TWI774863B - 用於獲得一對準晶粒對晶粒檢測影像之方法,用於半導體晶粒對晶粒檢測影像中之非暫時性電腦可讀儲存媒體,及半導體晶粒對晶粒檢測系統 - Google Patents

用於獲得一對準晶粒對晶粒檢測影像之方法,用於半導體晶粒對晶粒檢測影像中之非暫時性電腦可讀儲存媒體,及半導體晶粒對晶粒檢測系統 Download PDF

Info

Publication number
TWI774863B
TWI774863B TW107136889A TW107136889A TWI774863B TW I774863 B TWI774863 B TW I774863B TW 107136889 A TW107136889 A TW 107136889A TW 107136889 A TW107136889 A TW 107136889A TW I774863 B TWI774863 B TW I774863B
Authority
TW
Taiwan
Prior art keywords
test image
image
test
die
processor
Prior art date
Application number
TW107136889A
Other languages
English (en)
Other versions
TW201928541A (zh
Inventor
珍 勞勃
席曼蘇 法加里亞
永 張
Original Assignee
美商克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商克萊譚克公司 filed Critical 美商克萊譚克公司
Publication of TW201928541A publication Critical patent/TW201928541A/zh
Application granted granted Critical
Publication of TWI774863B publication Critical patent/TWI774863B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67288Monitoring of warpage, curvature, damage, defects or the like
    • G06T3/14
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/20Linear translation of a whole image or part thereof, e.g. panning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/60Rotation of a whole image or part thereof
    • G06T3/608Skewing or deskewing, e.g. by two-pass or three-pass rotation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • G06T7/001Industrial image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/33Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods
    • G06T7/337Determination of transform parameters for the alignment of images, i.e. image registration using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20016Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20021Dividing image into blocks, subimages or windows
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20056Discrete and fast Fourier transform, [DFT, FFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Abstract

可使用一方法或系統來使一晶粒對晶粒檢測影像對準,該方法或系統經組態以:接收一參考影像及一測試影像;自該參考影像及該測試影像上之局部區段判定一全域偏移及旋轉角;及在執行一精細對準之前執行該測試影像之一粗略對準去歪斜。

Description

用於獲得一對準晶粒對晶粒檢測影像之方法,用於半導體晶粒對晶粒檢測影像中之非暫時性電腦可讀儲存媒體,及半導體晶粒對晶粒檢測系統
本發明大體上係關於識別半導體裝置中之缺陷。
半導體製造業之發展對良率管理且尤其是度量及檢測系統提出越來越多要求。臨界尺寸不斷縮小,但產業需要縮短達成高良率、高價值生產之時間。最少化自偵測到一良率問題至修復該問題之總時間決定了一半導體製造商之投資回報率。
製造諸如邏輯及記憶體裝置之半導體裝置通常包含使用大量製程來處理一半導體晶圓以形成半導體裝置之各種特徵及多個層級。例如,微影係涉及將一圖案自一光罩轉移至配置於一半導體晶圓上之一光阻劑之一半導體製程。半導體製程之額外實例包含(但不限於)化學機械拋光(CMP)、蝕刻、沈積及離子植入。多個半導體裝置可依一配置製造於一單一半導體晶圓上且接著分離成個別半導體裝置。
在一半導體製造期間之各種步驟中使用檢測程序來偵測晶圓上之缺陷以促成製程之較高良率且因此促成較高利潤。檢測已成為製造諸如積體電路(IC)之半導體裝置之一重要部分。然而,隨著半導體裝置之尺寸減小,檢測變成成功製造可接受半導體裝置之更重要部分,因為較小 缺陷會引起裝置失效。例如,隨著半導體裝置之尺寸減小,偵測減小缺陷已變成必然,因為即使缺陷相對較小,但其會引起半導體裝置之無用像差。
當影像之間的偏移超過若干像素時,先前所使用之晶粒對晶粒對準方法較慢。較快方法涉及量測頻率空間之偏移,但此等方法未考量任何影像旋轉且運算密集。使用先前方法來進行具有大型偏移及旋轉之全影像對準限制每小時可檢測之晶圓之數目且對晶圓表面上之缺陷之敏感度有限。
因此,需要改良缺陷識別方法及系統。
根據本發明之一實施例,一種用於獲得一對準晶粒對晶粒檢測影像之方法包括:在一處理器處接收一參考影像及一測試影像。使用該處理器,自該參考影像選擇一第一局部區段及自該測試影像選擇一第二局部區段,自該第一局部區段及該第二局部區段判定一估計旋轉偏移及一估計平移偏移,執行一粗略對準以藉此產生一部分對準測試影像,且對該部分對準測試影像執行一精細對準。
本發明之另一實施例係一種非暫時性電腦可讀儲存媒體,其包括用於在一或多個運算裝置上執行步驟之一或多個程式。此等步驟可依任何適當順序包含:接收一參考影像及一測試影像;自該參考影像選擇一第一局部區段及自該測試影像選擇一第二局部區段;自該第一局部區段及該第二局部區段判定一估計旋轉偏移及一估計平移偏移;對該測試影像執行一粗略對準以藉此產生一部分對準測試影像;及對該部分對準測試影像執行一精細對準以獲得一對準晶粒對晶粒檢測影像。
本發明之另一實施例係一種半導體晶粒對晶粒檢測系統,其包括用於擷取一晶粒之特徵之影像之一感測器及一運算系統。該感測器及該運算系統可包括一束源、一載台、一偵測器及一處理器。該處理器可與該偵測器電子通信。該處理器可經進一步組態以:接收一參考影像及一測試影像;自該參考影像選擇一第一局部區段及自該測試影像選擇一第二局部區段;及自該第一局部區段及該第二局部區段判定估計旋轉偏移及估計平移偏移。該處理器可經進一步組態以執行一測試影像之一粗略對準以藉此產生一部分對準測試影像且執行該部分對準測試影像之一精細對準。
該束源可為一光源或一電子束源。該束源可包含一寬頻電漿源、電子束源、燈或雷射。該束源可發射電子或光子。在一些實施例中,該束源亦可發射可為紅外光、可見光、紫外光或x射線光之光。
該束可為來自一光源之一光束或來自一電子束源之一電子束。
該載台可經組態以使一晶圓保持於由該束源產生之一束之一路徑中。
該偵測器可經組態以接收自該晶圓反射之該束之一部分。
根據本發明之各種實施例: 該測試影像之該粗略對準可包括一測試影像去歪斜。該粗略對準可藉此產生一部分對準測試影像。
該精細對準可包括分區平移。該部分對準測試影像上之該分區平移可藉此獲得一對準晶粒對晶粒檢測影像。
該參考影像或該測試影像可包括數個像素列及行。
該測試影像去歪斜可包括判定該測試影像之一歪斜角且使 該測試影像去歪斜。
該歪斜比較可包括執行該測試影像中之一或多個顯著特徵之一圖案辨識以判定該歪斜角。
在一些例項中,可使用一機器學習模組來執行該歪斜比較以判定該歪斜角。
可藉由執行來自該參考影像之該第一局部區段與來自該測試影像之該第二局部區段之一歪斜比較來判定該測試影像之該歪斜角。該歪斜比較可包括對來自該參考影像之該第一局部區段及來自該測試影像之該第二局部區段執行快速傅立葉變換以分別獲得一參考場景函數及一測試場景函數及比較該測試場景函數與該參考場景函數以判定該歪斜角。
使該測試影像去歪斜可包括基於該歪斜角來針對該測試影像中之該等像素之各者判定一行移位向量及一列移位向量及使該等像素之各者根據其行移位向量及列移位向量來移位。該行移位向量可包括與含有該像素之行共線移位之一定數量像素及一方向。該列移位向量可包括與含有該像素之列共線移位之一定數量像素及一方向。
該分區平移可包括將該參考影像分割成至少一參考影像子區段及將該測試影像分割成至少一測試影像子區段及使該測試影像子區段平移以與對應於該測試影像子區段之該參考影像子區段對準。
100:方法
101:接收參考影像
102:自參考影像選擇第一局部區段
103:接收測試影像
104:自測試影像選擇第二局部區段
105:基於第一旋轉偏移及第二旋轉偏移來判定估計旋轉偏移
106:使用旋轉偏移來對測試影像執行粗略對準以產生部分對準測試影像
107:對部分對準測試影像執行精細對準以產生對準晶粒對晶粒檢測影像
200:測試影像去歪斜/方法
201:判定測試影像之歪斜角
202:使測試影像去歪斜
300:歪斜比較/方法
301:對來自參考影像之第一局部區段執行快速傳立葉變換以產生參考場景函數
302:對來自測試影像之第二局部區段執行快速傳立葉變換以產生測試場景函數
303:比較測試場景函數與參考場景函數以判定歪斜角
400:方法
401:針對測試影像中之各像素判定行移位向量及列移位向量
402:使測試影像中之各像素根據其行移位向量及列移位向量來移位
500:分區平移/方法
501:將參考影像分割成一或多個參考影像子區段
502:將測試影像分割成一或多個測試影像子區段
503:使各測試影像子區段平移以與其對應參考影像子區段對準
600:比較設置
601:參考影像
602:測試影像
603:第一局部區段
604:第二局部區段
605:特徵
606:特徵
607:比較
700:分區平移設置
701:參考影像
702:部分去歪斜測試影像
703:參考影像子區段
704:測試影像子區段
705:特徵
706:特徵
800:系統
801:基於光學之子系統
802:樣品
803:光源
804:光學元件
805:透鏡
806:載台
807:收集器
808:元件
809:偵測器
810:收集器
811:元件
812:偵測器
813:分束器
814:處理器
815:電子資料儲存單元
900:系統
901:電子柱
902:電腦子系統
903:電子束源
904:樣品
905:元件
906:元件
907:偵測器
908:處理器
909:電子資料儲存單元
910:載台
為更完全理解本發明之性質及目的,應參考結合附圖之以下詳細描述,其中:圖1係繪示根據本發明之用於獲得一對準晶粒對晶粒檢測影像之一方法的一流程圖; 圖2係繪示根據本發明之執行一測試影像去歪斜之一方法的一流程圖;圖3係繪示根據本發明之執行一歪斜比較之一方法的一流程圖;圖4係繪示根據本發明之使一測試影像去歪斜之一方法的一流程圖;圖5係繪示根據本發明之執行一分區平移之一方法的一流程圖;圖6繪示根據本發明之執行一歪斜比較;圖7繪示根據本發明之執行一分區平移;圖8繪示本發明之一系統實施例;及圖9繪示本發明之另一系統實施例。
相關申請案之交叉參考
本申請案主張2017年10月20日申請之美國臨時申請案第62/575,304號之優先權,該案之內容以引用的方式併入本文中。
儘管將根據特定實施例來描述所主張之標的,但其他實施例(其包含未提供本文所闡述之所有益處及特徵之實施例)亦在本發明之範疇內。可在不背離本發明之範疇之情況下作出各種結構、邏輯、程序步驟及電子改變。因此,僅藉由參考隨附申請專利範圍來界定本發明之範疇。
本文所揭示之實施例提出一種使用大型偏移及旋轉來使晶粒影像對準之新方法。例如,當在切割或重建晶粒之後檢測晶圓時,晶粒位置會相對於彼此移位數十微米。本發明揭示一種用於晶圓檢測中之影像對準程序之高效率兩步驟方法,其組合頻率域及空間域兩者中之量測偏移。
此新對準方法之實施例係一運算高效之兩步驟程序,其中可在(例如)頻率域中經由使用快速傅立葉變換(FFT)來首先量測偏移及旋轉。接著,可補償此全域偏移及旋轉分量且可在一第二步驟中量測及校正一或若干殘餘偏移。本文所揭示之實施例可使一使用者能夠使用大型偏移及旋轉來較大敏感度及精確度地檢測一晶圓上之晶粒。
本文所揭示之實施例亦可使具有局部失真之影像對準。先前,此等局部失真會引起對準問題且克服該等問題之運算成本高得驚人。
在本發明之一實施例中,可相較於一參考晶圓影像來判定一測試晶圓影像之一歪斜角。亦可自判定一參考晶圓影像上之一局部區段及一測試晶圓影像上之局部區段之一歪斜角判定全域偏移及旋轉角。可自量測判定需要各像素移位之量。若旋轉角超過1度之一小部分,則需要一粗略對準。在一些實施例中,粗略對準可包括使測試晶圓影像旋轉適當度數以匹配參考晶圓影像或藉由使測試晶圓影像包含之像素行及列移位預定量來使測試晶圓影像去歪斜。此去歪斜方法比2D影像旋轉運算得快。在測試本發明之一些實施例時,運算速度比相對於先前晶粒對晶粒對準方法所觀察之運算速度提高10倍至50倍之間。
在執行一粗略對準之後,可執行一精細對準以完成晶粒對晶粒影像之對準。此精細對準可量測及校正小局部失準。在一分區平移實例中,使用一方法來將參考及測試影像分解成可個別對準之小條帶或拼片,一旦已執行粗略對準,則由於粗略對準消除諸多或甚至大多數偏移,所以該方法係精確及高效率的。
本文所描述之影像對準方法、軟體及系統實施例將傳統晶粒對晶粒對準程序分成兩個步驟以導致運算要求降低。此導致一較快檢測 及減少完成時間且因此降低一半導體製造商之擁有成本。
圖1係根據本發明之一實施例之一方法100之一流程圖。在101中,接收一參考影像。在102中,自參考影像選擇一第一局部區段。在103中,接收一測試影像。在104中,自測試影像選擇一第二局部區段。可尤其藉由選擇一影像之四分體、選擇一影像之一界定區段或基於強特徵之存在判定一選擇來選擇第一局部區段及第二局部區段。參考影像及測試影像可包含數個像素列及行。在105中,基於第一旋轉偏移及第二旋轉偏移來判定一估計旋轉偏移。在106中,使用旋轉偏移來對測試影像執行一粗略對準以產生一部分對準測試影像。在107中,對部分對準測試影像執行一精細對準以產生一對準晶粒對晶粒檢測影像。
在一實施例中,估計旋轉偏移可用於判定粗略對準之範圍。可藉由使用三角函數估計測試影像內之任何給定位置處之x及y偏移來完成此判定。
在一實施例中,粗略對準步驟106可包括一測試影像去歪斜200。圖2係根據本發明之一實施例之用於執行一測試影像去歪斜200之一方法之一流程圖。在201中,判定測試影像之一歪斜角且在202中,使測試影像去歪斜。
在一實施例中,判定一測試影像之一歪斜角201可包括執行一歪斜比較300。圖3繪示歪斜比較300之一實施例。在301中,對來自參考影像之第一局部區段執行一快速傳立葉變換以產生一參考場景函數。在302中,對來自測試影像之第二局部區段執行一快速傳立葉變換以產生一測試場景函數。在303中,比較測試場景函數與參考場景函數以判定歪斜角。歪斜比較300可涉及判定相位或參考場景函數及測試場景函數之歸 一化乘積。對相位執行一逆快速傅立葉變換以產生偏移。可在影像上之一或多個位置處判定此偏移。接著,歪斜角可為偏移量值之差除以偏移量值之間的距離。替代地,量值差除以量值之間的距離之一反正切可為歪斜角。
在本發明之另一實施例中,歪斜比較可包括執行測試影像中之一或多個顯著特徵之一圖案辨識以判定歪斜角。
在本發明之另一實施例中,歪斜比較可包括使用一機器學習模組來判定歪斜角。機器學習模組可為用於辨識待對準之最佳影像特徵之一深度學習影像分類。
在本發明之另一實施例中,歪斜比較可包括使用一特殊域中之相關性及突出影像資訊或其他類似方法來最大化投影對比度。
圖4繪示用於使測試影像去歪斜之一方法400中之本發明之一實施例。在一實施例中,使測試影像去歪斜202可包括方法400。在401中,針對測試影像中之各像素判定一行移位向量及列移位向量。基於藉由運算歪斜角之各自正弦及餘弦乘以自一原點之距離之量值所判定之歪斜角來判定行移位向量及列移位向量。各行移位向量由與含有像素之行共線移位之一定數量像素及一方向組成。各列移位向量由與含有像素之列共線移位之一定數量像素及一方向組成。在一些實施例中,行向量方向係一正或負方向且列向量方向係一正或負方向。在402中,使測試影像中之各像素根據其行移位向量及列移位向量來移位。此產生一部分對準測試影像。
在本發明之另一實施例中,一精細對準107可包括執行一分區平移500。圖5繪示根據本發明之分區平移50之一方法。在501中,將 參考影像分割成一或多個參考影像子區段。在502中,將測試影像分割成一或多個測試影像子區段。各測試影像子區段對應於一參考影像子區段。在503中,使各測試影像子區段平移以與其對應參考影像子區段對準。可自動或由一使用者判定參考及測試影像子區段之大小及數量。
在一實施例中,可使用若干方法之一者來執行使測試影像子區段平移以與其對應參考影像子區段對準。在一方法中,執行影像之間的歸一化交叉相關。因為已執行粗略對準,所以此一歸一化交叉相關之搜尋範圍可受限制以節約運算資源。
在本發明之一實施例中,在尤其包括一處理器之一運算裝置上執行上述方法。
根據本發明之一些實施例,圖6係一參考影像601上之一或多個第一局部區段603與一測試影像602上之一或多個第二局部區段604之間的一比較設置600之一識圖。第一局部區段603及第二局部區段604可用於藉由在一或多個局部區段603內之一或多個特徵605與一或多個局部區段604內之一或多個特徵606之間執行比較607來量測全域偏移及旋轉。在一些實施例中,比較607包括執行各第一局部區段603之一快速傅立葉變換及比較其與各對應第二局部區段604之一快速傅立葉變換。歸因於平移及旋轉偏移(若特徵605及606存在),可比較局部區段603及604之快速傅立葉變換函數以判定一歪斜角量測。基於圖6之此量測可用於使測試影像去歪斜。
圖7係根據本發明之一實施例之一分區平移設置700之一識圖,其包括具有一或多個參考影像子區段703之一參考影像701及具有一或多個測試影像子區段704之一部分去歪斜測試影像702。由於將影像分 割成較小子區段,所以可分別基於一或多個參考影像子區段703及一或多個測試影像子區段704內之一或多個特徵705及706之位置之差異之量測來使此等子區段對準。基於圖7之量測可用於在缺陷偵測發生之前對影像進行最終校正。
在本發明之另一實施例中,將上述方法實施為用於在一或多個運算裝置上執行之一或多個程式。在此實施例中,將一或多個程式儲存於一非暫時性電腦可讀儲存媒體上。電腦實施方法可包含本文所描述之任何(若干)方法之任何(若干)步驟。
圖8中展示一系統800之一實施例。系統800包含基於光學之子系統801。一般而言,基於光學之子系統801經組態以藉由將光導引至一樣品802(或使光掃描樣品802)且自樣品802偵測光來產生樣品802之基於光學之輸出。在一實施例中,樣品802包含一晶圓。晶圓可包含本技術中已知之任何晶圓。在另一實施例中,樣品包含一光罩。光罩可包含本技術中已知之任何光罩。
在圖8所展示之系統800之實施例中,基於光學之子系統801包含經組態以將光導引至樣品802之一照明子系統。照明子系統包含至少一光源。例如,如圖8中所展示,照明子系統包含光源803。在一實施例中,照明子系統經組態以依可包含一或多個傾斜角及/或一或多個法線角之一或多個入射角將光導引至樣品802。例如,如圖8中所展示,依一傾斜入射角導引來自光源803之光穿過光學元件804及接著透鏡805而至樣品802。傾斜入射角可包含可取決於(例如)樣品802之特性而變動之任何適合傾斜入射角。
光源803或束源可包含一寬頻電漿源、燈或雷射。在一些 實施例中,束源亦可發射可呈紅外光、可見光、紫外光或x射線光之形式之光或光子。
基於光學之子系統801可經組態以在不同時間依不同入射角將光導引至樣品802。例如,基於光學之子系統801可經組態以更改照明子系統之一或多個元件之一或多個特性,使得光可依不同於圖8中所展示之入射角之一入射角導引至樣品802。在一此實例中,基於光學之子系統801可經組態以移動光源803、光學元件804及透鏡805,使得光依一不同傾斜入射角或一法線(或近法線)入射角導引至樣品802。
在一些例項中,基於光學之子系統801可經組態以同時依一個以上入射角將光導引至樣品802。例如,照明子系統可包含一個以上照明通道,照明通道之一者可包含光源803、光學元件804及透鏡805(如圖8中所展示)且照明通道之另一者(圖中未展示)可包含類似元件,其可依不同或相同方式組態或可包含至少一光源及可能一或多個其他組件(諸如本文將進一步描述之組件)。若此光與其他光同時導引至樣品,則依不同入射角導引至樣品802之光之一或多個特性(例如波長、偏振等等)可不同,使得由依不同入射角照射樣品802所致之光可在(若干)偵測器處彼此區別。
在另一例項中,照明子系統可僅包含一個光源(例如圖8中所展示之光源803)且來自光源之光可由照明子系統之一或多個光學元件(圖中未展示)分離成不同光學路徑(例如基於波長、偏振等等)。接著,可將各不同光學路徑中之光導引至樣品802。多個照明通道可經組態以同時或在不同時間(例如當不同照明通道用於依序照射樣品時)將光導引至樣品802。在另一例項中,相同照明通道可經組態以在不同時間將具有不同特 性之光導引至樣品802。例如,在一些例項中,光學元件804可組態為一光譜濾波器且光譜濾波器之性質可依各種不同方式改變(例如藉由換出光譜濾波器),使得不同波長之光可在不同時間導引至樣品802。照明子系統可具有適合於依不同或相同入射角將具有不同或相同特性之光依序或同時導引至樣品802之本技術中已知之任何其他組態。
在一實施例中,光源803可包含一寬頻電漿(BBP)源。依此方式,由光源803產生且導引至樣品802之光可包含寬頻光。然而,光源可包含諸如一雷射或燈之任何其他適合光源。雷射可包含本技術中已知之任何適合雷射且可經組態以產生本技術中已知之一或若干任何適合波長處之光。另外,雷射可經組態以產生單色光或近單色光。依此方式,雷射可為一窄頻雷射。光源803亦可包含產生多個離散波長或波帶處之光之一多色光源。
來自光學元件804之光可由透鏡805聚焦至樣品802上。儘管圖8中將透鏡805展示為一單一折射光學元件,但應瞭解,透鏡805實際上可包含將來自光學元件之光組合地聚焦至樣品之數個折射及/或反射光學元件。圖8中所展示及本文所描述之照明子系統可包含任何其他適合光學元件(圖中未展示)。此等光學元件之實例包含(但不限於)(若干)偏振組件、(若干)光譜濾波器、(若干)空間濾波器、(若干)反射光學元件、(若干)變跡器、(若干)分束器(諸如分束器813)、(若干)孔隙及其類似者,其等可包含本技術中已知之任何此等適合光學元件。另外,基於光學之子系統801可經組態以基於用於產生基於光學之輸出之照明之類型來更改照明子系統之一或多個元件。
基於光學之子系統801亦可包含經組態以引起光掃描樣品 802之一掃描子系統。例如,基於光學之子系統801可包含在基於光學之輸出產生期間將樣品802安置於其上之載台806。掃描子系統可包含任何適合機械及/或機器人總成(其包含載台806),其可經組態以移動樣品802,使得光可掃描樣品802。另外或替代地,基於光學之子系統801可經組態使得基於光學之子系統801之一或多個光學元件對樣品802執行某一光掃描。光可依任何適合方式(諸如沿一蛇形路徑或一螺旋路徑)掃描樣品802。
基於光學之子系統801進一步包含一或多個偵測通道。一或多個偵測通道之至少一者包含一偵測器,其經組態以歸因於由子系統照射樣品802而自樣品802偵測光且回應於偵測光而產生輸出。例如,圖8中所展示之基於光學之子系統801包含兩個偵測通道:一偵測通道由收集器807、元件808及偵測器809形成且另一偵測通道由收集器810、元件811及偵測器812形成。如圖8中所展示,兩個偵測通道經組態以依不同收集角收集及偵測光。在一些例項中,兩個偵測通道經組態以偵測散射光,且偵測通道經組態以偵測自樣品802依不同角散射之光。然而,偵測通道之一或多者可經組態以自樣品802偵測另一類型之光(例如反射光)。
如圖8中所進一步展示,兩個偵測通道展示為定位於紙面中且照明子系統亦展示為定位於紙面中。因此,在此實施例中,兩個偵測通道定位於(例如居中定位於)入射面中。然而,偵測通道之一或多者可定位於入射面外。例如,由收集器810、元件811及偵測器812形成之偵測通道可經組態以收集及偵測散射至入射面外之光。因此,此一偵測通道通常可指稱一「側」通道,且此一側通道可居中定位於實質上垂直於入射面之一平面中。
儘管圖8展示包含兩個偵測通道之基於光學之子系統801之一實施例,但基於光學之子系統801可包含不同數目個偵測通道(例如僅一個偵測通道或兩個或兩個以上偵測通道)。在一此例項中,由收集器810、元件811及偵測器812形成之偵測通道可形成上文所描述之一側通道,且基於光學之子系統801可包含形成為定位於入射面之對置側上之另一側通道之一額外偵測通道(圖中未展示)。因此,基於光學之子系統801可包含偵測通道,其包含收集器807、元件808及偵測器809且居中定位於入射面中及經組態以收集及偵測具有等於或接近樣品802表面之法線角之(若干)散射角之光。因此,此偵測通道通常可指稱一「頂部」通道,且基於光學之子系統801亦可包含如上文所描述般組態之兩個或兩個以上側通道。因而,基於光學之子系統801可包含至少三個通道(即,一頂部通道及兩個側通道),且至少三個通道之各者自身具有收集器,各收集器經組態以收集具有不同於其他收集器之各者之散射角之光。
如上文所進一步描述,包含於基於光學之子系統801中之各偵測通道可經組態以偵測散射光。因此,圖8中所展示之基於光學之子系統801可經組態以用於樣品802之暗場(DF)輸出產生。然而,基於光學之子系統801亦可或替代地包含經組態以用於樣品802之明場(BF)輸出產生之(若干)偵測通道。換言之,基於光學之子系統801可包含經組態以偵測自樣品802鏡面反射之光之至少一偵測通道。因此,本文所描述之基於光學之子系統801可經組態以僅用於DF成像、僅用於BF成像或用於DF及BF兩種成像。儘管圖8中將各收集器展示為單一折射光學元件,但應瞭解,各收集器可包含一或多個折射光學晶粒及/或一或多個反射光學元件。
一或多個偵測通道可包含本技術中已知之任何適合偵測器。例如,偵測器可包含光電倍增管(PMT)、電荷耦合裝置(CCD)、時間延遲積分(TDI)攝影機及本技術中已知之任何其他適合偵測器。偵測器亦可包含非成像偵測器或成像偵測器。依此方式,若偵測器係非成像偵測器,則各偵測器可經組態以偵測散射光之某些特性(諸如強度),但無法經組態以偵測諸如成像面內之位置之函數之特性。因而,由包含於基於光學之子系統之各偵測通道中之各偵測器產生之輸出可為信號或資料,但非影像信號或影像資料。在此等例項中,諸如處理器814之一處理器可經組態以自偵測器之非成像輸出產生樣品802之影像。然而,在其他例項中,偵測器可組態為經組態以產生成像信號或影像資料之成像偵測器。因此,基於光學之子系統可經組態以依諸多方式產生光學影像或本文所描述之其他基於光學之輸出。
應注意,本文提供圖8來大體上繪示一基於光學之子系統801之一組態,基於光學之子系統801可包含於本文所描述之系統實施例中或可產生由本文所描述之系統實施例使用之基於光學之輸出。本文所描述之基於光學之子系統801組態可經更改以最佳化通常在設計一商用輸出獲取系統時執行之基於光學之子系統801之效能。另外,可使用一既有系統來實施本文所描述之系統(例如藉由將本文所描述之功能新增至一既有系統)。針對一些此等系統,可提供本文所描述之方法作為系統之選用功能(例如以及系統之其他功能)。替代地,可將本文所描述之系統設計為一全新系統。
在一例項中,處理器814與系統800通信。
圖9係一系統900之一實施例之一方塊圖。系統900包含經 組態以產生一樣品904(其可包含一晶圓或一光罩)之影像之一晶圓檢測工具(其包含電子柱901)。
晶圓檢測工具包含具有至少一能量源及一偵測器之一輸出獲取子系統。輸出獲取子系統可為一基於電子束之輸出獲取子系統。例如,在一實施例中,導引至樣品904之能量包含電子,且自樣品904偵測之能量包含電子。依此方式,能量源可為一電子束源。在圖9所展示之一此實施例中,輸出獲取子系統包含耦合至電腦子系統902之電子柱901。一載台910可固持樣品904。
亦如圖9中所展示,電子柱901包含經組態以產生由一或多個元件905聚焦至樣品904之電子之一電子束源903。電子束源903可包含(例如)一陰極源或發射極尖端。一或多個元件905可包含(例如)一槍透鏡、一陽極、一限束孔隙、一閘閥、一束流選擇孔隙、一物鏡及一掃描子系統,其等所有可包含本技術中已知之任何此等適合元件。
自樣品904返回之電子(例如二次電子)可由一或多個元件906聚焦至偵測器907。一或多個元件906可包含(例如)一掃描子系統,其可為包含於(若干)元件905中之相同掃描子系統。
電子柱901亦可包含本技術中已知之任何其他適合元件。
儘管圖9中將電子柱901展示為經組態使得電子依一傾斜入射角導引至樣品904且依另一傾斜角自樣品904散射,但電子束可依任何適合角度導引至樣品904及自樣品904散射。另外,基於電子束之輸出獲取子系統可經組態以使用多個模式來產生樣品904之影像(例如具有不同照明角、收集角等等)。基於電子束之輸出獲取子系統之多個模式可具有輸出獲取子系統之任何不同影像產生參數。
電腦子系統902可耦合至偵測器907,如上文所描述。偵測器907可偵測自樣品904之表面返回之電子以藉此形成樣品904之電子束影像。電子束影像可包含任何適合電子束影像。電腦子系統902可經組態以使用偵測器907之輸出及/或電子束影像來執行本文所描述之功能之任何者。電腦子系統902可經組態以執行本文所描述之任何(若干)額外步驟。可如本文所描述般進一步組態包含圖9中所展示之輸出獲取子系統之一系統900。
應注意,本文提供圖9來大體上繪示可用於本文所描述之實施例中之一基於電子束之輸出獲取子系統之一組態。本文所描述之基於電子束之輸出獲取子系統可經更改以最佳化通常在設計一商用輸出獲取系統時執行之輸出獲取子系統之效能。另外,可使用一既有系統來實施本文所描述之系統(例如藉由將本文所描述之功能新增至一既有系統)。針對一些此等系統,可提供本文所描述之方法作為系統之選用功能(例如以及系統之其他功能)。替代地,可將本文所描述之系統設計為一全新系統。
儘管上文將輸出獲取子系統描述為一基於電子束之輸出獲取子系統,但輸出獲取子系統可為一基於離子束之輸出獲取子系統。除電子束源可由本技術中已知之任何適合離子束源替換之外,可如圖9中所展示般組態此一輸出獲取子系統。另外,輸出獲取子系統可為任何其他適合基於離子束之輸出獲取子系統,諸如包含於市售聚焦離子束(FIB)系統、氦離子束顯微鏡(HIM)系統及二次離子質譜儀(SIMS)系統中之基於離子束之輸出獲取子系統。
電腦子系統902包含一處理器908及一電子資料儲存單元909。處理器908可包含一微處理器、一微控制器或其他裝置。
處理器814或908或電腦子系統902可依任何適合方式(例如經由可包含有線及/或無線傳輸媒體之一或多個傳輸媒體)分別耦合至系統800或900之組件,使得處理器814或908可分別接收輸出。處理器814或908可經組態以使用輸出來執行若干功能。系統800或900可分別自處理器814或908接收指令或其他資訊。處理器814或908及/或電子資料儲存單元815或909可分別視情況與一晶圓檢測工具、一晶圓度量工具或一晶圓複查工具(圖中未繪示)電子通信以接收額外資訊或發送指令。例如,處理器814或908及/或電子資料儲存單元815或909可分別與一掃描電子顯微鏡(SEM)電子通信。
處理器814或908分別與諸如偵測器809或812或偵測器907之晶圓檢測工具電子通信。處理器814或908可經組態以分別處理使用來自偵測器809或812或偵測器907之量測所產生之影像。例如,處理器可執行方法100、200、300、400或500之實施例。
本文所描述之處理器814或908或電腦子系統902、(若干)其他系統或(若干)其他子系統可為包含一個人電腦系統、影像電腦、主機電腦系統、工作站、網路設備、網際網路設備或其他裝置之各種系統之部分。(若干)子系統或系統亦可包含本技術中已知之任何適合處理器,諸如一並行處理器。另外,(若干)子系統或系統可包含具有高速處理及軟體之一平台作為一獨立或網路工具。
處理器814或908及電子資料儲存單元815或909可分別安置於系統800或900或另一裝置中或否則為系統800或900或另一裝置之部分。在一實例中,處理器814或908及電子資料儲存單元815或909可分別為一獨立控制單元之部分或在一集中品質控制單元中。可分別使用多個處 理器814或908或電子資料儲存單元815或909。
實際上,處理器814或908可由硬體、軟體及韌體之任何組合實施。另外,如本文所描述,其功能可由一個單元執行或分配於不同組件中,各組件繼而可由硬體、軟體及韌體之任何組合實施。使處理器814或908實施各種方法及功能之程式碼或指令可分別儲存於可讀儲存媒體(諸如電子資料儲存單元815或909中之一記憶體)或其他記憶體中。
若系統800或900包含一個以上處理器814或908或電腦子系統902,則不同子系統可彼此耦合,使得影像、資料、資訊、指令等等可在子系統之間發送。例如,一子系統可由可包含本技術中已知之任何適合有線及/或無線傳輸媒體之任何適合傳輸媒體耦合至(若干)額外子系統。此等子系統之兩者或兩者以上亦可由一共用電腦可讀儲存媒體(圖中未展示)有效耦合。
處理器814或908可經組態以分別使用系統800或900之輸出或其他輸出來執行若干功能。例如,處理器814或908可經組態以將輸出分別發送至一電子資料儲存單元815或909或另一儲存媒體。可如本文所描述般進一步組態處理器814或908。
處理器814或908或電腦子系統902可為一缺陷複查系統、一檢測系統、一度量系統或某一其他類型之系統之部分。因此,本文所揭示之實施例描述可依諸多方式適應具有大體上適合於不同應用之不同能力之系統之一些組態。
若系統包含一個以上子系統,則不同子系統可彼此耦合,使得影像、資料、資訊、指令等等可在子系統之間發送。例如,一子系統可由可包含本技術中已知之任何適合有線及/或無線傳輸媒體之任何適合 傳輸媒體耦合至(若干)額外子系統。此等子系統之兩者或兩者以上亦可由一共用電腦可讀儲存媒體(圖中未展示)有效耦合。
可根據本文所描述之實施例之任何者來組態處理器814或908。處理器814或908亦可經組態以分別使用系統800或900之輸出或使用來自其他源之影像或資料來執行其他功能或額外步驟。
處理器814或908可依本技術中已知之任何方式分別通信地耦合至系統800或900之各種組件或子系統之任何者。再者,處理器814或908可經組態以藉由可包含有線及/或無線部分之一傳輸媒體來自其他系統接收及/或獲取資料或資訊(諸如來自一檢測系統(諸如一複查工具、包含設計資料之一遠端資料庫及其類似者)之檢測結果)。依此方式,傳輸媒體可分別充當處理器814或908與系統800或900之其他子系統或系統800或900外之系統之間的一資料鏈路。
在一實施例中,處理器814或處理器908可經組態以根據方法100、200、300、400或500之一或多者之一實施例來實施步驟。
在一實施例中,處理器814或處理器908可經組態以執行:一測試影像之一粗略對準,其包括一測試影像去歪斜,藉此產生一部分對準測試影像;及一精細對準,其包括部分對準測試影像之分區平移。
在一實施例中,處理器814或處理器908可經進一步組態以:接收一參考影像,該參考影像包括數個像素列及行;自該參考影像選擇一第一局部區段;接收一測試影像,該測試影像包括數個像素列及行;自該測試影像選擇一第二局部區段;及自該第一局部區段及該第二局部區段判定估計旋轉偏移及估計平移偏移。
在一實施例中,處理器814或處理器908可經進一步組態以 執行一測試影像去歪斜,其中該測試影像去歪斜包括:判定測試影像之一歪斜角;及基於該歪斜角來使測試影像去歪斜。
在一實施例中,處理器814或處理器908可經進一步組態以藉由執行來自參考影像之第一局部區段與來自測試影像之第二局部區段之一歪斜比較來判定測試影像之歪斜角。
在一實施例中,處理器814或處理器908可經進一步組態以執行一歪斜比較,其包括:對來自參考影像之第一局部區段執行一快速傅立葉變換以獲得一參考場景函數;對來自測試影像之第二局部區段執行一快速傅立葉變換以獲得一測試場景函數;比較該測試場景函數與該參考場景函數以判定歪斜角。
在一實施例中,處理器814或處理器908可經進一步組態以使一測試影像去歪斜,其中使該測試影像去歪斜包括:基於歪斜角來針對該測試影像中之各像素判定一行移位向量及一列移位向量,其中各行移位向量包括與含有該像素之行共線移位之一定數量像素及一方向,且各列移位向量包括與含有該像素之列共線移位之一定數量像素及一方向;及使各像素根據其行移位向量及列移位向量來移位。
在一實施例中,處理器814或處理器908可經進一步組態以執行包括一分區平移之一精細對準,其中該分區平移包括:將參考影像分割成一或多個參考影像子區段;將測試影像分割成一或多個測試影像子區段,各測試影像子區段對應於一參考影像子區段;及平移各測試影像子區段以與其對應參考影像子區段對準。
本文所揭示之系統800或系統900及方法之各種步驟、功能及/或操作由以下之一或多者實施:電子電路、邏輯閘、多工器、可程式 化邏輯裝置、ASIC、類比或數位控制/開關、微控制器或運算系統。實施方法(諸如本文所描述之方法)之程式指令可經由載體媒體傳輸或儲存於載體媒體上。載體媒體可包含諸如一唯讀記憶體、一隨機存取記憶體、一磁碟或光碟、一非揮發性記憶體、一固態記憶體、一磁帶及其類似者之一儲存媒體。一載體媒體可包含諸如一導線、電纜或無線傳輸鏈路之一傳輸媒體。例如,本發明中所描述之各種步驟可由一單一處理器814或一單一處理器908(或電腦子系統902)實施或替代地,由多個處理器814或多個處理器908(或多個電腦子系統902)實施。再者,系統800或系統900之不同子系統可包含一或多個運算或邏輯系統。因此,以上描述不應被解譯為本發明之一限制,而是僅為一說明。
一額外實施例係關於一種非暫時性電腦可讀媒體,其儲存可在一控制器上執行之程式指令,該等程式指令用於執行用於判定一樣品802或904之一表面上之一照明區域之一高度之一電腦實施方法,如本文所揭示。特定言之,如圖8或圖9中所展示,電子資料儲存單元815或909或其他儲存媒體可含有非暫時性電腦可讀媒體,其包含可分別在處理器814或908上執行之程式指令。電腦實施方法可包含本文所描述之任何(若干)方法之任何(若干)步驟,其包含方法100、200、300、400或500之實施例。
實施方法(諸如本文所描述之方法)之程式指令可儲存於電腦可讀媒體上,諸如在電子資料儲存單元815、電子資料儲存單元909或其他儲存媒體中。電腦可讀媒體可為諸如一磁碟或光碟、一磁帶或本技術中已知之任何其他適合非暫時性電腦可讀媒體之一儲存媒體。
可依尤其包含基於程序之技術、基於組件之技術及/或物件 導向技術之各種方式之任何者實施程式指令。例如,可根據期望使用ActiveX控制、C++物件、JavaBeans、微軟基礎類別(MFC)、串流SIMD擴展(SSE)或其他技術或方法來實施程式指令。
由處理器執行之(若干)組件可包含一深度學習模組(例如一卷積神經網路(CNN)模組)。深度學習模組可具有本文所進一步描述之組態之一者。植根於神經網路技術中之深度學習係具有諸多神經元層之一機率圖模型,通常稱為一深度架構。深度學習技術依一分層方式處理諸如影像、文字、聲音等等之資訊。在本發明中使用深度學習時,使用自資料學習來自動完成特徵提取。例如,可使用基於一或多個提取特徵之深度學習模組來提取判定旋轉及平移偏移時參考之特徵。
一般而言,深度學習(亦稱為深度結構化學習、分層學習或深度機器學習)係基於試圖模型化資料之高抽象層次之一組演算法之機器學習之一分支。簡言之,可存在兩組神經元:接收一輸入信號之神經元組及發送一輸出信號之神經元組。當輸入層接收一輸入時,其將輸入之一修改變型傳遞至下一層。在一深度網路中,輸入與輸出之間可存在諸多層以允許演算法使用由多個線性及非線性變換構成之多個處理層。
深度學習係基於學習資料之表示之機器學習方法之一更廣泛家族之部分。一觀察(例如待提取參考之一特徵)可依諸如每像素之強度值之一向量之諸多方式表示或依一更抽象方式表示為一組邊緣、特定形狀區域等等。一些表示在簡化學習任務(例如面部辨識或面部表情辨識)方面優於其他表示。深度學習可提供用於無監督或半監督特徵學習及分層特徵提取之高效率演算法。
此領域之研究試圖作出較佳表示且產生自大量資料學習此 等表示之模型。一些表示受神經科學之發展激發且鬆散地基於一神經系統中之資訊處理及通信型樣之解譯,諸如試圖界定大腦中之各種刺激與相關聯之神經元回應之間的一關係之神經編碼。
可存在具有取決於機率規格及網路架構之深度架構之神經網路之諸多變體,其包含(但不限於)深度信念網路(DBN)、受限玻爾茲曼機(RBM)及自動編碼器。另一類型之深度神經網路(CNN)可用於特徵分析。實際實施方案可取決於輸入影像之大小、待分析之特徵之數目及問題之性質而變動。除本文所揭示之神經網路之外,其他層亦可包含於深度學習模組中。
在一實施例中,深度學習模型係一機器學習模型。機器學習可大體上界定為使電腦具有不靠明確程式化之學習能力之一人工智慧(AI)類型。機器學習聚焦於可在暴露於新資料時自學成長及改變之電腦程式之開發。機器學習探索可自資料學習且對資料作出預測之演算法之研究及構造。此等演算法藉由透過自取樣輸入構建一模型而作出資料導向預測或決定來克服嚴格依循靜態程式指令。
在一些實施例中,深度學習模型係一生成模型。一生成模型可大體上界定為具機率性之一模型。換言之,一生成模型係執行正向模擬或基於規則之方法之模型。可基於一組適合訓練資料來學習生成模型(因為可學習其參數)。在一實施例中,深度學習模型組態為一深度生成模型。例如,模型可經組態以具有一深度學習架構,因為模型可包含執行諸多演算法或變換之多個層。
在另一實施例中,深度學習模型組態為一神經網路。在一進一步實施例中,深度學習模型可為一深度神經網路,其具有根據已被饋 送用於訓練其之資料來模型化世界之一組權重。神經網路可大體上界定為基於神經單元之一相對較大集合之一運算方法,其鬆散地模型化一生物大腦使用由軸突連接之生物神經元之相對較大叢集來解決問題之方式。各神經單元與諸多其他神經單元連接,且鏈路可增強或抑制其對連接神經單元之活性狀態之效應。此等系統自我學習及訓練而非被明確程式化且在傳統電腦程式難以表達之解算或特徵偵測方面表現突出。
神經網路通常由多個層組成,且信號路徑前後貫穿。神經網路之目標係依相同於人腦之方式解決問題,但若干神經網路更抽象得多。現代神經網路計畫通常與數千個至數百萬個神經單元及數百萬個連接一起工作。神經網路可具有本技術中已知之任何適合架構及/或組態。
在一實施例中,用於本文所揭示之半導體檢測應用之深度學習模型組態為一AlexNet。例如,一AlexNet包含數個卷積層(例如5個)及接著數個全連接層(例如3個),其等經組合地組態及訓練以分析用於判定旋轉及平移偏移之特徵。在另一此實施例中,用於本文所揭示之半導體檢測應用之深度學習模型組態為一GoogleNet。例如,一GoogleNet可包含諸如卷積層、池化層及全連接層(諸如本文所進一步描述之卷積層、池化層及全連接層)之層,其經組態及訓練以分析用於判定旋轉及平移偏移之特徵。儘管GoogleNet架構可包含相對較高數目個層(尤其與本文所描述之一些其他神經網路相比),但一些層可並行操作,且彼此並行運作之層之群組大體上指稱初始模組。其他層可依序操作。因此,GoogleNet與本文所描述之其他神經網路之不同點在於:並非所有層配置成一依序結構。平行層可類似於Google之初始網路或其他結構。
在一進一步此實施例中,用於本文所揭示之半導體檢測應 用之深度學習模型組態為一視覺幾何群組(VGG)網路。例如,藉由增加卷積層之數目同時確定架構之其他參數來產生VGG網路。可藉由在所有層中使用實質上小卷積濾波器來新增卷積層以增加深度。如同本文所描述之其他神經網路,VGG網路經產生及訓練以分析用於判定旋轉及平移偏移之特徵。VGG網路亦包含卷積層及接著全連接層。
在一些此等實施例中,用於本文所揭示之半導體檢測應用之深度學習模型組態為一深度剩餘網路。例如,如同本文所描述之一些其他網路,一深度剩餘網路可包含卷積層及接著全連接層,其等經組合地組態及訓練以用於特徵性質提取。在一深度剩餘網路中,層經組態以參考層輸入來學習剩餘函數而非學習未引用函數。特定言之,明確允許此等層擬合由具有快捷連接之前饋神經網路實現之一剩餘映射,而非希望各少數堆疊層直接擬合一所要基本映射。快捷連接係跳過一或多個層之連接。可藉由採用包含卷積層之一平面神經網路結構且插入快捷連接來產生一深度剩餘網,其藉此採用平面神經網路且將其轉變為其剩餘學習對應物。
在一進一步此實施例中,用於本文所揭示之半導體檢測應用之深度學習模型包含經組態以用於分析用於判定旋轉及平移偏移之特徵之一或多個全連接層。一全連接層可大體上界定為其中各節點連接至前一層中之各節點之一層。(若干)全連接層可基於由可如本文所進一步描述般組態之(若干)卷積層提取之特徵來執行分類。(若干)全連接層經組態以用於特徵選擇及分類。換言之,(若干)全連接層自一特徵圖選擇特徵且接著基於選定特徵來分析(若干)輸入影像。選定特徵可包含特徵圖中之所有特徵(若適當)或僅特徵圖中之一些特徵。
在一些實施例中,由深度學習模型判定之資訊包含由深度 學習模型提取之特徵性質。在一此實施例中,深度學習模型包含一或多個卷積層。(若干)卷積層可具有本技術中已知之任何適合組態。依此方式,深度學習模型(或深度學習模型之至少一部分)可組態為一CNN。例如,深度學習模型可組態為用於提取局部特徵之一CNN,其通常為卷積層及池化層之堆疊。本文所描述之實施例可利用諸如CNN之深度學習概念來解決通常很難處理之表示反演問題。深度學習模型可具有本技術中已知之任何CNN組態或架構。一或多個池化層亦可具有本技術中已知之任何適合組態(例如最大池化層)且大體上經組態以減少由一或多個卷積層產生之特徵圖之維數,同時保持最重要特徵。
一般而言,本文所描述之深度學習模型係一訓練深度學習模型。例如,深度學習模型可先由一或多個其他系統及/或方法訓練。如本文所描述,已產生及訓練深度學習模型且接著判定模型之功能性,其接著可用於執行深度學習模型之一或多個額外功能。
如上所述,儘管本文使用一CNN來繪示一深度學習系統之架構,但本發明不受限於一CNN。深度學習架構之其他變體可用於實施例中。例如,可使用自動編碼器、DBN及RBM。亦可使用隨機森林。
訓練資料可輸入至可依任何適合方式執行之模型訓練(例如CNN訓練)。例如,模型訓練可包含:將訓練資料輸入至深度學習模型(例如一CNN)及修改模型之一或多個參數,直至模型之輸出相同於(或實質上相同於)外部驗證資料。模型訓練可產生一或多個訓練模型,其接著可發送至使用驗證資料來執行之模型選擇。可比較由輸入至一或多個訓練模型之驗證資料之各一或多個訓練模型產生之結果與驗證資料以判定哪個模型係最佳模型。例如,可選擇產生最緊密匹配驗證資料之結果之模型作為最 佳模型。接著,測試資料可用於所選擇之模型(例如最佳模型)之模型評估。可依任何適合方式執行模型評估。最佳模型亦可發送至模型部署,其中最佳模型可發送至半導體檢測工具供使用(訓練後模式)。
本文所揭示之各種實施例及實例中所描述之方法之步驟足以實施本發明之方法。因此,在一實施例中,方法基本上由本文所揭示之步驟之一組合組成。在另一實施例中,方法由此等步驟組成。
儘管已相對於一或多個特定實施例及/或實例描述本發明,但應瞭解,可在不背離本發明之範疇之情況下實施本發明之其他實施例及/或實例。
600:比較設置
601:參考影像
602:測試影像
603:第一局部區段
604:第二局部區段
605:特徵
606:特徵
607:比較

Claims (17)

  1. 一種用於獲得一對準晶粒對晶粒檢測影像之方法,其包括:在一處理器處接收一參考影像,該參考影像包括數個像素列及行;使用該處理器來自該參考影像選擇一第一局部區段;在該處理器處接收一測試影像,該測試影像包括數個像素列及行;使用該處理器來自該測試影像選擇一第二局部區段;使用該處理器來自該第一局部區段及該第二局部區段判定一估計旋轉偏移及一估計平移偏移;使用該處理器來執行包括一測試影像去歪斜之一粗略對準以藉此產生一部分對準測試影像,其中該測試影像去歪斜包括以下步驟:執行來自該參考影像之該第一局部區段與來自該測試影像之該第二局部區段之一歪斜比較,執行一快速傳立葉變換以產生一測試場景函數,及比較該測試場景函數與一參考場景函數以判定一歪斜角;及對該部分對準測試影像執行包括分區平移之一精細對準以獲得一對準晶粒對晶粒檢測影像。
  2. 如請求項1之方法,其中該測試影像去歪斜包括:使用該處理器來使該測試影像去歪斜。
  3. 如請求項2之方法,其中該歪斜比較包括:使用該處理器來對來自該參考影像之該第一局部區段執行一快速傅立葉變換以獲得一參考場景函數; 使用該處理器來對來自該測試影像之該第二局部區段執行一快速傅立葉變換以獲得一測試場景函數;及使用該處理器來比較該測試場景函數與該參考場景函數以判定該歪斜角。
  4. 如請求項2之方法,其中該歪斜比較包括:執行該測試影像中之一或多個顯著特徵之一圖案辨識以判定該歪斜角。
  5. 如請求項2之方法,其中使用一機器學習模組來執行該歪斜比較以判定該歪斜角。
  6. 如請求項2之方法,其中使該測試影像去歪斜包括:使用該處理器來基於該歪斜角而針對該測試影像中之該等像素之各者判定一行移位向量及一列移位向量,其中該行移位向量包括與含有該像素之行共線移位之一定數量像素及一方向,且該列移位向量包括與含有該像素之列共線移位之一定數量像素及一方向;及使用該處理器來使該等像素之各者根據其行移位向量及列移位向量來移位。
  7. 如請求項1之方法,其中該分區平移包括:使用該處理器來將該參考影像分割成至少一參考影像子區段; 使用該處理器來將該測試影像分割成至少一測試影像子區段;及使用該處理器來使該測試影像子區段平移以與對應於該測試影像子區段之該參考影像子區段對準。
  8. 一種用於半導體晶粒對晶粒檢測影像中之非暫時性電腦可讀儲存媒體,其包括用於在一或多個運算裝置上執行以下步驟之一或多個程式:接收一參考影像,該參考影像包括數個像素列及行;自該參考影像選擇一第一局部區段;接收一測試影像,該測試影像包括數個像素列及行;自該測試影像選擇一第二局部區段;自該第一局部區段及該第二局部區段判定一估計旋轉偏移及一估計平移偏移;對該測試影像執行包括一測試影像去歪斜之一粗略對準以藉此產生一部分對準測試影像,其中該測試影像去歪斜包括以下步驟:執行來自該參考影像之該第一局部區段與來自該測試影像之該第二局部區段之一歪斜比較,執行一快速傳立葉變換以產生一測試場景函數,及比較該測試場景函數與一參考場景函數以判定一歪斜角;及對該部分對準測試影像執行包括分區平移之一精細對準以獲得一對準晶粒對晶粒檢測影像。
  9. 如請求項8之非暫時性電腦可讀儲存媒體,其中該測試影像去歪斜包括:使該測試影像去歪斜,其包括: 基於該歪斜角來針對該測試影像中之該等像素之各者判定一行移位向量及一列移位向量,其中該行移位向量包括與含有該像素之行共線移位之一定數量像素及一方向,且該列移位向量包括與含有該像素之列共線移位之一定數量像素及一方向;及使該等像素之各者根據其行移位向量及列移位向量來移位。
  10. 如請求項9之非暫時性電腦可讀儲存媒體,其中該歪斜比較包括:對來自該參考影像之該第一局部區段執行一快速傅立葉變換以獲得一參考場景函數;對來自該測試影像之該第二局部區段執行一快速傅立葉變換以獲得一測試場景函數;及比較該測試場景函數與該參考場景函數以判定該歪斜角。
  11. 如請求項9之非暫時性電腦可讀儲存媒體,其中該分區平移包括:將該參考影像分割成至少一參考影像子區段;將該測試影像分割成至少一測試影像子區段;及使該測試影像子區段平移以與對應於該測試影像子區段之該參考影像子區段對準。
  12. 一種半導體晶粒對晶粒檢測系統,其包括用於擷取一晶粒之特徵之影像之一感測器及一運算系統,該感測器及該運算系統包括: 一束源,其中該束源係一光源或一電子束源;一載台,其經組態以使一晶圓保持於由該束源產生之一束之一路徑中,其中該束係來自該光源之一光束或來自該電子束源之一電子束;一偵測器,其經組態以接收自該晶圓反射之該束之一部分;及一處理器,其與該偵測器電子通信,該處理器經組態以執行:一測試影像之一粗略對準,其包括一測試影像去歪斜,藉此產生一部分對準測試影像,其中該測試影像去歪斜包括以下步驟:執行來自該參考影像之該第一局部區段與來自該測試影像之該第二局部區段之一歪斜比較,執行一快速傳立葉變換以產生一測試場景函數,及比較該測試場景函數與一參考場景函數以判定一歪斜角,及一精細對準,其包括該部分對準測試影像之分區平移。
  13. 如請求項12之半導體晶粒對晶粒檢測系統,其中該處理器經進一步組態以:接收一參考影像,該參考影像包括數個像素列及行;自該參考影像選擇一第一局部區段;接收一測試影像,該測試影像包括數個像素列及行;自該測試影像選擇一第二局部區段;及自該第一局部區段及該第二局部區段判定估計旋轉偏移及估計平移偏移。
  14. 如請求項12之半導體晶粒對晶粒檢測系統,其中該測試影像去歪斜包括: 判定該測試影像之一歪斜角;及使該測試影像去歪斜。
  15. 如請求項14之半導體晶粒對晶粒檢測系統,其中該歪斜比較包括:對來自該參考影像之該第一局部區段執行一快速傅立葉變換以獲得一參考場景函數;對來自該測試影像之該第二局部區段執行一快速傅立葉變換以獲得一測試場景函數;及比較該測試場景函數與該參考場景函數以判定該歪斜角。
  16. 如請求項13之半導體晶粒對晶粒檢測系統,其中使該測試影像去歪斜包括:基於該歪斜角來針對該測試影像中之該等像素之各者判定一行移位向量及一列移位向量,其中該行移位向量包括與含有該像素之行共線移位之一定數量像素及一方向,且該列移位向量包括與含有該像素之列共線移位之一定數量像素及一方向;及使該等像素之各者根據其行移位向量及列移位向量來移位。
  17. 如請求項13之半導體晶粒對晶粒檢測系統,其中該分區平移包括:將該參考影像分割成至少一參考影像子區段;將該測試影像分割成至少一測試影像子區段;及 使該測試影像子區段平移以與對應於該測試影像子區段之該參考影像子區段對準。
TW107136889A 2017-10-20 2018-10-19 用於獲得一對準晶粒對晶粒檢測影像之方法,用於半導體晶粒對晶粒檢測影像中之非暫時性電腦可讀儲存媒體,及半導體晶粒對晶粒檢測系統 TWI774863B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762575304P 2017-10-20 2017-10-20
US62/575,304 2017-10-20
US16/160,515 2018-10-15
US16/160,515 US10522376B2 (en) 2017-10-20 2018-10-15 Multi-step image alignment method for large offset die-die inspection

Publications (2)

Publication Number Publication Date
TW201928541A TW201928541A (zh) 2019-07-16
TWI774863B true TWI774863B (zh) 2022-08-21

Family

ID=66169518

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107136889A TWI774863B (zh) 2017-10-20 2018-10-19 用於獲得一對準晶粒對晶粒檢測影像之方法,用於半導體晶粒對晶粒檢測影像中之非暫時性電腦可讀儲存媒體,及半導體晶粒對晶粒檢測系統

Country Status (7)

Country Link
US (1) US10522376B2 (zh)
EP (1) EP3698322A4 (zh)
JP (1) JP7170037B2 (zh)
KR (1) KR102412022B1 (zh)
CN (1) CN111164646A (zh)
TW (1) TWI774863B (zh)
WO (1) WO2019079658A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10997712B2 (en) * 2018-01-18 2021-05-04 Canon Virginia, Inc. Devices, systems, and methods for anchor-point-enabled multi-scale subfield alignment
JP7042118B2 (ja) * 2018-03-08 2022-03-25 株式会社東芝 検査装置、検査方法、及びプログラム
GB201906371D0 (en) 2019-05-07 2019-06-19 Ash Tech Research Limited Improved digital microscope
TWI759655B (zh) * 2019-11-28 2022-04-01 國立中山大學 路徑規劃系統
KR20210094314A (ko) 2020-01-21 2021-07-29 삼성전자주식회사 반도체 장치의 제조 방법
US11631169B2 (en) * 2020-08-02 2023-04-18 KLA Corp. Inspection of noisy patterned features
US11803960B2 (en) * 2020-08-12 2023-10-31 Kla Corporation Optical image contrast metric for optical target search
US11748871B2 (en) * 2020-09-28 2023-09-05 KLA Corp. Alignment of a specimen for inspection and other processes
JP7250054B2 (ja) * 2021-02-04 2023-03-31 日本電子株式会社 分析装置および画像処理方法
KR102601175B1 (ko) * 2021-04-28 2023-11-10 창원대학교 산학협력단 딥러닝 모델을 이용하여 주기적인 패턴을 정렬하는 장치 및 방법
DE102021119008A1 (de) * 2021-07-30 2023-02-02 Carl Zeiss Multisem Gmbh Verfahren zur Defekterkennung in einer Halbleiterprobe bei Probenbildern mit Verzeichnung
US11922619B2 (en) 2022-03-31 2024-03-05 Kla Corporation Context-based defect inspection
US20230314336A1 (en) 2022-03-31 2023-10-05 Kla Corporation Multi-mode optical inspection

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200815909A (en) * 2006-09-19 2008-04-01 Synchrotron Radiation Res Ct Image aligning method
US20130272627A1 (en) * 2011-12-24 2013-10-17 École De Technologie Supérieure Methods and systems for processing a first image with reference to a second image

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7433509B1 (en) * 2001-10-09 2008-10-07 Nanometrics Incorporated Method for automatic de-skewing of multiple layer wafer for improved pattern recognition
JP2005249745A (ja) 2004-03-08 2005-09-15 Ebara Corp 試料表面検査方法および検査装置
US7323897B2 (en) * 2004-12-16 2008-01-29 Verigy (Singapore) Pte. Ltd. Mock wafer, system calibrated using mock wafer, and method for calibrating automated test equipment
JP3965189B2 (ja) * 2005-03-24 2007-08-29 アドバンスド・マスク・インスペクション・テクノロジー株式会社 画像補正方法
JP4174536B2 (ja) 2006-08-24 2008-11-05 アドバンスド・マスク・インスペクション・テクノロジー株式会社 画像補正装置、画像検査装置、及び画像補正方法
RU2445698C2 (ru) * 2006-12-01 2012-03-20 Конинклейке Филипс Электроникс Н.В. Способ автоматического декодирования изображений микроматрицы
WO2009063295A1 (en) * 2007-11-12 2009-05-22 Micronic Laser Systems Ab Methods and apparatuses for detecting pattern errors
KR101556430B1 (ko) * 2008-06-03 2015-10-01 환 제이. 정 간섭 결함 검출 및 분류
CN102985878B (zh) 2010-02-26 2016-06-29 密克罗尼克麦达塔公司 用于执行图案对准的方法和装置
JP5221584B2 (ja) * 2010-03-25 2013-06-26 株式会社日立ハイテクノロジーズ 画像処理装置、画像処理方法、画像処理プログラム
WO2012144025A1 (ja) * 2011-04-20 2012-10-26 株式会社メガトレード 自動検査装置および自動検査装置における位置合わせ方法
KR102079420B1 (ko) 2013-05-14 2020-02-19 케이엘에이 코포레이션 통합된 멀티 패스 검사
US9254682B2 (en) * 2013-10-28 2016-02-09 Eastman Kodak Company Imaging module with aligned imaging systems
US10127653B2 (en) * 2014-07-22 2018-11-13 Kla-Tencor Corp. Determining coordinates for an area of interest on a specimen
US10168286B2 (en) * 2014-12-10 2019-01-01 Hitachi High-Technologies Corporation Defect observation device and defect observation method
US9830421B2 (en) * 2014-12-31 2017-11-28 Kla-Tencor Corp. Alignment of inspection to design using built in targets
US10211025B2 (en) 2015-08-12 2019-02-19 Kla-Tencor Corp. Determining a position of a defect in an electron beam image
US9773194B2 (en) * 2016-01-28 2017-09-26 Longsand Limited Select type of test image based on similarity score to database image
US10204416B2 (en) * 2016-02-04 2019-02-12 Kla-Tencor Corporation Automatic deskew using design files or inspection images
CN107240126B (zh) * 2016-03-28 2020-11-20 华天科技(昆山)电子有限公司 阵列图像的校准方法
CN106327491A (zh) * 2016-08-23 2017-01-11 西安电子科技大学 基于fpga的无掩膜光刻pcb板校正系统及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200815909A (en) * 2006-09-19 2008-04-01 Synchrotron Radiation Res Ct Image aligning method
US20130272627A1 (en) * 2011-12-24 2013-10-17 École De Technologie Supérieure Methods and systems for processing a first image with reference to a second image

Also Published As

Publication number Publication date
KR20200060519A (ko) 2020-05-29
TW201928541A (zh) 2019-07-16
US20190122913A1 (en) 2019-04-25
JP7170037B2 (ja) 2022-11-11
CN111164646A (zh) 2020-05-15
KR102412022B1 (ko) 2022-06-22
US10522376B2 (en) 2019-12-31
EP3698322A4 (en) 2021-06-02
WO2019079658A1 (en) 2019-04-25
EP3698322A1 (en) 2020-08-26
JP2021500740A (ja) 2021-01-07

Similar Documents

Publication Publication Date Title
TWI774863B (zh) 用於獲得一對準晶粒對晶粒檢測影像之方法,用於半導體晶粒對晶粒檢測影像中之非暫時性電腦可讀儲存媒體,及半導體晶粒對晶粒檢測系統
TWI751376B (zh) 識別在一晶圓上偵測到之缺陷中之損害及所關注缺陷
KR102235581B1 (ko) 이미지 합성을 위한 컨볼루션 신경망 기반의 모드 선택 및 결함 분류
CN110494894B (zh) 基于轮廓的缺陷检测
CN108475350B (zh) 使用基于学习的模型加速半导体缺陷检测的方法和系统
JP6893514B2 (ja) ハイブリッドインスペクタ
TW201931217A (zh) 用於缺陷偵測及分類之統一神經網路
US10393671B2 (en) Intra-die defect detection
US11170475B2 (en) Image noise reduction using stacked denoising auto-encoder
US11151711B2 (en) Cross layer common-unique analysis for nuisance filtering
US11644756B2 (en) 3D structure inspection or metrology using deep learning
US11894214B2 (en) Detection and correction of system responses in real-time
US11774371B2 (en) Defect size measurement using deep learning methods
CN117015850B (zh) 以经呈现设计图像进行的设计注意区域的分段
TW202134641A (zh) 干擾過濾之深度學習網路

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent