylic dianhydride to form a diester derivative, and then reacting the diamine compound, the diester derivative, and a non-volatile crosslinking group-forming compound in the presence of a carbodiimide compound.
Furthermore, the polyamic acid ester can be obtained by reacting a tetracarboxylic dianhydride with a diamine compound to form a polyamic acid, isoimidizing the polyamic acid in the presence of trifluoroacetic anhydride, and then reacting the compound represented by R-OH and a non-volatile crosslinking group forming compound. In this case, the compound represented by R-OH may be reacted in advance with a part of the tetracarboxylic dianhydride, and the partially esterified tetracarboxylic dianhydride may be reacted with the diamine compound to form a polyamic acid.
 ポリアミック酸エステルの合成に用いられるR-OHで表される化合物としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、メタクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシエチル等が挙げられる。 Compounds represented by R-OH that are used in the synthesis of polyamic acid esters include methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, etc.
 ポリイミド前駆体の合成において、テトラカルボン酸二無水物の使用量と不揮発性架橋基形成化合物の使用量とのモル比率(テトラカルボン酸二無水物:不揮発性架橋基形成化合物)は、0.7:0.3~0.95:0.05であってもよく、0.75:0.25~0.95:0.05であってもよく、0.8:0.2~0.9:0.1であってもよい。 In the synthesis of the polyimide precursor, the molar ratio of the amount of tetracarboxylic dianhydride used to the amount of non-volatile cross-linking group-forming compound used (tetracarboxylic dianhydride: non-volatile cross-linking group-forming compound) may be 0.7:0.3 to 0.95:0.05, 0.75:0.25 to 0.95:0.05, or 0.8:0.2 to 0.9:0.1.
 ポリイミド前駆体の合成において、テトラカルボン酸二無水物及び不揮発性架橋基形成化合物の合計使用量と、ジアミン化合物の使用量とのモル比率(テトラカルボン酸二無水物及び不揮発性架橋基形成化合物:ジアミン化合物)は、1.0:0.75~1.0:1.0であってもよく、1.0:0.8~1.0:0.95であってもよく、1.0:0.85~1:0.95であってもよい。 In the synthesis of the polyimide precursor, the molar ratio of the total amount of the tetracarboxylic dianhydride and the non-volatile cross-linking group-forming compound used to the amount of the diamine compound used (tetracarboxylic dianhydride and the non-volatile cross-linking group-forming compound:diamine compound) may be 1.0:0.75 to 1.0:1.0, 1.0:0.8 to 1.0:0.95, or 1.0:0.85 to 1:0.95.
 テトラカルボン酸二無水物、ジアミン化合物、不揮発性架橋基形成化合物及びR-OHで表される化合物は、各々、1種単独で用いてもよく、2種以上を組み合わせてもよい。 The tetracarboxylic dianhydride, diamine compound, non-volatile crosslinking group-forming compound, and compound represented by R-OH may each be used alone or in combination of two or more.
 ポリイミド前駆体の分子量には特に制限はなく、例えば、重量平均分子量で10,000~200,000であってもよく、20,000~150,000であってもよく、30,000~100,000であってもよい。
 重量平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー法によって測定することができ、標準ポリスチレン検量線を用いて換算することによって求めることができる。
The molecular weight of the polyimide precursor is not particularly limited, and may be, for example, 10,000 to 200,000, 20,000 to 150,000, or 30,000 to 100,000 in weight average molecular weight.
The weight average molecular weight can be measured, for example, by gel permeation chromatography, and can be calculated using a standard polystyrene calibration curve.
 ポリイミド前駆体の重量平均分子量は、低応力の硬化物を得る観点から、10,000以上であってもよく、20,000以上であってもよく、30,000以上であってもよく、40,000以上であってもよい。
 ポリイミド前駆体の重量平均分子量は、リソグラフィプロセスでの現像性及びパターン解像性の観点から、100,000以下であってもよく、60,000以下であってもよく、50,000以下であってもよく、30,000以下であってもよい。
From the viewpoint of obtaining a cured product with low stress, the weight average molecular weight of the polyimide precursor may be 10,000 or more, 20,000 or more, 30,000 or more, or 40,000 or more.
The weight average molecular weight of the polyimide precursor may be 100,000 or less, 60,000 or less, 50,000 or less, or 30,000 or less, from the viewpoints of developability and pattern resolution in a lithography process.
<樹脂組成物>
 本開示の樹脂組成物は、本開示のポリイミド前駆体を含む。樹脂組成物は、本開示のポリイミド前駆体以外のその他の成分を含んでいてもよい。その他の成分としては、例えば、本開示のポリイミド前駆体以外の樹脂成分、重合性モノマー、光重合開始剤、熱重合開始剤、溶剤、増感剤、安定剤、カップリング剤、界面活性剤、レベリング剤及び防錆剤が挙げられる。
<Resin Composition>
The resin composition of the present disclosure includes the polyimide precursor of the present disclosure. The resin composition may include other components other than the polyimide precursor of the present disclosure. Examples of the other components include resin components other than the polyimide precursor of the present disclosure, polymerizable monomers, photopolymerization initiators, thermal polymerization initiators, solvents, sensitizers, stabilizers, coupling agents, surfactants, leveling agents, and rust inhibitors.
 重合性モノマーとしては、(メタ)アクリル基を有する重合性モノマー、スチレン、ジビニルベンゼン、4-ビニルトルエン、4-ビニルピリジン、N-ビニルピロリドン、メチレンビスアクリルアミド、N,N-ジメチルアクリルアミド及びN-メチロールアクリルアミド等が挙げられる。 Polymerizable monomers include polymerizable monomers having a (meth)acrylic group, styrene, divinylbenzene, 4-vinyltoluene, 4-vinylpyridine, N-vinylpyrrolidone, methylenebisacrylamide, N,N-dimethylacrylamide, and N-methylolacrylamide.
 光重合開始剤としては、ベンゾフェノン誘導体、アセトフェノン誘導体、チオキサントン誘導体、ベンジル誘導体、ベンゾイン誘導体、オキシム誘導体、N-アリールグリシン類;過酸化物類;芳香族ビイミダゾール類;アシルホスフィンオキサイド誘導体、Irgacure OXE03(BASF社製)、Irgacure OXE04(BASF社製)等が挙げられる。
 これらの中でも、金属元素を含まず、且つ反応性が高く高感度の観点からオキシム誘導体が好ましい。例えば、オキシム誘導体としては、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-ベンゾイル)オキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(o-ベンゾイル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(o-ベンゾイルオキシム)(例えば、Irgacure OXE01)等のオキシム誘導体を使用してもよい。
Examples of the photopolymerization initiator include benzophenone derivatives, acetophenone derivatives, thioxanthone derivatives, benzyl derivatives, benzoin derivatives, oxime derivatives, N-arylglycines; peroxides; aromatic biimidazoles; acylphosphine oxide derivatives, Irgacure OXE03 (manufactured by BASF Corporation), and Irgacure OXE04 (manufactured by BASF Corporation).
Among these, oxime derivatives are preferred from the viewpoint of not containing a metal element, having high reactivity and high sensitivity. For example, examples of the oxime derivatives that can be used include 1-phenyl-1,2-butanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-benzoyl)oxime, 1,3-diphenylpropanetrione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-3-ethoxypropanetrione-2-(o-benzoyl)oxime, and 1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(o-benzoyloxime) (e.g., Irgacure OXE01).
 溶剤としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、酢酸ベンジル、n-ブチルアセテート、エトキシエチルプロピオネート、メチル3-メトキシプロピオネート、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホリルアミド、テトラメチレンスルホン、シクロヘキサノン、シクロペンタノン、ジエチルケトン、ジイソブチルケトン、メチルアミルケトン、N-ジメチルモルホリン、3-メトキシ-N,N-ジメチルプロパンアミド等が挙げられ、樹脂組成物に含まれる各成分を充分に溶解できるものであれば特に制限はない。 Solvents include N-methyl-2-pyrrolidone, γ-butyrolactone, ethyl lactate, propylene glycol monomethyl ether acetate, benzyl acetate, n-butyl acetate, ethoxyethyl propionate, methyl 3-methoxypropionate, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, hexamethylphosphorylamide, tetramethylene sulfone, cyclohexanone, cyclopentanone, diethyl ketone, diisobutyl ketone, methyl amyl ketone, N-dimethylmorpholine, 3-methoxy-N,N-dimethylpropanamide, etc., and there are no particular limitations as long as they can sufficiently dissolve each component contained in the resin composition.
 本開示の樹脂組成物は、感光性樹脂組成物であってもよく、加熱により硬化する熱硬化性樹脂組成物であってもよい。
 本開示の樹脂組成物は、例えば、光照射、加熱等により硬化物が得られる組成物であってもよい。樹脂組成物が感光性樹脂組成物である場合、当該感光性樹脂組成物を用いてパターン硬化物を形成してもよい。
The resin composition of the present disclosure may be a photosensitive resin composition, or may be a thermosetting resin composition that is cured by heating.
The resin composition of the present disclosure may be, for example, a composition that can provide a cured product by irradiation with light, heating, etc. When the resin composition is a photosensitive resin composition, a patterned cured product may be formed using the photosensitive resin composition.
<硬化物>
 本開示の樹脂組成物から得られる硬化物は、層間絶縁膜、カバーコート層又は表面保護膜として用いることができる。さらには、硬化物は、パッシベーション膜、バッファーコート膜等として用いることができる。
 上記パッシベーション膜、バッファーコート膜、層間絶縁膜、カバーコート層及び表面保護膜等からなる群より選択される1以上を用いて、信頼性の高い、半導体装置、多層配線板、各種電子デバイス、積層デバイス(マルチダイファンアウトウエハレベルパッケージ等)等の電子部品などを製造することができる。
<Cured Product>
The cured product obtained from the resin composition of the present disclosure can be used as an interlayer insulating film, a cover coat layer, or a surface protective film. Furthermore, the cured product can be used as a passivation film, a buffer coat film, etc.
Using one or more selected from the group consisting of the above passivation films, buffer coat films, interlayer insulating films, cover coat layers, and surface protection films, etc., highly reliable electronic components such as semiconductor devices, multilayer wiring boards, various electronic devices, and stacked devices (multi-die fan-out wafer level packages, etc.) can be manufactured.
<電子部品>
 本開示の電子部品は、前述の本開示の樹脂組成物を硬化してなる硬化物を含む。
<Electronic Components>
The electronic component of the present disclosure includes a cured product obtained by curing the resin composition of the present disclosure described above.
 本開示の電子部品の製造工程の一例を、図面を参照して説明する。
 図1は、本開示の一実施形態に係る多層配線構造の電子部品の製造工程図である。
 図1において、回路素子を有するSi基板等の半導体基板1は、回路素子の所定部分を除いてシリコン酸化膜等の保護膜2などで被覆され、露出した回路素子上に第1導体層3が形成される。その後、半導体基板1上に層間絶縁膜4が形成される。
An example of a manufacturing process for the electronic component of the present disclosure will be described with reference to the drawings.
FIG. 1 is a manufacturing process diagram of an electronic component having a multilayer wiring structure according to an embodiment of the present disclosure.
1, a semiconductor substrate 1 such as a Si substrate having circuit elements is covered with a protective film 2 such as a silicon oxide film except for a predetermined portion of the circuit elements, and a first conductor layer 3 is formed on the exposed circuit elements. Then, an interlayer insulating film 4 is formed on the semiconductor substrate 1.
 次に、塩化ゴム系、フェノールノボラック系等の感光性樹脂層5が、層間絶縁膜4上に形成され、公知の写真食刻技術によって所定部分の層間絶縁膜4が露出するように窓6Aが設けられる。 Next, a photosensitive resin layer 5, such as a chlorinated rubber or phenol novolac type, is formed on the interlayer insulating film 4, and windows 6A are provided using known photoetching techniques to expose predetermined portions of the interlayer insulating film 4.
 窓6Aが露出した層間絶縁膜4は、選択的にエッチングされ、窓6Bが設けられる。
 次いで、窓6Bから露出した第1導体層3を腐食することなく、感光性樹脂層5を腐食するようなエッチング溶液を用いて感光性樹脂層5が除去される。
The interlayer insulating film 4 from which the window 6A is exposed is selectively etched to provide a window 6B.
Next, the photosensitive resin layer 5 is removed using an etching solution that corrodes the photosensitive resin layer 5 without corroding the first conductor layer 3 exposed through the windows 6B.
 さらに公知の写真食刻技術を用いて、第2導体層7を形成し、第1導体層3との電気的接続を行う。
 3層以上の多層配線構造を形成する場合には、上述の工程を繰り返して行い、各層を形成することができる。
Further, a second conductor layer 7 is formed by using a known photolithography technique, and is electrically connected to the first conductor layer 3 .
When forming a multi-layer wiring structure having three or more layers, the above steps can be repeated to form each layer.
 次に、本開示の樹脂組成物を用いて、パターン露光により窓6Cを開口し、表面保護膜8を形成する。表面保護膜8は、第2導体層7を外部からの応力、α線等から保護するものであり、得られる電子部品は信頼性に優れる。
 尚、前記例において、層間絶縁膜4を本開示の樹脂組成物を用いて形成することも可能である。
Next, the resin composition of the present disclosure is used to open windows 6C by pattern exposure to form a surface protective film 8. The surface protective film 8 protects the second conductor layer 7 from external stress, α-rays, and the like, and the obtained electronic component has excellent reliability.
In the above example, the interlayer insulating film 4 can also be formed using the resin composition of the present disclosure.
 以下、実施例及び比較例に基づき、本開示についてさらに具体的に説明する。尚、本開示は下記実施例に限定されるものではない。 The present disclosure will be explained in more detail below based on examples and comparative examples. Note that the present disclosure is not limited to the following examples.
(ポリアミック酸1の合成)
 原料として、160℃の乾燥機で24時間乾燥させた3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(sBPDA、分子量294.22)、160℃の乾燥機で24時間乾燥させた化学式(A-2)で表される化合物(CpODA、分子量384.38)、無水マレイン酸(MA、分子量98.06)、及びp-フェニレンジアミン(PPD、分子量108.14)を準備した。
 窒素置換された0.1リットルの丸底フラスコ中にて、sBPDA 2.356g、CpODA 3.076g、MA 0.393g及びベンゾキノン(BQ) 0.018gを3-メトキシ-N,N-ジメチルプロパンアミド(「KJCMPA-100」(KJケミカルズ株式会社製)) 32.67gに添加し、混合液を30℃にて撹拌し、sBPDA/CpODA/MA溶液を得た。
 p-フェニレンジアミン(PPD) 1.947g及びKJCMPA-100 9.998gを混合してPPD溶液を調製した。
 調製したPPD溶液及びKJCMPA-100 5.001gをsBPDA/CpODA/MA溶液に滴下し、30℃にて撹拌した。以上により、sBPDA及びCpODAに由来する構成単位(A)及びPPDに由来する構成単位(B)を含み、かつ、主鎖末端にMAに由来する不揮発性架橋基を有するポリアミック酸1を含むポリアミック酸溶液1を得た。
 原料ベースにおいて、sBPDA、CpODA、MA及びPPDのモル比率は、sBPDA:CpODA:MA:PPD=0.4:0.4:0.2:0.9であった。
(Synthesis of Polyamic Acid 1)
As raw materials, 3,3',4,4'-biphenyltetracarboxylic dianhydride (sBPDA, molecular weight 294.22) dried in a dryer at 160°C for 24 hours, a compound represented by chemical formula (A-2) (CpODA, molecular weight 384.38) dried in a dryer at 160°C for 24 hours, maleic anhydride (MA, molecular weight 98.06), and p-phenylenediamine (PPD, molecular weight 108.14) were prepared.
In a nitrogen-purged 0.1-liter round-bottom flask, 2.356 g of sBPDA, 3.076 g of CpODA, 0.393 g of MA, and 0.018 g of benzoquinone (BQ) were added to 32.67 g of 3-methoxy-N,N-dimethylpropanamide ("KJCMPA-100" (KJ Chemicals Corporation)), and the mixture was stirred at 30° C. to obtain a sBPDA/CpODA/MA solution.
A p-phenylenediamine (PPD) solution was prepared by mixing 1.947 g of PPD and 9.998 g of KJCMPA-100.
The prepared PPD solution and 5.001 g of KJCMPA-100 were added dropwise to the sBPDA/CpODA/MA solution and stirred at 30° C. As a result, polyamic acid solution 1 was obtained, which contains a structural unit (A) derived from sBPDA and CpODA and a structural unit (B) derived from PPD, and contains polyamic acid 1 having a nonvolatile crosslinking group derived from MA at the main chain end.
On a raw material basis, the molar ratio of sBPDA, CpODA, MA and PPD was sBPDA:CpODA:MA:PPD=0.4:0.4:0.2:0.9.
 このポリアミック酸1溶液を蒸留水に滴下し、沈殿物をろ別して集め、減圧乾燥することによってポリアミック酸1を得た。標準ポリスチレン換算により求めたポリアミック酸1の重量平均分子量は15,900であった。 This polyamic acid 1 solution was dropped into distilled water, and the precipitate was collected by filtration and dried under reduced pressure to obtain polyamic acid 1. The weight average molecular weight of polyamic acid 1 calculated in terms of standard polystyrene was 15,900.
 本実施例において、ポリアミック酸の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法を用いて、標準ポリスチレン換算により求めた。具体的には、ポリアミック酸の0.5mgを溶剤[テトラヒドロフラン(THF)/ジメチルホルムアミド(DMF)=1/1(容積比)]1mLに溶解させた溶液を用い、以下の条件で測定した。 In this example, the weight average molecular weight of the polyamic acid was determined using gel permeation chromatography (GPC) in terms of standard polystyrene. Specifically, a solution in which 0.5 mg of polyamic acid was dissolved in 1 mL of a solvent [tetrahydrofuran (THF)/dimethylformamide (DMF) = 1/1 (volume ratio)] was used, and the measurement was performed under the following conditions.
-測定条件-
測定装置:株式会社島津製作所SPD-M20A
ポンプ:株式会社島津製作所LC-20AD
カラムオーブン:株式会社島津製作所:CTO-20A
測定条件:カラムGelpack GL-S300MDT-5×2本
溶離液:THF/DMF=1/1(容積比)
    LiBr(0.03mol/L)、HPO(0.06mol/L)
 流速:1.0mL/min、検出器:UV270nm、カラム温度:40℃
 標準ポリスチレン:東ソー製 TSKgel standard Polystyrene Type F-1,F-4,F-20,F-80,A-2500にて検量線を作成 
-Measurement condition-
Measuring device: Shimadzu Corporation SPD-M20A
Pump: Shimadzu Corporation LC-20AD
Column oven: Shimadzu Corporation: CTO-20A
Measurement conditions: Column Gelpack GL-S300MDT-5 x 2 Eluent: THF/DMF = 1/1 (volume ratio)
LiBr (0.03 mol/L), H3PO4 ( 0.06 mol/L)
Flow rate: 1.0 mL/min, detector: UV 270 nm, column temperature: 40° C.
Standard polystyrene: Tosoh TSKgel standard polystyrene Type F-1, F-4, F-20, F-80, A-2500 to create a calibration curve
 ポリアミック酸1溶液の粘度を25℃の条件にてE型粘度計を用いて測定した。結果を表1に示す。 The viscosity of the polyamic acid 1 solution was measured at 25°C using an E-type viscometer. The results are shown in Table 1.
(ポリアミック酸2~6の合成)
 ポリアミック酸1の合成において、原料ベースでのsBPDA、CpODA、MA及びPPDのモル比率を、表1に示す通りに変更し、溶剤であるKJCMPA-100の量を適宜変更した以外はポリアミック酸1の合成と同様にしてポリアミック酸2~6を含むポリアミック酸溶液2~6を得た。さらに、上記と同様にしてポリアミック酸溶液2~6からポリアミック酸2~6を得た。
 標準ポリスチレン換算によるポリアミック酸2~6の重量平均分子量及びポリアミック酸溶液2~6の粘度をそれぞれ求めた。結果を表1に示す。
(Synthesis of polyamic acids 2 to 6)
In the synthesis of polyamic acid 1, the molar ratios of sBPDA, CpODA, MA and PPD on a raw material basis were changed as shown in Table 1, and the amount of the solvent KJCMPA-100 was appropriately changed, but the same procedure was followed to obtain polyamic acid solutions 2 to 6 containing polyamic acids 2 to 6. Furthermore, polyamic acids 2 to 6 were obtained from polyamic acid solutions 2 to 6 in the same manner as above.
The weight average molecular weights of polyamic acids 2 to 6, calculated in terms of standard polystyrene, and the viscosities of polyamic acid solutions 2 to 6 were determined. The results are shown in Table 1.
(ポリアミック酸7の合成)
 ポリアミック酸1の合成において、MAを使用せずに原料ベースでのsBPDA、sBPDA、MA及びPPDのモル比率を、sBPDA:CpODA:MA:PPD=0.5:0.5:0:0.9に変更し、溶剤であるKJCMPA-100の量を適宜変更した以外はポリアミック酸1の合成と同様にしてポリアミック酸7を含むポリアミック酸溶液7を得た。さらに、上記と同様にしてポリアミック酸溶液7からポリアミック酸7を得た。
 標準ポリスチレン換算によるポリアミック酸7の重量平均分子量及びポリアミック酸溶液7の粘度を求めた。結果を表1に示す。
(Synthesis of polyamic acid 7)
In the synthesis of polyamic acid 1, MA was not used, the molar ratio of sBPDA, sBPDA, MA and PPD on a raw material basis was changed to sBPDA:CpODA:MA:PPD=0.5:0.5:0:0.9, and the amount of the solvent KJCMPA-100 was appropriately changed, but otherwise the same procedure was followed as in the synthesis of polyamic acid 1 to obtain polyamic acid solution 7 containing polyamic acid 7. Furthermore, polyamic acid 7 was obtained from polyamic acid solution 7 in the same manner as above.
The weight average molecular weight of polyamic acid 7, calculated in terms of standard polystyrene, and the viscosity of polyamic acid solution 7 were determined. The results are shown in Table 1.
(ポリアミック酸8の合成)
 原料として、160℃の乾燥機で24時間乾燥させた3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(sBPDA、分子量294.22)、160℃の乾燥機で24時間乾燥させた化学式(A-2)で表される化合物(CpODA、分子量384.38)、5-ノルボルネン-2,3-ジカルボン酸無水物(NA、分子量164.16)、及びp-フェニレンジアミン(PPD、分子量108.14)を準備した。
 窒素置換された0.1リットルの丸底フラスコ中にて、sBPDA 2.354g、CpODA 3.076g、MA 0.657g及びベンゾキノン(BQ) 0.0175gをKJCMPA-100 38.55gに添加し、混合液を30℃にて撹拌し、sBPDA/CpODA/NA溶液を得た。
 p-フェニレンジアミン(PPD) 1.948g及びKJCMPA-100 10.001gを混合してPPD溶液を調製した。
 調製したPPD溶液及びKJCMPA-100 5.001gをsBPDA/CpODA/NA溶液に滴下し、30℃にて撹拌した。以上により、sBPDA及びCpODAに由来する構成単位(A)及びPPDに由来する構成単位(B)を含み、かつ、主鎖末端にNAに由来する不揮発性架橋基を有するポリアミック酸8を含むポリアミック酸溶液8を得た。上記と同様にしてポリアミック酸溶液8からポリアミック酸8を得た。
 原料ベースにおいて、sBPDA、CpODA、NA及びPPDのモル比率は、sBPDA:CpODA:NA:PPD=0.4:0.4:0.2:0.9であった。
 標準ポリスチレン換算によるポリアミック酸8の重量平均分子量及びポリアミック酸溶液8の粘度を求めた。結果を表1に示す。
(Synthesis of polyamic acid 8)
As raw materials, 3,3',4,4'-biphenyltetracarboxylic dianhydride (sBPDA, molecular weight 294.22) dried in a dryer at 160°C for 24 hours, a compound represented by chemical formula (A-2) (CpODA, molecular weight 384.38) dried in a dryer at 160°C for 24 hours, 5-norbornene-2,3-dicarboxylic anhydride (NA, molecular weight 164.16), and p-phenylenediamine (PPD, molecular weight 108.14) were prepared.
In a nitrogen-purged 0.1-liter round-bottom flask, 2.354 g of sBPDA, 3.076 g of CpODA, 0.657 g of MA, and 0.0175 g of benzoquinone (BQ) were added to 38.55 g of KJCMPA-100, and the mixture was stirred at 30° C. to obtain a sBPDA/CpODA/NA solution.
A p-phenylenediamine (PPD) solution was prepared by mixing 1.948 g of PPD and 10.001 g of KJCMPA-100.
The prepared PPD solution and 5.001 g of KJCMPA-100 were added dropwise to the sBPDA/CpODA/NA solution and stirred at 30° C. As a result, polyamic acid solution 8 was obtained, which contains a structural unit (A) derived from sBPDA and CpODA and a structural unit (B) derived from PPD, and which contains a polyamic acid 8 having a nonvolatile crosslinking group derived from NA at the main chain end. Polyamic acid 8 was obtained from polyamic acid solution 8 in the same manner as above.
On a raw material basis, the molar ratio of sBPDA, CpODA, NA and PPD was sBPDA:CpODA:NA:PPD=0.4:0.4:0.2:0.9.
The weight average molecular weight of polyamic acid 8 was calculated in terms of standard polystyrene, and the viscosity of polyamic acid solution 8 was determined. The results are shown in Table 1.
(ポリアミック酸9~13の合成)
 ポリアミック酸8の合成において、原料ベースでのsBPDA、CpODA、NA及びPPDのモル比率を、表1に示す通りに変更し、溶剤であるKJCMPA-100の量を適宜変更した以外はポリアミック酸8の合成と同様にしてポリアミック酸9~13を含むポリアミック酸溶液9~13を得た。さらに、上記と同様にしてポリアミック酸溶液9~13からポリアミック酸9~13を得た。
 標準ポリスチレン換算によるポリアミック酸9~13の重量平均分子量及びポリアミック酸溶液9~13の粘度をそれぞれ求めた。結果を表1に示す。
(Synthesis of polyamic acids 9 to 13)
In the synthesis of polyamic acid 8, the molar ratios of sBPDA, CpODA, NA, and PPD on a raw material basis were changed as shown in Table 1, and the amount of the solvent KJCMPA-100 was appropriately changed, and polyamic acid solutions 9 to 13 containing polyamic acids 9 to 13 were obtained in the same manner as in the synthesis of polyamic acid 8. Furthermore, polyamic acids 9 to 13 were obtained from polyamic acid solutions 9 to 13 in the same manner as above.
The weight average molecular weight of each of the polyamic acids 9 to 13 was calculated based on standard polystyrene and the viscosity of each of the polyamic acid solutions 9 to 13 was determined. The results are shown in Table 1.
(応力測定1)
 前述のポリアミック酸溶液1~14を、6インチシリコンウエハ上にスピンコート法によって1000rpm(回転/分)の条件で塗布し、120℃のホットプレート上で200秒間加熱し、溶剤を揮発させ硬化後膜厚が約10μmとなる塗膜を得た。これを、光洋リンドバーク製縦型拡散炉を用いて、窒素雰囲気下、350℃で1時間加熱硬化して、ポリイミド膜(硬化膜)を得た。硬化後のポリイミド膜の残留応力はKLATencor社製薄膜ストレス測定装置FLX-2320を用いて室温において測定した。
 結果を表2に示す。
(Stress measurement 1)
The aforementioned polyamic acid solutions 1 to 14 were applied onto a 6-inch silicon wafer by spin coating at 1000 rpm (revolutions per minute), and heated on a hot plate at 120° C. for 200 seconds to volatilize the solvent and obtain a coating film having a thickness of about 10 μm after curing. This was then heated and cured at 350° C. for 1 hour in a nitrogen atmosphere using a vertical diffusion furnace manufactured by Koyo Lindberg, to obtain a polyimide film (cured film). The residual stress of the cured polyimide film was measured at room temperature using a thin film stress measurement device FLX-2320 manufactured by KLATencor.
The results are shown in Table 2.
(応力測定2)
 前述のポリアミック酸溶液1~13を、6インチシリコンウエハ上にスピンコート法によって1000rpm(回転/分)の条件で塗布し、120℃のホットプレート上で200秒間加熱し、溶剤を揮発させ硬化後膜厚が約10μmとなる塗膜を得た。これを、光洋リンドバーク製縦型拡散炉を用いて、窒素雰囲気下、280℃、250℃又は200℃で2時間加熱硬化して、ポリイミド膜(硬化膜)を得た。硬化後のポリイミド膜の残留応力を応力測定1と同様にして測定した。
 結果を表2に示す。
(Stress measurement 2)
The aforementioned polyamic acid solutions 1 to 13 were applied onto a 6-inch silicon wafer by spin coating at 1000 rpm (revolutions per minute), and heated on a hot plate at 120° C. for 200 seconds to volatilize the solvent and obtain a coating film having a thickness of about 10 μm after curing. This was then heated and cured for 2 hours at 280° C., 250° C. or 200° C. in a nitrogen atmosphere using a vertical diffusion furnace manufactured by Koyo Lindberg, to obtain a polyimide film (cured film). The residual stress of the cured polyimide film was measured in the same manner as in Stress Measurement 1.
The results are shown in Table 2.
(樹脂組成物の調製)
 前述のポリアミック酸溶液1~13を用いて、樹脂組成物1~13をそれぞれ調製した。具体的には、固形分濃度1.5質量%の光重合開始剤であるIrgacure OXE-01(1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム))をポリアミック酸溶液1~13に添加して樹脂組成物1~13を調製した。
(Preparation of Resin Composition)
Resin compositions 1 to 13 were prepared using the above-mentioned polyamic acid solutions 1 to 13, respectively. Specifically, Irgacure OXE-01 (1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(O-benzoyloxime)), a photopolymerization initiator having a solid content concentration of 1.5% by mass, was added to the polyamic acid solutions 1 to 13 to prepare the resin compositions 1 to 13.
(応力測定3)
 前述の樹脂組成物1~13を、6インチシリコンウエハ上にスピンコート法によって1000rpm(回転/分)の条件で塗布し、120℃のホットプレート上で200秒間加熱し、溶剤を揮発させ硬化後膜厚が約10μmとなる塗膜を得た。塗膜に対してブロードバンド波長の光を400mJ/cmの条件で照射した。光照射後の塗膜を、光洋リンドバーク製縦型拡散炉を用いて、窒素雰囲気下、350℃で1時間又は250℃で2時間加熱硬化して、ポリイミド膜(硬化膜)を得た。硬化後のポリイミド膜の残留応力を応力測定1と同様にして測定した。
 結果を表3に示す。
(Stress measurement 3)
The above-mentioned resin compositions 1 to 13 were applied onto a 6-inch silicon wafer by spin coating at 1000 rpm (revolutions per minute), and heated on a hot plate at 120°C for 200 seconds to volatilize the solvent and obtain a coating film having a thickness of about 10 μm after curing. The coating film was irradiated with broadband light at 400 mJ/ cm2 . The coating film after light irradiation was heated and cured in a nitrogen atmosphere at 350°C for 1 hour or at 250°C for 2 hours using a vertical diffusion furnace manufactured by Koyo Lindberg, to obtain a polyimide film (cured film). The residual stress of the cured polyimide film was measured in the same manner as in Stress Measurement 1.
The results are shown in Table 3.
 表2に示すように、主鎖の末端にMA由来又はNA由来の不揮発性架橋基を有するポリアミック酸を含むポリアミック酸溶液1~6及び8~13では、主鎖の末端に不揮発性架橋基を含まないポリアミック酸を含むポリアミック酸溶液7と比較して350℃での硬化後のポリイミド膜の応力が低減されていた。 As shown in Table 2, polyamic acid solutions 1 to 6 and 8 to 13, which contain polyamic acid having MA-derived or NA-derived nonvolatile crosslinking groups at the ends of the main chain, had reduced stress in the polyimide film after curing at 350°C compared to polyamic acid solution 7, which contains polyamic acid that does not contain nonvolatile crosslinking groups at the ends of the main chain.
 表3に示すように、主鎖の末端にMA由来の不揮発性架橋基を有するポリアミック酸を含む樹脂組成物1~6では、主鎖の末端に不揮発性架橋基を含まないポリアミック酸を含む樹脂組成物7と比較して350℃での硬化後のポリイミド膜の応力及び250℃での硬化後のポリイミド膜の応力が低減されていた。この理由としては、不揮発性架橋基を有するポリアミック酸と重合開始剤とを併用することで、硬化時のポリイミドの分子量が効率的に増大し、その結果、硬化膜の応力が低減したため、と推測される。 As shown in Table 3, in resin compositions 1 to 6 containing polyamic acid having MA-derived nonvolatile crosslinking groups at the ends of the main chain, the stress of the polyimide film after curing at 350°C and the stress of the polyimide film after curing at 250°C were reduced compared to resin composition 7 containing polyamic acid not having a nonvolatile crosslinking group at the ends of the main chain. The reason for this is presumed to be that the molecular weight of the polyimide during curing is efficiently increased by using a polyamic acid having a nonvolatile crosslinking group in combination with a polymerization initiator, resulting in a reduction in the stress of the cured film.
 2022年11月2日に出願された日本国特許出願2022-176685の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2022-176685, filed on November 2, 2022, is incorporated herein by reference in its entirety.
All publications, patent applications, and standards mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent application, or standard was specifically and individually indicated to be incorporated by reference.
1 半導体基板
2 保護膜
3 第1導体層
4 層間絶縁膜
5 感光性樹脂層
6A、6B、6C 窓
7 第2導体層
8 表面保護膜
Reference Signs List 1 Semiconductor substrate 2 Protective film 3 First conductor layer 4 Interlayer insulating film 5 Photosensitive resin layer 6A, 6B, 6C Window 7 Second conductor layer 8 Surface protective film

Claims (10)

  1.  ポリアミック酸及びポリアミック酸エステルからなる群より選択される少なくとも1種であるポリイミド前駆体であって、
     前記ポリイミド前駆体は、テトラカルボン酸二無水物に由来する構成単位(A)及びジアミン化合物に由来する構成単位(B)を含み、かつ、主鎖末端に不揮発性架橋基を有する化合物を含み、
     前記構成単位(A)は、前記テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合していない構成単位(A1-1)を含むポリイミド前駆体。
    A polyimide precursor which is at least one selected from the group consisting of polyamic acids and polyamic acid esters,
    the polyimide precursor contains a structural unit (A) derived from a tetracarboxylic dianhydride and a structural unit (B) derived from a diamine compound, and contains a compound having a nonvolatile crosslinking group at a main chain terminal;
    The structural unit (A) is a polyimide precursor that includes a structural unit (A1-1) in which the two acid anhydride groups contained in the tetracarboxylic dianhydride are not bonded to an aromatic ring.
  2.  ポリアミック酸及びポリアミック酸エステルからなる群より選択される少なくとも1種であるポリイミド前駆体であって、
     前記ポリイミド前駆体は、テトラカルボン酸二無水物に由来する構成単位(A)及びジアミン化合物に由来する構成単位(B)を含み、かつ、主鎖末端に不揮発性架橋基を有する化合物を含み、
     前記構成単位(A)は、芳香環を含まないか、あるいは、テトラカルボン酸二無水物の分子量に対するテトラカルボン酸二無水物に含まれる芳香環の数の割合が0.0068未満である構成単位(A1-2)を含むポリイミド前駆体。
    A polyimide precursor which is at least one selected from the group consisting of polyamic acids and polyamic acid esters,
    the polyimide precursor contains a structural unit (A) derived from a tetracarboxylic dianhydride and a structural unit (B) derived from a diamine compound, and contains a compound having a nonvolatile crosslinking group at a main chain terminal;
    The structural unit (A) is a polyimide precursor that contains a structural unit (A1-2) that does not contain an aromatic ring or in which the ratio of the number of aromatic rings contained in the tetracarboxylic dianhydride to the molecular weight of the tetracarboxylic dianhydride is less than 0.0068.
  3.  前記構成単位(A)の少なくとも一部は、不飽和二重結合を有する請求項1又は請求項2のポリイミド前駆体。 The polyimide precursor of claim 1 or 2, wherein at least a portion of the structural unit (A) has an unsaturated double bond.
  4.  前記構成単位(A)に占める前記構成単位(A1-1)の含有率は、前記構成単位(A)に対して、25モル%以上である、請求項1に記載のポリイミド前駆体。 The polyimide precursor according to claim 1, wherein the content of the structural unit (A1-1) in the structural unit (A) is 25 mol % or more relative to the structural unit (A).
  5.  前記構成単位(A)に占める前記構成単位(A1-2)の含有率は、前記構成単位(A)に対して、25モル%以上である、請求項2に記載のポリイミド前駆体。 The polyimide precursor according to claim 2, wherein the content of the structural unit (A1-2) in the structural unit (A) is 25 mol % or more relative to the structural unit (A).
  6.  前記テトラカルボン酸二無水物は、下記化学式(A-1)~化学式(A-6)で表される化合物の内の少なくとも1つを含む請求項1又は請求項2に記載のポリイミド前駆体。

     
     
    The polyimide precursor according to claim 1 or 2, wherein the tetracarboxylic dianhydride comprises at least one of compounds represented by the following chemical formulas (A-1) to (A-6):


  7.  前記構成単位(A)は、前記テトラカルボン酸二無水物に含まれる2つの酸無水物基が芳香環に結合している構成単位(A2)を有する請求項1又は請求項2に記載のポリイミド前駆体。 The polyimide precursor according to claim 1 or 2, wherein the structural unit (A) has a structural unit (A2) in which two acid anhydride groups contained in the tetracarboxylic dianhydride are bonded to an aromatic ring.
  8.  下記一般式(6)で表される構成単位を有する化合物を含む請求項1又は請求項2に記載のポリイミド前駆体。

     
     
    (一般式(6)中、Xは4価の有機基を表し、Yは2価の有機基を表す。R及びRは、それぞれ独立に、水素原子、下記一般式(7)で表される基、又は炭素数1~4の脂肪族炭化水素基であり、R及びRの少なくとも一方が、下記一般式(7)で表される基であり、Xで表される4価の有機基は、芳香環を含まないか、芳香環を含む場合には芳香環は4つのカルボニル基に結合していない。)

     
     
    (一般式(7)中、R~R10は、それぞれ独立に、水素原子又は炭素数1~3の脂肪族炭化水素基を表し、qは1~10の整数を表す。)
    The polyimide precursor according to claim 1 or 2, comprising a compound having a structural unit represented by the following general formula (6):



    (In general formula (6), X represents a tetravalent organic group, and Y represents a divalent organic group. R 6 and R 7 are each independently a hydrogen atom, a group represented by the following general formula (7), or an aliphatic hydrocarbon group having 1 to 4 carbon atoms, and at least one of R 6 and R 7 is a group represented by the following general formula (7). The tetravalent organic group represented by X does not contain an aromatic ring, or if it contains an aromatic ring, the aromatic ring is not bonded to four carbonyl groups.)



    (In formula (7), R 8 to R 10 each independently represent a hydrogen atom or an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and q represents an integer of 1 to 10.)
  9.  前記不揮発性架橋基は、無水マレイン酸、5-ノルボルネン-2,3-ジカルボン酸無水物、無水イタコン酸、無水メタクリル酸、2-イソシアナトエチルメタクリレート、2-イソシアナトエチルアクリレート、4-エチニル無水フタル酸、4-ビニル無水フタル酸及びジt-ブチルジカーボネートからなる群より選択される少なくとも1つの化合物に由来する請求項1又は請求項2に記載のポリイミド前駆体。 The polyimide precursor according to claim 1 or 2, wherein the non-volatile crosslinking group is derived from at least one compound selected from the group consisting of maleic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, itaconic anhydride, methacrylic anhydride, 2-isocyanatoethyl methacrylate, 2-isocyanatoethyl acrylate, 4-ethynylphthalic anhydride, 4-vinylphthalic anhydride, and di-t-butyl dicarbonate.
  10.  請求項1又は請求項2に記載のポリイミド前駆体を含む樹脂組成物。 A resin composition containing the polyimide precursor according to claim 1 or 2.
PCT/JP2023/030381 2022-11-02 2023-08-23 Polyimide precursor and resin composition WO2024095573A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022176685 2022-11-02
JP2022-176685 2022-11-02

Publications (1)

Publication Number Publication Date
WO2024095573A1 true WO2024095573A1 (en) 2024-05-10

Family

ID=90930149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030381 WO2024095573A1 (en) 2022-11-02 2023-08-23 Polyimide precursor and resin composition

Country Status (2)

Country Link
TW (1) TW202419527A (en)
WO (1) WO2024095573A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145988A (en) * 2013-02-28 2013-06-12 中山大学 Polyimide oligomer and liquid photoimagable solder resist ink
WO2017064984A1 (en) * 2015-10-16 2017-04-20 東レ株式会社 Resin and photosensitive resin composition
JP2017194677A (en) * 2016-04-14 2017-10-26 旭化成株式会社 Photosensitive resin composition, method for producing cured relief pattern and semiconductor device
WO2020196764A1 (en) * 2019-03-27 2020-10-01 株式会社カネカ Alkali-soluble polyimide and production method thereof, negative-type photosensitive resin composition, cured film, and production method of pattern cured film
JP2023121157A (en) * 2022-02-18 2023-08-30 積水化学工業株式会社 Polyimide resin, curable resin composition, temporary fixing material, and, method for manufacturing electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103145988A (en) * 2013-02-28 2013-06-12 中山大学 Polyimide oligomer and liquid photoimagable solder resist ink
WO2017064984A1 (en) * 2015-10-16 2017-04-20 東レ株式会社 Resin and photosensitive resin composition
JP2017194677A (en) * 2016-04-14 2017-10-26 旭化成株式会社 Photosensitive resin composition, method for producing cured relief pattern and semiconductor device
WO2020196764A1 (en) * 2019-03-27 2020-10-01 株式会社カネカ Alkali-soluble polyimide and production method thereof, negative-type photosensitive resin composition, cured film, and production method of pattern cured film
JP2023121157A (en) * 2022-02-18 2023-08-30 積水化学工業株式会社 Polyimide resin, curable resin composition, temporary fixing material, and, method for manufacturing electronic component

Also Published As

Publication number Publication date
TW202419527A (en) 2024-05-16

Similar Documents

Publication Publication Date Title
JP4663720B2 (en) Positive photosensitive resin composition and pattern forming method
JP7481548B2 (en) Resin composition and method for producing cured film
TW201921114A (en) Photosensitive resin composition
JP2013083958A (en) Photosensitive resin composition, and cured product and semiconductor element using the same
TW201615696A (en) Resin and photosensitive resin composition
JP2007264028A (en) Photosensitive resin composition and metal-resin complex using same
JP6935982B2 (en) Resin composition, method for manufacturing cured relief pattern, and semiconductor device
JP6939553B2 (en) Resin composition
JPWO2005101125A1 (en) Heat-resistant photosensitive resin composition, pattern manufacturing method using the composition, and electronic component
JP2007246440A (en) Diamine compound and alkali-soluble resin and photosensitive resin composition using the same
JP7443970B2 (en) Photosensitive resin composition, cured product, method for producing patterned cured product, and electronic components
WO2024095573A1 (en) Polyimide precursor and resin composition
JP2008308572A (en) Polyimide varnish
WO2022163335A1 (en) Photosensitive resin composition, cured film, electronic component, antenna element, semiconductor package, and compound
JP4288962B2 (en) Heat-resistant photosensitive resin composition, pattern manufacturing method using the composition, and electronic component
JP2015168739A (en) Method for manufacturing resin composition
WO2024111130A1 (en) Polyamic acid ester and resin composition
WO2024111131A1 (en) Polyamic acid ester and resin composition
JP2021148891A (en) Photosensitive resin composition, cured film, display device, and method for producing cured film
WO2024084636A1 (en) Photosensitive resin composition, cured product, method for producing patterned cured product, and electronic component
WO2022138674A1 (en) Photosensitive resin composition, cured product, interlayer insulation film, cover coat layer, surface protection film, and electronic component
JP2006083307A (en) Photosensitive polyimide-siloxane and its composition
JP2003121997A (en) Negative photosensitive resin composition
JP7491116B2 (en) Photosensitive resin composition, cured product, method for producing patterned cured product, and electronic component
JP7471480B2 (en) Resin composition, method for producing cured relief pattern, and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23885343

Country of ref document: EP

Kind code of ref document: A1