TWI773535B - 驅動裝置 - Google Patents

驅動裝置 Download PDF

Info

Publication number
TWI773535B
TWI773535B TW110134838A TW110134838A TWI773535B TW I773535 B TWI773535 B TW I773535B TW 110134838 A TW110134838 A TW 110134838A TW 110134838 A TW110134838 A TW 110134838A TW I773535 B TWI773535 B TW I773535B
Authority
TW
Taiwan
Prior art keywords
voltage
channel mosfet
terminal
coupled
driving device
Prior art date
Application number
TW110134838A
Other languages
English (en)
Other versions
TW202304134A (zh
Inventor
鄭國韋
Original Assignee
聯詠科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯詠科技股份有限公司 filed Critical 聯詠科技股份有限公司
Application granted granted Critical
Publication of TWI773535B publication Critical patent/TWI773535B/zh
Publication of TW202304134A publication Critical patent/TW202304134A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/40Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
    • G05F1/44Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/12Modifications for increasing the maximum permissible switched current
    • H03K17/122Modifications for increasing the maximum permissible switched current in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • H03K17/6871Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors the output circuit comprising more than one controlled field-effect transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0081Power supply means, e.g. to the switch driver

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electronic Switches (AREA)
  • Control Of Electrical Variables (AREA)
  • Seal Device For Vehicle (AREA)
  • Valve Device For Special Equipments (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

一種驅動裝置包含一電壓調節器、一電壓產生器、一P通道金氧半場效電晶體與一第一N通道金氧半場效電晶體。電壓調節器耦接於一第一高電壓端與驅動裝置之輸出端之間。電壓調節器接收第一高電壓端之第一高電壓,並降低第一高電壓,以產生一供應電壓。電壓產生器耦接一第二高電壓端與驅動裝置之輸出端。電壓產生器提供一參考電壓給驅動裝置之輸出端,此參考電壓實質上低於供應電壓。P通道金氧半場效電晶體耦接於電壓調節器與驅動裝置之輸出端之間,第一N通道金氧半場效電晶體耦接於驅動裝置之輸出端與一低電壓端之間。

Description

驅動裝置
本發明係關於一種驅動技術,且特別關於一種不需使用外部電容器之驅動裝置。
積體電路 (IC) 包括電晶體,例如用於實現邏輯電路的互補式金屬氧化物半導體 (CMOS)電晶體。積體電路通常在不同的電源模式下運行,包括 運作(RUN)、待機(STANDBY)和停止(STOP)模式,以實現有效的電源管理。為了降低佈線複雜度,當積體電路進入運作模式時,積體電路接收單個電源的電壓來驅動負載。
第1圖為先前技術之用以驅動負載之積體電路之示意圖。第2圖為先前技術之用以驅動負載之積體電路之輸入訊號與節點之波形圖。請參閱第1圖與第2圖,積體電路1包含一緩衝器10、一P通道金氧半場效電晶體11、一N通道金氧半場效電晶體12、一電壓調節器13與導電端14與15。導電端15耦接一負載16,負載16具有寄生電容。電壓調節器13耦接一單一電源端,其電壓以VDDA表示。電壓調節器13接收電壓VDDA,並將此轉換為供應電壓VDDIO。換句話說,導電端14具有電壓VDDIO。導電端14與15、P通道金氧半場效電晶體11及N通道金氧半場效電晶體12之電壓分別為節點A、B、C與D之電壓。緩衝器10接收一輸入訊號IN以驅動P通道金氧半場效電晶體11及N通道金氧半場效電晶體12,進而對負載16充電或放電。當導電端15之電壓從邏輯”0”改變為邏輯”1”時,P通道金氧半場效電晶體11即刻接收電壓VDDIO,以產生一大驅動電流來驅動負載16。同時,此大驅動電壓會造成導電端14之電壓下衝(undershoot),使負載16讀到錯誤的資料。驅動電流之數值取決於P通道金氧半場效電晶體11之電阻。導電端14具有一電壓差值△V。此電壓差值△V以公式(1)表示。 △V=
Figure 02_image001
(1)
其中t表示時間,C表示一外部電容器17之電容值,T表示積分時間,其取決於負載16之電容值,I(t)表示驅動電壓,其為時間的函數。由於大驅動電流的存在,電壓調節器13之回復時間很長,而無法使導電端14之電壓即時恢復到VDDIO。為了穩定導電端14之電壓,積體電路1需要電容器來維持導電端14之電壓。考慮積體電路1之面積,任何具有微米法拉等級的電容值之電容器是不會整合於積體電路1中。因此,外部電容器17用以降低電壓差值△V,並避免影響積體電路1之輸出電壓等級。然而,外部電容器17將增加積體電路1之材料成本與此整個模組所佔的空間。
本發明提供一種驅動裝置,其避免耦接於任何外部電容器,以降低整個模組之材料成本與此整個模組所佔的空間。
在本發明之一實施例中,提供一種驅動裝置,其包含一電壓調節器、一電壓產生器、一P通道金氧半場效電晶體與一第一N通道金氧半場效電晶體。電壓調節器耦接於一第一高電壓端與驅動裝置之輸出端之間,其中電壓調節器用以接收第一高電壓端之第一高電壓,並降低第一高電壓,以產生一供應電壓。電壓產生器耦接一第二高電壓端與驅動裝置之輸出端,其中電壓產生器用以提供一參考電壓給驅動裝置之輸出端,參考電壓實質上低於供應電壓。P通道金氧半場效電晶體耦接於電壓調節器與驅動裝置之輸出端之間,第一N通道金氧半場效電晶體耦接於驅動裝置之輸出端與一低電壓端之間。
基於上述,在電壓調節器提供供應電壓給驅動裝置之輸出端之前,驅動裝置提供參考電壓給驅動裝置之輸出端,以削弱電壓下衝(undershoot)之現象。因此,驅動裝置能避免耦接於任何外部電容器,以降低整個模組之材料成本與此整個模組所佔的空間。
茲為使 貴審查委員對本發明的結構特徵及所達成的功效更有進一步的瞭解與認識,謹佐以較佳的實施例圖及配合詳細的說明,說明如後:
本發明之實施例將藉由下文配合相關圖式進一步加以解說。盡可能的,於圖式與說明書中,相同標號係代表相同或相似構件。於圖式中,基於簡化與方便標示,形狀與厚度可能經過誇大表示。可以理解的是,未特別顯示於圖式中或描述於說明書中之元件,為所屬技術領域中具有通常技術者所知之形態。本領域之通常技術者可依據本發明之內容而進行多種之改變與修改。
除非特別說明,一些條件句或字詞,例如「可以(can)」、「可能(could)」、「也許(might)」,或「可(may)」,通常是試圖表達本案實施例具有,但是也可以解釋成可能不需要的特徵、元件,或步驟。在其他實施例中,這些特徵、元件,或步驟可能是不需要的。
於下文中關於“一個實施例”或“一實施例”之描述係指關於至少一實施例內所相關連之一特定元件、結構或特徵。因此,於下文中多處所出現之“一個實施例”或 “一實施例”之多個描述並非針對同一實施例。再者,於一或多個實施例中之特定構件、結構與特徵可依照一適當方式而結合。
在說明書及申請專利範圍中使用了某些詞彙來指稱特定的元件。然而,所屬技術領域中具有通常知識者應可理解,同樣的元件可能會用不同的名詞來稱呼。說明書及申請專利範圍並不以名稱的差異做為區分元件的方式,而是以元件在功能上的差異來做為區分的基準。在說明書及申請專利範圍所提及的「包含」為開放式的用語, 故應解釋成「包含但不限定於」。另外,「耦接」在此包含任何直接及間接的連接手段。因此,若文中描述第一元件耦接於第二元件,則代表第一元件可通過電性連接或無線傳輸、光學傳輸等信號連接方式而直接地連接於第二元件,或者通過其他元件或連接手段間接地電性或信號連接至該第二元件。
揭露特別以下述例子加以描述,這些例子僅係用以舉例說明而已,因為對於熟習此技藝者而言,在不脫離本揭示內容之精神和範圍內,當可作各種之更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。在通篇說明書與申請專利範圍中,除非內容清楚指定,否則「一」以及「該」的意義包含這一類敘述包括「一或至少一」該元件或成分。此外,如本揭露所用,除非從特定上下文明顯可見將複數個排除在外,否則單數冠詞亦包括複數個元件或成分的敘述。而且,應用在此描述中與下述之全部申請專利範圍中時,除非內容清楚指定,否則「在其中」的意思可包含「在其中」與「在其上」。在通篇說明書與申請專利範圍所使用之用詞(terms),除有特別註明,通常具有每個用詞使用在此領域中、在此揭露之內容中與特殊內容中的平常意義。某些用以描述本揭露之用詞將於下或在此說明書的別處討論,以提供從業人員(practitioner)在有關本揭露之描述上額外的引導。在通篇說明書之任何地方之例子,包含在此所討論之任何用詞之例子的使用,僅係用以舉例說明,當然不限制本揭露或任何例示用詞之範圍與意義。同樣地,本揭露並不限於此說明書中所提出之各種實施例。
在此所使用的用詞「實質上(substantially)」、「大約(around)」、「約(about)」或「近乎(approximately)」應大體上意味在給定值或範圍的20%以內,較佳係在10%以內。此外,在此所提供之數量可為近似的,因此意味著若無特別陳述,可用詞「大約」、「約」或「近乎」加以表示。當一數量、濃度或其他數值或參數有指定的範圍、較佳範圍或表列出上下理想值之時,應視為特別揭露由任何上下限之數對或理想值所構成的所有範圍,不論該等範圍是否分別揭露。舉例而言,如揭露範圍某長度為X公分到Y公分,應視為揭露長度為H公分且H可為X到Y之間之任意實數。
在下面的描述中,將提供一種驅動裝置。在電壓調節器提供供應電壓給驅動裝置之輸出端之前,驅動裝置提供參考電壓給驅動裝置之輸出端,以削弱電壓下衝(undershoot)之現象。因此,驅動裝置能避免耦接於任何外部電容器,以降低整個模組之材料成本與此整個模組所佔的空間。
第3圖為本發明之第一實施例之驅動裝置之示意圖。第4圖為本發明之第一實施例之驅動裝置之節點之訊號、第一控制訊號、第二控制訊號與第三控制訊號之波形圖。第5(a)圖為本發明之第一實施例之驅動裝置對負載充電之流程圖。請參閱第3圖、第4圖與第5(a)圖,本發明之第一實施例介紹如下。在第一實施例中,驅動裝置2耦接一負載3,負載3具有寄生電容。驅動裝置2可整合於一積體電路中。驅動裝置2包含一電壓調節器20、一電壓產生器21、一第一N通道金氧半場效電晶體22、一第一P通道金氧半場效電晶體23、一導電端24與一輸出端25。電壓調節器20可以低壓差穩壓器(LDO)實現,但本發明不限於此。輸出端25可為數位輸出端或序列周邊介面(SPI),但本發明不限於此。電壓調節器20耦接一第一高電壓端與導電端24,第一高電壓端之第一高電壓係以VDDA1表示。電壓產生器21耦接一第二高電壓端與輸出端25,第二高電壓端之第二高電壓係以VDDA2表示。第一高電壓VDDA1實質上等於或不同於第二高電壓VDDA2。第二高電壓端可以第一高電壓端來取代。第一高電壓端與第二高電壓端可為外部電壓源或以外部電容器來實現。驅動裝置2之輸出端25耦接負載3。節點E與F之電壓分別表示導電端24與輸出端25之電壓。第一N通道金氧半場效電晶體22耦接於輸出端25與一低電壓端之間。低電壓端可為接地端,但本發明不限於此。第一N通道金氧半場效電晶體22之源極與汲極可分別耦接低電壓端與驅動裝置2之輸出端25。可選擇地,第一N通道金氧半場效電晶體22之汲極與源極可分別耦接低電壓端與輸出端25。第一P通道金氧半場效電晶體23耦接於電壓調節器20與輸出端25之間。第一P通道金氧半場效電晶體23與電壓調節器20共同耦接導電端24。第一P通道金氧半場效電晶體23之源極與汲極可分別耦接電壓調節器20與輸出端25。可選擇地,第一P通道金氧半場效電晶體23之汲極與源極可分別耦接電壓調節器20與輸出端25。
驅動裝置2之充電過程介紹如下。在步驟S10,電壓調節器20接收第一高電壓端之第一高電壓VDDA1,並降低第一高電壓VDDA1,以產生一供應電壓VDDIO。供應電壓實質上低於第一高電壓VDDA1。舉例來說,供應電壓VDDIO之範圍為1.4-1.8伏特,且第一高電壓VDDA1可為3.3伏特。電壓產生器21接收一第一控制訊號C1。第一N通道金氧半場效電晶體22之閘極接收對應第一控制訊號C1之一第二控制訊號C2。第一P通道金氧半場效電晶體23之閘極接收對應第二控制訊號C2之一第三控制訊號C3。第一控制訊號C1、第二控制訊號C2與第三控制訊號C3可為數位訊號,但本發明不限於此。在步驟S10中,第一控制訊號C1、第二控制訊號C2、第三控制訊號C3與節點F分別為邏輯”0”、 邏輯”1”、 邏輯”1”與邏輯”0”。 第一控制訊號C1控制電壓產生器21停止對負載3充電。第二控制訊號C2導通第一N通道金氧半場效電晶體22。第三控制訊號C3關斷第一P通道金氧半場效電晶體23。
在步驟S11中,在第一控制訊號C1之電壓從邏輯”0”改變為邏輯”1”時,第一控制訊號C1與第二高電壓端之第二高電壓VDDA2驅動電壓產生器21提供一參考電壓VREF給驅動裝置2之輸出端25,並花費時段T1將負載3經由輸出端25充電至參考電壓VREF。在第一控制訊號C1與第二高電壓端之第二高電壓VDDA2驅動電壓產生器21提供參考電壓VREF給驅動裝置2之輸出端25,並將負載3經由輸出端25充電至參考電壓VREF時,第二控制訊號C2關斷第一N通道金氧半場效電晶體22,且第三控制訊號C3關斷第一P通道金氧半場效電晶體23。在時段T1中,供應電壓VDDIO不會因為關斷第一P通道金氧半場效電晶體23而有所影響。參考電壓VREF實質上高於低電壓端之低電壓,並低於供應電壓VDDIO。實際上,參考電壓VREF接近供應電壓VDDIO。在步驟S11中,第二控制訊號C2與第三控制訊號C3之電壓分別為邏輯”0”與邏輯”1”。
在步驟S12中,在參考電壓VREF提供給驅動裝置2之輸出端25後,第二控制訊號C2關斷第一N通道金氧半場效電晶體22,第三控制訊號C3導通第一P通道金氧半場效電晶體23,供應電壓VDDIO經由第一P通道金氧半場效電晶體23提供給驅動裝置2之輸出端25,且負載3經由第一P通道金氧半場效電晶體23與輸出端25被充電至供應電壓VDDIO。在步驟S12中,第一控制訊號C1、第二控制訊號C2、第三控制訊號C3與節點F之電壓分別為邏輯”1”、 邏輯”0”、 邏輯”0”與邏輯”1”。在步驟S12中,因為參考電壓VREF接近供應電壓VDDIO,所以通過第一P通道金氧半場效電晶體23之驅動電流非常小。雖然節點E之電壓因為此非常小的驅動電流所以立即下降電壓差△V,但此電壓差△V較小,且節點E之電壓變動也非常輕微。因此,節點E之電壓能符合負載3之電壓規格。節點F之電壓為邏輯”1”長達時段T2。在電壓調節器20提供供應電壓VDDIO給驅動裝置2之輸出端25之前,驅動裝置2提供參考電壓VREF給驅動裝置2之輸出端25,以削弱導電端24之電壓下衝(undershoot)之狀況。所以,驅動裝置2可免於耦接任何外部電容器,從而降低整個模組之材料成本與整個模組所佔據的空間。
第5(b)圖為本發明之第一實施例之驅動裝置對負載放電之流程圖。請參閱第3圖、第4圖與第5(b)圖,驅動裝置2之放電過程介紹如下。在步驟S13中,當第一控制訊號C1之電壓從邏輯”1”改變為邏輯”0”時,第一控制訊號C1控制電壓產生器21停止提供參考電壓VREF給驅動裝置2之輸出端25,並停止對負載3充電。當第一控制訊號C1控制電壓產生器21停止提供參考電壓VREF,並停止對負載3充電時,第二控制訊號C2關斷第一N通道金氧半場效電晶體22,且第三控制訊號C3關斷第一P通道金氧半場效電晶體23,以停止提供供應電壓VDDIO給輸出端25,並停止將負載3充電至供應電壓VDDIO。在步驟S13中,第二控制訊號C2、第三控制訊號C3與節點F之電壓分別為邏輯”0”、 邏輯”1”與邏輯”1”。第一N通道金氧半場效電晶體22與第一P通道金氧半場效電晶體23不會同時導通,以避免輸出端25之電壓準位不穩定。
在步驟S13後,進行步驟S14。在步驟S14中,當第一控制訊號C1控制電壓產生器21停止提供參考電壓VREF,並停止對負載3充電時,第二控制訊號C2導通第一N通道金氧半場效電晶體22,並經由輸出端25將負載3放電至低電壓,且第三控制訊號C3關斷第一P通道金氧半場效電晶體23,以停止提供供應電壓VDDIO,並停止將負載3充電至供應電壓VDDIO。換句話說,節點F之電壓為邏輯”0”。因此,在驅動裝置2之運作期間內,輸出端25之電壓為數位電壓。此外,步驟S13在理想狀態是可以忽略的。倘若可達到相同的結果,並不需要一定照第5(a)圖至第5(b)圖所示之流程中的步驟順序來進行,且第5(a)圖至第5(b)圖所示之步驟不一定要連續進行,亦即其他步驟亦可插入其中。
在本發明之另一實施例中,驅動裝置2更可包含一訊號緩衝器26,訊號緩衝器26耦接第一N通道金氧半場效電晶體22與第一P通道金氧半場效電晶體23之閘極。訊號緩衝器26接收第一控制訊號C1,並反向與調整第一控制訊號C1之波形,以產生第三控制訊號C3與第二控制訊號C2。
第6圖為本發明之第二實施例之驅動裝置之示意圖。第7圖為本發明之第二實施例之驅動裝置之節點之訊號、第一控制訊號、第二控制訊號與第三控制訊號之波形圖。請參閱第6圖與第7圖,本發明之第二實施例介紹如下。第二實施例與第一實施例差別在於電壓產生器21。在第二實施例中,電壓產生器21可包含一第二N通道金氧半場效電晶體210、一第三N通道金氧半場效電晶體211、一第一電子開關212、一第四N通道金氧半場效電晶體213、一第二電子開關214、一訊號控制器215、一第三電子開關216與一第四電子開關217。第三N通道金氧半場效電晶體211作為一源極追隨器(source follower)。第二N通道金氧半場效電晶體210與第三N通道金氧半場效電晶體211形成一電流鏡。第一電子開關212、第二電子開關214、第三電子開關216與第四電子開關217可為通道金氧半場效電晶體或雙載子接面電晶體,但本發明不限於此。第二N通道金氧半場效電晶體210之汲極耦接第二高電壓端。第二N通道金氧半場效電晶體210之閘極耦接其汲極。第二N通道金氧半場效電晶體210之源極耦接電壓調節器20。第三N通道金氧半場效電晶體211之汲極耦接第二高電壓端。第三N通道金氧半場效電晶體211之源極耦接輸出端25。第一電子開關212耦接於第二N通道金氧半場效電晶體210之閘極與第三N通道金氧半場效電晶體211之閘極之間。第四N通道金氧半場效電晶體213之汲極耦接輸出端25與第三N通道金氧半場效電晶體211之源極。第四N通道金氧半場效電晶體213之源極耦接低電壓端。第二電子開關214耦接於第四N通道金氧半場效電晶體213之閘極與一高偏壓端之間,高偏壓端之高偏壓以B1表示。訊號控制器215耦接第一電子開關212與第二電子開關214之控制端。第三電子開關216耦接於低電壓端與第三N通道金氧半場效電晶體211之閘極之間。第三電子開關216之控制端耦接訊號控制器215。
在電壓產生器21之運作中,第二N通道金氧半場效電晶體210接收供應電壓VDDIO,訊號控制器215接收第一控制訊號C1。訊號控制器215控制第一電子開關212與第二電子開關214之訊號以S1表示。訊號控制器215控制第三電子開關216與第四電子開關217之訊號以S2表示。當第一控制訊號C1之電壓從邏輯”0”改變為邏輯”1”時,第一控制訊號C1驅動訊號控制器215導通第一電子開關212與第二電子開關214,並關斷第三電子開關216與第四電子開關217。換句話說,當第一控制訊號C1之電壓從邏輯”0”改變為邏輯”1”時,訊號S1與S2之電壓分別為邏輯”1”與邏輯”0”。當第一控制訊號C1驅動訊號控制器215導通第一電子開關212與第二電子開關214時,第二高電壓VDDA2與高偏壓端之高偏壓B1驅動第二N通道金氧半場效電晶體210、第三N通道金氧半場效電晶體211與第四N通道金氧半場效電晶體213提供參考電壓VREF,並經由第一電子開關212與第二電子開關214將負載3充電至參考電壓VREF。藉由調整第二N通道金氧半場效電晶體210與第三N通道金氧半場效電晶體211之汲極電流、通道長度與通道寬度,可使第二N通道金氧半場效電晶體210之閘源電壓實質上低於第三N通道金氧半場效電晶體211之閘源電壓,則輸出端25無法向導電端24充電。實務上,第二N通道金氧半場效電晶體210之閘源電壓接近第三N通道金氧半場效電晶體211之閘源電壓。
當第一控制訊號C1驅動訊號控制器215關斷第一電子開關212與第二電子開關214時,第一控制訊號C1驅動訊號控制器215導通第三電子開關216與第四電子開關217,且低電壓驅動第三N通道金氧半場效電晶體211與第四N通道金氧半場效電晶體213停止提供電壓,並停止經由第三電子開關216與第四電子開關217向負載3充電。換句話說,當第一控制訊號C1驅動訊號控制器215關斷第一電子開關212與第二電子開關214時,訊號S1與S2之電壓分別為邏輯”0”與邏輯”1”。
在本發明之某些實施例中,驅動裝置2更可包含一第二P通道金氧半場效電晶體218,第二P通道金氧半場效電晶體218耦接於第二高電壓端與第二N通道金氧半場效電晶體210之汲極之間。第二P通道金氧半場效電晶體218之閘極接收一低偏壓B2,使第二P通道金氧半場效電晶體218保持導通。因此,第二N通道金氧半場效電晶體210經由第二P通道金氧半場效電晶體218接收第二高電壓VDDA2。
以上所述者,僅為本發明一較佳實施例而已,並非用來限定本發明實施之範圍,故舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。
1:積體電路 10:緩衝器 11:P通道金氧半場效電晶體 12:N通道金氧半場效電晶體 13:電壓調節器 14:導電端 15:導電端 16:負載 17:外部電容器 2:驅動裝置 20:電壓調節器 21:電壓產生器 210:第二N通道金氧半場效電晶體 211:第三N通道金氧半場效電晶體 212:第一電子開關 213:第四N通道金氧半場效電晶體 214:第二電子開關 215:訊號控制器 216:第三電子開關 217:第四電子開關 218:第二P通道金氧半場效電晶體 22:第一N通道金氧半場效電晶體 23:第一P通道金氧半場效電晶體 24:導電端 25:輸出端 26:訊號緩衝器 3:負載 VDDA:電壓 VDDIO:供應電壓 A、B、C、D、E、F:節點 IN:輸入訊號 VDDA1:第一高電壓 VDDA2:第二高電壓 C1:第一控制訊號 C2:第二控制訊號 C3:第三控制訊號 VREF:參考電壓 T1、T2:時段 S10、S11、S12、S13、S14:步驟 B1:高偏壓 S1、S2:訊號 B2:低偏壓
第1圖為先前技術之用以驅動負載之積體電路之示意圖。 第2圖為先前技術之用以驅動負載之積體電路之輸入訊號與節點之波形圖。 第3圖為本發明之第一實施例之驅動裝置之示意圖。 第4圖為本發明之第一實施例之驅動裝置之節點之訊號、第一控制訊號、第二控制訊號與第三控制訊號之波形圖。 第5(a)圖為本發明之第一實施例之驅動裝置對負載充電之流程圖。 第5(b)圖為本發明之第一實施例之驅動裝置對負載放電之流程圖。 第6圖為本發明之第二實施例之驅動裝置之示意圖。 第7圖為本發明之第二實施例之驅動裝置之節點之訊號、第一控制訊號、第二控制訊號與第三控制訊號之波形圖。
2:驅動裝置
20:電壓調節器
21:電壓產生器
22:第一N通道金氧半場效電晶體
23:第一P通道金氧半場效電晶體
24:導電端
25:輸出端
26:訊號緩衝器
3:負載
E、F:節點
VDDA1:第一高電壓
VDDA2:第二高電壓
C1:第一控制訊號
C2:第二控制訊號
C3:第三控制訊號

Claims (7)

  1. 一種驅動裝置,包含: 一電壓調節器,耦接於一第一高電壓端與該驅動裝置之輸出端之間,其中該電壓調節器用以接收該第一高電壓端之第一高電壓,並降低該第一高電壓,以產生一供應電壓; 一電壓產生器,耦接一第二高電壓端與該驅動裝置之該輸出端,其中該電壓產生器用以提供一參考電壓給該驅動裝置之該輸出端,該參考電壓實質上低於該供應電壓; 一P通道金氧半場效電晶體,其耦接於該電壓調節器與該驅動裝置之該輸出端之間;以及 一第一N通道金氧半場效電晶體,耦接於該驅動裝置之該輸出端與一低電壓端之間。
  2. 如請求項1所述之驅動裝置,更包含一訊號緩衝器,其耦接該第一N通道金氧半場效電晶體。
  3. 如請求項1所述之驅動裝置,其中該電壓產生器包含: 一第二N通道金氧半場效電晶體,耦接該第二高電壓端與該電壓調節器; 一第三N通道金氧半場效電晶體,耦接該第二高電壓端與該驅動裝置之該輸出端; 一第一電子開關,耦接於該第二N通道金氧半場效電晶體與該第三N通道金氧半場效電晶體之間; 一第四N通道金氧半場效電晶體,耦接該驅動裝置之該輸出端、該第三N通道金氧半場效電晶體與該低電壓端; 一第二電子開關,耦接於該第四N通道金氧半場效電晶體與一高偏壓端之間;以及 一訊號控制器,耦接該第一電子開關與該第二電子開關之控制端。
  4. 如請求項3所述之驅動裝置,其中該電壓產生器更包含: 一第三電子開關,耦接於該低電壓端與該第三N通道金氧半場效電晶體之間,且該第三電子開關之控制端耦接該訊號控制器;以及 一第四電子開關,耦接於該低電壓端與該第四N通道金氧半場效電晶體之間,且該第四電子開關之控制端耦接該訊號控制器。
  5. 如請求項3所述之驅動裝置,更包含一P通道金氧半場效電晶體,其耦接於該第二高電壓端與該第二N通道金氧半場效電晶體之間。
  6. 如請求項1所述之驅動裝置,其中該輸出端為數位輸出端,該數位輸出端上的電壓為數位電壓。
  7. 如請求項1所述之驅動裝置,其中該第一高電壓端之該第一高電壓實質上等於該第二高電壓端之第二高電壓。
TW110134838A 2021-06-30 2021-09-17 驅動裝置 TWI773535B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/363,472 2021-06-30
US17/363,472 US11687105B2 (en) 2021-06-30 2021-06-30 Driving device

Publications (2)

Publication Number Publication Date
TWI773535B true TWI773535B (zh) 2022-08-01
TW202304134A TW202304134A (zh) 2023-01-16

Family

ID=83806899

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110134838A TWI773535B (zh) 2021-06-30 2021-09-17 驅動裝置

Country Status (3)

Country Link
US (1) US11687105B2 (zh)
CN (1) CN115549470A (zh)
TW (1) TWI773535B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8994412B2 (en) * 2012-06-27 2015-03-31 Samsung Electronics Co., Ltd. Output driver for high voltage and wide range voltage operation and data output driving circuit using the same
TWI492533B (zh) * 2011-11-16 2015-07-11 Mediatek Inc 驅動電路
TWI537932B (zh) * 2015-04-01 2016-06-11 矽創電子股份有限公司 電源電路、閘極驅動電路及顯示模組
US9754646B1 (en) * 2016-11-03 2017-09-05 Cadence Design Systems, Inc. Voltage stress tolerant high speed memory driver having flying capacitor circuit
US11018655B2 (en) * 2017-11-28 2021-05-25 Shenzhen Torey Microelectronic Technology Co. Ltd. Level shift circuit and display driver integrated circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI337451B (en) 2006-04-03 2011-02-11 Novatek Microelectronics Corp Method and related device of source driver with reduced power consumption
DE112014002021T5 (de) * 2013-04-18 2016-01-28 Fuji Electric Co., Ltd. Schaltelement-Ansteuerkreis
US10622994B2 (en) * 2018-06-07 2020-04-14 Vishay-Siliconix, LLC Devices and methods for driving a semiconductor switching device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI492533B (zh) * 2011-11-16 2015-07-11 Mediatek Inc 驅動電路
US8994412B2 (en) * 2012-06-27 2015-03-31 Samsung Electronics Co., Ltd. Output driver for high voltage and wide range voltage operation and data output driving circuit using the same
TWI537932B (zh) * 2015-04-01 2016-06-11 矽創電子股份有限公司 電源電路、閘極驅動電路及顯示模組
US9754646B1 (en) * 2016-11-03 2017-09-05 Cadence Design Systems, Inc. Voltage stress tolerant high speed memory driver having flying capacitor circuit
US11018655B2 (en) * 2017-11-28 2021-05-25 Shenzhen Torey Microelectronic Technology Co. Ltd. Level shift circuit and display driver integrated circuit

Also Published As

Publication number Publication date
US11687105B2 (en) 2023-06-27
CN115549470A (zh) 2022-12-30
US20230004179A1 (en) 2023-01-05
TW202304134A (zh) 2023-01-16

Similar Documents

Publication Publication Date Title
US9052728B2 (en) Start-up circuit and method thereof
US7649384B2 (en) High-voltage tolerant output driver
US7227343B2 (en) Linear voltage regulator with selectable output voltage
US8148960B2 (en) Voltage regulator circuit
US8207789B2 (en) Differential amplifier circuit
KR101621035B1 (ko) 선택적으로 αc 또는 dc 결합되도록 된 집적 회로
US7358708B2 (en) Linear voltage regulator
US9459639B2 (en) Power supply circuit with control unit
US8471548B2 (en) Power supply circuit configured to supply stabilized output voltage by avoiding offset voltage in error amplifier
US6380792B1 (en) Semiconductor integrated circuit
TWI773535B (zh) 驅動裝置
CN114784927B (zh) 一种用于节约芯片版图面积的供电电路
CN108829174B (zh) 线性稳压器电路
US20160274615A1 (en) Voltage switching circuit and power supply device
TW202040303A (zh) 電壓調整電路
US11671094B1 (en) Driver circuit
US6489829B1 (en) Multiple-stage control circuit to control rush current in a MOSFET load switch
JP2021150720A (ja) アナログスイッチ回路
TWI543528B (zh) 雙向開關電路
JP4467150B2 (ja) 駆動回路
WO2023032413A1 (ja) 半導体装置
CN111913518B (zh) 电压调整电路
CN116403509A (zh) 栅极驱动电路及系统
TW202112024A (zh) 電源切換裝置
JPH02260713A (ja) 半導体集積回路