TWI773613B - 電解銅箔及包含其之電極和鋰離子電池 - Google Patents
電解銅箔及包含其之電極和鋰離子電池 Download PDFInfo
- Publication number
- TWI773613B TWI773613B TW110146902A TW110146902A TWI773613B TW I773613 B TWI773613 B TW I773613B TW 110146902 A TW110146902 A TW 110146902A TW 110146902 A TW110146902 A TW 110146902A TW I773613 B TWI773613 B TW I773613B
- Authority
- TW
- Taiwan
- Prior art keywords
- electrolytic copper
- elongation
- copper foil
- lithium ion
- ion battery
- Prior art date
Links
Images
Landscapes
- Primary Cells (AREA)
- Secondary Cells (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
本創作關於一種電解銅箔及包含其之電極和鋰離子電池。該電解銅箔具有相對的第一及第二表面,其二者之面最大高度(Sz)各自獨立為1.1微米至3.0微米,該電解銅箔具有初始伸長率、第一伸長率(經100°C熱處理15分鐘後所測得)和第二伸長率(經120°C熱處理10小時後所測得),該第一伸長率小於該初始伸長率,該第二伸長率大於該第一伸長率,且該第二伸長率大於或等於8%。藉由控制電解銅箔二表面的Sz、不同熱處理後之伸長率的相對關係以及第二伸長率的範圍,能提升電解銅箔的輾壓穩定性,進而提升其後應用之鋰離子電池的產品壽命及價值。
Description
本創作關於一種電解銅箔,尤指一種可用於鋰離子電池的電解銅箔、包含其之電極和鋰離子電池。
銅箔具有良好導電性,且相對於例如銀等貴金屬具有成本低廉的優勢,因此其不僅廣泛應用於基礎工業之外,亦為先進科技產業的重要原料;舉例而言,銅箔可作為鋰離子電池的電極材料,廣泛應用於攜帶式電子裝置(portable electronic devices,PED)、電動車(electric vehicles,EV)等領域。
隨著電子、電器產品小型化和輕量化的需求,其內部使用的銅箔也隨之薄箔化,故銅箔的特性與品質對於電子、電器產品的效能影響更加顯著。
舉例來說,一般鋰離子電池的生產製程涉及於銅箔上塗覆負極漿料、輾壓塗覆有活性物質的銅箔及熱處理前述銅箔等步驟。倘若銅箔經輾壓以製成薄箔時無法承受外力影響而出現褶皺(wrinkle)或漿料脫落之缺陷時,將使所述銅箔無法適用於後續負極生產製程;若具有此種缺陷之銅箔仍用於製成鋰離子電池,所述鋰離子電池於充放電過程中容易造成活性物質毀損,致使鋰離子電池的產品壽命大幅地被降低。
有鑑於現有技術存在的缺陷,本創作其中一目的在於改良以往的銅箔,其能在塗覆漿料並輾壓後仍具有良好的穩定性。
本創作另一目的在於改良以往的銅箔,提升其後續應用之鋰離子電池的產品壽命。
為達成前述目的,本創作提供一種電解銅箔,其具有相對的第一表面及第二表面,該第一表面與第二表面之面最大高度(Sz)各自獨立為1.1微米至3.0微米;該電解銅箔具有初始伸長率、第一伸長率和第二伸長率,該初始伸長率為該電解銅箔未經熱處理前所測得,該第一伸長率為該電解銅箔經100°C熱處理15分鐘後所測得,該第二伸長率為該電解銅箔經120°C熱處理10小時後所測得,其中,該第一伸長率小於該初始伸長率,該第二伸長率大於該第一伸長率,且該第二伸長率大於或等於8%。
本創作藉由控制電解銅箔之第一、第二表面之Sz、初始伸長率、第一伸長率和第二伸長率的關係和第二伸長率的範圍,能具體提升電解銅箔的輾壓穩定性,能改善甚至避免電解銅箔經輾壓後產生褶皺或者負極漿料脫落之問題,進而延長其後應用之鋰離子電池之循環壽命,增加鋰離子電池之產品價值。
可以理解的是,經100°C熱處理15分鐘測得電解銅箔的第一伸長率以及經120°C熱處理10小時測得電解銅箔的第二伸長率可對應至一般電解銅箔應用於製成鋰離子電池之電極時所歷經的兩階段熱處理製程,電解銅箔經熱處理後的延展性對於其後續應用於製成鋰離子電池之電極的品質至關重要。
較佳的,該電解銅箔的第一表面及第二表面之Sz可各自獨立為1.15微米至2.93微米。更佳的,該電解銅箔的第一表面之Sz可為1.15微米至2.93微米,該電解銅箔的第二表面之Sz可為2.00微米至2.93微米。再更佳的,該電解銅箔的第一表面之Sz可為1.15微米至2.93微米,該電解銅箔的第二表面之Sz可為2.30微米至2.50微米。
較佳的,該電解銅箔的初始伸長率可為2.0%至6.5%。更佳的,該電解銅箔的初始伸長率可為2.1%至6.4%。再更佳的,該電解銅箔的初始伸長率可為2.1%至6.2%。
較佳的,該電解銅箔的第一伸長率可為1.5%至6%。更佳的,該電解銅箔的第一伸長率可為1.6%至5.9%。再更佳的,該電解銅箔的第一伸長率可為1.7%至5.8%。
具體來說,該電解銅箔的第二伸長率可為8%至15%。較佳的,該電解銅箔的第二伸長率可為10%至15%。於其他實施態樣,該電解銅箔的第二伸長率可為8.3%至14%。
較佳的,該電解銅箔的第二伸長率大於該初始伸長率,且該第二伸長率和該初始伸長率之差可為5.8%至7.1%。更佳的,該第二伸長率和該初始伸長率之差可為5.9%至7.1%。
依據本創作,電解銅箔的厚度可為3微米至16微米,但並非僅限於此。具體來說,電解銅箔的厚度可為4微米至12微米或6微米至12微米。
本創作另提供一種用於鋰離子電池的電極,其包含前述的電解銅箔。
本創作另提供一種鋰離子電池,其包含前述的電極。
依據本創作,所述電解銅箔可適用於作為鋰離子電池的負極,亦可適用於鋰離子電池的正極。所述電解銅箔可適合作為集電體 (current collector)使用,在電解銅箔的一側或兩側塗覆有至少一層活性材料,以製成鋰離子電池之電極。
依據本創作,活性材料可區分為正極活性材料及負極活性材料。負極活性材料含有負極活性物質,負極活性物質可為含碳物質、含矽物質、矽碳複合物、金屬、金屬氧化物、金屬合金或聚合物;較佳為含碳物質或含矽物質,但不限於此。具體而言,所述含碳物質可為介相石墨碳微球(mesophase graphite powder,MGP)、非石墨碳 (non-graphitizing carbon)、焦炭(coke)、石墨 (graphite)、玻璃狀碳 (glasslike carbon)、碳纖維(carbon fiber)、活性碳(activated carbon)、碳黑(carbon black)或高聚煅燒物,但不限於此;其中,焦炭包括瀝青焦炭、針狀焦炭或石油焦炭等;所述高聚煅燒物係藉由於適當溫度燒製酚醛樹脂(phenol-formaldehyde resin)或呋喃樹脂(furan resin)等高聚合物以便被碳酸化所得。所述含矽物質具有與鋰離子一起形成合金之優異能力及從合金鋰提取鋰離子的優異能力,而且,當含矽物質用於鋰離子二次電池時可以實現具有大能量密度的優點;含矽物質可與鈷 (Co)、鐵 (Fe)、錫 (Sn)、鎳 (Ni)、銅 (Cu)、錳 (Mn)、鋅 (Zn)、銦 (In)、銀 (Ag)、鈦 (Ti)、鍺 (Ge)、鉍 (Bi)、銻 (Sb)、鉻 (Cr)、釕 (Ru)、鉬 (Mo)或其組合併用,形成合金材料。所述金屬或金屬合金之元素可選自於下列所組成之群組:鈷、鐵、錫、鎳、銅、錳、鋅、銦、銀、鈦、鍺、鉍、銻、鉻、釕及鉬,但不限於此。所述金屬氧化物的實例係三氧化二鐵、四氧化三鐵、二氧化釕、二氧化鉬和三氧化鉬,但不限於此。所述聚合物的實例係聚乙炔(polyacetylene)和聚吡咯(polypyrrole),但不限於此。
於其中一種實施態樣中,活性材料可根據需求添加輔助添加劑,所述輔助添加劑可為黏結劑和/或弱酸試劑,但不限於此。較佳的,該黏結劑可為聚偏二氟乙烯(polyvinylidene fluoride,PVDF)、丁苯橡膠(styrene-butadiene rubber,SBR)、羧甲基纖維素(carboxymethyl cellulose,CMC)、聚丙烯酸(poly(acrylic acid),PAA)、聚丙烯腈(polyacrylonitrile,PAN)或聚丙烯酸酯(polyacrylate),該弱酸試劑可為草酸、檸檬酸、乳酸、醋酸或甲酸。
依據本創作,根據不同正極漿料的組成成分,本創作之鋰離子電池可為鋰鈷電池(LiCoO
2battery)、鋰鎳電池(LiNiO
2battery)、鋰錳電池(LiMn
2O
4battery)、鋰鈷鎳電池(LiCo
XNi
1-XO
2battery)或磷酸鋰鐵電池(LiFePO
4battery)等,但不限於此。
依據本創作,電解液可包括溶劑、電解質或視情況添加的添加劑。電解液中的溶劑包括非水性溶劑,例如:碳酸乙烯酯 (ethylene carbonate,EC)或碳酸丙烯酯 (propylene carbonate,PC)等環狀碳酸酯類;碳酸二甲酯 (dimethyl carbonate,DMC)、碳酸二乙酯 (diethyl carbonate,DEC)或碳酸甲乙酯 (ethyl methyl carbonate,EMC)等鏈狀碳酸酯類;或是磺內酯類 (sultone),但不限於此;前述溶劑可以單獨使用也可以組合兩種或多種溶劑一起使用。
依據本創作,鋰離子電池可以是包含透過隔離膜堆疊的負極和正極之堆疊型鋰離子電池,也可以是包含螺旋捲繞在一起的連續電極和隔離膜之螺旋捲繞型堆疊型鋰離子電池,但不限於此。根據不同應用產品,本創作之鋰離子電池應用於筆記型個人電腦、行動電話、電動車、儲能系統可製成例如圓柱型二次電池、方形二次電池、袋形二次電池或鈕扣型二次電池,但不限於此。
以下,列舉數種實施例說明電解銅箔的實施方式,同時提供數種比較例作為對照,所屬技術領域具有通常知識者可藉由下方實施例和比較例的內容輕易理解本創作能達到的優點及效果。應當理解的是,本說明書所列舉的實施例僅僅用於示範性說明本創作的實施方式,並非用於局限本創作的範圍,所屬技術領域具有通常知識者可以根據通常知識在不悖離本創作的精神下進行各種修飾、變更,以實施或應用本創作之內容。
《電解銅箔》
實施例
1
至
16
實施例1至16係使用如圖1所示的生產設備,並依序通過大致上雷同的電解沉積步驟和防鏽處理步驟製得電解銅箔。
如圖1所示,生產電解銅箔的設備包含電解沉積裝置10、防鏽處理裝置20和一系列導輥。所述電解沉積裝置10包含陰極輥筒11、不溶性陽極板12、銅電解液13和入料管14。所述陰極輥筒11為可旋轉的鈦製陰極輥筒。不溶性陽極板12為二氧化銥鈦板(IrO
2coated titanium plate),其設置於陰極輥筒11的下方並大致上圍繞陰極輥筒11的下半部分,該不溶性陽極板12具有面對陰極輥筒11的陽極表面121。陰極輥筒11和不溶性陽極板12彼此相間隔以容置由入料管14通入的銅電解液13。防鏽處理裝置20包括防鏽處理槽21和設置於其中的兩組極板211a、211b。一系列之導輥包含第一導輥31、第二導輥32、第三導輥33、第四導輥34、第五導輥35和第六導輥36,其可輸送經電解沉積的原箔至防鏽處理裝置20中進行防鏽處理,原箔經防鏽處理後以氣刀40移除表面多餘的防鏽物質,最終於第六導輥36上收卷得到電解銅箔50。
利用圖1所示之生產電解銅箔的設備,製造實施例1至16之電解銅箔50的方法統一說明如後。
首先,配製用於電解沉積步驟的銅電解液13,在進行電解沉積步驟時,陰極輥筒11等速定軸旋轉,並在陰極輥筒11和不溶性陽極板12上施加電流,使得銅電解液13中的銅離子在陰極輥筒11的表面沉積形成原箔,而後將原箔自陰極輥筒11上剝離並引導至第一導輥31上。
於此,銅電解液13之配方和電解沉積之製程條件如下:
I. 銅電解液13之配方:
硫酸銅(CuSO
4‧5H
2O):約320克/升(g/L),由銅線溶於50 wt%硫酸製得;
硫酸:約110 g/L;
氯離子:約25 ppm;
小分子量膠(SV,購自Nippi Inc.):約5.5 ppm,分子量介於4000至7000 Da;
3-巰基-1-丙烷磺酸鈉(sodium 3-mercapto-1-propanesulfonate,MPS,購自HOPAX):約3 ppm;
硫脲(thiourea,購自Panreac Quimica Sau):約0.01 ppm;
聚氧乙烯山梨醇脂肪酸酯(polyoxyethylene sorbitan fatty acid ester,Tween 20):含量如下表1所示;及
鎳離子(Ni
2+):含量如下表1所示。
II. 電解沉積之製程條件:
銅電解液13之溫度:約55°C;及
電流密度:約50安培/平方分米(A/dm
2)。
隨後,原箔通過第一導輥31、第二導輥32輸送至防鏽處理裝置20中進行防鏽處理,使原箔浸入充滿鉻防鏽液的防鏽處理槽21中,再經由第三導輥33的輸送,藉由兩組極板211a、211b對原箔的相反兩表面施以防鏽處理,於原箔的相反兩表面上電解沉積形成第一防鏽層及第二防鏽層。
於此,鉻防鏽液的配方和防鏽處理之製程條件如下:
I. 鉻防鏽液之配方:
鉻酸(CrO
3) :約1.5 g/L。
II. 防鏽處理之製程條件:
液溫:25℃;
電流密度:約0.5 A/dm
2;及
處理時間:約2秒。
經上述條件完成防鏽處理後,將經防鏽處理的銅箔導引至第四導輥34,並利用氣刀40移除表面多餘的防鏽物質並使其乾燥,再藉由第五導輥35將之傳送至第六導輥36,於第六導輥36上收卷得到電解銅箔50。
實施例1至16的差異主要在於所得電解銅箔之厚度、銅電解液中聚氧乙烯山梨醇脂肪酸酯含量、鎳離子含量及陽極表面的粗糙度;其中,陽極表面的粗糙度係指根據JIS B 0601-1994標準方法所測定之最大高度(Rz),其參數如表1所示。
於此,測量陽極表面的Rz所選用之儀器和條件如下所示:
I. 測量儀器:
攜帶式表面粗糙度測量儀(接觸式):SJ-410,購自Mitutoyo。
II. 測量條件:
針尖半徑:2微米;
針尖角度:60°;
截止值長度(cut off length,λc):0.8毫米;及
評估長度(evaluation length):4毫米。
根據上述製法,可分別製得厚度約6微米的實施例1至8及厚度約12微米的實施例9至16之電解銅箔。如圖2所示,各實施例之電解銅箔50包含銅層51(相當於前述未進行防鏽處理步驟的原箔)、第一防鏽層52和第二防鏽層53,銅層51包含位於相反側的沉積面(deposited side)511及輥筒面(drum side)512,於電解沉積過程中,沉積面511為原箔面向不溶性陽極板的表面,輥筒面512為原箔與陰極輥筒接觸的表面;第一防鏽層52形成在銅層51之沉積面511上,該第一防鏽層52具有位於最外側的第一表面521,第二防鏽層53形成在銅層51之輥筒面512上,且該第二防鏽層53具有位於最外側的第二表面531,該第一表面521和第二表面531即為電解銅箔50位於相反側的二最外側表面。
比較例
1
至
12
比較例1至6作為實施例1至8的對照、比較例7至12作為實施例9至16的對照,其大致上採用如同實施例1至16之製備方法,惟各比較例所得電解銅箔之厚度、所採用之銅電解液的聚氧乙烯山梨醇脂肪酸酯含量、鎳離子含量及陽極表面的Rz各有差異,上述參數皆列於表1中;另外,比較例1至6之電解銅箔的結構亦如圖2所示,且其厚度皆為6微米;比較例7至12之電解銅箔的結構亦如圖2所示,且其厚度皆為12微米。
表1:實施例1至16 (E1至E16)及比較例1至12 (C1至C12)之電解銅箔的厚度、製程所用的銅電解液中的聚氧乙烯山梨醇脂肪酸酯含量、鎳離子含量及陽極表面的Rz
厚度(微米) | 聚氧乙烯山梨醇脂肪酸酯含量(ppm) | 鎳離子含量(ppm) | 陽極表面之Rz (微米) | |
E1 | 6 | 10 | 10 | 2 |
E2 | 6 | 20 | 10 | 2 |
E3 | 6 | 30 | 10 | 2 |
E4 | 6 | 40 | 10 | 2 |
E5 | 6 | 20 | 10 | 8 |
E6 | 6 | 20 | 10 | 15 |
E7 | 6 | 20 | 20 | 2 |
E8 | 6 | 20 | 30 | 2 |
E9 | 12 | 10 | 10 | 2 |
E10 | 12 | 20 | 10 | 2 |
E11 | 12 | 30 | 10 | 2 |
E12 | 12 | 40 | 10 | 2 |
E13 | 12 | 20 | 10 | 8 |
E14 | 12 | 20 | 10 | 15 |
E15 | 12 | 20 | 20 | 2 |
E16 | 12 | 20 | 30 | 2 |
C1 | 6 | 5 | 10 | 2 |
C2 | 6 | 50 | 10 | 2 |
C3 | 6 | 20 | 10 | 18 |
C4 | 6 | 20 | 10 | 1 |
C5 | 6 | 20 | 40 | 2 |
C6 | 6 | 20 | 5 | 2 |
C7 | 12 | 5 | 10 | 2 |
C8 | 12 | 50 | 10 | 2 |
C9 | 12 | 20 | 10 | 18 |
C10 | 12 | 20 | 10 | 1 |
C11 | 12 | 20 | 40 | 2 |
C12 | 12 | 20 | 5 | 2 |
試驗例
1
:伸長率
本試驗例以前述實施例1至16及比較例1至12之電解銅箔為待測樣品,根據IPC-TM-650標準方法分析各待測樣品未經熱處理和經不同熱處理後的伸長率。
於此,待測樣品分別經以下熱處理條件後,測量伸長率所採用之儀器和條件如下所示:
I. 熱處理條件:
(i) 待測樣品於25°C之室溫,在未經熱處理的情況下,以前述分析條件測得初始伸長率(EL0);
(ii) 待測樣品以100°C加熱15分鐘再回溫至大約25°C後,以前述分析條件測得第一伸長率(EL1);
(iii) 待測樣品先以100°C加熱15分鐘,回溫至大約25°C,再以120°C加熱10小時,待回溫至大約25°C後,以前述分析條件測得第二伸長率(EL2)。
II. 測量儀器:
AG-I萬能拉力機,購自島津公司(Shimadzu Corp.)。
III. 測量條件:
樣品尺寸:長度約100毫米、寬度約12.7毫米;
夾頭間距(chuck distance):50毫米;及
橫梁速度(crosshead speed):50毫米/分鐘。
根據電解銅箔之厚度差異,實施例1至8及比較例1至6之電解銅箔所測得之EL0、EL1、EL2的結果如表2所示,實施例9至16及比較例7至12之電解銅箔所測得之EL0、EL1、EL2的結果如表3所示。此外,本試驗例另分析EL2和EL0之差值(ΔEL
2-0)、EL1與EL0之相對關係(ΔEL
1-0),若EL1大於EL0以「+」表示,若EL1小於EL0則以「-」表示,其結果亦列於下表2和表3中。
於實驗中觀察到,前述電解銅箔先經100°C熱處理15分鐘再經120°C熱處理10小時所測得之第二伸長率大致上等同或近似於電解銅箔直接經120°C熱處理10小時所測得之伸長率。
試驗例
2
:面最大高度
本試驗例以前述實施例1至16及比較例1至12之電解銅箔為待測樣品,根據ISO 25178-2:2012標準方法測量採用各待測樣品之第一表面及第二表面的面最大高度(Sz),其結果如表2、3所示。
於此,測量電解銅箔的Sz所選用之儀器和測量條件如下所示:
I. 測量儀器:
雷射掃描共軛焦顯微鏡:LEXT OLS5000-SAF,購自Olympus公司;及
物鏡:MPLAPON-100xLEXT。
II. 測量條件:
光源波長:405奈米;
物鏡倍率:100倍;
光學變焦:1.0倍;
觀察面積:129微米×129微米;
解析度:1024畫素×1024畫素;
模式:去除自動傾斜 (auto tilt removal);
濾鏡:無濾鏡;
溫度:24±3°C;及
相對溼度:63±3%。
《電極》
實施例
1A
至
16A
、比較例
1A
至
12A
前述實施例1至16、比較例1至12之電解銅箔的第一表面和第二表面可分別塗覆含有負極活性物質之負極漿料,以製成鋰離子電池用之負極。具體來說,所述負極可大致上經由如下所述之步驟製得。
首先,配製負極漿料,其組成如下所示:
介相石墨碳微球(MGP):93.9重量份,作為負極活性物質;
導電碳黑(Super P):1重量份,作為導電添加劑;
聚偏二氟乙烯(PVDF 6020):5重量份,作為溶劑黏結劑;
草酸:0.1重量份;及
N-甲基吡咯烷酮(NMP):60重量份。
接著,將前述負極漿料分別塗覆在電解銅箔的第一表面和第二表面上,負極漿料的塗覆厚度各自約200微米,並於烘箱中以100°C加熱15分鐘以初步除水;再利用輾壓機進行輾壓,得到經輾壓之電解銅箔(密度達1.5克/立方公分 (g/cm
3));再將前述經輾壓之電解銅箔於120°C加熱10小時以完全除水,得到實施例1A至16A、比較例1A及12A之負極。
於此,製作負極時所設定的塗覆條件及輾壓條件如下:
I. 塗覆條件:
塗覆速率:5 m/min;及
塗覆厚度:各面約200 μm。
II. 輾壓條件:
輾壓速率:1 m/min;
輾壓壓力:3000磅/平方吋 (psi);
輾壓機的輥子尺寸:250 mm (外徑,φ)×250 mm (寬度);
輥子硬度:62至65HRC;及
輥子材料:高碳鉻軸承鋼(SUJ2)。
試驗例
3
:輾壓穩定性
為評估電解銅箔用於製作負極時能否具備期望的輾壓穩定性,本試驗以實施例1A至16A、比較例1A至12A之負極為待測樣品,以目視法觀察前述待測樣品,觀察待測樣品(經輾壓之電解銅箔)表面是否出現褶皺或負極漿料脫落之情形。若待測樣品被觀察到褶皺或負極漿料脫落之情形,則評價為「X」,顯示該待測樣品的輾壓穩定性差;若待測樣品未出現褶皺也未有負極漿料脫落之情形,則評價為「O」,顯示該待測樣品能具備期望的輾壓穩定性,其結果如表2、3所示。
由下表2中厚度同為6微米之電解銅箔的測試結果可見,比較例2至6之電解銅箔經前述輾壓測試後已可觀察到有褶皺或負極漿料脫落的情形,輾壓穩定性差,顯示比較例2至6的電解銅箔無法製作成鋰離子電池用之負極(比較例2A至6A)。再由下表3中厚度同為12微米之電解銅箔的測試結果可見,比較例8至12之電解銅箔經前述輾壓測試後也可觀察到有褶皺或負極漿料脫落的情形,輾壓穩定性差,顯示比較例8至12的電解銅箔也無法適用於製作成鋰離子電池用之負極(比較例8A至12A)。
《鋰離子電池》
前述負極可進一步與正極搭配製成鋰離子電池。如前所述,由於比較例2至6和8至12之電解銅箔無法具備期望的輾壓穩定性,無法適用於製成鋰離子電池用之負極,故以下僅得將實施例1A至16A、比較例1A及7A與同款正極搭配,製作成實施例1B至16B、比較例1B及7B的鋰離子電池。為方便說明,利用前述負極製作鋰離子電池的製造流程統一說明如後。
首先,配製正極漿料,其組成如下所示:
鋰鈷氧化物(LiCoO
2):89重量份,作為正極活性物質;
片狀石墨(KS6):5重量份,作為導電添加劑;
導電碳黑(Super P):1重量份,作為導電添加劑;
聚偏二氟乙烯(PVDF 1300):5重量份,作為溶劑黏結劑;及
N-甲基吡咯烷酮(NMP):195重量份。
接著,將正極漿料塗覆在鋁箔的二表面上,待溶劑揮發後,再將前述正極及各實施例和各比較例之負極分別裁切至特定大小,再將正極和負極之間夾著微孔性隔離膜(型號:Celgard 2400,由Celgard公司製造)交替推疊,置於充滿電解液的壓合模具(型號:LBC322-01H,購自新宙邦科技股份有限公司)中,密封得到層壓型鋰離子電池(尺寸為41毫米×34毫米×53毫米)。
試驗例
4
:充放電循環壽命
本試驗例以實施例1B至16B、比較例1B及7B之鋰離子電池為待測樣品,在下述的測試條件下,通過一系列之充放電循環,記錄電容量下降至80%初始電容量的充放電循環次數,並定義前述充放電次數為該待測樣品之充放電循環壽命,其結果如表2、3所示。
於此,充放電循環測試的條件如下:
充電模式:恆定電流-恆定電壓(CCCV);
放電模式:恆定電流(CC);
充電電壓:4.2伏特(V);
充電電流:5C;
放電電壓:2.8 V:
放電電流:5C;
測量溫度:約55°C。
根據上述說明可見,實施例1B至16B、比較例1B及7B之鋰離子電池的差異僅在於其負極所用之電解銅箔,故鋰離子電池的充放電循環壽命主要係歸因於電解銅箔之特性。
表2:實施例1至8(E1至E8)、比較例1至6(C1至C6)之EL0、EL1、EL2、ΔEL
1-0、ΔEL
2-0、第一表面之Sz、第二表面之Sz、輾壓穩定性以及利用前述電解銅箔所製得之鋰離子電池之充放電循環次數
伸長率(%) | Sz(微米) | 輾壓 穩定性 | 充放電 循環次數 | ||||||
EL0 | EL1 | EL2 | ΔEL 1-0 | ΔEL 2-0 | 第一 表面 | 第二 表面 | |||
E1 | 2.2 | 1.7 | 8.3 | - | 6.1 | 1.28 | 2.40 | O | 871 |
E2 | 2.9 | 2.5 | 9.2 | - | 6.3 | 1.25 | 2.35 | O | 932 |
E3 | 3.7 | 3.4 | 10.5 | - | 6.8 | 1.23 | 2.36 | O | 1062 |
E4 | 4.6 | 4.0 | 11.0 | - | 6.4 | 1.15 | 2.37 | O | 1193 |
E5 | 2.4 | 2.1 | 8.8 | - | 6.4 | 1.85 | 2.35 | O | 926 |
E6 | 2.1 | 1.8 | 8.4 | - | 6.3 | 2.93 | 2.34 | O | 915 |
E7 | 2.7 | 2.2 | 8.7 | - | 6 | 1.64 | 2.35 | O | 918 |
E8 | 2.5 | 2.0 | 8.4 | - | 5.9 | 2.34 | 2.36 | O | 905 |
C1 | 1.7 | 1.2 | 7.2 | - | 5.5 | 1.31 | 2.37 | O | 756 |
C2 | 5.0 | 5.5 | 13.2 | + | 8.2 | 1.13 | 2.35 | X | - |
C3 | 1.7 | 1.4 | 8.2 | - | 6.5 | 3.34 | 2.36 | X | - |
C4 | 3.1 | 2.7 | 9.8 | - | 6.7 | 1.09 | 2.34 | X | - |
C5 | 2.2 | 1.9 | 8.2 | - | 6 | 3.22 | 2.37 | X | - |
C6 | 3.0 | 2.8 | 9.5 | - | 6.5 | 1.08 | 2.35 | X | - |
如上表2所示,實施例1至8之電解銅箔的第一表面和第二表面皆具有適當的Sz(均落在1.1微米至3.0微米之範圍內),且電解銅箔的第一伸長率小於初始伸長率、第二伸長率大於第一伸長率,電解銅箔的第二伸長率大於或等於8%,故所述電解銅箔能獲得良好的輾壓穩定性,具體避免電解銅箔經輾壓後產生褶皺或負極漿料脫落的問題,據此,利用此種電解銅箔所製得之鋰離子電池能具有優異的循環壽命,充放電循環次數可達800次以上。
反觀比較例1至6之電解銅箔,因為電解銅箔未能同時具備(1)第一表面的Sz和第二表面的Sz在適當的範圍、(2)第一伸長率小於初始伸長率、第二伸長率大於第一伸長率、以及(3)第二伸長率大於或等於8%之三項特點,因此,比較例2至6之電解銅箔於輾壓後會出現褶皺或負極漿料脫落之問題,不利於後續應用於鋰離子電池,而比較例1雖能製成鋰離子電池,但其充放電循環次數僅有756次,仍有待改善。
進一步細究比較例1至6之電解銅箔的測試結果可見,比較例1之電解銅箔的第二伸長率低於8%,所述電解銅箔應用於鋰離子電池時之充放電循環次數僅有756次;比較例2之電解銅箔的第一伸長率大於初始伸長率,故所述電解銅箔經輾壓後易產生褶皺,致使負極漿料塗覆於電解銅箔時容易發生脫落,比較例3及5之電解銅箔的第一表面的Sz超出3.0微米,致使比較例3及5之電解銅箔經輾壓後也容易產生褶皺,負極漿料塗覆於電解銅箔後容易發生脫落的情形,而比較例4及6之電解銅箔的第一表面的Sz低於1.1微米,致使比較例4及6之電解銅箔與負極漿料的接著性不佳而容易發生負極漿料脫落的問題,故比較例2至6之電解銅箔皆無法具備期望的輾壓穩定性,難以適用於製作鋰離子電池。
如上表2所示,實施例3及4之電解銅箔的第二伸長率均大於10%,使其鋰離子電池的充放電循環次數大於1000次,具有更優異的循環壽命。
表3:實施例9至16(E9至E16)、比較例7至12(C7至C12)之EL0、EL1、EL2、ΔEL
1-0、ΔEL
2-0、第一表面之Sz、第二表面之Sz、輾壓穩定性以及利用前述電解銅箔所製得之鋰離子電池之充放電循環次數
伸長率(%) | Sz(微米) | 輾壓 穩定性 | 充放電 循環次數 | ||||||
EL0 | EL1 | EL2 | ΔEL 1-0 | ΔEL 2-0 | 第一 表面 | 第二 表面 | |||
E9 | 4.3 | 3.9 | 10.5 | - | 6.2 | 2.02 | 2.34 | O | 1070 |
E10 | 4.9 | 4.4 | 11.2 | - | 6.3 | 1.98 | 2.35 | O | 1201 |
E11 | 5.4 | 5.1 | 12.1 | - | 6.7 | 1.92 | 2.36 | O | 1295 |
E12 | 6.2 | 5.8 | 13.3 | - | 7.1 | 1.88 | 2.34 | O | 1362 |
E13 | 4.4 | 4.1 | 10.8 | - | 6.4 | 2.39 | 2.35 | O | 1178 |
E14 | 4.0 | 3.6 | 10.2 | - | 6.2 | 2.92 | 2.36 | O | 1152 |
E15 | 4.6 | 4.0 | 10.8 | - | 6.2 | 2.11 | 2.34 | O | 1115 |
E16 | 4.0 | 3.7 | 10.3 | - | 6.3 | 2.76 | 2.35 | O | 1043 |
C7 | 3.8 | 3.5 | 7.3 | - | 3.5 | 2.08 | 2.35 | O | 766 |
C8 | 6.8 | 7.1 | 14.1 | + | 7.3 | 1.86 | 2.36 | X | - |
C9 | 3.6 | 3.3 | 9.8 | - | 6.2 | 3.42 | 2.37 | X | - |
C10 | 5.2 | 4.6 | 11.5 | - | 6.3 | 1.07 | 2.35 | X | - |
C11 | 4.0 | 3.4 | 10.7 | - | 6.7 | 3.26 | 2.35 | X | - |
C12 | 5.3 | 4.7 | 11.8 | - | 6.5 | 1.08 | 2.37 | X | - |
如上表3所示,實施例9至16之電解銅箔的第一表面和第二表面皆具有適當的Sz(均落在1.1微米至3.0微米之範圍內),且電解銅箔的第一伸長率小於初始伸長率,電解銅箔的第二伸長率大於或等於8%,故所述電解銅箔能獲得良好的輾壓穩定性,具體避免電解銅箔經輾壓後產生褶皺或負極漿料脫落的問題,據此,利用此種電解銅箔所製得之鋰離子電池能具有優異的循環壽命,充放電循環次數可達800次以上。
反觀比較例7至12之電解銅箔,因為電解銅箔未能同時具備(1)第一表面的Sz和第二表面的Sz在適當的範圍、(2)第一伸長率小於初始伸長率以及(3)第二伸長率大於或等於8%之三項特點,因此,比較例8至12之電解銅箔於輾壓後會出現褶皺或負極漿料脫落之問題,不利於後續應用於鋰離子電池,而比較例7雖能製成鋰離子電池,但其充放電循環次數僅有766次,仍有待改善。
進一步細究比較例7至12之電解銅箔的測試結果可見,比較例7之電解銅箔的第二伸長率低於8%,所述電解銅箔應用於鋰離子電池時之充放電循環次數僅有766次;比較例8之電解銅箔的第一伸長率大於初始伸長率,故所述電解銅箔經輾壓後易產生褶皺,致使負極漿料塗覆於電解銅箔時容易發生脫落,比較例9及11之電解銅箔的第一表面的Sz超出3.0微米,致使比較例9及11之電解銅箔經輾壓後也容易產生褶皺,負極漿料塗覆於電解銅箔後容易發生脫落的情形,而比較例10及12之電解銅箔的第一表面的Sz低於1.1微米,致使比較例10及12之電解銅箔與負極漿料的接著性不佳而容易發生負極漿料脫落的問題,故比較例8至12之電解銅箔皆無法具備期望的輾壓穩定性,難以適用於製作鋰離子電池。
如上表3所示,實施例9至16之電解銅箔的第二伸長率均大於10%,使其鋰離子電池的充放電循環次數大於1000次,具有更優異的循環壽命。
綜上所述,本創作藉由調控電解銅箔之第一表面和第二表面的Sz、初始伸長率、第一伸長率和第二伸長率的關係和第二伸長率的範圍,能具體避免電解銅箔於輾壓過程產生褶皺或負極漿料脫落的現象,並且提升其後應用之鋰離子電池的循環壽命。
10:電解沉積裝置
11:陰極輥筒
12:不溶性陽極板
121:陽極表面
13:銅電解液
14:入料管
20:防鏽處理裝置
21:防鏽處理槽
211a、211b:極板
31:第一導輥
32:第二導輥
33:第三導輥
34:第四導輥
35:第五導輥
36:第六導輥
40:氣刀
50:電解銅箔
51:銅層
511:沉積面
512:輥筒面
52:第一防鏽層
521:第一表面
53:第二防鏽層
531:第二表面
圖1為實施例1至16、比較例1至12之電解銅箔的生產流程示意圖。
圖2為實施例1至16、比較例1至12之電解銅箔的側視圖。
無。
50:電解銅箔
51:銅層
511:沉積面
512:輥筒面
52:第一防鏽層
521:第一表面
53:第二防鏽層
531:第二表面
Claims (10)
- 一種電解銅箔,其具有相對的第一表面及第二表面,該第一表面與第二表面之面最大高度(Sz)各自獨立為1.1微米至3.0微米;該電解銅箔具有初始伸長率、第一伸長率和第二伸長率,該初始伸長率為該電解銅箔未經熱處理前所測得,該第一伸長率為該電解銅箔經100°C熱處理15分鐘後所測得,該第二伸長率為該電解銅箔經120°C熱處理10小時後所測得,其中,該第一伸長率小於該初始伸長率,該第二伸長率大於該第一伸長率,且該第二伸長率大於或等於8%。
- 如請求項1所述之電解銅箔,其中,該第一表面及第二表面之Sz各自獨立為1.15微米至2.93微米。
- 如請求項2所述之電解銅箔,其中,該第一表面之Sz為1.15微米至2.93微米,該第二表面之Sz為2.00微米至2.93微米。
- 如請求項1所述之電解銅箔,其中,該電解銅箔的初始伸長率為2%至6.5%。
- 如請求項1所述之電解銅箔,其中,該電解銅箔的第一伸長率為1.5%至6%。
- 如請求項1至5中任一項所述之電解銅箔,其中,該電解銅箔的第二伸長率為8%至15%。
- 如請求項6所述之電解銅箔,其中,該電解銅箔的第二伸長率為10%至15%。
- 如請求項1至5中任一項所述之電解銅箔,其中,該電解銅箔的第二伸長率大於該初始伸長率,且該第二伸長率和該初始伸長率之差為5.8%至7.1%。
- 一種用於鋰離子電池的電極,其包含如請求項1至8中任一項所述的電解銅箔。
- 一種鋰離子電池,其包含如請求項9所述之電極。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110146902A TWI773613B (zh) | 2021-12-15 | 2021-12-15 | 電解銅箔及包含其之電極和鋰離子電池 |
KR1020210189354A KR102435606B1 (ko) | 2021-12-15 | 2021-12-28 | 전해 동박, 이를 포함하는 전극 및 리튬-이온 전지 |
JP2022001084A JP7153148B1 (ja) | 2021-12-15 | 2022-01-06 | 電解銅箔、電極及びそれを備えるリチウムイオン電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110146902A TWI773613B (zh) | 2021-12-15 | 2021-12-15 | 電解銅箔及包含其之電極和鋰離子電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI773613B true TWI773613B (zh) | 2022-08-01 |
TW202325898A TW202325898A (zh) | 2023-07-01 |
Family
ID=83806987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110146902A TWI773613B (zh) | 2021-12-15 | 2021-12-15 | 電解銅箔及包含其之電極和鋰離子電池 |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI773613B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201900939A (zh) * | 2017-05-09 | 2019-01-01 | 日商Jx金屬股份有限公司 | 電解銅箔、覆銅積層板、印刷配線板及其製造方法、以及電子機器及其製造方法 |
TWI672085B (zh) * | 2017-03-31 | 2019-09-11 | 日商Jx金屬股份有限公司 | 表面處理銅箔、附有樹脂層之表面處理銅箔、附載體銅箔、積層體、印刷配線板之製造方法及電子機器之製造方法 |
-
2021
- 2021-12-15 TW TW110146902A patent/TWI773613B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI672085B (zh) * | 2017-03-31 | 2019-09-11 | 日商Jx金屬股份有限公司 | 表面處理銅箔、附有樹脂層之表面處理銅箔、附載體銅箔、積層體、印刷配線板之製造方法及電子機器之製造方法 |
TW201900939A (zh) * | 2017-05-09 | 2019-01-01 | 日商Jx金屬股份有限公司 | 電解銅箔、覆銅積層板、印刷配線板及其製造方法、以及電子機器及其製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202325898A (zh) | 2023-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111801444B (zh) | 电解铜箔、电极及包含其的锂离子二次电池 | |
US10158119B2 (en) | Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same | |
US10781523B1 (en) | Electrolytic copper foil and electrode and lithium-ion battery comprising the same | |
US10122021B2 (en) | Electrolytic copper foil, and collector, negative electrode, and lithium battery comprising same | |
KR102244477B1 (ko) | 전해 동박 및 이를 포함하는 전극 및 리튬-이온 전지 | |
CN112447980B (zh) | 电解铜箔以及包含其的电极与锂离子电池 | |
WO2015186752A1 (ja) | 集電体用金属箔、集電体及び集電体用金属箔の製造方法 | |
KR102435606B1 (ko) | 전해 동박, 이를 포함하는 전극 및 리튬-이온 전지 | |
TWI773613B (zh) | 電解銅箔及包含其之電極和鋰離子電池 | |
US20230369557A1 (en) | Method for Manufacturing Dry Electrode for Energy Storage Device, Dry Electrode and Secondary Battery Comprising the Same | |
CN115198319B (zh) | 电解铜箔及包含所述电解铜箔的电极与锂离子电池 | |
TWI830347B (zh) | 電解銅箔及包含其之電極和鋰離子電池 | |
US12132196B2 (en) | Electrolytic copper foil and electrode and lithium-ion cell comprising the same | |
EP4299795A1 (en) | Electrolytic copper foil and electrode and lithium-ion cell comprising the same | |
US20230420640A1 (en) | Electrolytic copper foil and electrode and lithium-ion cell comprising the same | |
JP7377326B1 (ja) | 電解銅箔及び電極とそれを用いたリチウムイオン電池 | |
CN117344356B (zh) | 电解铜箔及包含其的电极和锂离子电池 | |
CN117344357A (zh) | 电解铜箔及包含其的电极和锂离子电池 | |
TW202400846A (zh) | 電解銅箔及包含其之電極和鋰離子電池 |