TWI772360B - 90度集總與分散式杜赫阻抗反相器 - Google Patents

90度集總與分散式杜赫阻抗反相器 Download PDF

Info

Publication number
TWI772360B
TWI772360B TW107103832A TW107103832A TWI772360B TW I772360 B TWI772360 B TW I772360B TW 107103832 A TW107103832 A TW 107103832A TW 107103832 A TW107103832 A TW 107103832A TW I772360 B TWI772360 B TW I772360B
Authority
TW
Taiwan
Prior art keywords
amplifier
impedance
output
peaking
doher
Prior art date
Application number
TW107103832A
Other languages
English (en)
Other versions
TW201836262A (zh
Inventor
吉拉德 布伊斯
安德魯 亞利桑德
安德魯 佩特森
Original Assignee
美商馬康科技解決方案控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商馬康科技解決方案控股有限公司 filed Critical 美商馬康科技解決方案控股有限公司
Publication of TW201836262A publication Critical patent/TW201836262A/zh
Application granted granted Critical
Publication of TWI772360B publication Critical patent/TWI772360B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • H03F1/565Modifications of input or output impedances, not otherwise provided for using inductive elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6611Wire connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6644Packaging aspects of high-frequency amplifiers
    • H01L2223/6655Matching arrangements, e.g. arrangement of inductive and capacitive components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Abstract

說明用於操作在千兆赫頻率下的經修改杜赫放大器的設備與方法。來自主放大器與峰化放大器的訊號的結合,發生在放大器輸出對負載的阻抗匹配之前。可在阻抗反相器中使用整合分散式電感器以結合訊號。可在製造期間內藉由圖案化選定阻抗元件的尺寸,以調諧放大器並允許放大器的功率縮放。

Description

90度集總與分散式杜赫阻抗反相器
本科技相關於高速高功率寬頻寬整合式放大器,此放大器可由氮化鎵電晶體或由其他半導體材料形成的電晶體來建置。
氮化鎵半導體材料近年來受到了很大的關注,因為氮化鎵半導體材料的可期望的電子性質與光電性質。GaN具有約3.4 eV的寬廣、直接的帶隙,這對應於可見光頻譜中的藍光波段。基於GaN與GaN合金的發光二極體(LED)與雷射二極體(LD)已被發展且已市售。這些裝置可發出從可見光頻譜的紫光區域至紅光區域的可見光。
因為寬廣的帶隙,GaN較不受雪崩崩潰的影響,並可在較高的溫度下維持電氣性能(相較於其他半導體,例如矽)。GaN也具有比矽高的載子飽和速率。此外,GaN具有纖鋅礦晶體結構(Wurtzite crystal structure)、為非常穩定且堅硬的材料、具有高導熱率、並具有比其他習知半導體(諸如矽、鍺和砷化鎵)高得多的熔解點。因此,GaN對於高速、高電壓及高功率應用是有用的。例如,氮化鎵材料對於用於射頻(RF)通訊的半導體放大器、雷達、RF能量、與微波應用是有用的。
支援當前通訊標準與已提出的未來通訊標準(諸如WiMax、4G、與5G)下的行動通訊與無線網際網路存取的應用,可對由半導體電晶體建置的高速或RF放大器提出苛刻的性能要求。放大器可需要達到相關於輸出功率、訊號線性度、訊號增益、頻寬、與效率的性能規格。
說明用於改良高速高功率寬頻整合式放大器的性能的方法與結構。結構與方法相關於用於結合經放大訊號並在經修改杜赫放大器輸出處進行阻抗匹配的電路系統。重新安排訊號結合與阻抗匹配的順序(相較於習知杜赫放大器),並使用包含為微帶線形式的整合分散式電感性元件的阻抗反相器,可明顯改良放大器頻寬並允許訊號放大縮放至較高的功率。
一些具體實施例相關於一種杜赫放大器,包含:RF輸入;主放大器,主放大器連接至RF輸入;峰化放大器,峰化放大器連接至RF輸入;結合節點,在結合節點處來自主放大器的輸出與來自峰化放大器的輸出結合;以及阻抗反相器,阻抗反相器包含連接至主放大器的輸出以及結合節點的整合分散式電感器。
在一些態樣中,對阻抗反相器的輸入,包含連接至主放大器的輸出的一或更多個接合線。結合節點可位於峰化放大器的汲極接合墊處。在一些實施例中,在主放大器與阻抗反相器之間,不提供將把主放大器的輸出阻抗匹配至50歐姆的阻抗匹配元件。阻抗反相器可將主放大器放大的第一訊號的相位,旋轉不超過95度,相對於由峰化放大器放大的第二訊號的相位。
根據一些實施例,分散式電感器包含整合在基板上的至少一個傳導帶線,傳導帶線具有寬度與長度。阻抗反相器可進一步包含集總電感性與電容性元件。在一些實施例中,帶線可主要為電感性的。在一些情形中,帶線可被分成兩個,並由電容器串聯連接設置。在一些態樣中,阻抗反相器可進一步包含接合線或傳導性互連結構,接合線或傳導性互連結構連接在傳導帶線與主放大器及峰化放大器的輸出之間。帶線的寬度可在約100微米與約1000微米之間。在一些態樣中,帶線的長度可在約2毫米與約6毫米之間。在一些情形中,主放大器與峰化放大器可被整合在與傳導帶線相同的基板上。
在一些實施例中,其上形成了傳導帶線的基板,包含高頻層壓結構。在一些情形中,基板可包含半導體。
根據一些態樣,主放大器與峰化放大器之一者或兩者包含氮化鎵電晶體。
在一些實施例中,阻抗反相器實質上由傳導帶線與接合線組成,傳導帶線整合在基板上且具有一寬度與一長度,接合線連接在傳導帶線與來自主放大器與峰化放大器的輸出之間。
在一些態樣中,杜赫放大器可進一步包含阻抗匹配元件,阻抗匹配元件連接在結合節點與杜赫放大器的輸出埠之間。阻抗匹配元件可提供50歐姆的輸出阻抗。在一些實施例中,阻抗匹配元件可對杜赫放大器提供約25歐姆與約100歐姆之間的輸出阻抗。
在一些實施例中,對於放大器的RF部分頻寬,可在約6 %與約18 %之間。對於杜赫放大器的操作頻率,可在約500 MHz與約6 GHz之間。在一些情形中,杜赫放大器可對來自結合節點的輸出功率位準額定為約20瓦與約100瓦之間。
在一些態樣中,杜赫放大器可連接至蜂巢式發送器(例如併入蜂巢式電話或蜂巢式基地台的設備中)。
一些具體實施例相關於用於放大訊號的方法。所實施的方法可包含:將所接收的訊號分成第一訊號與第二訊號,第二訊號具有相對於第一訊號的第一相位;由主放大器放大第一訊號;由峰化放大器放大第二訊號;將來自主放大器的輸出直接提供至阻抗反相器的輸入,其中阻抗反相器包含整合分散式電感器;以及由阻抗反相器引入第二相位以補償第一相位。
在一些態樣中,第二相位不超過95度。
根據一些實施例,方法可進一步包含:將來自阻抗反相器的輸出與來自峰化放大器的輸出結合,以產生結合輸出;以及提供結合輸出至阻抗匹配元件。根據一些實施例,方法可進一步包含:由阻抗匹配元件將一阻抗匹配至約25歐姆與約100歐姆之間的一值。可在峰化放大器的汲極接合墊處完成結合。在一些實施例中,整合分散式電感器包含整合在基板上的傳導帶線,傳導帶線具有寬度與長度。寬度可在約100微米與約1000微米之間。長度可位於約2毫米與約6毫米之間。在一些情形中,阻抗反相器進一步包含接合線或傳導性互連結構,接合線或傳導性互連結構連接在傳導帶線與主放大器及峰化放大器的輸出之間。
在一些實施例中,主放大器與峰化放大器可被整合在與傳導帶線相同的基板上。基板可包含高頻層壓結構。在一些態樣中,所接收的訊號位於約500 MHz與約6 GHz之間的一頻率。根據一些態樣,用於放大訊號的一RF部分頻寬,可位於約6 %與約18 %之間。結合輸出的功率位準可位於約20瓦與約100瓦之間。
在一些態樣中,方法可進一步包含提供結合輸出,以由蜂巢式基地台傳輸。方法亦可包含:在主放大器與阻抗反相器之間,不提供將把主放大器的輸出阻抗匹配至50歐姆的阻抗匹配元件。放大方法之任一者可由氮化鎵電晶體執行。
前述設備與方法具體實施例,可被實施在任何適合的與前述(以及下文詳細說明的)態樣、特徵與步驟的結合者中。連同附加圖式參閱下列說明之後,可更全面瞭解本教示內容的這些與其他的態樣、具體實施例與特徵。
如前述,因為氮化鎵(GaN)材料的良好材料性質,包含GaN材料電晶體的放大器對於高速、高電壓及高功率應用是有用的。在一些情況中,由其他半導體材料(諸如砷化鎵、碳化矽、矽鍺等等)形成的電晶體,可適合用於一些高速、高電壓、與高功率應用。GaN電晶體逐漸被運用在射頻(RF)通訊與雷達的科技領域中。例如在RF通訊中,GaN電晶體可用於基地台處的杜赫放大器中,以放大資料訊號而用於基地台所涵蓋的細胞元內的無線廣播。
1 圖示一種杜赫放大器100的設置。杜赫放大器可包含設置在並聯電路分支上的主放大器(main amplifier)132與峰化放大器(peaking amplifier)138。輸入RF訊號被由90度耦合器110分割,90度耦合器110提供相位衰減訊號至主放大器並提供旋轉90度(通常為延遲90度)的衰減訊號至峰化放大器。在放大之後,使用包含90度旋轉補償的阻抗反相器150,以將兩個訊號再結合為經結合放大的輸出RF訊號。輸出阻抗匹配元件160可連接至結合節點,以將杜赫放大器的輸出阻抗匹配至負載(未圖示)的阻抗。
在杜赫放大器中,可在主放大器與峰化放大器之前放置阻抗匹配部件122、124。這些匹配部件可用於將來自90度耦合器110的傳輸線阻抗匹配至兩個放大器的輸入阻抗,使得來自放大器的訊號反射被減少或實質上消除。可在主放大器與峰化放大器的輸出處放置額外的阻抗匹配部件142、144,以將阻抗匹配至阻抗反相器150的輸入(設計值可為50歐姆)以及結合節點155。阻抗匹配部件142、144可包含電阻性、電容性、及(或)電感性的電路元件。
發明人已認知並理解到,在阻抗匹配部件142、144放置在主放大器132與峰化放大器138的輸出以及阻抗反相器150與結合節點155之間時,杜赫放大器100的頻寬性能可付出代價。在這些位置處,阻抗匹配部件142、144在兩個放大器之間加入電性路徑長度,使得阻抗反相器150不可能僅利用90度旋轉就能補償90度耦合器引入的相位旋轉q 。相對的,阻抗反相器150可需要以90度的奇數整數倍的相位旋轉來操作,如下式:
Figure 02_image001
方程式 1 其中n為整數值1或更大。
為了調查杜赫放大器100由於阻抗匹配元件142、144所付出的頻寬性能代價,使用低功率電路模型200執行高頻模擬,如 2 繪製。低功率電路模型代表峰化放大器關閉時的情形。發明人已認知並理解到,在峰化放大器關閉時,杜赫放大器中主放大器132的輸出與結合節點155之間可發生大量的阻抗失配。因此,低功率作業可限制杜赫放大器的額定RF部分頻寬(例如對於所有訊號位準的保證頻寬)。在低功率電路模型200中,主放大器132呈現為第一電流源Im ,而峰化放大器138呈現為第二電流源Ip (不輸出電流)。阻抗反相器150被模型化為傳輸線,具有電阻Ro 與可調式相位旋轉,在中心作業頻率(對於此模擬為2 GHz)下可調式相位旋轉可設為90度的奇數倍。負載阻抗為Ro /2。為了模擬,將峰化放大器關閉時的阻抗給定為20Ro
可使用諸如可從美國加州Santa Rosa的Keysight Technologies, Inc.取得的Advanced Design System(ADS)的軟體工具,實施本文所說明的模擬電路與電路元件。其他適合的軟體工具,包含但不限於可從美國加州El Segundo的AWR Corporation取得的NI AWR Design Environment,以及可從美國紐約North Syracuse的Sonnet Software取得的Sonnet®軟件工具。
3 圖示杜赫放大器的模擬結果。圖示中繪製的頻率響應曲線310、320、330呈現從主放大器132(例如電流源Im )輸出處看進阻抗反相器150所估算的散射參數S(1,1)。頻率響應曲線呈現反射回主放大器的訊號量(例如電壓對駐波比),為對頻率的函數。為了估算放大器性能,可從頻率響應曲線上的-20 dB點之間的頻率差異,來判定放大器的RF部分頻寬(Dw/wo ),其中往回反射訊號的值低於輸入至阻抗反相器的訊號位準至少20 dB。
在阻抗匹配元件142、144被放置在阻抗反相器與結合節點之前時,阻抗反相器150的最小可允許相位旋轉可為270度,由於阻抗匹配元件所增加的額外電性路徑長度。一個這種情況(在方程式1中n=1,虛線)對應於 3 繪製的頻率響應曲線320。在此情況中,RF部分頻寬為約6%。若阻抗匹配元件142、144引入的增加電性路徑更大,則阻抗反相器150引入的最小可允許相位可提升至450度(n=2),這產生了頻率響應曲線310。對此情況,RF部分頻寬減少至約3%。用於RF通訊系統的習知杜赫放大器,通常操作在少於約4%的RF部分頻寬。另一方面,若阻抗反相器150引入的最小可允許相位為90度,則RF部分頻寬可提升至17%以上,如頻率響應曲線330指示。
發明人已認知並理解到,將阻抗匹配元件142、144從阻抗反相器150與結合節點155之前移除,允許將阻抗反相器引入的補償相位減少至90度或約90度。雖然補償相位角度較佳為90度,但在一些情況中耦合器110可施加85度與95度之間的相位差異而由阻抗反相器補償。
4 圖示一具體實施例的經修改杜赫放大器400,其中來自主放大器與峰化放大器的訊號先被結合,在結合之後再將阻抗匹配至負載。例如,可在放置在結合節點155之後的輸出阻抗匹配元件420中完成阻抗匹配。根據一些具體實施例,結合節點155可放置在峰化放大器138的輸出處。對阻抗反相器410的輸入,可直接連接至來自主放大器132的輸出。在主放大器的輸出與阻抗反相器410的輸入之間,可不存在例如將主放大器的阻抗匹配或旋轉至50歐姆的阻抗匹配元件。再者,峰化放大器138的輸出與結合節點155之間可不存在阻抗匹配元件。
5A 根據一些具體實施例,繪製阻抗反相器410與經修改杜赫放大器400的進一步細節。在一些情況中,阻抗反相器410包含延伸長度L的傳導帶線510(例如微帶線)。長度L可延伸於主放大器132與峰化放大器138的輸出汲極接合墊533之間(並沿著輸出汲極接合墊533延伸)。傳導帶線510可具有寬度W。根據一些具體實施例,傳導帶線的長度可位於約2毫米與約6毫米之間,並可被選擇以對帶線510提供所需的電感。根據一些具體實施例,傳導帶線的寬度可位於約100微米與約1000微米之間,並可被選擇以對帶線提供所需的電感。在一些實施例中,傳導帶線被形成在地導體或地平面上,且藉由介電材料(未圖示)與地導體或地平面隔開。在其他具體實施例中,傳導帶線可並非形成於地平面上,也並非形成為鄰接於地平面。相對的,在圖案化傳導帶線的PCB區域處可移除地平面。在實施在用於RF訊號的阻抗反相器中時,傳導帶線可包含為實質上全電感性的整合分佈式阻抗元件。在一些實施例中,帶線可包含一些寄生電容與電阻。
傳導帶線可被形成在基板505上,可在基板505上製造輸出阻抗匹配元件560。在一些具體實施例中,主放大器132與峰化放大器138可被裝設為鄰接於基板505,且在一或更多個個別的晶粒上。在一些實施例中,傳導帶線510可被整合到其上形成了主放大器132及(或)峰化放大器138的同一基板上。其上形成了傳導帶線的基板505,在一些具體實施例中可包含印刷電路板、在一些具體實施例中可包含能夠承載GHz頻率訊號的高頻層壓結構、陶瓷、或半導體。高頻層壓結構的範例,為可從美國亞利桑那州Chandler的Rogers Corporation獲得的層壓結構型號RO4003®。
根據一些具體實施例,阻抗反相器410可進一步包含一或更多個放大器輸出接合線520,在帶線的第一端附近(例如約位於帶線長度的首1/3之內)連接至主放大器的汲極接合墊533與傳導帶線510。此外,可存在一或更多個放大器輸出接合線520,連接在峰化放大器138的汲極接合墊與傳導帶線510的相對端之間。在一些具體實施例中輸出接合線520可沿著帶線實質均勻地間隔設置,但在其他具體實施例中可不均勻地設置。接合線之間的間隔可為約100微米與約800微米之間。接合線520可包含金或任何其他適合的導體,可具有20微米與80微米之間的直徑,並可拱接(arc)或延伸在基板505與基板503上至約50微米與約250微米之間的高度。輸出接合線520包含阻抗反相器410的集總電感性元件。在RF電子學的領域中,這種接合線被認知為「集總電感器」,具有主要由接合線的長度與直徑判定的電感值。可存在放大器輸入接合線540,連接至主放大器132與峰化放大器138的閘點接合墊531。
在其中傳導帶線510、主放大器及(或)峰化放大器被整合在同一基板上的一些具體實施例中,可不使用接合線520。相反的,可使用諸如微帶傳輸線或傳導跡線的傳導性互連結構,以將帶線510連接至主放大器與峰化放大器的輸出。在其中傳導帶線510、主放大器及(或)峰化放大器被整合在同一基板上的一些實施例中,一個或兩個汲極接合墊530可被傳導帶線510替換或歸入傳導帶線510,使得阻抗反相器的電感值實質上整體為分散式電感值。
根據 5A 繪製的具體實施例,杜赫放大器400的結合節點可被放置在峰化放大器138的汲極接合墊533處。在這種具體實施例中,阻抗反相器410可包含集總電感性元件(例如主放大器與峰化放大器輸出接合線520)以及包含傳導帶線510的整合分散式電感性元件。為了分析RF性能,阻抗反相器可包含集總電容性元件,集總電容性元件可包含主放大器132與峰化放大器138的汲極對源極電容以及汲極接合墊533的電容。阻抗反相器410可進一步包含傳導帶線510的小型分散式電容。
在一些實施例中,集總電容元件可被加入並聯至汲極接合墊533及(或)電感性帶線510,以將杜赫放大器的操作頻率調整至所需值,或可被加入串聯以延伸阻抗反相器的長度以用於較高功率的應用。在一些情況中,整合電感性帶線可包含兩個個別的帶線512,兩個帶線512由電容器580(例如表面安裝式電容器)串聯連接,電容器580位於兩個帶線512之間,如 5C 所示。這種雙帶線設置可延伸兩個放大器之間的總和距離,允許較大的放大器132、138以及較高的功率能力,而不會增加更多電感值。然而,所加入的電感值應被限制,以避免改變阻抗反相器中的相位旋轉超過95度。
在一些情況中,可存在輸出接合線550,輸出接合線550連接於杜赫放大器的峰化放大器138的汲極接合墊533與輸出阻抗匹配元件560之間。輸出阻抗匹配元件560可包含集總及(或)分散式阻抗元件,用於將來自峰化放大器138的汲極接合墊533的阻抗匹配至負載平面570處的負載阻抗(例如50歐姆)。
5B 圖示對於一些具體實施例的接近主放大器或峰化放大器的汲極接合墊533的結構的額外細節。主放大器132及(或)峰化放大器138可包含電晶體線性陣列,具有形成在半導體基板503上的閘極導體532、汲極接點534、與源極接點536。對於放大器的汲極接點534可連接至汲極接合墊533,在汲極接合墊533處可接合一或更多個輸出接合線520、550。在一些實施例中,電晶體的主動區域可包含氮化鎵,如前述,可期望將氮化鎵用於高功率、高頻率的RF訊號放大。本文中的詞語「氮化鎵」,是指氮化鎵(GaN)及其任何合金,例如氮化鋁鎵(Alx Ga 1-x N)、氮化銦鎵(Iny Ga 1-y N)、氮化鋁銦鎵(Alx Iny Ga 1-x-y N)、氮化鎵砷磷(GaAsx Py N 1-x-y )、氮化鋁銦鎵砷磷氮化物(Alx Iny Ga 1-x-y Asa Pb N 1-a-b )等等。在一些情況中,可由其他半導體材料形成電晶體,諸如砷化鎵、碳化矽、矽鍺、矽、磷化銦等等,且本發明並不限於基於氮化鎵的放大器。
以阻抗反相器中的傳導帶線510作為電感性阻抗元件的益處,在於傳導帶線510可更輕易地允許杜赫放大器400的功率的可縮放性,相較於僅使用集總電感性元件。例如,杜赫放大器的功率處理能力,可由主放大器132與峰化放大器138中的電晶體尺寸判定。可藉由在主放大器與峰化放大器中提升沿著線性電晶體陣列的電晶體數量(閘極導體、汲極接點、與源極接點),來提升杜赫放大器中的功率。然而,提升陣列的電晶體數量與長度,可需要兩個放大器之間的額外放大器輸出接合線520,以及傳導帶線510上的對應位置,並可需要提升帶線長度。
增加放大器輸出接合線520並提升帶線長度,正常來說將提升阻抗反相器410的電感值。發明人已認知並理解到,這種電感值的提升,可由降低傳導帶線510的電感值來抵銷。可藉由提升帶線寬度W,來降低帶線510的電感值。藉由選擇帶線的長度與寬度,可將帶線510的分散式電感值調諧至所需的值。根據一些具體實施例,帶線的分散式電感值的總和,可在約250 picoHenries與約1.5 nanoHenries之間。
對於在一些情況中的功率縮放,藉由提升帶線510的寬度W及(或)降低帶線510的長度L,可降低帶線510的電感值。相反的,可藉由降低帶線的寬度W及(或)提升帶線510的長度L,來提升帶線的電感值。這種改變亦將影響帶線的任何電感值與電阻值。傳導帶線510包含用於阻抗反相器410的可調諧式阻抗元件,可在圖案化製造階段調整可調諧式阻抗元件以用於所需的應用。因此,杜赫放大器400的功率可被縮放,同時保持杜赫放大器400的操作頻率與頻寬性能。在使用純集總元件阻抗反相器時(其中主放大器132的汲極接合墊533直接接線接合至峰化放大器138的汲極接合墊),將不可能達成這種可縮放性。
加入長度至電晶體陣列,亦將加入電性路徑長度至阻抗反相器410。因此,在如 5A 所繪製的設置中,對於總和允許電性路徑長度將有限制,且因此限制了杜赫放大器可處理的功率。實質上,電性路徑長度可被提升,直到相位旋轉到達約90度,雖然在耦合器110提供高於90度的相位旋轉的一些情況中,可能存在較高的值(例如上至95度)。因為對於實體路徑長度的相位旋轉將取決於頻率,較低頻率的裝置可允許放大器電晶體陣列長度延伸較多,且因此能處理高功率。初始計算指示如 5A 所示般配置的杜赫放大器,應能夠將在約500 MHz與約6 GHz之間的頻率範圍中的RF訊號,在500 MHz下放大至約5瓦與約100瓦之間的功率位準,且在6 GHz下放大至約5瓦與約35瓦之間的功率位準。在一些實施例中,額定輸出功率位準在500 MHz下可高至約20瓦與約100瓦之間,且在6 GHz下可高至約20瓦與約35瓦之間。
在替代性具體實施例中,杜赫放大器400的功率能力可加倍。再次參照 5A ,第二主放大器132可放置在傳導帶線與所圖示說明之第一主放大器132相對的一側。輸出阻抗匹配元件560可被旋轉90度,且被裝設在傳導帶線510末端旁靠近峰化放大器138處。第二峰化放大器138可放置在傳導帶線與所圖示說明的第一峰化放大器138相對的一側上。來自額外的主放大器與峰化放大器的汲極接合墊,可被接線接合至傳導帶線。額外的接合線可被以一些角度從輸出阻抗匹配元件560連接至峰化放大器138的汲極接合墊。
執行了對於設置如 4 所示的杜赫放大器400的數個電路模擬, 6 圖示模擬的一些結果。在第一模擬中,使用集總等效模型來模型化阻抗反相器410:單一集總電感器以及多個並聯電容器,設置為連接在主放大器132與峰化放大器138之間的pi型網路。電容器可被並聯連接於電感器的任一側。電感器的值為1.04 nH。兩個電容器的值為1.99 pF,這代表汲極對源極電容值(~ 1.6 pF)與汲極接合墊電容值(~ 0.39 pF)的總和。電路設置類似於 2 圖示的設置,但阻抗反相器150係由集總pi型網路替換,且峰化電流源Ip 由20Ro電阻替換。Ro 的值為22.9歐姆。執行此第一模擬,以分析杜赫放大器400的可行性,其中在阻抗匹配之前先執行結合。
在一些具體實施例中,杜赫放大器的操作頻率wo 與帶線510的電感Ls 的值,部分受限於放大器設計。例如,一放大器設計可具有汲極對源極電容Cds ,且對於操作電壓Vds 被額定在最大汲極對源極電流Imax 。可使放大器傳輸最大功率的電阻值Ro ,可大約由下式判定。
Figure 02_image003
(方程式 2 ) 其中Vk 為放大器的膝節電壓。一旦Ro 估算出,則期望使並聯電容Csh 的導納(主要由Cds 判定,雖然可包含汲極墊電容與任何加入的電容)與阻抗反相器的電感Lc 的阻抗(由接合線520與帶線510判定)匹配對應的Ro 的導納與阻抗值,這得出:
Figure 02_image005
(方程式 3 )
Figure 02_image007
(方程式 4 ) 因為Cds 主要係由放大器設計判定並可為主導電容(dominant capacitance),方程式 3 大致限制了放大器的操作頻率,雖然可藉由加入額外的並聯電容將操作頻率下調。根據一些具體實施例,在選定操作頻率時,傳導帶線可經設計以根據方程式 4 提供電感。
6 繪製以集總元件阻抗反相器進行的第一模擬的頻率響應曲線610(點曲線)。圖表呈現看進阻抗反相器(例如看進第一電容性並聯的pi型網路)的散射參數S(1,1)。響應顯示約400 MHz的頻寬,定中心於約3.5 GHz的操作頻率。此頻寬大於11%並代表顯著提升的在RF頻率下的習知杜赫放大器的相較頻寬性能(通常小於4%)。
在第二模擬中,集總電感器被由分散式電感器替換,分散式電感器更精確地模型化 5A 繪製的整合傳導帶線510。對於此模擬,使用電磁(EM)場模擬工具來執行在由傳導帶線510執行的不同頻率下的電磁波的模型化。在EM模擬中,傳導帶線被模型化為具有對應於接合線520的六個輸入埠。輸入埠寬50 µm,且三個輸入埠每一者的末端彼此間隔開50 µm節距。傳導帶線的長度為3.7 mm,且寬度為300 µm。傳導帶線被模型化為由銅形成(厚17.5 µm)在高頻層壓結構上,高頻層壓結構的介電常數為3.55且損耗正切為0.002。隔開傳導帶線與地平面的層壓結構厚度為305 µm。對於EM模擬,使用在4 GHz下每波長具有50個細胞元的網格。對於帶線510的EM模擬的結果,被使用在阻抗反相器的電路模擬中,其中相同的集總電容值(1.99 pF)被使用且被設置在pi型網路中。電路設置或者相同於用以產生頻率響應曲線610的電路設置。此第二模擬的結果被繪製為頻率響應曲線620(點曲線),指示在阻抗反相器中使用分散式電感性元件在RF部分頻寬中加入最少的減少量,相較於純集總元件阻抗反相器。因此,電感性帶線510致能功率縮放性,同時實質上維持操作頻率與RF部分頻寬性能。
執行了額外的EM模擬,以更精確地呈現主放大器132與峰化放大器138的輸出接合墊533,並執行電路模擬以呈現連接至接合墊533的接合線520。對於EM模擬,量測的接合墊533約1.8 mm乘以約85微米。接合線被呈現為具有25微米直徑、5x107 Siemens導電率、延伸在約500微米的間隙上並上升至放大器晶粒上方約150微米的最大高度。將EM模擬結果使用在對於杜赫放大器400的電路模型中,並未明顯改變頻率響應曲線620。
在實際裝置中,阻抗反相器410輸出處的阻抗,可需要被匹配至負載的阻抗(例如50歐姆)。為了進一步估算杜赫放大器400的性能,將輸出阻抗匹配元件560加入電路,並執行模擬以處理所加入的元件。對於這些模擬,使用 7 繪製的輸出阻抗匹配元件560,但所繪製的元件僅為輸出阻抗匹配元件的一個範例,且發明並不僅受限於此配置。可對其他實施例中的輸出阻抗匹配元件使用其他具體實施例。
根據一些具體實施例,輸出接合線550可被接合至輸出阻抗匹配元件560的輸出帶線710。並聯電容器712、714可連接在輸出帶線710與墊720之間,墊720被使用通孔與並聯導體730連接至下層接地導體。輸出電容器718可連接在輸出帶線710與輸出接合墊750之間。對於模擬,輸出接合墊750可被由50歐姆電阻性通孔並聯至地,以模擬負載。輸出帶線710的長度與寬度、並聯電容器712、714的值、以及輸出電容器718的值,可被選定以將來自結合節點的阻抗匹配至負載平面570處的阻抗。
包含如 7 設置的輸出阻抗匹配元件560的放大器性能模擬的結果,繪製於 6 中為頻率響應曲線630。對於此模擬,結合節點處的阻抗(約11.45歐姆)被匹配至約50歐姆的負載阻抗。在EM模擬中,帶線710量測為長度約1.4 mm且寬度約350微米,且或者使用了與傳導帶線510所使用的相同的電磁性質。並聯電容器712、714被模型化為每一者具有電容值0.75 pF的表面安裝裝置(SMD)。並聯電容器與傳導通孔730的結合每一者的電阻值為0.15歐姆且電感值為0.3 nH。輸出電容器718也被模型化為電容值為6.8 pF的SMD,此SMD具有結合電阻值0.15歐姆與電感值0.3 nH。
包含輸出阻抗匹配元件560且亦包含輸出接合墊533的EM模擬的模擬結果,被繪製於 6 的頻率響應曲線中。對於所圖示說明的阻抗匹配元件,在約3.5 GHz的操作頻率下,放大器的RF部分頻寬減少至約200 MHz或約6%。即使在此減少之下,經修改的杜赫放大器的RF部分頻寬幾乎為習知杜赫放大器的頻寬的兩倍。此模擬的結果指示,若輸出阻抗匹配並未良好完成或具有窄的RF部分頻寬,則裝置的總和頻寬可受限於輸出阻抗匹配元件560。
為了回復較廣的頻寬,可使用雙區輸出阻抗匹配元件800,如 8 所示。雙區阻抗匹配元件可包含加入的電感性帶線850,電感性帶線850連接至輸出接合墊750與電容性並聯結構814。帶線710的尺寸可被重新設計,以對第一區提供所需的電感值。
一些具體實施例可包含包含電感性帶線840的電晶體偏壓部件,電感性帶線840連接至DC偏壓埠830,在DC偏壓埠830可施加用於偏壓放大器132、138中的電晶體的汲極的電壓。並聯電容器816可連接至偏壓埠830。在安裝於裝置中時,可將額外的電容器裝設在板的外部,在此板上阻抗匹配元件800被形成並設置為並聯於並聯電容器816。外部電容器的值可為2微法拉與50微法拉之間。
對雙區阻抗匹配元件執行了進一步的模擬,其中電容值如下:C1 = C2 = 0.7 pF、C3 = 1.2 pF、且C4 = 6.8 pF。在3.5 GHz中心(或載波)頻率附近的RF頻率範圍內,雙區阻抗匹配元件800提供改良的阻抗匹配,相較於 7 繪製的單區。因此,這移除了相關聯於單區阻抗匹配元件560的頻寬瓶頸,並回復了阻抗反相器可用的RF部分頻寬。模擬顯示所產生的RF部分頻寬回復至約18%。
在一些實施例中,阻抗反相器與負載之間可包含額外的阻抗匹配區。不論包含一區或更多區,輸出阻抗匹配元件較佳地轉換阻抗反相器410輸出處的阻抗,以在載波頻率處(在前述範例中為3.5 GHz,但可使用其他載波頻率)感興趣的頻寬上(例如80 MHz、100 MHz、200 MHz、400 MHz、或任何所需的在此範圍中的RF部分頻寬),匹配(或大致匹配)負載平面570處的阻抗。
亦思及了用於操作使用前述設備的杜赫放大器的方法。在一些實施例中,用於操作杜赫放大器400的方法可包含以下步驟:將所接收訊號分成第一訊號與第二訊號,第二訊號具有相對於第一訊號的第一相位;以主放大器132放大第一訊號;以及以峰化放大器138放大第二訊號。方法具體實施例可進一步包含:將主放大器的輸出直接提供至阻抗反相器410的輸入,其中阻抗反相器包含整合分散式電感器;以及由阻抗反相器引入第二相位以補償第一相位。在一些實施例中,用於操作杜赫放大器的方法可進一步包含:將來自阻抗反相器410的輸出與來自峰化放大器138的輸出結合,以產生結合輸出;以及提供結合輸出至阻抗匹配元件560,阻抗匹配元件560將輸出阻抗匹配至負載的阻抗。負載阻抗的值可為50歐姆或約50歐姆。在一些實施例中,負載阻抗可為約25歐姆與約100歐姆之間的一值。杜赫放大器400的作業可進一步包含:提供結合輸出以由蜂巢式基地台傳輸。
結論
用詞「約」與「大約」,在一些具體實施例中可用於表示目標尺寸的正負20%,在一些具體實施例中可用於表示目標尺寸的正負10%,在一些具體實施例中可用於表示目標尺寸的正負5%,且在一些具體實施例中可用於表示目標尺寸的正負2%。用詞「約」與「大約」,可包含目標尺寸。
本文所說明的科技,可被實施為方法,已說明了此方法的至少一些步驟。作為方法部分所執行的步驟,可由任何適合的方式排序。因此,可建置其中以不同於所描述的順序執行步驟的具體實施例,其可包括同時執行某些動作,即使在說明性具體實施例中被描述為循序動作。此外,在一些具體實施例中方法可包含比所說明的步驟更多的步驟,且在其他具體實施例中可包含比所說明的步驟更少的步驟。
在已說明了發明的至少一個說明性具體實施例之後,在本發明所屬技術領域中具有通常知識者將輕易思及各種變異、修改與改良。此種變異、修改與改良意為在本發明的精神與範圍之內。因此,前述說明目的僅為示例而不為限制。本發明僅受限於下列申請專利範圍所定義之範圍及其均等範圍。
100‧‧‧杜赫放大器110‧‧‧90度耦合器122‧‧‧阻抗匹配部件124‧‧‧阻抗匹配部件132‧‧‧主放大器138‧‧‧峰化放大器142‧‧‧阻抗匹配部件144‧‧‧阻抗匹配部件150‧‧‧阻抗反相器155‧‧‧結合節點160‧‧‧輸出阻抗匹配元件200‧‧‧低功率電路模型310‧‧‧頻率響應曲線320‧‧‧頻率響應曲線330‧‧‧頻率響應曲線410‧‧‧阻抗反相器420‧‧‧輸出阻抗匹配元件503‧‧‧基板505‧‧‧基板510‧‧‧傳導帶線512‧‧‧帶線520‧‧‧接合線530‧‧‧汲極接合墊531‧‧‧閘點接合墊532‧‧‧閘極導體533‧‧‧汲極接合墊534‧‧‧汲極接點536‧‧‧源極接點540‧‧‧輸入接合線550‧‧‧接合線560‧‧‧輸出阻抗匹配元件570‧‧‧負載平面580‧‧‧電容器610‧‧‧頻率響應曲線620‧‧‧頻率響應曲線630‧‧‧頻率響應曲線710‧‧‧帶線712‧‧‧並聯電容器714‧‧‧並聯電容器718‧‧‧輸出電容器720‧‧‧墊730‧‧‧並聯導體750‧‧‧輸出接合墊
熟習技藝者將瞭解到,在此所說明的圖式,目的僅為示例說明。應瞭解到,在一些實例中,具體實施例的各種態樣可被誇大(或放大)圖示,以協助瞭解具體實施例。圖式並非必需按比例繪製,而是著重在圖示說明教示內容的原理上。在圖式中,各種圖式中類似的元件符號一般而言代表類似的特徵、功能上類似的元件及(或)結構上類似的元件。對於相關於微型製造電路的圖式,可僅圖示一個裝置及(或)電路以簡化圖式。實際上,可在基板的大面積上或整體基板上並行製造大量的裝置或電路。此外,所繪製的裝置或電路可被整合入較大的電路內。
下面的實施方式中,在參照圖式時,可使用如「頂」、「底」、「上」、「下」、「垂直」、「水平」等等的空間性參照。此種參照係用於教示目的,且因此並非意圖作為對於所實施裝置的絕對性的參照。所實施的裝置可被以任何適合的方式空間性地定向,這些定向可不同於圖式中顯示的定向。圖式並非意圖由任何方式限制本教示內容的範圍。
1 繪製杜赫放大器(Doherty Amplifier)的第一設置;
2 繪製杜赫放大器的等效電路;
3 圖示根據一些具體實施例的對於不同杜赫放大器設計的不同的頻率響應曲線與RF部分頻寬;
4 圖示根據一些具體實施例的經修改杜赫放大器,其中在阻抗被匹配至負載之前,來自主放大器與峰化放大器的訊號被結合;
5A 繪製根據一些具體實施例的包含集總與整合分散式電感的阻抗反相器的元件;
5B 繪製根據一些具體實施例的功率放大器的元件;
5C 繪製根據一些具體實施例的包含集總與整合分散式電感與集總電容的阻抗反相器的元件;
6 指示不同的杜赫放大器設計的頻寬特性;
7 繪製根據一些具體實施例的在經修改杜赫放大器輸出處的阻抗匹配元件;以及
8 繪製根據一些具體實施例的在經修改杜赫放大器輸出處的雙區阻抗匹配元件。
連同圖式來閱讀下面的實施方式,將可更顯然明瞭所圖示說明之具體實施例的特徵與優點。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
132‧‧‧主放大器
138‧‧‧峰化放大器
410‧‧‧阻抗反相器
505‧‧‧基板
510‧‧‧傳導帶線
520‧‧‧接合線
531‧‧‧閘點接合墊
533‧‧‧汲極接合墊
540‧‧‧輸入接合線
550‧‧‧輸出接合線
560‧‧‧輸出阻抗匹配元件
570‧‧‧負載平面

Claims (22)

  1. 一種杜赫放大器,包含:一RF輸入;一主放大器,該主放大器連接至該RF輸入;一峰化放大器,該峰化放大器連接至該RF輸入,該峰化放大器包含一結合節點,在該結合節點處來自該主放大器的一輸出與來自該峰化放大器的一輸出結合,該結合節點位於該峰化放大器的一汲極接合墊處;以及一阻抗反相器,該阻抗反相器包含一整合分散式電感器,該整合分散式電感器連接在該主放大器的一輸出與該結合節點之間。
  2. 如請求項1所述之杜赫放大器,其中該阻抗反相器包含一或更多個接合線,該一或更多個接合線連接在該阻抗反相器與該主放大器的該輸出之間。
  3. 如請求項2所述之杜赫放大器,其中該阻抗反相器進一步包含一或更多個附加接合線,該一或更多個附加接合線連接在該阻抗反相器與該峰化放大器的該結合節點之間。
  4. 如請求項1所述之杜赫放大器,其中在該主放大器與該阻抗反相器之間,不提供將把該主放大器的一輸出阻抗匹配至50歐姆的阻抗匹配元件。
  5. 如請求項1所述之杜赫放大器,其中該阻抗反相器將該主放大器放大的一第一訊號的一相位,旋轉不超過95度,相對於由該峰化放大器放大的一第二訊號的一相位。
  6. 如請求項1至5之任一項所述之杜赫放大器,其中該整合分散式電感器包含整合在一基板上的一傳導帶線,該傳導帶線具有一寬度與一長度。
  7. 如請求項6所述之杜赫放大器,其中該阻抗反相器進一步包含至少一個電容性元件。
  8. 如請求項6所述之杜赫放大器,其中該阻抗反相器進一步包含接合線或傳導性互連結構,該等接合線或傳導性互連結構連接在該傳導帶線與該主放大器及該峰化放大器的輸出之間。
  9. 如請求項6所述之杜赫放大器,其中該寬度位於約100微米與約1000微米之間。
  10. 如請求項6所述之杜赫放大器,其中該長度位於約2毫米與約6毫米之間。
  11. 如請求項6所述之杜赫放大器,其中該主放大器與峰化放大器被整合在與該傳導帶線相同的一基板上。
  12. 如請求項6所述之杜赫放大器,其中該基板包含一高頻層壓結構。
  13. 如請求項6所述之杜赫放大器,其中該基板包含一半導體。
  14. 如請求項1所述之杜赫放大器,其中該主放大器與峰化放大器之一者或兩者包含氮化鎵電晶體。
  15. 如請求項1至5或14之任一項所述之杜赫放大器,其中該阻抗反相器實質上由以下構成:一傳導帶線,該傳導帶線整合在一基板上並具有一寬度與一長度;接合線,該等接合線連接在該傳導帶線與該主放大器及該峰化放大器的輸出之間;以及該主放大器與該峰化放大器的汲極對源極電容。
  16. 如請求項1至5或14之任一項所述之杜赫放大器,該杜赫放大器進一步包含一阻抗匹配元件,該阻抗匹配元件連接在該結合節點與該杜赫放大器的一輸出埠之間。
  17. 如請求項16所述之杜赫放大器,其中該阻抗匹配元件對該杜赫放大器提供約50歐姆的一輸出阻抗。
  18. 如請求項16所述之杜赫放大器,其中該阻抗匹配元件包含一雙區阻抗匹配元件。
  19. 如請求項16所述之杜赫放大器,其中對於 該放大器的一RF部分頻寬,係位於約6%與約18%之間。
  20. 如請求項19所述之杜赫放大器,其中對於該杜赫放大器的一操作頻率,係位於約500MHz與約6GHz之間。
  21. 如請求項1至5或14之任一項所述之杜赫放大器,其中來自該結合節點的一額定輸出功率位準,係位於約20瓦與約100瓦之間。
  22. 如請求項1至5或14之任一項所述之杜赫放大器,該杜赫放大器連接至一蜂巢式發送器。
TW107103832A 2017-02-02 2018-02-02 90度集總與分散式杜赫阻抗反相器 TWI772360B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
WOPCT/IB2017/000727 2017-02-02
PCT/IB2017/000727 WO2018142178A1 (en) 2017-02-02 2017-02-02 90-degree lumped and distributed doherty impedance inverter
??PCT/IB2017/000727 2017-02-02

Publications (2)

Publication Number Publication Date
TW201836262A TW201836262A (zh) 2018-10-01
TWI772360B true TWI772360B (zh) 2022-08-01

Family

ID=59153224

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107103832A TWI772360B (zh) 2017-02-02 2018-02-02 90度集總與分散式杜赫阻抗反相器

Country Status (3)

Country Link
EP (1) EP3577757A1 (zh)
TW (1) TWI772360B (zh)
WO (1) WO2018142178A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11233483B2 (en) 2017-02-02 2022-01-25 Macom Technology Solutions Holdings, Inc. 90-degree lumped and distributed Doherty impedance inverter
WO2018197919A1 (en) 2017-04-24 2018-11-01 Macom Technology Solutions Holdings, Inc. Inverted doherty power amplifier with large rf and instantaneous bandwidths
US11245363B2 (en) 2017-04-24 2022-02-08 Macom Technology Solutions Holdings, Inc. Efficiency, symmetrical Doherty power amplifier
CN111480292B (zh) 2017-10-02 2024-03-29 镁可微波技术有限公司 空载调制高效功率放大器
CN112640298A (zh) 2018-10-05 2021-04-09 镁可微波技术有限公司 低负载调制功率放大器
JP2020170944A (ja) * 2019-04-03 2020-10-15 株式会社村田製作所 高周波モジュール及び通信装置
WO2021137951A1 (en) 2019-12-30 2021-07-08 Macom Technology Solutions Holdings, Inc. Low-load-modulation broadband amplifier

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078976B2 (en) * 2002-08-19 2006-07-18 Koninklijke Philips Electronics N.V. High power Doherty amplifier
US20120025915A1 (en) * 2010-07-27 2012-02-02 Sumitomo Electric Device Innovations, Inc. Doherty amplifier
US20150002227A1 (en) * 2013-06-28 2015-01-01 Cree, Inc. Mmic power amplifier
TW201611514A (zh) * 2014-08-13 2016-03-16 西凱渥資訊處理科技公司 具有可調阻抗終端電路之杜赫功率放大器組合器
US20160336903A1 (en) * 2015-05-15 2016-11-17 Freescale Semiconductor, Inc. Phase correction in a doherty power amplifier

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8228123B2 (en) * 2007-08-29 2012-07-24 Nxp B.V. Integrated Doherty amplifier
US8576010B2 (en) * 2010-10-19 2013-11-05 Samsung Electronics Co., Ltd. Apparatus and method for a switched capacitor architecture for multi-band doherty power amplifiers
EP2806557B1 (en) * 2013-05-23 2017-03-08 Ampleon Netherlands B.V. Doherty amplifier

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7078976B2 (en) * 2002-08-19 2006-07-18 Koninklijke Philips Electronics N.V. High power Doherty amplifier
US20120025915A1 (en) * 2010-07-27 2012-02-02 Sumitomo Electric Device Innovations, Inc. Doherty amplifier
US20150002227A1 (en) * 2013-06-28 2015-01-01 Cree, Inc. Mmic power amplifier
TW201611514A (zh) * 2014-08-13 2016-03-16 西凱渥資訊處理科技公司 具有可調阻抗終端電路之杜赫功率放大器組合器
US20160336903A1 (en) * 2015-05-15 2016-11-17 Freescale Semiconductor, Inc. Phase correction in a doherty power amplifier

Also Published As

Publication number Publication date
EP3577757A1 (en) 2019-12-11
TW201836262A (zh) 2018-10-01
WO2018142178A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US11722101B2 (en) 90-degree lumped and distributed Doherty impedance inverter
TWI772360B (zh) 90度集總與分散式杜赫阻抗反相器
TWI772359B (zh) 90度集總與分散式杜赫阻抗反相器
US11108362B2 (en) Multiple-path RF amplifiers with angularly offset signal path directions, and methods of manufacture thereof
EP3337037B1 (en) Doherty amplifiers and amplifier modules with shunt inductance circuits that affect transmission line length between carrier and peaking amplifier outputs
TW201834386A (zh) 用於結合杜赫放大器訊號與90度集總與分散式阻抗反相器的方法
EP3331161B1 (en) Amplifier die with elongated side pads, and amplifier modules that incorporate such amplifier die
US11811366B2 (en) Symmetrical Doherty power amplifier having improved efficiency
EP2458730B1 (en) Radiofrequency amplifier
US10594266B2 (en) Multiple-path amplifier with series component along inverter between amplifier outputs
US10381984B2 (en) Amplifiers and amplifier modules with shunt inductance circuits that include high-Q capacitors
CN110581690A (zh) 具有短截线电路的放大器和放大器模块
JP2010177904A (ja) 高周波増幅器
US11581241B2 (en) Circuit modules with front-side interposer terminals and through-module thermal dissipation structures
Bahl 0.7–2.7-GHz 12-W Power-amplifier MMIC developed using MLP technology