TWI777206B - 同步整流控制器與相關之控制方法 - Google Patents

同步整流控制器與相關之控制方法 Download PDF

Info

Publication number
TWI777206B
TWI777206B TW109125953A TW109125953A TWI777206B TW I777206 B TWI777206 B TW I777206B TW 109125953 A TW109125953 A TW 109125953A TW 109125953 A TW109125953 A TW 109125953A TW I777206 B TWI777206 B TW I777206B
Authority
TW
Taiwan
Prior art keywords
voltage
time
controller
fully open
preset
Prior art date
Application number
TW109125953A
Other languages
English (en)
Other versions
TW202141913A (zh
Inventor
沈逸倫
黃于芸
楊豐誠
Original Assignee
大陸商艾科微電子(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商艾科微電子(深圳)有限公司 filed Critical 大陸商艾科微電子(深圳)有限公司
Publication of TW202141913A publication Critical patent/TW202141913A/zh
Application granted granted Critical
Publication of TWI777206B publication Critical patent/TWI777206B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

本發明之實施例揭露一種同步整流控制器,用以控制一整流開關。該同步整流控制器包含有一全開控制器以及一穩壓器。該全開控制器可被該整流開關之一通道電壓所觸發,依據一預設條件,用以將該整流開關完全開啟一全開時間。該穩壓器於該全開時間內被禁能,於該全開時間後被致能,用以使該整流開關開啟,且維持該通道電壓於一預設電壓範圍內。該全開控制器係依據該穩壓器被致能時之一表現紀錄而調整該預設條件。

Description

同步整流控制器與相關之控制方法
本發明係關於一種二次側的同步整流控制器;特別關於用於返馳式開關電源供應器之二次側的同步整流控制器以及相關之控制方法。
電源供應器除了要求有精準的輸出電壓或是輸出電流之外,能量轉換效率(power conversion efficiency)往往也是業界非常在乎的規格之一。
傳統之返馳式開關電源供應器以變壓器分隔一次側與二次側。透過一功率開關的開關,一次側的主繞組上跨壓產生了變化。因著電感耦合,二次側繞組的跨壓產生了交流部分,其經過整流後,可以供應位於二次側的負載。
在二次側的整流,最簡單的方式是採用一整流二極體。只是整流二極體開啟所需要的順向電壓(forward voltage),卻使得整流二極體成為一個固定地耗損能量之元件。為了降低或消除整流二極體之能量耗損,增加能量轉換效率,業界已經發展了以一個整流開關取代整流二極體。這樣的技術稱為二次側同步整流。只是,整流開關應該如何控制,這不只是關乎能量轉換效率,也關乎產 品安全。如果整流開關在不應該開啟的時候而開啟,損害的不只是效率,更可能有電源供應器爆炸的危險。
本發明之實施例揭露一種同步整流控制器,用以控制一整流開關。該同步整流控制器包含有一全開控制器以及一穩壓器。該全開控制器可被該整流開關之一通道電壓所觸發,依據一預設條件,用以將該整流開關完全開啟一全開時間,當該整流開關完全開啟時,該整流開關具有一第一導通電阻。該穩壓器於該全開時間內被禁能,於該全開時間後被致能,用以使該整流開關部分開啟,且維持該通道電壓於一預設電壓範圍內,當該整流開關部分開啟時,該整流開關具有一第二導通電阻,該第一導通電阻小於該第二導通電阻。該全開控制器係依據該穩壓器被致能時之一表現紀錄而調整該預設條件。
本發明之實施例另揭露一種控制方法,適用於一同步整流控制器,用以控制一整流開關。該控制方法包含有:將該整流開關完全開啟一全開時間,其中該全開時間係依據一預設條件而決定;於該全開時間之後,維持該整流開關之一通道電壓於一預設電壓範圍內,並具以產生一表現紀錄;當該通道電壓符合一關閉條件時,維持該整流開關關閉;以及,依據該表現紀錄,調整該預設條件,以使該表現紀錄趨近一預設目標。
為了能更進一步瞭解本發明為達成預定目的所採取之技術、手段及功效,請參閱以下有關本發明之詳細說明與附圖,相信本發明之目的、特徵與 特點,當可由此得一深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。
10:同步整流控制器
14:電源控制器
16:負載
20:返馳式開關電源供應器
26:輸入地
28:輸出地
102:狀態偵測器
104:全開控制器
106:穩壓器
108:比較器
110:關閉控制器
112、114:開關
116、118:電流源
120、122:開關
200、300:控制方法
IN:輸入電源線
LP:主繞組
LS:二次側繞組
NC:交叉次數
NP:功率開關
NS:整流開關
NSET:預設次數
OUT:輸出電源線
S10、S12、S14、S16、S18、S20、S22、S24、S26、S28:步驟
SF:脈衝
SNP:控制信號
t0、t1、t2、t3、t4、t5、ta、tb、tc:時間點
TF:變壓器
TFO:全開時間
TR:穩壓時間
VA、VB:邊界電壓
VC:預設電壓
VD:通道電壓
VG:閘信號
VMAX:最高電壓
VOUT:輸出電壓
VTHNS:臨界電壓
VREF:預設負電壓
VREF2:參考電壓
ID:通道電流
TDIS:放電時間
第1圖顯示依據本發明所實施的一返馳式開關電源供應器;第2圖顯示第1圖中的同步整流控制器;第3圖舉例顯示三個開關週期中,控制信號、流經整流開關的通道電流、通道電壓、以及閘信號的信號波型;第4圖顯示使用於同步整流控制器的控制方法;及第5圖顯示使用於全開控制器的控制方法。
在本說明書中,有一些相同的符號,其表示具有相同或是類似之結構、功能、原理的元件,且為業界具有一般知識能力者可以依據本說明書之教導而推知。為說明書之簡潔度考量,相同之符號的元件將不再重述。
在本發明的一實施例中,二次側的整流開關之開啟,分成兩個時間:全開時間以及穩壓時間。在全開時間內,整流開關完全地開啟。穩壓時間緊接於全開時間後。在穩壓時間內,整流開關部分地開啟,用來維持該整流開關之一通道電壓於一預設電壓範圍內。全開時間可以依據穩壓時間內的一表現紀錄而適應性的調整,使得表現紀錄,隨著開關週期的進展,可以逼近一個預設目標。
該全開時間在該穩壓時間之前,可以降低該整流開關在整流時的能量損耗,增加轉換效率。
該穩壓時間可以預先將該整流開關的一閘信號預先拉低,可以在之後判別一定要關閉該整流開關時,即時且迅速地關閉該整流開關。該穩壓時間提供一個較高的開啟電阻,可以預防該整流開關過晚關閉時,所可能發生的過高逆電流之風險。
依據穩壓時間內的該表現紀錄而適應性的調整該全開時間,可以盡可能的延長該全開時間,享受較高的轉換效率。
第1圖顯示依據本發明所實施的一返馳式開關電源供應器20。在一次側,返馳式開關電源供應器20具有輸入電源線IN、輸入地26、電源控制器14、主繞組LP、以及功率開關NP,彼此的電性連接關係如同第1圖所示。在二次側,返馳式開關電源供應器20具有輸出電源線OUT、輸出地28、同步整流控制器10、二次側繞組LS、以及整流開關NS,彼此的電性連接關係如同第1圖所示。變壓器TF具有,但不限於,主繞組LP以及二次側繞組LS,分別位於一次側與二次側,彼此電感性相耦合。
電源控制器14以控制信號SNP控制功率開關NP,使得主繞組LP上的跨壓與流經主繞組LP的電流產生變化。因著電感耦合,二次側繞組LS產生了交流電壓或是電流。整流開關NS提供整流的功能,希望產生適當的輸出電壓VOUT,來對負載16供電。整流開關NS可以提供導電通道,電性連接輸出地28到二次側繞組LS。舉例來說,整流開關NS是一個NMOS電晶體,其源端連接到輸出地28,其汲端連接到二次側繞組LS,其閘端受控於同步整流控制器10。整流開關NS與二次側繞組LS之間的連接點上有通道電壓VD,可以表示整流開關NS之導電通道上的跨壓。依據通道電壓VD,同步整流控制器10產生閘信號 VG,用以控制整流開關NS。簡單的說,同步整流控制器10依據通道電壓VD,來判斷當下整流開關NS是否應該開啟,且決定開啟的狀態如何。
第2圖顯示第1圖中的同步整流控制器10,包含有狀態偵測器102、全開控制器104、穩壓器106、關閉控制器110、以及開關112與114。
依據通道電壓VD,狀態偵測器102來判斷功率開關NP是否剛剛關閉,據以來觸發全開控制器104。舉例來說,狀態偵測器102偵測通道電壓VD的下降緣斜率。當通道電壓VD的下降緣斜率大於一定程度時,且通道電壓VD為負值時,狀態偵測器102就認定一次側的功率開關NP剛剛關閉,因而觸發全開控制器104。
全開控制器104被觸發後,會產生脈衝SF,用以開啟開關112。開啟的開關112會將閘信號VG的電壓值拉到一個固定的最高電壓VMAX,也就是將整流開關NS完全開啟。脈衝SF的脈衝寬度為全開時間TFO。因此,全開控制器104在全開時間TFO內,將整流開關NS保持完全開啟。
穩壓器106包含有比較器108、數個邏輯閘、電流源116與118、以及開關120與122,彼此的連接關係如同第2圖所示。穩壓器106在全開時間TFO內被禁能,穩壓器106並沒有驅動閘信號VG,因為脈衝SF同時使得穩壓器106內的開關120與122為關閉。在全開時間TFO之後,穩壓器106被致能,不但是維持整流開關NS部分開啟,而且也維持通道電壓VD大約為一預設負電壓VREF,或是使得通道電壓VD大約維持在邊界電壓VA與VB之間。在一實施例中,預設負電壓VREF、邊界電壓VA與VB分別可以為,但不限制為-0.3V、-0.25與-0.35V。當通道電壓VD高過邊界電壓VA時,比較器108輸出”0”,開關120開路而開關122短路,電流源118拉低閘信號VG,使得通道電壓VD趨於下降。當 通道電壓VD低於邊界電壓VB時,比較器108輸出”1”,開關122開路而開關120短路,電流源116拉高閘信號VG,使得通道電壓VD趨於上升。
關閉控制器110以一比較器為例,偵測通道電壓VD是否符合一關閉條件。在第2圖中,這個關閉條件為通道電壓VD大於預設電壓VC。在一實施例中,預設電壓VC舉例為,但不限制為0V。如果通道電壓VD大於預設電壓VC,關閉控制器110開啟開關114,使閘信號VG為0V,強迫且維持整流開關NS完全關閉。
第3圖舉例顯示三個開關週期中,控制信號SNP、流經整流開關NS的通道電流ID、通道電壓VD、以及閘信號VG的信號波型。
在第3圖中,第1開關週期內的時間點t0時,功率開關NP剛剛關閉,因此通道電流ID感應地出現,開始隨著放電而線性減少。此時,整流開關NS為關閉。通道電流ID瞬間流經寄生於整流開關NS中的二極體。在時間點t0,通道電壓VD會由一個正值,迅速地掉到-0.7V或是更低的電壓,如同第3圖所示。
在時間點t0時,狀態偵測器102發現下降緣斜率已經足夠大,認定功率開關NP剛剛關閉,因此觸發全開控制器104。所以,經過一段信號延遲,全開控制器104在時間點t1開始完全開啟整流開關NS。全開控制器104在時間點t2,結束了全開時間TFO。在全開時間TFO內,閘信號VG的電壓準位為同步整流控制器10可以提供的最高電壓VMAX,來將整流開關NS完全開啟。
時間點t2後,全開控制器104停止控制整流開關NS,換穩壓器106接手,使得通道電壓VD大約維持在邊界電壓VA到VB之間。因此,從時間點t2開始,通道電壓VD開始變化於邊界電壓VA到VB之間,而閘信號VG也上 下地變化,直到時間點t3。穩壓器106接手的這一段時間,在第1開關週期中為時間點t2到時間點t3,稱為穩壓時間TR。請注意,如同第3圖所示,在穩壓時間TR內,閘信號VG的電壓值依然高於整流開關NS的臨界電壓VTHNS,所以整流開關NS維持開啟,但不是完全地開啟,因為閘信號VG的電壓值低於全開時間TFO內的最高電壓VMAX。
在時間點t3,控制信號SNP開始開啟了功率開關NP,來結束第1開關週期,開始第2開關週期。此時,通道電流ID因為電感感應,快速地往負值變化,也造成了通道電壓VD快速地變成正值。第2圖中的關閉控制器110發現了通道電壓VD變為正值,因此開始完全關閉整流開關NS。
請參閱第2圖。第2圖中的全開控制器104依據穩壓器106被致能時的表現紀錄而調整其中的一預設條件,據以調整下一個開關週期內,全開時間TFO的長度。如此,使得表現紀錄朝一預設目標趨近。在第2圖之實施例中,這個表現紀錄是通道電壓VD觸及邊界電壓VB的交叉次數NC,預設目標是預設次數NSET。全開控制器104接收比較器108的輸出,用以記錄通道電壓VD觸及-0.35V的交叉次數NC,並據以調整下一個開關週期內的全開時間TFO的長度,使得之後的交叉次數NC可以往預設次數NSET逼近。舉例來說,這個預設次數為2。在另一個實施例中,表現紀錄可以是通道電壓VD觸及邊界電壓VA的交叉次數,也可以是通道電壓VD觸及邊界電壓VA與VB的交叉次數,或是其他任何穩壓器106被致能時所產生的結果。
請參閱第3圖,在穩壓時間TR內,全開控制器104計算通道電壓VD在穩壓時間TR內觸及邊界電壓VB的次數,據以調整下一開關週期的全開時間TFO。在時間點t3時,全開控制器104中所紀錄的交叉次數NC為3,也 就是通道電壓VD在穩壓時間TR內觸及邊界電壓VB三次,分別發生於時間點ta、tb、tc。因為此時交叉次數NC大於預設次數NSET(假設等於2)。所以,全開控制器104調整控制全開時間TFO的預設條件,造成了第2開關週期中的全開時間TFO變長,而穩壓時間TR變短。在時間點t4時,全開控制器104中所紀錄的交叉次數NC還是為3,所以全開控制器104再調整控制全開時間TFO的預設條件,使得第3開關週期中的全開時間TFO變更長,而穩壓時間TR變更短。在時間點t5時,全開控制器104中所紀錄的交叉次數NC為2,所以全開控制器104保持控制全開時間TFO的預設條件不變,期望使得下一開關週期中的全開時間TFO大致不變。
在一實施例中,全開控制器104用來控制全開時間TFO的預設條件,可以是通道電壓VD高於參考電壓VREF2時,全開控制器104就結束全開時間TFO。可以預期的,參考電壓VREF2愈高,愈接近0V,全開時間TFO就會越長。在這個實施例中,當全開控制器104中所紀錄的交叉次數NC大於預設次數NSET時,全開控制器104增加參考電壓VREF2,用以增加下一開關週期中的全開時間TFO。因此,全開時間TFO關聯於通道電壓VD以及參考電壓VREF2,全開控制器104依據穩壓時間TR中的表現紀錄而調整參考電壓VREF2
在另一實施例中,全開控制器104用來控制全開時間TFO的預設條件,可以是當下全開時間TFO大約等於一前開關週期中的放電時間TDIS以及一介於0到1之間的比例常數K,兩者的乘積。放電時間TDIS指的是通道電流ID大於0A的時間,如同第3圖中所標示。在這個實施例中,當全開控制器104中所紀錄的交叉次數NC大於預設次數NSET,全開控制器104增加比例常數K,用以增加下一開關週期中的全開時間TFO。所以,全開時間TFO關聯於 放電時間TDIS以及比例常數K,全開控制器104依據穩壓時間TR中的表現紀錄而調整比例常數K。
第4圖顯示使用於同步整流控制器10的控制方法200。
在步驟S10中,狀態偵測器102依據通道電壓VD的下降斜率,認定功率開關NP剛剛關閉,因此觸發全開控制器104,開始開啟整流開關NS。
步驟S12中,全開控制器104完全開啟整流開關NS,直到一預設條件符合為止,結束全開時間TFO。
步驟S14中,穩壓器106控制閘信號VG,使得通道電壓VD大約維持在邊界電壓VA與VB之間。同時,全開控制器104產生表現紀錄。在一實施例中,這表現紀錄是全開控制器104所計算並提供的交叉次數NC,表示通道電壓VD在穩壓時間TR內觸及邊界電壓VB的次數。
步驟S16中,因為發現通道電壓VD大於0V,關閉控制器110使閘信號VG為0V,強迫且維持整流開關NS完全關閉。
步驟S18中,全開控制器104依據表現紀錄,來調整步驟S12所用的預設條件,使得下個開關週期中的表現紀錄可以朝一預設目標逼近。
第5圖顯示使用於全開控制器104的控制方法300。
步驟S20中,全開控制器104提供交叉次數NC。
步驟S22與S26中,全開控制器104比較交叉次數NC與預設次數NSET。
當交叉次數NC大於預設次數NSET時,步驟S24調整步驟S12所用的預設條件,來增加下一開關週期中的全開時間TFO。
當交叉次數NC小於預設次數NSET時,步驟S28調整步驟S12所用的預設條件,來減少下一開關週期中的全開時間TFO。
步驟S24與S28都是用來使下一開關週期中的交叉次數NC往預設次數NSET逼近。
請參閱第3圖。從先前的教導可以得知,同步整流控制器10大約可以自動調節全開時間TFO的長度,使得穩壓時間TR維持在交叉次數NC大約等於預設次數NSET。換言之,如果當下開關週期中的穩壓時間TR太短,下個全開時間TFO就會增加。反之亦然。
全開時間TFO位於通道電流ID比較高的時段。因為在全開時間TFO時,整流開關NS是完全開啟的,所以具有比較小的導通電阻(RDS-ON),可以降低整流開關NS整流時所產生的導通損耗(conduction loss)。
穩壓時間TR可以預先將整流開關NS的閘信號VG拉低,如同第3圖所示。因此,在時間點t3,關閉控制器110發現了通道電壓VD變為正值時,能夠快速地完全關閉整流開關NS,避免通道電流ID為過大的逆電流。
全開時間TFO適應性的調節長度,可以盡可能的享有降低導通損耗,同時又可以快速地關閉整流開關NS。
SNP:控制信號
t0、t1、t2、t3、t4、t5、ta、tb、tc:時間點
TFO:全開時間
TR:穩壓時間
VA、VB:邊界電壓
VC:預設電壓
VD:通道電壓
VG:閘信號
VMAX:最高電壓
VTHNS:臨界電壓

Claims (16)

  1. 一種同步整流控制器,用以控制一整流開關,包括:一全開控制器,可被該整流開關之一通道電壓所觸發,依據一預設條件,用以將該整流開關完全開啟一全開時間,當該整流開關完全開啟時,該整流開關具有一第一導通電阻;以及一穩壓器,於該全開時間內被禁能,於該全開時間後被致能,用以使該整流開關部分開啟,且維持該通道電壓於一預設電壓範圍內,當該整流開關部分開啟時,該整流開關具有一第二導通電阻,該第一導通電阻小於該第二導通電阻;其中,該全開控制器係依據該穩壓器被致能時之一表現紀錄而調整該預設條件。
  2. 如請求項1之同步整流控制器,其中該穩壓器於該全開時間後被致能一穩壓時間,該預設電壓範圍係介於二邊界電壓之間,該全開控制器紀錄於該穩壓時間內,該通道電壓觸及該二邊界電壓其中之一的一交叉次數,並依據該交叉次數而調整該預設條件。
  3. 如請求項2之同步整流控制器,其中,該全開控制器調整該預設條件,以使該交叉次數等於一預設次數。
  4. 如請求項3之同步整流控制器,其中,當該交叉次數大於該預設次數時,該全開控制器增加該全開時間,當該交叉次數小於該預設次數時,該全開控制器減少該全開時間。
  5. 如請求項1之同步整流控制器,其中,而該全開時間係關聯於一放電時間以及一比例常數,該全開控制器係依據該表現紀錄而調整該比例常數。
  6. 如請求項5之同步整流控制器,其中,該全開時間係大約等於該放電時間與該比例常數的乘積,其中,該預設電壓範圍係介於二邊界電壓之間,該全開控制器紀錄於該穩壓時間內,該通道電壓觸及該二邊界電壓其中之一的一交叉次數,當該交叉次數大於一預設次數時,該全開控制器增加該比例常數。
  7. 如請求項1之同步整流控制器,其中,該全開時間係關聯於該通道電壓以及一參考電壓,該全開控制器係依據該表現紀錄而調整該參考電壓。
  8. 如請求項7之同步整流控制器,其中,該當該通道電壓高於該參考電壓時,全開控制器結束該全開時間,其中,該預設電壓範圍係介於二邊界電壓之間,該全開控制器紀錄於該穩壓時間內,該通道電壓觸及該二邊界電壓其中之一的一交叉次數,當該交叉次數大於一預設次數時,該全開控制器增加該參考電壓。
  9. 一種控制方法,適用於一同步整流控制器,用以控制一整流開關,包括:將該整流開關完全開啟一全開時間,使該整流開關具有一第一導通電阻,其中該全開時間係依據一預設條件而決定;於該全開時間之後,維持該整流開關之一通道電壓於一預設電壓範圍內,使該整流開關具有一第二導通電阻,並具以產生一表現紀錄;當該通道電壓符合一關閉條件時,維持該整流開關關閉;以及依據該表現紀錄,調整該預設條件,以使該表現紀錄趨近一預設目標;其中,該第一導通電阻小於該第二導通電阻。
  10. 如請求項9之控制方法,其中,該預設電壓範圍係介於二邊界電壓之間,該控制方法包含有: 於維持該通道電壓於一預設電壓範圍內時,紀錄該通道電壓觸及該二邊界電壓其中之一的一交叉次數;以及依據該交叉次數而調整該預設條件。
  11. 如請求項10之控制方法,其中,該預設條件係調整來使該交叉次數等於一預設次數。
  12. 如請求項11之控制方法,其中,當該交叉次數大於該預設次數時,則增加該全開時間,當該交叉次數小於該預設次數時,則減少該全開時間。
  13. 如請求項9之控制方法,其中,該全開時間係關聯於一放電時間以及一比例常數,該調整該預設條件之步驟係調整該比例常數。
  14. 如請求項13之控制方法,其中,該全開時間係大約等於該放電時間與該比例常數的乘積,其中,該預設電壓範圍係介於二邊界電壓之間,該控制方法包含有:於維持該通道電壓於一預設電壓範圍內時,紀錄該通道電壓觸及該二邊界電壓其中之一的一交叉次數,當該交叉次數大於一預設次數時,則增加該比例常數。
  15. 如請求項9之控制方法,其中,該全開時間係關聯於該通道電壓以及一參考電壓,該調整該預設條件之步驟係調整該參考電壓。
  16. 如請求項15之控制方法,其中,當該通道電壓高於該參考電壓時,則該全開時間結束,其中,該預設電壓範圍係介於二邊界電壓之間,該控制方法包含有: 於維持該通道電壓於一預設電壓範圍內時,紀錄該通道電壓觸及該二邊界電壓其中之一的一交叉次數,當該交叉次數大於一預設次數時,則增加該參考電壓。
TW109125953A 2020-04-28 2020-07-31 同步整流控制器與相關之控制方法 TWI777206B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010348396.4A CN113572349B (zh) 2020-04-28 2020-04-28 同步整流控制器与相关的控制方法
CN202010348396.4 2020-04-28

Publications (2)

Publication Number Publication Date
TW202141913A TW202141913A (zh) 2021-11-01
TWI777206B true TWI777206B (zh) 2022-09-11

Family

ID=78157908

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109125953A TWI777206B (zh) 2020-04-28 2020-07-31 同步整流控制器與相關之控制方法

Country Status (3)

Country Link
US (1) US11532992B2 (zh)
CN (2) CN115549499A (zh)
TW (1) TWI777206B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI746215B (zh) * 2020-10-20 2021-11-11 朋程科技股份有限公司 交流發電機及其整流裝置
CN113541514B (zh) * 2021-07-21 2023-03-14 艾科微电子(深圳)有限公司 同步整流控制器及其控制方法
CN117155137B (zh) * 2023-11-01 2024-02-06 艾科微电子(深圳)有限公司 电源控制器、非对称半桥电源供应器及控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200929827A (en) * 2007-12-31 2009-07-01 Niko Semiconductor Co Ltd Synchronous rectifying controller and a forward synchronous rectifying circuit
TWM445302U (zh) * 2012-05-15 2013-01-11 Fsp Technology Inc 具有自激式同步整流線路的電源轉換器
CN104917362A (zh) * 2014-03-13 2015-09-16 英飞凌科技股份有限公司 同步功率整流器的过电压保护
TWM571619U (zh) * 2018-12-11 用於離線電力轉換器之同步整流器控制器
US20190097521A1 (en) * 2017-09-28 2019-03-28 Semiconductor Components Industries, Llc Synchronous rectifier controller for offline power converter and method therefor
CN109995241A (zh) * 2018-01-02 2019-07-09 比亚迪股份有限公司 一种电源及其电源电路

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887980B (zh) * 2014-03-13 2016-10-05 昂宝电子(上海)有限公司 用于调节电源变换系统的系统和方法
KR20150095181A (ko) * 2014-02-11 2015-08-20 페어차일드코리아반도체 주식회사 공진형 컨버터 및 그 구동 방법
CN109802559B (zh) * 2016-09-28 2020-07-31 杰华特微电子(杭州)有限公司 同步整流控制电路、方法及反激式开关电路
CN206117515U (zh) * 2016-09-28 2017-04-19 杰华特微电子(杭州)有限公司 同步整流控制电路及反激式开关电路
CN107968569B (zh) * 2017-01-10 2019-06-21 成都启臣微电子股份有限公司 一种同步整流控制器及同步整流控制方法
TWI630793B (zh) 2017-07-25 2018-07-21 偉詮電子股份有限公司 具動態準位調變閘極電壓之驅動控制器
CN107979289A (zh) * 2017-11-27 2018-05-01 成都芯源系统有限公司 一种同步整流的开关电源电路及其控制方法
CN109713921B (zh) * 2018-12-21 2021-07-06 西安矽力杰半导体技术有限公司 一种同步整流控制电路、控制方法及开关电路
CN110224619B (zh) * 2019-06-13 2024-06-04 江苏芯潭微电子有限公司 一种逐周期自适应驱动电压调整的次级边同步整流控制器电路
CN110896283B (zh) * 2019-12-13 2024-07-02 杭州必易微电子有限公司 同步整流控制电路、隔离式电源变换电路及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM571619U (zh) * 2018-12-11 用於離線電力轉換器之同步整流器控制器
TW200929827A (en) * 2007-12-31 2009-07-01 Niko Semiconductor Co Ltd Synchronous rectifying controller and a forward synchronous rectifying circuit
TWM445302U (zh) * 2012-05-15 2013-01-11 Fsp Technology Inc 具有自激式同步整流線路的電源轉換器
CN104917362A (zh) * 2014-03-13 2015-09-16 英飞凌科技股份有限公司 同步功率整流器的过电压保护
US20190097521A1 (en) * 2017-09-28 2019-03-28 Semiconductor Components Industries, Llc Synchronous rectifier controller for offline power converter and method therefor
CN109995241A (zh) * 2018-01-02 2019-07-09 比亚迪股份有限公司 一种电源及其电源电路

Also Published As

Publication number Publication date
US11532992B2 (en) 2022-12-20
TW202141913A (zh) 2021-11-01
CN113572349A (zh) 2021-10-29
CN115549499A (zh) 2022-12-30
CN113572349B (zh) 2022-10-14
US20210336546A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
TWI777206B (zh) 同步整流控制器與相關之控制方法
CN108306513B (zh) 同步整流管的关断控制电路及同步整流控制电路
US9484814B2 (en) Power converter controller with analog controlled variable current circuit
TWI473396B (zh) 切換電力轉換器及控制切換電力轉換器之方法
CN109213244B (zh) 用于统一伺服系统中的多个控制模式的动态操纵配置
US20150124494A1 (en) Adaptive synchronous rectifier control
EP1179884B1 (en) Method and apparatus for reducing audio noise in a switching regulator
US7760520B2 (en) Current controlled switching mode power supply
TWI687034B (zh) 可切換操作模式的主動鉗位反馳式電源轉換器
US9369054B2 (en) Reducing power consumption of a synchronous rectifier controller
US20050259448A1 (en) Switching power source device
TWI489745B (zh) 電源控制器、電源供應器以及相關之控制方法
US8716948B2 (en) Dynamic control of power switching bipolar junction transistor
JP5221268B2 (ja) パワースイッチング素子の駆動回路、その駆動方法及びスイッチング電源装置
KR20150126836A (ko) 유도성 부하 구동기 슬루 레이트 컨트롤러
US20190393794A1 (en) Driving circuit allowing efficient turning-off of synchronous rectifiers
TW201503756A (zh) 可調節功耗之led驅動器及利用該驅動器之led照明裝置
US20120113551A1 (en) Method and Apparatus of Providing Over-Temperature Protection for Power Converters
KR101355309B1 (ko) 초저부하 및 무부하 동작을 위한 파워 서플라이 레귤레이션
US10104728B2 (en) LED driving circuit, LED device comprising the same, and driving method of LED
TWI672894B (zh) 電源控制器與相關之控制方法
KR102609990B1 (ko) 스위칭 파워컨버터 내 파워스위치 트랜지스터를 위한 적응형 게이트 드라이브
KR101748726B1 (ko) 회로차단기의 정전압 공급회로
CN114583923A (zh) 控制电路及其方法、芯片、开关电源、电子装置
TWI428058B (zh) 發光二極體之控制電路

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent