TWI777560B - Millimeter-wave radar antenna and electronic device - Google Patents

Millimeter-wave radar antenna and electronic device Download PDF

Info

Publication number
TWI777560B
TWI777560B TW110117590A TW110117590A TWI777560B TW I777560 B TWI777560 B TW I777560B TW 110117590 A TW110117590 A TW 110117590A TW 110117590 A TW110117590 A TW 110117590A TW I777560 B TWI777560 B TW I777560B
Authority
TW
Taiwan
Prior art keywords
millimeter
wave radar
radar antenna
dielectric plate
patches
Prior art date
Application number
TW110117590A
Other languages
Chinese (zh)
Other versions
TW202133487A (en
Inventor
丁航
付榮
Original Assignee
大陸商昆山聯滔電子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商昆山聯滔電子有限公司 filed Critical 大陸商昆山聯滔電子有限公司
Publication of TW202133487A publication Critical patent/TW202133487A/en
Application granted granted Critical
Publication of TWI777560B publication Critical patent/TWI777560B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

Disclosed is a millimeter-wave radar antenna, which includes: a metal base plate, a first dielectric plate, a second dielectric plate, a cover plate, a metasurface structure, a driving patch and a feeding probe. The first dielectric plate is disposed on the metal base plate. The second dielectric plate is disposed on the first dielectric plate. The cover plate is disposed on the second dielectric plate. The metasurface structure is disposed on a surface of the second dielectric plate facing the cover plate, and includes a plurality of metasurface patches spaced apart from each other. The drive patch is disposed on a surface of the first dielectric plate facing the second dielectric plate, and is disposed corresponding to a center position of the arrangement of the plurality of metasurface patches. The feeding probe passes through the metal base plate and the first dielectric plate, and is connected to the driving patch for feeding power to the driving patch, so that the driving patch generates a first resonance, and the metasurface structure generates a second resonance through the driving patch.

Description

毫米波雷達天線及電子裝置Millimeter wave radar antenna and electronic device

本申請涉及天線的技術領域,尤其涉及一種毫米波雷達天線及電子裝置。The present application relates to the technical field of antennas, and in particular, to a millimeter-wave radar antenna and an electronic device.

應用於電子裝置的雷達識別模組具有高度整合化的特點,而在設計雷達識別模組中的毫米波雷達天線時需要考慮到電子裝置的外殼、後蓋、金屬框架和顯示器等外部構件,因此,存在實現雷達識別模組正常工作的困難點。Radar identification modules applied to electronic devices are highly integrated, and external components such as the shell, back cover, metal frame, and display of the electronic device need to be considered when designing the millimeter-wave radar antenna in the radar identification module. , there are difficulties in realizing the normal operation of the radar identification module.

當前採取的解決方案是使用整合度較低的封裝天線(Antenna-in-Package,AiP)技術,可透過玻璃鏡片與天線之間留有一定的間隙,使得天線與電子裝置的外殼和顯示器無接觸,僅需要微調天線的結構就可以實現良好的阻抗匹配與輻射方向圖。然而,使用上述留有間隙的設計的天線一般採取貼片或平面偶極子等典型天線,存在天線的頻寬較窄,優化結構對天線性能提升有限的問題。此外,由於玻璃鏡片與天線之間留有一定的間隙,在電子裝置面臨外界力量(手持與擠壓等)時,可能會造成天線內部結構的發生變化,使得電氣性能受到不良影響,進而降低應用所述天線的雷達識別模組正常工作時識別目標的可靠性與準確性。The current solution is to use the less integrated Antenna-in-Package (AiP) technology, which can pass through the glass lens and leave a certain gap between the antenna, so that the antenna has no contact with the housing and display of the electronic device. , only need to fine-tune the structure of the antenna to achieve good impedance matching and radiation pattern. However, typical antennas such as patches or planar dipoles are generally used for the antennas using the above-mentioned design with a gap, which has the problem that the bandwidth of the antenna is narrow, and the optimization of the structure is limited in improving the performance of the antenna. In addition, since there is a certain gap between the glass lens and the antenna, when the electronic device faces external forces (hand-held and squeezed, etc.), the internal structure of the antenna may change, which will adversely affect the electrical performance and reduce the application. The reliability and accuracy of the target identification when the radar identification module of the antenna works normally.

有鑒於此,提出在AiP技術中將天線與外部構件緊貼的設計,使得天線與電子裝置的外殼及框架固定在一起,但存在因物理空間的限制會給電子裝置的電子整合電路模組帶來EMI和EMC等方面的挑戰,導致天線的阻抗失配、方向圖畸變等嚴重問題。In view of this, a design is proposed in the AiP technology to attach the antenna to the external components, so that the antenna and the shell and frame of the electronic device are fixed together. However, due to the limitation of physical space, the electronic integrated circuit module of the electronic device is affected The challenges of EMI and EMC lead to serious problems such as impedance mismatch and pattern distortion of the antenna.

本申請實施例提供一種毫米波雷達天線及電子裝置,可以有效解決目前AiP技術應用於天線時,天線存在因物理空間的限制導致天線的阻抗失配、方向圖畸變等嚴重問題。The embodiments of the present application provide a millimeter-wave radar antenna and an electronic device, which can effectively solve the serious problems such as impedance mismatch and pattern distortion of the antenna due to physical space limitations when the current AiP technology is applied to the antenna.

為了解決上述技術問題,本申請是這樣實現的:In order to solve the above technical problems, this application is implemented as follows:

第一方面,提供了一種毫米波雷達天線,其包括:金屬底板、設置於金屬底板上的第一介電板、設置於第一介電板上的第二介電板、設置於第二介電板上的蓋板、超穎表面結構、驅動貼片和饋電探針;超穎表面結構設置於第二介電板面向蓋板的表面上,且包括複數個相互間隔的超穎表面貼片;驅動貼片設置於第一介電板面向第二介電板的表面上,且對應該些超穎表面貼片排布的居中位置設置;及饋電探針穿設於金屬底板和第一介電板中,且連接驅動貼片,用於為驅動貼片饋電,使得驅動貼片產生第一諧振,超穎表面結構透過驅動貼片產生第二諧振。In a first aspect, a millimeter-wave radar antenna is provided, which includes: a metal base plate, a first dielectric plate disposed on the metal base plate, a second dielectric plate disposed on the first dielectric plate, and a second dielectric plate disposed on the second dielectric plate. The cover plate, the metasurface structure, the driving patch and the feeding probe on the electric plate; the metasurface structure is arranged on the surface of the second dielectric plate facing the cover plate, and includes a plurality of mutually spaced metasurface stickers The driving patch is arranged on the surface of the first dielectric plate facing the second dielectric plate, and is arranged in the center position corresponding to the arrangement of these Metasurface patches; and the feeding probe is passed through the metal base plate and the first A dielectric plate is connected to the driving patch for feeding the driving patch, so that the driving patch generates a first resonance, and the metasurface structure generates a second resonance through the driving patch.

在一實施例中,驅動貼片包括貼片本體和匹配支路;匹配支路連接饋電探針,並用於實現毫米波雷達天線的阻抗匹配。In one embodiment, the driving patch includes a patch body and a matching branch; the matching branch is connected to the feeding probe and is used to realize impedance matching of the millimeter-wave radar antenna.

在一實施例中,匹配支路和/或貼片本體外形為矩形。In one embodiment, the shape of the matching branch and/or the patch body is rectangular.

在一實施例中,毫米波雷達天線還包括第一黏膠層和第二黏膠層,第一介電板透過第一黏膠層與第二介電板黏接,第二介電板透過第二黏膠層與蓋板黏接。In one embodiment, the millimeter-wave radar antenna further includes a first adhesive layer and a second adhesive layer, the first dielectric plate is bonded to the second dielectric plate through the first adhesive layer, and the second dielectric plate passes through The second adhesive layer is bonded to the cover plate.

在一實施例中,第一介電板和第二介電板的材質為液晶聚合物。In one embodiment, the material of the first dielectric plate and the second dielectric plate is liquid crystal polymer.

在一實施例中,複數個超穎表面貼片以矩形矩陣布置。In one embodiment, the plurality of Metasurface patches are arranged in a rectangular matrix.

在一實施例中,驅動貼片的數量為偶數個,每兩個對稱設置的驅動貼片組成一個有源單元,複數個超穎表面貼片均勻對應偶數個驅動貼片排布;饋電探針的數量與驅動貼片的數量相同,饋電探針一對一對應連接驅動貼片,一個有源單元中的兩個驅動貼片透過對應連接的饋電探針進行差分饋電,以提供波束掃描。In one embodiment, the number of driving patches is an even number, every two symmetrically arranged driving patches constitute an active unit, and the plurality of Metasurface patches are evenly arranged corresponding to the even number of driving patches; The number of pins is the same as the number of drive patches, the feed probes are connected to the drive patches one-to-one, and the two drive patches in one active unit are differentially fed through the correspondingly connected feed probes to provide Beam scanning.

在一實施例中,每一個驅動貼片包括匹配支路;一個有源單元中的兩個驅動貼片上分別連接的饋電探針的匹配支路呈180∘設置。In one embodiment, each driving patch includes a matching branch; the matching branches of the feeding probes respectively connected to the two driving patches in one active unit are arranged in a 180∘ configuration.

第二方面,提供了一種電子裝置,其包括本申請實施例的毫米波雷達天線。In a second aspect, an electronic device is provided, which includes the millimeter-wave radar antenna of the embodiments of the present application.

在本申請實施例中,毫米波雷達天線透過超穎表面加載技術,引入具有電抗性阻抗表面(Reactive Impedance Surfaces,RIS)的超穎表面結構,使得毫米波雷達天線工作時,由饋電探針饋電給驅動貼片,以激勵驅動貼片產生第一諧振,超穎表面結構透過與驅動貼片的緊耦合產生第二諧振,因此,驅動貼片所產生的第一諧振與超穎表面結構所產生的第二諧振共同作用,解決目前AiP技術中天線存在因物理空間的限制導致天線的阻抗失配、方向圖畸變等嚴重問題。另外,毫米波雷達天線透過多層材料無縫堆疊結合設計,具有良好的密封性和穩定性,保證應用毫米波雷達天線的雷達識別模組及電子裝置在識別功能上的正常運行。In the embodiment of the present application, the millimeter-wave radar antenna uses the metasurface loading technology to introduce a metasurface structure with reactive impedance surfaces (RIS), so that when the millimeter-wave radar antenna is working, the feed probe is The drive patch is fed with power to excite the drive patch to generate the first resonance, and the metasurface structure generates the second resonance through the tight coupling with the drive patch. Therefore, the first resonance generated by the drive patch and the metasurface structure The generated second resonance works together to solve the serious problems of the antenna in the current AiP technology, such as impedance mismatch and pattern distortion of the antenna due to the limitation of physical space. In addition, the millimeter-wave radar antenna is designed through seamless stacking of multi-layer materials, which has good sealing and stability, and ensures the normal operation of the radar identification module and electronic device using the millimeter-wave radar antenna in terms of identification function.

以下將配合相關圖式來說明本發明的實施例。在這些圖式中,相同的標號表示相同或類似的元件或方法流程。The embodiments of the present invention will be described below with reference to the relevant drawings. In the figures, the same reference numbers refer to the same or similar elements or method flows.

必須瞭解的是,使用在本說明書中的「包括」、「包含」等詞,是用於表示存在特定的技術特徵、數值、方法步驟、作業處理、元件和/或元件,但並不排除可加上更多的技術特徵、數值、方法步驟、作業處理、元件、元件,或以上的任意組合。It must be understood that words such as "comprising" and "comprising" used in this specification are used to indicate the existence of specific technical features, values, method steps, operation processes, elements and/or elements, but do not exclude the possibility of Plus more technical features, values, method steps, job processes, elements, elements, or any combination of the above.

必須瞭解的是,當元件描述為「連接」或「耦接」至另一元件時,可以是直接連結、或耦接至其他元件,可能出現中間元件。相反地,當元件描述為「直接連接」或「直接耦接」至另一元件時,其中不存在任何中間元件。It must be understood that when an element is described as being "connected" or "coupled" to another element, it can be directly connected or coupled to the other element, and intervening elements may be present. In contrast, when an element is described as being "directly connected" or "directly coupled" to another element, there are no intervening elements present.

請參閱圖1至圖3,圖1為依據本申請的毫米波雷達天線的一實施例爆炸圖,圖2為圖1的毫米波雷達天線的一實施例組合圖,圖3為圖1的毫米波雷達天線的一實施例剖面圖。如圖1至圖3所示,在本實施例中,毫米波雷達天線100包括:金屬底板110、設置於金屬底板110上的第一介電板120、設置於第一介電板120上的第二介電板130、設置於第二介電板130上的蓋板140、超穎表面結構150、驅動貼片160和饋電探針170。其中,金屬底板110開設有孔洞112(如圖1所示);第一介電板120開設有饋電通孔122(如圖3所示),饋電通孔122對應孔洞112。Please refer to FIGS. 1 to 3 . FIG. 1 is an exploded view of an embodiment of a millimeter-wave radar antenna according to the present application, FIG. 2 is a combined view of an embodiment of the millimeter-wave radar antenna of FIG. 1 , and FIG. 3 is a millimeter-wave radar antenna of FIG. 1 . A cross-sectional view of an embodiment of a wave radar antenna. As shown in FIGS. 1 to 3 , in this embodiment, the millimeter-wave radar antenna 100 includes: a metal base plate 110 , a first dielectric plate 120 disposed on the metal base plate 110 , and a first dielectric plate 120 disposed on the first dielectric plate 120 . The second dielectric plate 130 , the cover plate 140 disposed on the second dielectric plate 130 , the metasurface structure 150 , the driving patch 160 and the feeding probes 170 . The metal base plate 110 is provided with holes 112 (as shown in FIG. 1 ); the first dielectric plate 120 is provided with feed through holes 122 (as shown in FIG. 3 ), and the feed through holes 122 correspond to the holes 112 .

在本實施例中,金屬底板110、超穎表面結構150、驅動貼片160和饋電探針170的材質可包括但不限於銅、銀、鋁、鋅、金、或其合金;第一介電板120和第二介電板130的材質可包括但不限於聚合物材料(例如:聚醯亞胺(PI)、聚四氟乙烯(polytetrafluoroethylene,PTFE))、陶瓷材料、塑料、複合材料、液晶聚合物(liquid crystal polymer,LCP)、玻璃纖維片的環氧化物積層(例如:FR-4 、FR-5)或其組合;蓋板140的材質可包括但不限於玻璃;饋電探針170可為但不限於同軸探針;但本實施例並非用以限定本申請,可依據實際需求進行調整。In this embodiment, the materials of the metal base plate 110 , the metasurface structure 150 , the driving patch 160 and the feeding probe 170 may include but are not limited to copper, silver, aluminum, zinc, gold, or alloys thereof; the first medium The materials of the electric plate 120 and the second dielectric plate 130 may include, but are not limited to, polymer materials (eg, polyimide (PI), polytetrafluoroethylene (PTFE)), ceramic materials, plastics, composite materials, Liquid crystal polymer (LCP), epoxy laminate of glass fiber sheets (eg: FR-4, FR-5) or a combination thereof; the material of the cover plate 140 may include but not limited to glass; feed probe 170 can be, but is not limited to, a coaxial probe; however, this embodiment is not intended to limit the application, and can be adjusted according to actual needs.

在一實施例中,第一介電板120和第二介電板130的材質可使用具有低的介電損耗的液晶聚合物,以減少訊號損耗,所述液晶聚合物的介電常數(Dk)可為3.0,介電損失(Df)可為0.002;蓋板140的材質可為玻璃,所述玻璃的介電常數(Dk)可為7.8,介電損失(Df)可為0.002;但此實施例並非用以限定本申請,可依據實際需求進行調整。In one embodiment, the material of the first dielectric plate 120 and the second dielectric plate 130 may use a liquid crystal polymer with low dielectric loss to reduce signal loss. The dielectric constant (Dk) of the liquid crystal polymer ) may be 3.0, and the dielectric loss (Df) may be 0.002; the cover plate 140 may be made of glass, the dielectric constant (Dk) of the glass may be 7.8, and the dielectric loss (Df) may be 0.002; but this The embodiments are not intended to limit the present application, and can be adjusted according to actual needs.

在一實施例中,第一介電板120的厚度可為但不限於0.1毫米(mm),第二介電板130的厚度可為但不限於0.15mm,蓋板140的厚度可為但不限於0.55mm,但此實施例並非用以限定本申請,可依據實際需求進行調整。舉例而言,第一介電板120與第二介電板130的厚度可以相同。In one embodiment, the thickness of the first dielectric plate 120 may be, but not limited to, 0.1 millimeters (mm), the thickness of the second dielectric plate 130 may be, but not limited to, 0.15 mm, and the thickness of the cover plate 140 may be, but not limited to, 0.15 mm. It is limited to 0.55mm, but this embodiment is not intended to limit the application, and can be adjusted according to actual needs. For example, the thicknesses of the first dielectric plate 120 and the second dielectric plate 130 may be the same.

在本實施例中,超穎表面結構150設置於第二介電板130面向蓋板140的表面上,且包括複數個相互間隔的超穎表面貼片152。其中,超穎表面貼片152的數量可為但不限於三十六個,且所述複數個超穎表面貼片152之間保持著特定的間距,但本實施例並非用以限定本申請,可依據實際需求進行調整。在一實施例中,所述複數個超穎表面貼片152以矩形矩陣布置;舉例而言,當超穎表面貼片152的數量可為但不限於三十六個時,超穎表面貼片152可以6×6矩陣方式設置於第二介電板130上。In this embodiment, the Metasurface structure 150 is disposed on the surface of the second dielectric plate 130 facing the cover plate 140 , and includes a plurality of Metasurface patches 152 spaced apart from each other. Wherein, the number of Metasurface patches 152 may be, but not limited to, thirty-six, and a specific distance is maintained between the plurality of Metasurface patches 152, but this embodiment is not intended to limit the present application. It can be adjusted according to actual needs. In one embodiment, the plurality of Metasurface patches 152 are arranged in a rectangular matrix; for example, when the number of Metasurface patches 152 may be, but not limited to, thirty-six, the Metasurface patches 152 are arranged in a rectangular matrix. 152 may be disposed on the second dielectric plate 130 in a 6×6 matrix.

在本實施例中,驅動貼片160設置於第一介電板120面向第二介電板130的表面上,且對應複數個超穎表面貼片152排布的居中位置設置,以使超穎表面結構150透過與驅動貼片160的緊耦合所產生的第二諧振在輻射方向上具有較好的對稱性。In this embodiment, the driving patch 160 is disposed on the surface of the first dielectric plate 120 facing the second dielectric plate 130 , and is disposed corresponding to the center of the arrangement of the plurality of Metasurface patches 152 , so that the Metasurface The second resonance generated by the surface structure 150 through the close coupling with the driving patch 160 has better symmetry in the radiation direction.

在一實施例中,當所述複數個超穎表面貼片152以矩形矩陣布置時,所述居中位置可為但不限於所述複數個超穎表面貼片152配置區域(即矩形區域)的對角線交點。In one embodiment, when the plurality of Metasurface patches 152 are arranged in a rectangular matrix, the center position may be, but not limited to, the location of the configuration area (ie, the rectangular area) of the plurality of Metasurface patches 152 . Diagonal intersection.

在一實施例中,驅動貼片160包括貼片本體162和匹配支路164;匹配支路164連接饋電探針170,並用於實現毫米波雷達天線100的阻抗匹配。換句話說,可以透過匹配支路164的設計,匹配毫米波雷達天線100的阻抗。In one embodiment, the driving patch 160 includes a patch body 162 and a matching branch 164 ; the matching branch 164 is connected to the feeding probe 170 and is used to realize impedance matching of the millimeter wave radar antenna 100 . In other words, the impedance of the millimeter-wave radar antenna 100 can be matched through the design of the matching branch 164 .

在一實施例中,匹配支路164和/或貼片本體162的外形為矩形,但此實施例並非用以限定本申請,可依據實際需求進行調整。需注意的是,匹配支路164的外形需要與貼片本體162的外形相似。In one embodiment, the shape of the matching branch 164 and/or the patch body 162 is a rectangle, but this embodiment is not intended to limit the present application, and may be adjusted according to actual needs. It should be noted that the shape of the matching branch 164 needs to be similar to the shape of the patch body 162 .

在一實施例中,貼片本體162的外形為矩形且所述複數個超穎表面貼片152以矩形矩陣布置時,貼片本體162的中心點(即矩形外形的對角線交點)的設置位置可正對著所述複數個超穎表面貼片152的配置區域(即矩形區域)的對角線交點,以保證毫米波雷達天線100在空間分布上的輻射方向範圍為對稱設置。In one embodiment, when the shape of the patch body 162 is a rectangle and the plurality of Metasurface patches 152 are arranged in a rectangular matrix, the setting of the center point of the patch body 162 (ie, the intersection of the diagonal lines of the rectangular shape) The positions may be directly opposite to the diagonal intersections of the configuration areas (ie, rectangular areas) of the plurality of metasurface patches 152 to ensure that the radiation direction range of the millimeter-wave radar antenna 100 in the spatial distribution is symmetrical.

在本實施例中,饋電探針170透過饋電通孔122及其對應的孔洞112穿設於金屬底板110和第一介電板120中,且饋電探針170的一端連接驅動貼片160,用於為驅動貼片160饋電,使得驅動貼片160產生第一諧振,而超穎表面結構150透過驅動貼片160產生第二諧振。具體地,毫米波雷達天線100包括主要輻射部分與輔助輻射部分,所述主要輻射部分包括驅動貼片160,所述輔助輻射部分包括對應驅動貼片160設置的超穎表面結構150;當毫米波雷達天線100工作時,由饋電探針170饋電給驅動貼片160,以激勵驅動貼片160產生第一諧振,超穎表面結構150透過與驅動貼片160的緊耦合產生第二諧振,因此,驅動貼片160所產生的第一諧振與超穎表面結構150所產生的第二諧振共同作用,從而極大地增加了毫米波雷達天線100的工作頻寬。其中,由於驅動貼片160與超穎表面結構150之間可具有很強的電磁耦合,使得驅動貼片160與超穎表面結構150之間可保持很小的距離(即第一介電板120的厚度可以很小),進而使得毫米波雷達天線100可具有低剖面特性,可符合市場對於毫米波雷達天線100的小型化要求。In this embodiment, the feeding probe 170 penetrates the metal base plate 110 and the first dielectric plate 120 through the feeding through hole 122 and the corresponding hole 112 , and one end of the feeding probe 170 is connected to the driving patch 160 , is used to feed the driving patch 160 , so that the driving patch 160 generates a first resonance, and the metasurface structure 150 generates a second resonance through the driving patch 160 . Specifically, the millimeter-wave radar antenna 100 includes a main radiating part and an auxiliary radiating part, the main radiating part includes a driving patch 160 , and the auxiliary radiating part includes a metasurface structure 150 corresponding to the driving patch 160 ; When the radar antenna 100 is working, the feeding probe 170 feeds the driving patch 160 to excite the driving patch 160 to generate the first resonance, and the metasurface structure 150 generates the second resonance through the tight coupling with the driving patch 160 . Therefore, the first resonance generated by the driving patch 160 and the second resonance generated by the metasurface structure 150 work together, thereby greatly increasing the operating bandwidth of the millimeter-wave radar antenna 100 . Wherein, due to the strong electromagnetic coupling between the driving patch 160 and the metasurface structure 150, a small distance (ie, the first dielectric plate 120) between the driving patch 160 and the metasurface structure 150 can be maintained. The thickness of the millimeter-wave radar antenna 100 can be very small), so that the millimeter-wave radar antenna 100 can have a low profile characteristic, which can meet the miniaturization requirements of the market for the millimeter-wave radar antenna 100 .

在一實施例中,毫米波雷達天線100還包括同軸接頭210,設置於金屬底板110遠離第一介電板120的表面上,與饋電探針170的另一端相連。其中,同軸接頭210透過饋電探針170為驅動貼片160饋電,同軸接頭210可採用SMA接頭、SMP接頭、N型同軸接頭或波導接頭等,其特性阻抗可以根據實際需求進行調整。In one embodiment, the millimeter-wave radar antenna 100 further includes a coaxial joint 210 , which is disposed on the surface of the metal base plate 110 away from the first dielectric plate 120 and is connected to the other end of the feeding probe 170 . The coaxial connector 210 feeds the driving patch 160 through the feeding probe 170. The coaxial connector 210 can be an SMA connector, an SMP connector, an N-type coaxial connector or a waveguide connector, and its characteristic impedance can be adjusted according to actual needs.

在一實施例中,毫米波雷達天線100還包括第一黏膠層180和第二黏膠層190,第一介電板120透過第一黏膠層180與第二介電板130黏接,第二介電板130透過第二黏膠層190與蓋板140黏接。其中,第一黏膠層180和第二黏膠層190的厚度可為但不限於0.06mm,第一黏膠層180和第二黏膠層190的介電常數(Dk)可為4.0,介電損失(Df)可為0.02;但此實施例並非用以限定本申請,可依據實際需求進行調整。In one embodiment, the millimeter-wave radar antenna 100 further includes a first adhesive layer 180 and a second adhesive layer 190 , and the first dielectric plate 120 is bonded to the second dielectric plate 130 through the first adhesive layer 180 . The second dielectric plate 130 is bonded to the cover plate 140 through the second adhesive layer 190 . The thickness of the first adhesive layer 180 and the second adhesive layer 190 may be but not limited to 0.06 mm, the dielectric constant (Dk) of the first adhesive layer 180 and the second adhesive layer 190 may be 4.0, the dielectric constant (Dk) of the first adhesive layer 180 and the second adhesive layer 190 may be 4.0, and the The electrical loss (Df) can be 0.02; however, this embodiment is not intended to limit the application, and can be adjusted according to actual needs.

請參閱圖4至圖6,圖4為圖1的毫米波雷達天線的一實施例返回損失模擬曲線圖,圖5為圖1的毫米波雷達天線的一實施例輻射增益模擬曲線圖,圖6為圖1的毫米波雷達天線的一實施例模擬輻射方向圖。在圖4至圖6的實施例中,金屬底板110、超穎表面結構150、驅動貼片160和饋電探針170的材質可為銅;第一介電板120和第二介電板130的材質可為LCP;蓋板140的材質可為玻璃;饋電探針170可為同軸探針;所述液晶聚合物的介電常數(Dk)可為3.0,介電損失(Df)可為0.002;所述玻璃的介電常數(Dk)可為7.8,介電損失(Df)可為0.002;第一黏膠層180和第二黏膠層190的介電常數(Dk)可為4.0,介電損失(Df)可為0.02;第一介電板120的厚度可為但不限於0.1mm;第二介電板130的厚度可為但不限於0.15mm;蓋板140的厚度可為但不限於0.55mm;第一黏膠層180和第二黏膠層190的厚度可為但不限於0.06mm;超穎表面貼片152的數量可為三十六個,並以

Figure 02_image001
矩陣方式設置於第二介電板130上。Please refer to FIGS. 4 to 6 . FIG. 4 is a simulated curve diagram of return loss of an embodiment of the millimeter-wave radar antenna of FIG. 1 , FIG. 5 is a simulated curve of radiation gain of an embodiment of the millimeter-wave radar antenna of FIG. 1 , and FIG. 6 A radiation pattern is simulated for an embodiment of the millimeter-wave radar antenna of FIG. 1 . In the embodiments of FIGS. 4 to 6 , the metal base plate 110 , the metasurface structure 150 , the driving patch 160 and the feeding probe 170 may be made of copper; the first dielectric plate 120 and the second dielectric plate 130 The material of the liquid crystal polymer can be LCP; the material of the cover plate 140 can be glass; the feeding probe 170 can be a coaxial probe; the dielectric constant (Dk) of the liquid crystal polymer can be 3.0, and the dielectric loss (Df) can be 0.002; the dielectric constant (Dk) of the glass may be 7.8, the dielectric loss (Df) may be 0.002; the dielectric constant (Dk) of the first adhesive layer 180 and the second adhesive layer 190 may be 4.0, The dielectric loss (Df) may be 0.02; the thickness of the first dielectric plate 120 may be, but not limited to, 0.1 mm; the thickness of the second dielectric plate 130 may be, but not limited to, 0.15 mm; the thickness of the cover plate 140 may be, but not limited to, 0.15 mm. Not limited to 0.55mm; the thickness of the first adhesive layer 180 and the second adhesive layer 190 may be but not limited to 0.06mm; the number of Metasurface patches 152 may be thirty-six, and the
Figure 02_image001
It is arranged on the second dielectric plate 130 in a matrix manner.

圖4中的曲線為毫米波雷達天線100的反射係數S11隨工作頻率變化的模擬曲線,由圖4可知毫米波雷達天線100的頻寬不僅包括60.5GHz的中心工作頻率,並且小於-10dB的頻寬寬度(約為56至68GHz(19%))可達到10GHz以上。圖5中的曲線為毫米波雷達天線100的輻射增益隨工作頻率變化的模擬曲線,由圖5可知毫米波雷達天線100的工作頻寬範圍(即59至63GHz)內在主射方向(即

Figure 02_image003
度且
Figure 02_image005
度,所述Phi為X-Y平面上的夾角,所述Theta為Z-X平面上的夾角)上的增益保持在8dB以上。圖6中的虛線為在
Figure 02_image003
度(即E面(XOZ面))上工作頻率為60.5GHz的毫米波雷達天線100在不同輻射方向上的增益模擬曲線,實線為在
Figure 02_image007
度(即H面(YOZ面))上工作頻率為60.5GHz的毫米波雷達天線100在不同輻射方向上的增益模擬曲線,由圖6中可知毫米波雷達天線100具備寬波束低增益波動的特性,在-60度至60度的輻射方向範圍內增益均大於-3dB,有效地解決目前AiP技術應用於天線時,天線存在因物理空間的限制導致天線的阻抗失配、方向圖畸變等嚴重問題。The curve in FIG. 4 is a simulation curve of the reflection coefficient S11 of the millimeter-wave radar antenna 100 changing with the operating frequency. It can be seen from FIG. 4 that the bandwidth of the millimeter-wave radar antenna 100 includes not only the center operating frequency of 60.5 GHz, but also the frequency less than -10 dB. The wide width (about 56 to 68GHz (19%)) can reach more than 10GHz. The curve in FIG. 5 is a simulation curve of the radiation gain of the millimeter-wave radar antenna 100 as a function of the operating frequency. It can be seen from FIG. 5 that the operating frequency bandwidth of the millimeter-wave radar antenna 100 (ie, 59 to 63 GHz) is in the main radiation direction (ie, 59 to 63 GHz).
Figure 02_image003
degree and
Figure 02_image005
degree, the Phi is the included angle on the XY plane, and the Theta is the included angle on the ZX plane), and the gain is kept above 8dB. The dashed line in Figure 6 is the
Figure 02_image003
The gain simulation curves of the millimeter-wave radar antenna 100 with an operating frequency of 60.5GHz in different radiation directions on the E surface (ie the E surface (XOZ surface)), the solid line is the
Figure 02_image007
The gain simulation curves of the millimeter-wave radar antenna 100 with an operating frequency of 60.5 GHz on the H-plane (ie the H-plane (YOZ plane)) in different radiation directions, it can be seen from FIG. 6 that the millimeter-wave radar antenna 100 has the characteristics of wide beam and low gain fluctuation , the gain is greater than -3dB in the radiation direction range from -60 degrees to 60 degrees, which effectively solves the serious problems of antenna impedance mismatch and pattern distortion caused by the limitation of physical space when the current AiP technology is applied to antennas. .

請參閱圖7至圖8,圖7為依據本申請的毫米波雷達天線的另一實施例爆炸圖,圖8為圖7的毫米波雷達天線的一實施例剖面圖。如圖7至圖8所示,本實施例的毫米波雷達天線200除了包括上述實施例的毫米波雷達天線100的金屬底板110、第一介電板120、第二介電板130、蓋板140第一黏膠層180和第二黏膠層190外,毫米波雷達天線200還包括超穎表面結構250、偶數個驅動貼片160和與驅動貼片160的數量相同的饋電探針170;其中,超穎表面結構250和超穎表面結構150相似或相同,超穎表面結構250所包括的超穎表面貼片252的數量與超穎表面結構150所包括的超穎表面貼片152的數量可以不同;每兩個對稱設置的驅動貼片160組成一個有源單元280,所述複數個超穎表面貼片252均勻對應所述偶數個驅動貼片160排布;饋電探針170、饋電通孔122、孔洞112與驅動貼片160的數量相同,饋電探針170一對一對應貫穿饋電通孔122及孔洞112並對應連接驅動貼片160,一個有源單元280中的兩個驅動貼片160透過對應連接的饋電探針170進行差分饋電(即一個有源單元280中的兩個驅動貼片160的饋電相位相反),以提供波束掃描。Please refer to FIGS. 7 to 8 , FIG. 7 is an exploded view of another embodiment of the millimeter-wave radar antenna according to the present application, and FIG. 8 is a cross-sectional view of an embodiment of the millimeter-wave radar antenna of FIG. 7 . As shown in FIGS. 7 to 8 , the millimeter-wave radar antenna 200 of this embodiment includes the metal base plate 110 , the first dielectric plate 120 , the second dielectric plate 130 , and the cover plate of the millimeter-wave radar antenna 100 of the above-mentioned embodiment. 140 In addition to the first adhesive layer 180 and the second adhesive layer 190, the millimeter-wave radar antenna 200 further includes a metasurface structure 250, an even number of driving patches 160 and the same number of feeding probes 170 as the number of the driving patches 160 ; wherein, the metasurface structure 250 and the metasurface structure 150 are similar or identical, and the number of the metasurface patches 252 included in the metasurface structure 250 is the same as the number of the metasurface patches 152 included in the metasurface structure 150 The number can be different; every two symmetrically arranged drive patches 160 form an active unit 280, and the plurality of Metasurface patches 252 are evenly arranged corresponding to the even number of drive patches 160; the feeding probes 170, The feeding through holes 122, the holes 112 and the driving patches 160 have the same number. The feeding probes 170 pass through the feeding through holes 122 and the holes 112 in a one-to-one correspondence and are connected to the driving patches 160 and two of the active units 280 correspondingly. The driving patches 160 are differentially fed through correspondingly connected feeding probes 170 (ie, the feeding phases of the two driving patches 160 in one active unit 280 are opposite to each other) to provide beam scanning.

具體地,毫米波雷達天線200包括主要輻射部分與輔助輻射部分,所述主要輻射部分包括偶數個驅動貼片160,所述輔助輻射部分包括對應偶數個驅動貼片160設置的超穎表面結構250;當毫米波雷達天線200工作時,由於一個有源單元280中的兩個驅動貼片160的饋電相位相反,因此,毫米波雷達天線200可由其包括的有源單元280提供波束掃描。Specifically, the millimeter-wave radar antenna 200 includes a main radiating portion and an auxiliary radiating portion, the main radiating portion includes an even number of driving patches 160 , and the auxiliary radiating portion includes a metasurface structure 250 corresponding to the even number of driving patches 160 . When the millimeter wave radar antenna 200 is working, since the feeding phases of the two driving patches 160 in one active unit 280 are opposite, the millimeter wave radar antenna 200 can provide beam scanning by the active unit 280 it includes.

在本實施例中,驅動貼片160的數量可為四個;有源單元280的數量可為兩個,兩個有源單元280為毫米波雷達天線200提供波束掃描;超穎表面結構250可包括五十六個相互間隔的超穎表面貼片252,超穎表面貼片252可以8×7矩陣方式設置於第二介電板130上,五十六個相互間隔的超穎表面貼片252均勻對應四個驅動貼片160排布,四個驅動貼片160均勻對應複數個超穎表面貼片252排布的居中位置設置,但本實施例並非用以限定本申請,可依據實際需求進行調整。In this embodiment, the number of driving patches 160 may be four; the number of active units 280 may be two, and the two active units 280 provide beam scanning for the millimeter-wave radar antenna 200 ; the metasurface structure 250 may be Including fifty-six mutually spaced metasurface patches 252, the metasurface patches 252 can be arranged on the second dielectric plate 130 in an 8×7 matrix, and fifty-six mutually spaced metasurface patches 252 The four driving patches 160 are evenly arranged, and the four driving patches 160 are evenly arranged in the center of the arrangement of the plurality of Metasurface patches 252, but this embodiment is not intended to limit the application, and can be implemented according to actual needs. Adjustment.

在一實施例中,每一個驅動貼片160包括匹配支路164;一個有源單元280中的兩個驅動貼片160上分別連接的饋電探針170的匹配支路164呈180°設置。在任一個有源單元280中,由於兩個驅動貼片160透過對應連接的饋電探針170進行差分饋電(即兩個驅動貼片160的饋電相位相差180度),使得兩個驅動貼片160饋電激勵後所合成產生的輻射方向圖在空間上具有對稱性。In one embodiment, each driving patch 160 includes a matching branch 164 ; the matching branches 164 of the feeding probes 170 respectively connected to the two driving patches 160 in one active unit 280 are arranged at 180°. In any active unit 280, since the two driving patches 160 are differentially fed through the correspondingly connected feeding probes 170 (that is, the feeding phases of the two driving patches 160 differ by 180 degrees), the two driving patches 160 are powered differently. The radiation pattern synthesized after the sheet 160 is fed and excited has spatial symmetry.

在一實施例中,當所述複數個超穎表面貼片252以矩形矩陣布置時,所述居中位置可為但不限於所述複數個超穎表面貼片252配置區域(即矩形區域)的對角線交點。In one embodiment, when the plurality of Metasurface patches 252 are arranged in a rectangular matrix, the center position may be, but not limited to, the location of the configuration area (ie, the rectangular area) of the plurality of Metasurface patches 252 . Diagonal intersection.

在一實施例中,貼片本體162的外形為矩形且貼片本體162和所述複數個超穎表面貼片252都以矩形矩陣布置時,所述偶數個驅動貼片160的配置區域(即矩形區域)的對角線交點可正對著所述複數個超穎表面貼片252的配置區域(即矩形區域)的對角線交點,以保證毫米波雷達天線200在空間分布上的輻射方向範圍為對稱設置。In one embodiment, when the shape of the patch body 162 is a rectangle and the patch body 162 and the plurality of Metasurface patches 252 are arranged in a rectangular matrix, the configuration area of the even-numbered driving patches 160 (ie, The diagonal intersection point of the rectangular area) may be directly opposite to the diagonal intersection point of the configuration area (ie, the rectangular area) of the plurality of metasurface patches 252, so as to ensure the radiation direction of the millimeter wave radar antenna 200 in the spatial distribution. The range is set symmetrically.

在一實施例中,毫米波雷達天線200還包括同軸接頭210,設置於金屬底板110遠離第一介電板120的表面上,同軸接頭210、饋電探針170與驅動貼片160的數量相同,同軸接頭210一對一對應連接饋電探針170的一端,用於透過對應連接的饋電探針170為連接的驅動貼片160饋電。In one embodiment, the millimeter-wave radar antenna 200 further includes a coaxial joint 210 disposed on the surface of the metal base plate 110 away from the first dielectric plate 120 . The number of the coaxial joints 210 , the feeding probes 170 and the driving patches 160 is the same. , the coaxial joints 210 are connected to one end of the feeding probes 170 in a one-to-one correspondence, and are used to feed the connected driving patches 160 through the correspondingly connected feeding probes 170 .

請參閱圖9至圖13,圖9為圖7的毫米波雷達天線的一實施例返回損失模擬曲線圖,圖10為圖7的毫米波雷達天線的一實施例隔離度的模擬曲線圖,圖11為圖7的毫米波雷達天線的一實施例輻射增益模擬曲線圖,圖12為圖7的毫米波雷達天線的一個有源單元的一實施例模擬輻射方向圖,圖13為圖7的毫米波雷達天線的另一個有源單元的一實施例模擬輻射方向圖。在圖9至圖13的實施例中,金屬底板110、超穎表面結構250、驅動貼片160和饋電探針170的材質可為銅;第一介電板120和第二介電板130的材質可為LCP;蓋板140的材質可為玻璃;饋電探針170可為同軸探針;所述液晶聚合物的介電常數(Dk)可為3.0,介電損失(Df)可為0.002;所述玻璃的介電常數(Dk)可為7.8,介電損失(Df)可為0.002;第一黏膠層180和第二黏膠層190的介電常數(Dk)可為4.0,介電損失(Df)可為0.02;第一介電板120的厚度可為但不限於0.1mm;第二介電板130的厚度可為但不限於0.15mm;蓋板140的厚度可為但不限於0.55mm;第一黏膠層180和第二黏膠層190的厚度可為但不限於0.06mm;超穎表面貼片252的數量可為五十六個,並以8×7矩陣方式設置於第二介電板130上;驅動貼片160的數量可為四個;有源單元280的數量可為兩個;驅動貼片160的配置區域的對角線交點可正對著所述複數個超穎表面貼片252的配置區域的對角線交點。Please refer to FIGS. 9 to 13 . FIG. 9 is a simulated graph of return loss of an embodiment of the millimeter-wave radar antenna of FIG. 7 , and FIG. 10 is a simulated graph of isolation of an embodiment of the millimeter-wave radar antenna of FIG. 7 . 11 is a radiation gain simulation curve diagram of an embodiment of the millimeter-wave radar antenna of FIG. 7 , FIG. 12 is a simulated radiation pattern of an embodiment of an active unit of the millimeter-wave radar antenna of FIG. 7 , and FIG. 13 is a millimeter wave radar antenna of FIG. 7 . An embodiment of another active element of a wave radar antenna simulates a radiation pattern. In the embodiments of FIGS. 9 to 13 , the metal base plate 110 , the metasurface structure 250 , the driving patch 160 and the feeding probe 170 may be made of copper; the first dielectric plate 120 and the second dielectric plate 130 The material of the liquid crystal polymer can be LCP; the material of the cover plate 140 can be glass; the feeding probe 170 can be a coaxial probe; the dielectric constant (Dk) of the liquid crystal polymer can be 3.0, and the dielectric loss (Df) can be 0.002; the dielectric constant (Dk) of the glass may be 7.8, the dielectric loss (Df) may be 0.002; the dielectric constant (Dk) of the first adhesive layer 180 and the second adhesive layer 190 may be 4.0, The dielectric loss (Df) may be 0.02; the thickness of the first dielectric plate 120 may be, but not limited to, 0.1 mm; the thickness of the second dielectric plate 130 may be, but not limited to, 0.15 mm; the thickness of the cover plate 140 may be, but not limited to, 0.15 mm. Not limited to 0.55mm; the thickness of the first adhesive layer 180 and the second adhesive layer 190 may be but not limited to 0.06mm; the number of Metasurface patches 252 may be fifty-six, and the thickness of the 8×7 matrix Disposed on the second dielectric plate 130; the number of driving patches 160 can be four; the number of active units 280 can be two; the diagonal intersection of the configuration area of the driving patches 160 can be directly opposite to the The intersection of the diagonal lines of the arrangement regions of the plurality of Metasurface patches 252 .

在圖9中,虛線為毫米波雷達天線200的反射係數S11隨工作頻率變化的模擬曲線,一點鏈線為毫米波雷達天線200的反射係數S22隨工作頻率變化的模擬曲線,長虛點線為毫米波雷達天線200的反射係數S33隨工作頻率變化的模擬曲線,實線為毫米波雷達天線200的反射係數S44隨工作頻率變化的模擬曲線。由圖9可知毫米波雷達天線200的頻寬不僅包括60.5GHz的中心工作頻率,並且小於-10dB的頻寬寬度(約為56至68GHz(19%))可達到10GHz以上。In FIG. 9 , the dotted line is the simulation curve of the reflection coefficient S11 of the millimeter-wave radar antenna 200 changing with the working frequency, the dotted line is the simulation curve of the reflection coefficient S22 of the millimeter-wave radar antenna 200 changing with the working frequency, and the long dotted line is The simulation curve of the reflection coefficient S33 of the millimeter-wave radar antenna 200 changing with the working frequency, and the solid line is the simulation curve of the reflection coefficient S44 of the millimeter-wave radar antenna 200 changing with the working frequency. It can be seen from FIG. 9 that the bandwidth of the millimeter-wave radar antenna 200 not only includes the center operating frequency of 60.5 GHz, but also the bandwidth of less than -10 dB (about 56 to 68 GHz (19%)) can reach more than 10 GHz.

在圖10中,虛線為毫米波雷達天線200的隔離度S21在不同工作頻率下的模擬曲線,長虛點線為毫米波雷達天線200的隔離度S32在不同工作頻率下的模擬曲線,實線為毫米波雷達天線200的隔離度S43在不同工作頻率下的模擬曲線。由圖10可知毫米波雷達天線200的隔離度S21、S32、S43可在-15.00dB以下,而具有良好的隔離度。In FIG. 10 , the dotted line is the simulation curve of the isolation S21 of the millimeter-wave radar antenna 200 at different operating frequencies, the long dotted line is the simulation curve of the isolation S32 of the millimeter-wave radar antenna 200 under different operating frequencies, and the solid line It is the simulation curve of the isolation S43 of the millimeter-wave radar antenna 200 at different operating frequencies. It can be seen from FIG. 10 that the isolation degrees S21 , S32 , and S43 of the millimeter-wave radar antenna 200 can be below -15.00 dB, and have good isolation.

圖11中的曲線為毫米波雷達天線200的輻射增益隨工作頻率變化的模擬曲線,由圖11可知毫米波雷達天線200的工作頻寬範圍(即58至63GHz)內在主射方向(即

Figure 02_image003
度且
Figure 02_image005
度)上的增益保持在8dB以上。The curve in FIG. 11 is a simulation curve of the radiation gain of the millimeter-wave radar antenna 200 as a function of the operating frequency. It can be seen from FIG. 11 that the operating frequency bandwidth of the millimeter-wave radar antenna 200 (ie, 58 to 63 GHz) is in the main radiation direction (ie, 58 to 63 GHz).
Figure 02_image003
degree and
Figure 02_image005
degrees) to keep the gain above 8dB.

在圖12中,虛線為工作頻率為60.5GHz的毫米波雷達天線200的一個有源單元280在E面上的不同輻射方向的增益模擬曲線,實線為工作頻率為60.5GHz的毫米波雷達天線200的一個有源單元280在H面上的不同輻射方向的增益模擬曲線;在圖13中,虛線為工作頻率為60.5GHz的毫米波雷達天線200的另一個有源單元280在E面上的不同輻射方向的增益模擬曲線,實線為工作頻率為60.5GHz的毫米波雷達天線200的另一個有源單元280在H面上的不同輻射方向的增益模擬曲線。由圖12和圖13可知毫米波雷達天線200的一個有源單元280和另一個有源單元280都具備寬波束低增益波動的特性,在-60度至60度的輻射方向範圍內增益均大於-3dB,有效地解決目前AiP技術應用於天線時,天線存在因物理空間的限制導致天線的阻抗失配、方向圖畸變等嚴重問題。In FIG. 12 , the dotted line is the gain simulation curve of one active unit 280 of the millimeter-wave radar antenna 200 with an operating frequency of 60.5GHz in different radiation directions on the E-plane, and the solid line is the millimeter-wave radar antenna with an operating frequency of 60.5GHz. The gain simulation curves of one active unit 280 of 200 in different radiation directions on the H surface; in FIG. 13, the dotted line is the E surface of another active unit 280 of the millimeter-wave radar antenna 200 with an operating frequency of 60.5GHz. The gain simulation curves of different radiation directions, the solid line is the gain simulation curve of another active element 280 of the millimeter-wave radar antenna 200 with an operating frequency of 60.5 GHz in different radiation directions on the H plane. It can be seen from FIG. 12 and FIG. 13 that one active unit 280 and another active unit 280 of the millimeter-wave radar antenna 200 have the characteristics of wide beam and low gain fluctuation, and the gain in the radiation direction range from -60 degrees to 60 degrees is greater than -3dB, which effectively solves the serious problems such as impedance mismatch and pattern distortion of the antenna due to the limitation of physical space when the current AiP technology is applied to the antenna.

另外,由圖12和圖13可知毫米波雷達天線200的一個有源單元280和另一個有源單元280同時激勵時,由於反相饋電技術的引入,在給定相位差的激勵下,兩個有源單元280合成的陣列方向圖在空間的兩個主平面上具有一致性,能夠保證毫米波雷達天線200對各方向的回波信號接收強度的均衡。In addition, it can be seen from FIG. 12 and FIG. 13 that when one active unit 280 and another active unit 280 of the millimeter-wave radar antenna 200 are excited at the same time, due to the introduction of the reverse-phase feeding technology, under the excitation of a given phase difference, the two The array pattern synthesized by the active units 280 is consistent on the two main planes in space, which can ensure the equalization of the received strength of echo signals in all directions by the millimeter-wave radar antenna 200 .

請參閱圖13和圖14,圖13為具有本申請的毫米波雷達天線的電子裝置的一實施例方塊圖,圖14為具有本申請的毫米波雷達天線的電子裝置的另一實施例方塊圖。如圖13和圖14所示,電子裝置300包括:毫米波雷達天線100,電子裝置400包括:毫米波雷達天線200。其中,電子裝置300和電子裝置400可以包括例如智慧電話、個人電腦(PC)、行動電話、視頻電話、電子書閱讀器、筆記型電腦(Laptop)、工作站、伺服器、個人數位助理(PDA)、可攜式媒體播放裝置(PMP)、MPEG-1音訊層-3(MP3)播放器、行動電話醫療裝置、照相機和可穿戴裝置中至少之一。Please refer to FIGS. 13 and 14. FIG. 13 is a block diagram of an electronic device having the millimeter-wave radar antenna of the present application, and FIG. 14 is a block diagram of another embodiment of the electronic device having the millimeter-wave radar antenna of the present application. . As shown in FIGS. 13 and 14 , the electronic device 300 includes the millimeter-wave radar antenna 100 , and the electronic device 400 includes the millimeter-wave radar antenna 200 . The electronic device 300 and the electronic device 400 may include, for example, a smart phone, a personal computer (PC), a mobile phone, a video phone, an e-book reader, a notebook computer (Laptop), a workstation, a server, and a personal digital assistant (PDA). , at least one of a portable media player (PMP), an MPEG-1 audio layer-3 (MP3) player, a mobile phone medical device, a camera, and a wearable device.

綜上所述,本申請實施例的毫米波雷達天線及電子裝置透過超穎表面加載技術,引入具有電抗性阻抗表面(RIS)的超穎表面結構,使得毫米波雷達天線工作時,由饋電探針饋電給驅動貼片,以激勵驅動貼片產生第一諧振,超穎表面結構透過與驅動貼片的緊耦合產生第二諧振,因此,驅動貼片所產生的第一諧振與超穎表面結構所產生的第二諧振共同作用,解決目前AiP技術中天線存在因物理空間的限制導致天線的阻抗失配、方向圖畸變等嚴重問題。另外,毫米波雷達天線透過多層材料無縫堆疊結合設計,具有良好的密封性和穩定性,保證應用毫米波雷達天線的雷達識別模組及電子裝置在識別功能上的正常運行。To sum up, the millimeter-wave radar antenna and electronic device of the embodiments of the present application introduce a metasurface structure with a reactive impedance surface (RIS) through the metasurface loading technology, so that when the millimeter-wave radar antenna The probe feeds the drive patch to excite the drive patch to generate the first resonance, and the metasurface structure generates the second resonance through the tight coupling with the drive patch. Therefore, the first resonance generated by the drive patch is different from the metasurface. The second resonance generated by the surface structure works together to solve the serious problems of the antenna in the current AiP technology, such as impedance mismatch and pattern distortion of the antenna due to the limitation of physical space. In addition, the millimeter-wave radar antenna is designed through seamless stacking of multi-layer materials, which has good sealing and stability, and ensures the normal operation of the radar identification module and electronic device using the millimeter-wave radar antenna in terms of identification function.

雖然在本申請的圖式中包含了以上描述的元件,但不排除在不違反發明的精神下,使用更多其他的附加元件,已達成更佳的技術效果。Although the above-described elements are included in the drawings of the present application, it is not excluded that more other additional elements can be used to achieve better technical effects without departing from the spirit of the invention.

雖然本發明使用以上實施例進行說明,但需要注意的是,這些描述並非用於限縮本發明。相反地,此發明涵蓋了所屬技術領域中的技術人員顯而易見的修改與相似設置。所以,申請專利範圍須以最寬廣的方式解釋來包含所有顯而易見的修改與相似設置。Although the present invention is described using the above embodiments, it should be noted that these descriptions are not intended to limit the present invention. On the contrary, this invention covers modifications and similar arrangements obvious to those skilled in the art. Therefore, the scope of the patent application is to be construed in the broadest possible manner to encompass all obvious modifications and similar arrangements.

100,200:毫米波雷達天線 110:金屬底板 112:孔洞 120:第一介電板 122:饋電通孔 130:第二介電板 140:蓋板 150,250:超穎表面結構 152,252:超穎表面貼片 160:驅動貼片 162:貼片本體 164:匹配支路 170:饋電探針 180:第一黏膠層 190:第二黏膠層 210:同軸接頭 280:有源單元 300,400:電子裝置100,200: mmWave radar antenna 110: Metal bottom plate 112: Hole 120: First Dielectric Plate 122: Feed through hole 130: Second Dielectric Plate 140: Cover 150,250: Metasurface Structure 152,252: Metasurface Patch 160: Driver patch 162: Patch body 164: match branch 170: Feed Probe 180: The first adhesive layer 190: Second adhesive layer 210: coaxial connector 280: Active unit 300,400: Electronic devices

此處所說明的圖式用來提供對本申請的進一步理解,構成本申請的一部分,示意性實施例及其說明用於解釋本申請,並不構成對本申請的不當限定。在圖式中: 圖1為依據本申請的毫米波雷達天線的一實施例爆炸圖; 圖2為圖1的毫米波雷達天線的一實施例組合圖; 圖3為圖1的毫米波雷達天線的一實施例剖面圖; 圖4為圖1的毫米波雷達天線的一實施例返回損失模擬曲線圖; 圖5為圖1的毫米波雷達天線的一實施例輻射增益模擬曲線圖; 圖6為圖1的毫米波雷達天線的一實施例模擬輻射方向圖; 圖7為依據本申請的毫米波雷達天線的另一實施例爆炸圖; 圖8為圖7的毫米波雷達天線的一實施例剖面圖; 圖9為圖7的毫米波雷達天線的一實施例返回損失模擬曲線圖; 圖10為圖7的毫米波雷達天線的一實施例隔離度的模擬曲線圖; 圖11為圖7的毫米波雷達天線的一實施例輻射增益模擬曲線圖; 圖12為圖7的毫米波雷達天線的一個有源單元的一實施例模擬輻射方向圖; 圖13為圖7的毫米波雷達天線的另一個有源單元的一實施例模擬輻射方向圖; 圖14為具有本申請的毫米波雷達天線的電子裝置的一實施例方塊圖;及 圖15為具有本申請的毫米波雷達天線的電子裝置的另一實施例方塊圖。The drawings described herein are used to provide further understanding of the present application and constitute a part of the present application. The exemplary embodiments and their descriptions are used to explain the present application and do not constitute an improper limitation of the present application. In the schema: 1 is an exploded view of an embodiment of a millimeter-wave radar antenna according to the present application; FIG. 2 is a combination diagram of an embodiment of the millimeter-wave radar antenna of FIG. 1; 3 is a cross-sectional view of an embodiment of the millimeter-wave radar antenna of FIG. 1; FIG. 4 is a simulation graph of return loss of an embodiment of the millimeter-wave radar antenna of FIG. 1; FIG. 5 is a radiation gain simulation curve diagram of an embodiment of the millimeter-wave radar antenna of FIG. 1; 6 is a simulated radiation pattern of an embodiment of the millimeter-wave radar antenna of FIG. 1; 7 is an exploded view of another embodiment of the millimeter wave radar antenna according to the present application; FIG. 8 is a cross-sectional view of an embodiment of the millimeter-wave radar antenna of FIG. 7; FIG. 9 is a simulation graph of return loss of an embodiment of the millimeter-wave radar antenna of FIG. 7; FIG. 10 is a simulation graph of isolation degree of an embodiment of the millimeter-wave radar antenna of FIG. 7; FIG. 11 is a radiation gain simulation curve diagram of an embodiment of the millimeter-wave radar antenna of FIG. 7; 12 is a simulated radiation pattern of an embodiment of an active unit of the millimeter-wave radar antenna of FIG. 7; FIG. 13 is a simulated radiation pattern of another active unit of the millimeter-wave radar antenna of FIG. 7 according to an embodiment; 14 is a block diagram of an embodiment of an electronic device having the millimeter-wave radar antenna of the present application; and FIG. 15 is a block diagram of another embodiment of an electronic device having the millimeter-wave radar antenna of the present application.

100:毫米波雷達天線 100: mmWave radar antenna

110:金屬底板 110: Metal bottom plate

112:孔洞 112: Hole

120:第一介電板 120: First Dielectric Plate

130:第二介電板 130: Second Dielectric Plate

140:蓋板 140: Cover

150:超穎表面結構 150: Metasurface Structure

152:超穎表面貼片 152: Metasurface Patch

160:驅動貼片 160: Driver patch

162:貼片本體 162: Patch body

164:匹配支路 164: match branch

170:饋電探針 170: Feed Probe

180:第一黏膠層 180: The first adhesive layer

190:第二黏膠層 190: Second adhesive layer

210:同軸接頭 210: coaxial connector

Claims (9)

一種毫米波雷達天線,其包括:一金屬底板;一第一介電板,設置於該金屬底板上;一第二介電板,設置於該第一介電板上;一蓋板,設置於該第二介電板上;一超穎表面結構,設置於該第二介電板面向該蓋板的表面上,且包括複數個相互間隔的超穎表面貼片;一驅動貼片,設置於該第一介電板面向該第二介電板的表面上,且對應該些超穎表面貼片排布的一居中位置設置;及一饋電探針,穿設於該金屬底板和該第一介電板中,且連接該驅動貼片,用於為該驅動貼片饋電,使得該驅動貼片產生一第一諧振,該超穎表面結構透過與該驅動貼片的緊耦合產生一第二諧振。 A millimeter wave radar antenna, comprising: a metal base plate; a first dielectric plate arranged on the metal base plate; a second dielectric plate arranged on the first dielectric plate; a cover plate arranged on the the second dielectric plate; a metasurface structure disposed on the surface of the second dielectric plate facing the cover plate, and comprising a plurality of mutually spaced metasurface patches; a driving patch disposed on The first dielectric plate faces the surface of the second dielectric plate, and is disposed at a center position corresponding to the arrangement of the Metasurface patches; and a feeding probe penetrates through the metal base plate and the first A dielectric plate is connected to the driver patch for feeding the driver patch, so that the driver patch generates a first resonance, and the metasurface structure generates a Second resonance. 如請求項1所述的毫米波雷達天線,其中,該驅動貼片包括一貼片本體和一匹配支路;該匹配支路連接該饋電探針,並用於實現該毫米波雷達天線的阻抗匹配。 The millimeter-wave radar antenna of claim 1, wherein the driving patch comprises a patch body and a matching branch; the matching branch is connected to the feeding probe and is used to realize the impedance of the millimeter-wave radar antenna match. 如請求項2所述的毫米波雷達天線,其中,該匹配支路和/或該貼片本體外形為矩形。 The millimeter-wave radar antenna according to claim 2, wherein the matching branch and/or the patch body has a rectangular shape. 如請求項1所述的毫米波雷達天線,其中,還包括一第一黏膠層和一第二黏膠層,該第一介電板透過該第一黏膠層與該第二介電板黏接,該第二介電板透過該第二黏膠層與該蓋板黏接。 The millimeter-wave radar antenna of claim 1, further comprising a first adhesive layer and a second adhesive layer, the first dielectric plate passing through the first adhesive layer and the second dielectric plate bonding, the second dielectric board is bonded with the cover board through the second adhesive layer. 如請求項1所述的毫米波雷達天線,其中,該第一介電板和該第二介電板的材質為液晶聚合物。 The millimeter-wave radar antenna of claim 1, wherein the first dielectric plate and the second dielectric plate are made of liquid crystal polymer. 如請求項1所述的毫米波雷達天線,其中,該些超穎表面貼片以一矩形矩陣布置。 The millimeter-wave radar antenna of claim 1, wherein the metasurface patches are arranged in a rectangular matrix. 如請求項1所述的毫米波雷達天線,其中,該驅動貼片的數量為偶數個,每兩個對稱設置的該驅動貼片組成一個有源單元,該些超穎表面貼片均勻對應偶數個該驅動貼片排布;該饋電探針的數量與該驅動貼片的數量相同,該饋電探針一對一對應連接該驅動貼片,該一個有源單元中的兩個該驅動貼片透過對應連接的該饋電探針進行差分饋電,以提供波束掃描。 The millimeter-wave radar antenna of claim 1, wherein the number of the driving patches is an even number, every two symmetrically arranged driving patches form an active unit, and the metasurface patches evenly correspond to an even number Each of the driving patches is arranged; the number of the feeding probes is the same as the number of the driving patches, the feeding probes are connected to the driving patches in a one-to-one correspondence, and two of the drivers in the one active unit The patch is differentially fed through the correspondingly connected feed probes to provide beam scanning. 如請求項7所述的毫米波雷達天線,其中,每一個該驅動貼片包括一匹配支路;該一個有源單元中,兩個該驅動貼片上分別連接的該饋電探針的該匹配支路呈130。設置。 The millimeter-wave radar antenna of claim 7, wherein each of the driving patches includes a matching branch; in the one active unit, the two driving patches are respectively connected to the feeding probes. The matching branch is 130. set up. 一種電子裝置,其包括:如請求項1至8中任一項所述的毫米波雷達天線。 An electronic device comprising: the millimeter wave radar antenna according to any one of claims 1 to 8.
TW110117590A 2021-03-31 2021-05-14 Millimeter-wave radar antenna and electronic device TWI777560B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110348714.1 2021-03-31
CN202110348714.1A CN113067164A (en) 2021-03-31 2021-03-31 Millimeter wave radar antenna and electronic device

Publications (2)

Publication Number Publication Date
TW202133487A TW202133487A (en) 2021-09-01
TWI777560B true TWI777560B (en) 2022-09-11

Family

ID=76565185

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110117590A TWI777560B (en) 2021-03-31 2021-05-14 Millimeter-wave radar antenna and electronic device

Country Status (2)

Country Link
CN (1) CN113067164A (en)
TW (1) TWI777560B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114171911A (en) * 2021-12-30 2022-03-11 中国科学院微电子研究所 Metamaterial antenna and array applied to millimeter wave communication
WO2024082311A1 (en) * 2022-10-21 2024-04-25 北京小米移动软件有限公司 Metasurface unit and metasurface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200803048A (en) * 2006-06-30 2008-01-01 Ind Tech Res Inst Antenna structure with antenna radome and method for rising gain thereof
TW200832812A (en) * 2006-08-25 2008-08-01 Rayspan Corp Antennas based on metamaterial structures
TW201017980A (en) * 2008-10-16 2010-05-01 Univ Tatung Antenna radome, and microstrip patch antenna comprising the antenna radome
US20180131103A1 (en) * 2015-02-11 2018-05-10 Kymeta, Inc. Combined antenna apertures allowing simultaneous multiple antenna functionality
WO2020036393A1 (en) * 2018-08-13 2020-02-20 삼성전자 주식회사 Antenna device including planar lens

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214378855U (en) * 2021-03-31 2021-10-08 昆山联滔电子有限公司 Millimeter wave radar antenna and electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200803048A (en) * 2006-06-30 2008-01-01 Ind Tech Res Inst Antenna structure with antenna radome and method for rising gain thereof
TW200832812A (en) * 2006-08-25 2008-08-01 Rayspan Corp Antennas based on metamaterial structures
TW201017980A (en) * 2008-10-16 2010-05-01 Univ Tatung Antenna radome, and microstrip patch antenna comprising the antenna radome
US20180131103A1 (en) * 2015-02-11 2018-05-10 Kymeta, Inc. Combined antenna apertures allowing simultaneous multiple antenna functionality
WO2020036393A1 (en) * 2018-08-13 2020-02-20 삼성전자 주식회사 Antenna device including planar lens

Also Published As

Publication number Publication date
TW202133487A (en) 2021-09-01
CN113067164A (en) 2021-07-02

Similar Documents

Publication Publication Date Title
TWI777560B (en) Millimeter-wave radar antenna and electronic device
KR100638726B1 (en) Antenna module and electric apparatus using the same
JP7014287B2 (en) Antenna module and communication device equipped with it
US11217894B2 (en) Antenna structure
WO2021249045A1 (en) Millimeter wave antenna module and electronic device
US11557826B2 (en) Antenna unit, preparation method, and electronic device
US12027787B2 (en) Antenna module, communication device in which antenna module is installed, and method of manufacturing antenna module
CN214378855U (en) Millimeter wave radar antenna and electronic device
US12003012B2 (en) Antenna module
CN110890621B (en) Chip antenna module
US20220352620A1 (en) Antenna device
JP5712639B2 (en) Dipole antenna and array antenna
WO2022083276A1 (en) Antenna array assembly and electronic device
US11888245B2 (en) Flexible substrate and antenna module including flexible substrate
CN114696079A (en) Patch antenna and electronic equipment
US20210028548A1 (en) Antenna apparatus, and manufacturing method
CN114006163B (en) Liquid crystal antenna and manufacturing method thereof
CN112736439A (en) Antenna, antenna module and electronic equipment
WO2022038847A1 (en) Antenna module and connection structure
US11721908B2 (en) Antenna structure with wide beamwidth
US12027721B2 (en) Electronic device
WO2022085451A1 (en) Electronic device
US11870142B2 (en) Tile to tile RF grounding
CN114069233B (en) Phased array antenna
KR102297084B1 (en) Antenna module and Antenna apparatus

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent