TWI772317B - 膜過濾方法及膜過濾系統 - Google Patents
膜過濾方法及膜過濾系統 Download PDFInfo
- Publication number
- TWI772317B TWI772317B TW106125792A TW106125792A TWI772317B TW I772317 B TWI772317 B TW I772317B TW 106125792 A TW106125792 A TW 106125792A TW 106125792 A TW106125792 A TW 106125792A TW I772317 B TWI772317 B TW I772317B
- Authority
- TW
- Taiwan
- Prior art keywords
- treatment
- membrane
- membrane filtration
- treated water
- water
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
- B01D61/16—Feed pretreatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/34—Treatment of water, waste water, or sewage with mechanical oscillations
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
- C02F1/56—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/76—Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Physical Water Treatments (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Water Treatment By Sorption (AREA)
- External Artificial Organs (AREA)
Abstract
本實施形態之一態樣係一種膜過濾方法,係在經於被處理水中添加有機系凝聚劑並進行凝聚沉澱處理或凝聚加壓浮除處理而得的處理水中,添加無機系凝聚劑,並進行超濾膜處理及精密過濾膜處理中之至少一種膜過濾處理。
Description
本發明關於膜過濾方法及膜過濾系統的技術。
以往已知有於被處理水中添加有機系凝聚劑,並進行凝聚沉澱處理、加壓浮除處理的排放水處理(例如參照專利文獻1)。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本特開平11-57313號公報
對於藉由使用有機系凝聚劑之凝聚沉澱處理、加壓浮除處理而獲得之處理水,進一步使用超濾膜、精密過濾膜的話,會有膜的表面受到污染,出現細孔堵塞的現象(結垢(fouling))的情況。因此,本揭示之目的在於提供:對於藉由使
用有機系凝聚劑之凝聚沉澱處理、加壓浮除處理而獲得之處理水而言,可抑制超濾膜、精密過濾膜之結垢,並可穩定地運轉的膜過濾方法及膜過濾系統。
(1)本實施形態之一態樣係一種膜過濾方法,係在經於被處理水中添加有機系凝聚劑並進行凝聚沉澱處理或凝聚加壓浮除處理而得的處理水中,添加無機系凝聚劑,並進行超濾膜處理及精密過濾膜處理中之至少一種膜過濾處理。
(2)如上述(1)之膜過濾方法中,宜在該膜過濾處理時,對於該處理水實施剪切力的賦予及氧化劑的添加中之至少一者,使該處理水中之有機系凝聚劑之平均分子量成為該膜過濾處理中所使用的膜的截留分子量以下較佳。
(3)如上述(1)或(2)之膜過濾方法中,該無機系凝聚劑的添加量,宜相對於該被處理水中之有機系凝聚劑之濃度(mg/L)為0.5倍~75倍之範圍較佳。
(4)如上述(1)~(3)中任一項之膜過濾方法中,宜因應在該經凝聚沉澱處理或凝聚加壓浮除處理之處理水中利用LC-OCD檢測到之高分子有機物的濃度,而控制該無機凝聚劑的添加量較佳。
(5)如上述(1)~(4)中任一項之膜過濾方法中,宜對於該經膜過濾處理之處理水,實施活性碳處理及逆滲透膜處理中之至少一種後處理較佳。
(6)如上述(1)~(5)中任一項之膜過濾方法中,宜在該膜過濾處理時,以使該處理水之藍氏指數(Langelier's index)(LSI)成為未達0的方式,調整該處理水的pH較佳。
(7)本實施形態之一態樣係一種膜過濾系統,具備以下手段:無機凝聚劑添加手段,在經於被處理水中添加有機系凝聚劑並進行凝聚沉澱處理或凝聚加壓浮除處理而得的處理水中,添加無機系凝聚劑;以及膜過濾處理手段,具有超濾膜及精密過濾膜中之至少一者,並對該已添加無機系凝聚劑之處理水進行膜過濾處理。
(8)如上述(7)之膜過濾系統中,宜具備在該膜過濾處理時對於該處理水賦予剪切力之剪切力賦予手段及添加氧化劑之氧化劑添加手段中之至少一者;藉由該剪切力的賦予及該氧化劑的添加中之至少一者,使該處理水中之有機系凝聚劑之平均分子量成為該膜過濾處理中所使用的膜的截留分子量以下較佳。
(9)如上述(7)或(8)之膜過濾系統中,該無機系凝聚劑的添加量,宜相對於該被處理水中之有機系凝聚劑之濃度(mg/L)為0.5倍~75倍之範圍較佳。
(10)如上述(7)~(9)中任一項之膜過濾系統中,宜具有對於該經膜過濾處理之處理水實施後處理的後處理手段;該後處理手段具備活性碳處理手段及逆滲透膜處理手段中之至少一者較佳。
(11)如上述(7)~(10)中任一項之膜過濾系統中,宜具備在該膜過濾處理時以使該處理水之藍氏指數(LSI)成為未達0的方式,調整該處理水之pH的pH調整手段較佳。
根據本實施形態之膜過濾方法及膜過濾系統,對於藉由使用有機系凝聚劑之凝聚沉澱處理、加壓浮除處理而獲得之處理水而言,可抑制超濾膜、精密過濾膜的結垢,並能穩定地運轉。
1~6:處理系統
10:第1凝聚反應槽
12:有機系凝聚劑添加管線
14:凝聚沉澱槽
15:無機系凝聚劑添加裝置
16:無機系凝聚劑添加管線
18:第2凝聚反應槽
20:膜過濾裝置
22:被處理水配管
24a~24c:連接配管
26、26a、26b:處理水配管
28a、28b:攪拌機
29:氧化劑添加裝置
30:氧化劑添加管線
32:活性碳裝置
34:逆滲透膜裝置
36:通透水配管
38:濃縮水配管
40:pH調整劑添加裝置
42:pH調整劑添加配管
44:水質檢測裝置
46:控制部
48:藍氏指數算出部
50:pH調整劑量控制部
[圖1]係表示本實施形態之處理系統之構成之一例的示意圖。
[圖2]係表示其他實施形態之處理系統之構成之一例的示意圖。
[圖3]係表示其他實施形態之處理系統之構成之一例的示意圖。
[圖4]係表示其他實施形態之處理系統之構成之一例的示意圖。
[圖5]係表示其他實施形態之處理系統之構成之一例的示意圖。
[圖6]係表示參考例中之處理系統之構成的示意圖。
[圖7]係表示實施例1~2、及比較例1~2中之膜過濾裝置的過濾阻力(1/m)相對於過濾量(m3/m2)之結果的圖。
[圖8]係表示實施例3及比較例3中之膜過濾裝置的過濾阻力(1/m)相對於過濾量(m3/m2)之結果的圖。
[圖9]係表示實施例4及比較例4中之膜過濾裝置的過濾阻力(1/m)相對於過濾量(m3/m2)之結果的圖。
以下,針對本發明之實施形態進行說明。此外,本實施形態係實施本發明之一例,本發明並不限定於本實施形態。
圖1係表示本實施形態之處理系統之構成之一例的示意圖。圖1所示之處理系統1具備:凝聚沉澱系統、膜過濾系統。凝聚沉澱系統具備:第1凝聚反應槽10、有機系凝聚劑添加管線12、凝聚沉澱槽14。膜過濾系統具備:作為無機系凝聚劑添加手段之一例的無機系凝聚劑添加裝置15及無機系凝聚劑添加管線16、第2凝聚反應槽18、作為膜過濾處理手段之一例的膜過濾裝置20。
第1凝聚反應槽10的入口與被處理水配管22連接。又,連接配管24a的一端與第1凝聚反應槽10的出口連接,另一端與凝聚沉澱槽14的入口連接,連接配管24b的一端與凝聚沉澱槽14的出口連接,另一端與第2凝聚反應槽18的入口連接,連接配管24c的一端與第2凝聚反應槽18的出口連接,另一端與膜過濾裝置20的入口連接。又,膜過濾裝置20的出口與處理水配管26連接。有機系凝聚劑添加管線12與第1凝聚反應槽10連接。又,無機系凝聚劑添加管線16的一端與無機系凝聚劑添加裝置15連接,另一端與第2凝聚反應槽18連接。
就無機系凝聚劑添加裝置15而言,例如由容納無機系凝聚劑之儲槽、將無機系凝聚劑吐出之泵浦、閥等構成。供給自無機系凝聚劑添加裝置15之無機系凝聚劑,通過無機系凝聚劑添加管線16而供給至第2凝聚反應槽18。本實施形態中使用之無機系凝聚劑,例如可列舉:聚氯化鋁(PAC)、硫酸鋁、氯化鐵(III)、硫酸鐵(III)、氯化鋁等。
本實施形態中使用之有機系凝聚劑,可列舉:聚丙烯醯胺系凝聚劑、聚磺酸系凝聚劑、聚丙烯酸系凝聚劑、聚丙烯酸酯系凝聚劑、多元胺系凝聚劑、聚甲基丙烯酸凝聚劑等高分子凝聚劑、界面活性劑等低分子凝聚劑(凝結劑)等。就有機系凝聚劑而言,例如自未顯示於圖中之有機系凝聚劑添加裝置等,通過有機系凝聚劑添加管線12供給至第1凝聚反應槽10。
膜過濾裝置20只要具備具有超濾膜之UF膜裝置、具有精密過濾膜之MF膜裝置中之至少一種裝置即可。UF膜裝置、MF膜裝置,例如由至少1個在可密閉之容器中收納有超濾膜、精密過濾膜的模組構成。超濾膜、精密過濾膜的形狀並無特別限制,例如可列舉中空纖維膜、管狀膜、平膜、螺旋膜等。膜過濾裝置20的通水方式可採用內壓型、外壓型等任何通水方式,並可採用橫流過濾(crossflow filtration)、端點過濾(dead-end filtration)等任何過濾方法。
超濾膜、精密過濾膜的材質,例如可列舉:聚偏二氟乙烯(PVDF)、聚氯乙烯(PVC)、聚醚碸(PES)、纖維素乙酸酯(CA)等有機膜、陶瓷製的無機膜等。
超濾膜之截留分子量,例如為5,000~360,000之範圍,宜為10,000~360,000之範圍較佳。超濾膜之細孔徑,例如為0.01~0.1之範圍,宜為0.01~0.03之範圍較佳。精密過濾膜之細孔徑,例如為0.1~0.5之範圍,宜為0.1~0.2之範圍較佳。
於處理系統1進行處理之被處理水並無特別限制,例如為包含懸浮物質、鈣等積垢成分等雜質的原水等,具體而言,為工業排放水(例如,鍍敷系排放水等)、
自來水、地下水(例如,井水、泉水、伏流水等)、地表水(例如,河川水、湖沼水等)等。
對本實施形態之處理系統1的動作之一例進行說明。
被處理水通過被處理水配管22供給至第1凝聚反應槽10,同時有機系凝聚劑自有機系凝聚劑添加管線12供給至第1凝聚反應槽10。在第1凝聚反應槽10內,利用攪拌機28a將被處理水與有機系凝聚劑予以攪拌,使被處理水中之懸浮物質等雜質絮凝化。之後,包含有機系凝聚劑之被處理水通過連接配管24a供給至凝聚沉澱槽14,已絮凝化之懸浮物質等雜質則以污泥的形式沉澱。
上清液即經凝聚沉澱處理之處理水,通過連接配管24b供給至第2凝聚反應槽18。又,無機系凝聚劑自無機系凝聚劑添加裝置15,通過無機系凝聚劑添加管線16供給至第2凝聚反應槽18。在第2凝聚反應槽18內,利用攪拌機28b將處理水與無機系凝聚劑予以攪拌,使殘存於處理水中之有機系凝聚劑與無機系凝聚劑接觸。已添加無機系凝聚劑之處理水,通過連接配管24c導入至膜過濾裝置20。處理水中的雜質被膜過濾裝置20內之超濾膜、精密過濾膜捕捉,已去除雜質之處理水自處理水配管26排出。獲得之處理水,例如可用作食品加工工廠、化學工廠、半導體工廠、機械工廠等之洗滌水等。
使用藉由膜過濾處理獲得之處理水等對膜過濾裝置20進行定期逆洗,堆積於膜表面的雜質與逆洗排放水一起排出系統外,或輸送至凝聚沉澱槽14。就逆洗排放水而言,考量可將逆洗排放水中之懸浮物質進行沉降分離的觀點、水回
收率(係處理水量/供給水量,若排出系統外的話,水回收率降低。)的觀點等,宜輸送至凝聚沉澱槽14較佳。
通常將包含有機系凝聚劑之處理水利用超濾膜、精密過濾膜等進行膜過濾處理的話,有機系凝聚劑會堆積在膜表面,容易導致膜的結垢。但,據考慮在本實施形態中,藉由使無機系凝聚劑接觸有機系凝聚劑,無機系凝聚劑附著在有機系凝聚劑上,有機系凝聚劑變成不易附著於膜表面的形態,或能以逆洗等輕易地從膜表面剝離的形態。故,藉由添加無機系凝聚劑並進行膜過濾處理,相較於不添加無機系凝聚劑而進行膜過濾處理的情形,膜的結垢受到抑制,可穩定地運轉。吾人等亦考慮在使用有機系凝聚劑之凝聚沉澱處理中,將無機系凝聚劑與有機系凝聚劑一起添加並進行凝聚沉澱,但即使是在如此之體系中,仍然有一定量的有機系凝聚劑(例如沒有無機系凝聚劑附著之有機系凝聚劑)殘存於藉由凝聚沉澱處理獲得之處理水中,故相較於如本實施形態般在經凝聚沉澱處理之處理水中添加無機系凝聚劑並進行膜過濾處理的方法,難以充分抑制膜的結垢,且難以進行穩定的處理。
就無機系凝聚劑的添加量而言,只要是可抑制膜的結垢的添加量即可,並無特別限制,例如宜相對於被處理水中之有機系凝聚劑之濃度(mg/L)為0.5倍~75倍之範圍較佳,考量經濟性的觀點,為0.5倍~2.5倍之範圍更佳。據認為無機系凝聚劑的添加量未達0.5倍的話,無法抑制膜的結垢,超過75倍的話,由於源自無機凝聚劑之絮凝體所致之過濾阻力變大。故,滿足上述範圍的情形,相較於不滿足上述範圍的情形,可有效地抑制膜的結垢。
本實施形態中,對藉由使用有機系凝聚劑之凝聚沉澱處理而獲得之處理水進行了例示說明,藉由使用有機系凝聚劑之凝聚加壓浮除處理而獲得之處理水亦可獲得同樣的效果。凝聚加壓浮除處理,例如為以往公知的加壓浮除處理等(例如參照日本專利5239653)。
考量提高有機系凝聚劑與無機系凝聚劑之接觸率的觀點,宜設置凝聚反應槽(圖1所示之第2凝聚反應槽18)較理想,考量設置空間的減小等的觀點,亦可如圖2所示之處理系統2般,不設置凝聚反應槽,而於連接配管24b設置無機系凝聚劑添加管線16,以管線注入無機系凝聚劑的方式構成。
圖3係表示其他實施形態之處理系統之構成之一例的示意圖。在圖3所示之處理系統3中,關於與圖1所示之處理系統1同樣的構成,賦以相同的符號並省略其說明。圖3所示之處理系統3,係以在進行膜過濾處理時於經凝聚沉澱處理(或凝聚加壓浮除處理)之處理水中添加氧化劑的方式構成。具體而言,圖3所示之處理系統3具備:作為氧化劑添加手段之氧化劑添加裝置29及氧化劑添加管線30,氧化劑自氧化劑添加裝置29通過氧化劑添加管線30添加至第2凝聚反應槽18。此外,氧化劑的添加亦可為圖2所示之管線注入。
就有機系凝聚劑而言,例如使用聚丙烯醯胺系凝聚劑等高分子凝聚劑時,該有機系凝聚劑之平均分子量(重量平均分子量或數量平均分子量),通常比起後段之超濾膜、精密過濾膜之截留分子量更大。故,具有比起膜的截留分子量更大之分子量的有機系凝聚劑殘存在處理水中的話,會對膜的結垢造成影響。此外,就截留分子量而言,係由使具有已知分子量之標準物質穿透時相當於阻擋率90%之分子量來確定,例如對於截留分子量5,000之超濾膜、精密過濾膜,通
入包含分子量超過5,000之高分子凝聚劑的處理水的話,高分子凝聚劑的90%以上會被捕捉。
因此,圖3所示之處理系統3中,藉由在膜過濾處理時,於處理水中添加氧化劑,而將有機系凝聚劑的分子鏈切斷,使有機系凝聚劑之分子量成為超濾膜、精密過濾膜之截留分子量以下,較佳為比起截留分子量更小。其結果,有機系凝聚劑的一部分不會被膜捕捉,而是與處理水一起穿過膜,故相較於僅添加無機系凝聚劑的情形,能進一步抑制膜的結垢。
作為氧化劑,例如可列舉:次氯酸鈉、次氯酸鉀等次氯酸鹼金屬鹽;次氯酸鈣、次氯酸鋇等次氯酸鹼土類金屬鹽;亞氯酸鋰、亞氯酸鈉、亞氯酸鉀等亞氯酸鹼金屬鹽;亞氯酸鈣、亞氯酸鋇等亞氯酸鹼土類金屬鹽;亞氯酸鎳等其他亞氯酸金屬鹽;氯酸銨;氯酸鈉等氯酸鹼金屬鹽;氯酸鈣等氯酸鹼土類金屬鹽等。
就氧化劑的添加量而言,只要是能使有機系凝聚劑之分子量成為膜的截留分子量以下的量即可,並無特別限制,例如宜相對於凝聚沉澱前之被處理水中之有機系凝聚劑之濃度(mg/L)為0.5倍~75倍較佳,為0.5倍~2.5更佳。
又,宜因應在經凝聚沉澱處理或凝聚加壓浮除處理之處理水中利用LC-OCD檢測到之高分子有機物的濃度,來控制無機凝聚劑的添加量較佳。就LC-OCD而言,係將有機物以分子量分級,並按滯留時間表示高分子有機物、腐植質、腐植分解產物、低分子有機酸、低分子有機物等之峰部,可定量各自的濃度。
吾人等認為高分子有機物有助於膜的閉塞,故可藉由從前述經凝聚沉澱處理或凝聚加壓浮除處理之處理水中之有機物,詳細地知道高分子有機物的濃度,而將所添加之無機凝聚劑的添加量決定為更加適當的量。且可根據利用LC-OCD檢測到之高分子有機物之峰部的高低,增減無機凝聚劑的添加量,因而能降低運行成本。
減小有機系凝聚劑之分子量的方法,除可列舉氧化劑的添加以外,亦可列舉賦予處理水剪切力的方法。就剪切力賦予手段而言,例如藉由使用設置於第2凝聚反應槽18之攪拌機28b攪拌處理水並賦予剪切力,而將有機系凝聚劑的分子鏈切斷,使有機系凝聚劑之分子量成為超濾膜、精密過濾膜之截留分子量以下。例如可藉由調整攪拌速度、攪拌時間等,而使有機系凝聚劑之分子量成為超濾膜、精密過濾膜之截留分子量以下。為了減小有機系凝聚劑之分子量而設定之攪拌速度,例如為200rpm~1,000rpm之範圍,宜為700rpm~1,000rpm之範圍較佳。又,為了減小有機系凝聚劑之分子量而設定之攪拌時間,例如為5分鐘~1小時之範圍,宜為30分鐘~1小時之範圍較佳。
圖4係表示其他實施形態之處理系統之構成之一例的示意圖。在圖4之處理系統4中,關於與圖1所示之處理系統1同樣的構成,賦以相同的符號並省略其說明。圖4所示之處理系統4,在膜過濾裝置20之後段具備:填充有活性碳之活性碳裝置32、及具有逆滲透膜之逆滲透膜裝置34。處理水配管26a的一端與膜過濾裝置20的出口連接,另一端與活性碳裝置32的入口連接。又,處理水配管26b的一端與活性碳裝置32的出口連接,另一端與逆滲透膜裝置34的入口連接。逆滲透膜裝置34的通透水出口與通透水配管36連接,濃縮水出口與濃縮水配管38連接。
本實施形態中使用之逆滲透膜,例如為能將處理水中之離子成分去除的膜,亦包括奈米過濾膜(NF膜)。逆滲透膜的形狀並無特別限制,例如可列舉:中空纖維膜、管狀膜、平膜、螺旋膜等。逆滲透膜的材質,例如可列舉:聚醯胺系、哌醯胺系、乙酸纖維素系等。
圖4所示之處理系統4中,自膜過濾裝置20排出的處理水通過處理水配管26a供給至活性碳裝置32。藉由活性碳裝置32將處理水中的雜質去除後,自處理水配管26b供給至逆滲透膜裝置34,分離為通透水與濃縮水。藉由逆滲透膜裝置34獲得之通透水(處理水)自通透水配管36排出。獲得之通透水不僅可用作食品加工工廠、化學工廠、半導體工廠、機械工廠等之洗滌水,亦可用作例如稀釋水、飲料水、中水、空調用水、純水用原水、清洗機(rinser)原水、蒸氣用水等。藉由逆滲透膜裝置34獲得之濃縮水自濃縮水配管38排出,並儲存在例如未顯示於圖中之儲存槽。
圖4所示之處理系統4具備活性碳裝置32及逆滲透膜裝置34之兩者,但只要是因應例如最終獲得之處理水之目標水質等,選擇僅設置活性碳裝置32、僅設置逆滲透膜裝置34、或設置活性碳裝置32及逆滲透膜裝置34之兩者即可。此外,圖中雖省略了說明,但亦可在圖2、圖3所示之處理系統中設置活性碳裝置32、逆滲透膜裝置34。
圖5係表示其他實施形態之處理系統之構成之一例的示意圖。在圖5之處理系統5中,關於與圖1所示之處理系統1同樣的構成,賦以相同的符號並省略其說明。圖5所示之處理系統5具備作為pH調整手段之一例的pH調整系統。pH調整系
統具備:pH調整劑添加裝置40、pH調整劑添加配管42、水質檢測裝置44、控制部46。
pH調整劑添加裝置40,例如由容納pH調整劑之儲槽、將pH調整劑吐出之泵浦、閥等構成。pH調整劑添加配管42的一端與pH調整劑添加裝置40連接,另一端與第2凝聚反應槽18連接。
水質檢測裝置44具有:pH值感測器、溫度感測器、電導率感測器、鈣硬度感測器、總鹼度感測器,對第2凝聚反應槽18內的處理水的pH值、水溫、電導率、鈣硬度、總鹼度進行檢測。
控制部46具備處理器及記憶體,並具有作為功能區塊之藍氏指數算出部48、pH調整劑量控制部50。於藍氏指數算出部48輸入利用水質檢測裝置44檢測到之各檢測值。pH調整劑量控制部50,根據藉由藍氏指數算出部48算出之藍氏指數,算出pH調整劑的添加量,並控制利用pH調整劑添加裝置40所為之pH調整劑的添加量。
控制部46的處理器,例如依照儲存在記憶體之處理程式,執行算出藍氏指數之處理、控制pH調整劑之添加量之處理等各處理。以下針對控制部46的動作之一例進行說明。
藍氏指數算出部48,根據利用水質檢測裝置44檢測到之檢測值,算出處理水的藍氏指數。藍氏指數(LSI)通常依照下式(1)求出。
LSI=pH-pHs (1)
式(1)中,pH為處理水的pH值。又,pHs為碳酸鈣在處理水中既不溶解亦不析出之平衡狀態時的理論上的pH值,係依照下式(2)求出。
pHs=9.3+A值+B值-C值-D值 (2)
式(2)中,A值係由蒸發殘留物濃度確定出之修正值。蒸發殘留物濃度與電導率相關,故可利用預定的換算式由電導率求出蒸發殘留物濃度。B值係由水溫確定出的修正值。C值係由鈣硬度確定出的修正值。D值係由總鹼度確定出的修正值。可利用關係式或參照數值表而由水質檢測裝置44之檢測值求出A~D值。
藍氏指數係用於評價水系中之積垢發生傾向的一般指標,為正的值時,絕對值越大表示碳酸鈣越容易析出,又,為負的值時,絕對值越大表示碳酸鈣越不易析出。又,藍氏指數為0時,處於碳酸鈣既不析出亦不溶解之平衡狀態。由此,處理水之藍氏指數未達0時,處於不易在超濾膜、精密過濾膜之膜面上生成因碳酸鈣所致之積垢的狀態,反之,超過0時,容易在膜面上生成因碳酸鈣所致之積垢。
因此,當算出之處理水之藍氏指數為0以上時,pH調整劑量控制部50以使處理水之藍氏指數成為未達0的方式,設定pH調整劑的添加量。另外,pH調整劑添加裝置40,根據設定之pH調整劑的添加量,於處理水中添加pH調整劑,使處理水之藍氏指數成為未達0。由式(1)可知,處理水之藍氏指數隨著處理水的pH降低而變小,隨著pH上升而變大。故,可藉由調整處理水的pH而控制處理水之藍氏指數。
本實施形態之處理系統5,作為例如對含有氟之排放水進行處理的系統係有效。在對於含有氟之排放水(被處理水)進行的凝聚沉澱處理或加壓浮除處理中,為了回收氟,有時將鈣劑與有機系凝聚劑一起添加至該被處理水中。在如此之藉由凝聚沉澱處理或加壓浮除處理而獲得之處理水中,有時會含有鈣,處理水之藍氏指數容易成為0以上。其結果,會有在超濾膜、精密過濾膜之表面生成積垢的情況。但,本實施形態中,如前述般以使處理水之藍氏指數成為未達0的方式(成為負值的方式),調整處理水的pH,因而可抑制積垢的生成。故,可進一步抑制膜的結垢,並可更加穩定地運轉。此外,圖中雖省略了說明,但亦可在圖2~圖4所示之處理系統中設置pH調整系統。
(參考例)
圖6係表示參考例中之處理系統之構成的示意圖。圖6所示之處理系統6中,關於與圖1所示之處理系統1同樣的構成,賦以相同的符號並省略其說明。圖6所示之處理系統6中,以在進行膜過濾處理時未於經凝聚沉澱處理(或凝聚加壓浮除處理)之處理水中添加無機系凝聚劑,且將氧化劑自氧化劑添加裝置29通過氧化劑添加管線30添加至第2凝聚反應槽18內的方式構成。此外,氧化劑的添加亦可為圖2所示之管線注入。
圖6所示之處理系統6中,藉由在膜過濾處理時,於處理水中添加氧化劑,而將有機系凝聚劑的分子鏈切斷,使有機系凝聚劑之分子量成為超濾膜、精密過濾膜之截留分子量以下,較佳為比起截留分子量更小。其結果,有機系凝聚劑的一部分不會被膜捕捉,而是與處理水一起穿過膜,故相較於僅添加無機系凝聚劑的情形,能進一步抑制膜的結垢。
就氧化劑的添加量而言,只要是能使有機系凝聚劑之分子量成為膜的截留分子量以下的量即可,並無特別限制,例如宜相對於被處理水中之有機系凝聚劑之濃度(mg/L)為2.5倍~100倍較佳,為20倍~50倍更佳。
減小有機系凝聚劑之分子量的方法,除可列舉氧化劑的添加以外,亦可列舉賦予處理水剪切力的方法。就剪切力賦予手段而言,例如藉由使用設置於第2凝聚反應槽18之攪拌機28b攪拌處理水並賦予剪切力,而將有機系凝聚劑的分子鏈切斷,使有機系凝聚劑之分子量成為超濾膜、精密過濾膜之截留分子量以下。為了減小有機系凝聚劑之分子量而設定之攪拌速度,例如為200rpm~1,000rpm之範圍,宜為700rpm~1,000rpm之範圍較佳。又,為了減小有機系凝聚劑之分子量而設定之攪拌時間,例如為5分鐘~1小時之範圍,宜為30分鐘~1小時之範圍較佳。此外,圖中雖省略了說明,但亦可將圖6所示之處理系統適用於圖2~5所示之處理系統。
[實施例]
以下,舉實施例及比較例對本發明進行更加具體且詳細地說明,但本發明並不限定於以下的實施例。
(實施例1)
使用圖1所示之處理系統,對表1所示之水質的鍍敷系排放水進行處理。
實施例1之膜過濾裝置使用UF膜裝置。UF膜裝置詳細如下所示。
尺寸:外徑230mm×高度2400mm
過濾面積(膜面積):77m2
超濾膜:中空纖維膜、PVDF製、公稱孔徑0.01μm(公稱截留分子量360,000Da)
過濾方式:外壓式端點過濾
處理流量:9.6m3/h
於表1所示之水質的鍍敷系排放水中,添加作為有機系凝聚劑之聚丙烯醯胺系聚合物1.0ppm,並進行凝聚沉澱處理,然後將上清水供給至第2凝聚反應槽。在第2凝聚反應槽中添加作為無機系凝聚劑之氯化鐵75ppm,然後於膜過濾裝置(UF膜裝置)通水,進行膜過濾處理。
(實施例2)
將無機系凝聚劑(氯化鐵)由75ppm變更為10ppm,除此以外,進行與實施例1同樣的處理。
(比較例1)
未添加無機系凝聚劑(氯化鐵),除此以外,進行與實施例1同樣的處理。
(比較例2)
將有機系凝聚劑(聚丙烯醯胺系聚合物)由1.0ppm變更為0.5ppm,且未添加無機系凝聚劑(氯化鐵),除此以外,進行與實施例1同樣的處理。
由實施例1~2、及比較例1~2之膜過濾處理獲得之處理水的水質結果顯示於表2。又,實施例1~2、及比較例1~2中之膜過濾裝置的過濾阻力(1/m)相對於過濾量(m3/m2)之結果顯示於圖7。
如圖7所示,在藉由使用有機系凝聚劑之凝聚沉澱處理而獲得之處理水中添加無機系凝聚劑並實施膜過濾處理的實施例1及2,相較於未在上述處理水中添加無機系凝聚劑而直接實施膜過濾處理的比較例1及2,即使過濾量增加亦可抑制過濾阻力的上升。過濾阻力相對於過濾量之增加的上升率,表示由於膜的結垢所致之過濾性能的降低。故,表示實施例1及2之處理方法可抑制膜的結垢,且可穩定地運轉。此外,鑒於有機系凝聚劑的添加量比起比較例2更多的比較例1,其過濾阻力的上升率比起比較例2更高,可以說殘存於處理水之有機系凝聚劑有助於膜的結垢。另一方面,實施例1及2雖添加了與比較例1同量之有機系凝聚劑,但即使過濾量增加,過濾阻力亦幾乎未上升,膜的結垢受到抑制。據認為其原因為:藉由添加無機系凝聚劑,處理水中之有機系凝聚劑變成不易附著於膜表面的形態。
又,如表2所示,實施例1及2中處理水的TOC減小,確認殘留的有機系凝聚劑已被處理。
(實施例3)
將有機系凝聚劑(聚丙烯醯胺系聚合物)由1.0ppm變更為5.0ppm,無機系凝聚劑(氯化鐵)由75ppm變更為2.5ppm,除此以外,進行與實施例1同樣的處理。
(比較例3)
於表1所示之水質的鍍敷系排放水中,添加作為有機系凝聚劑之(聚丙烯醯胺系聚合物)5.0ppm,並添加作為無機系凝聚劑之氯化鐵1ppm,進行凝聚沉澱處理,然後將上清水直接通入至膜過濾裝置(前述UF膜裝置),進行膜過濾處理。
由實施例3及比較例3之膜過濾處理獲得之處理水的水質結果顯示於表3。
實施例3及比較例3中之膜過濾裝置的過濾阻力(1/m)相對於過濾量(m3/m2)之結果顯示於圖8。實施例3之過濾阻力的上升率與實施例1及2同樣。另一方面,比較例3之過濾阻力的上升率,相較於無機系凝聚劑之添加量相同的實施例3,為更高的結果,相較於未添加無機系凝聚劑的比較例1、2,為更低的結果。由該等結果可以說:為了抑制膜的結垢,需在藉由使用有機系凝聚劑之凝聚沉澱處理而獲得之處理水中添加無機系凝聚劑。
(實施例4)
將無機系凝聚劑由氯化鐵替換為聚氯化鋁(PAC),添加量由75ppm變更為50ppm,除此以外,進行與實施例1同樣的處理。
(比較例4)
不添加無機凝聚劑,且變更原水的取樣時間,除此以外,進行與實施例1同樣的處理。
實施例4及比較例4中之膜過濾裝置的過濾阻力(1/m)相對於過濾量(m3/m2)之結果顯示於圖9。使用PAC作為無機系凝聚劑之實施例4,與實施例1~3同樣,即使過濾量增加,過濾阻力亦幾乎未上升,膜的結垢受到抑制。另一方面,未添加無機凝聚劑之比較例4,過濾阻力隨著過濾量增加而上升。
(實施例5~10)
使用圖1所示之處理系統對模擬排放水進行處理。模擬排放水係使皂土10mg/L分散於自來水而得者。膜過濾裝置與實施例1同樣為UF膜裝置。
實施例5中,於上述模擬排放水添加作為有機系凝聚劑之聚丙烯酸系聚合物(奧璐佳瑙公司製,OX-304(陽離子系聚合物))1.0ppm,進行凝聚沉澱處理,然後將上清水供給至第2凝聚反應槽。於第2凝聚反應槽添加10ppm的作為無機系凝聚劑之PAC,然後於膜過濾裝置(UF膜裝置)通水,進行膜過濾處理。
實施例6中,將有機系凝聚劑由聚丙烯酸系聚合物(奧璐佳瑙公司製,OX-304(陽離子系聚合物))替換為丙烯醯胺系聚合物(奧璐佳瑙公司製,AP-1(陰離子系聚合物)),除此以外,與實施例5同樣進行膜過濾處理。
實施例7中,將有機系凝聚劑由聚丙烯酸系聚合物(奧璐佳瑙公司製,OX-304(陽離子系聚合物))替換為聚丙烯醯胺系聚合物(奧璐佳瑙公司製,ON-1H(非離子系聚合物)),除此以外,與實施例5同樣進行膜過濾處理。
實施例8中,將無機凝聚劑由PAC替換為氯化鐵(FeCl3),除此以外,與實施例5同樣進行膜過濾處理。
實施例9中,將無機凝聚劑由PAC替換為氯化鐵(FeCl3),除此以外,與實施例6同樣進行膜過濾處理。
實施例10中,將無機凝聚劑由PAC替換為氯化鐵(FeCl3),除此以外,與實施例7同樣進行膜過濾處理。
(比較例5~7)
比較例5中,未添加無機凝聚劑,除此以外,與實施例5同樣進行膜過濾處理。
比較例6中,未添加無機凝聚劑,除此以外,與實施例6同樣進行膜過濾處理。
比較例7中,未添加無機凝聚劑,除此以外,與實施例7同樣進行膜過濾處理。
在實施例5~10及比較例5~7中,測量從於膜過濾裝置通水到獲得200ml之濾液的時間(過濾時間)。其結果顯示於表4。過濾時間越長表示過濾阻力的上升越快。
添加了有機系凝聚劑及無機系凝聚劑之實施例5~10,相較於僅添加了有機系凝聚劑之比較例5~7,過濾時間皆縮短。亦即,可以說實施例5~10比起比較例5~7,過濾阻力的上升受到抑制。
Claims (9)
- 一種膜過濾方法,其特徵為:在經於被處理水中添加有機系凝聚劑並進行凝聚沉澱處理或凝聚加壓浮除處理而得的處理水中,添加無機系凝聚劑,並進行超濾膜處理及精密過濾膜處理中之至少一種膜過濾處理;且在該膜過濾處理時,對於該處理水實施剪切力的賦予及氧化劑的添加中之至少一者,使該處理水中之有機系凝聚劑之平均分子量成為該膜過濾處理中所使用的膜的截留分子量以下。
- 如申請專利範圍第1項之膜過濾方法,其中,該無機系凝聚劑的添加量,相對於該被處理水中之有機系凝聚劑之濃度(mg/L)為0.5倍~75倍之範圍。
- 如申請專利範圍第1或2項之膜過濾方法,其中,因應在該經凝聚沉澱處理或凝聚加壓浮除處理之處理水中利用LC-OCD檢測到之高分子有機物的濃度,而控制該無機凝聚劑的添加量。
- 如申請專利範圍第1或2項之膜過濾方法,其中,對於該經膜過濾處理之處理水,實施活性碳處理及逆滲透膜處理中之至少一種後處理。
- 如申請專利範圍第1或2項之膜過濾方法,其中,在該膜過濾處理時,以使該處理水之藍氏指數(Langelier's index)(LSI)成為未達0的方式,調整該處理水的pH。
- 一種膜過濾系統,其特徵為具備以下手段: 無機凝聚劑添加手段,在經於被處理水中添加有機系凝聚劑並進行凝聚沉澱處理或凝聚加壓浮除處理而得的處理水中,添加無機系凝聚劑;膜過濾處理手段,具有超濾膜及精密過濾膜中之至少一者,並對該已添加無機系凝聚劑之處理水進行膜過濾處理;以及在該膜過濾處理時對於該處理水賦予剪切力之剪切力賦予手段及在該膜過濾處理時對於該處理水添加氧化劑之氧化劑添加手段中之至少一者;藉由該剪切力的賦予及該氧化劑的添加中之至少一者,使該處理水中之有機系凝聚劑之平均分子量成為該膜過濾處理中所使用的膜的截留分子量以下。
- 如申請專利範圍第6項之膜過濾系統,其中,該無機系凝聚劑的添加量,相對於該被處理水中之有機系凝聚劑之濃度(mg/L)為0.5倍~75倍之範圍。
- 如申請專利範圍第6或7項之膜過濾系統,具有對於該經膜過濾處理之處理水實施後處理的後處理手段;該後處理手段具備活性碳處理手段及逆滲透膜處理手段中之至少一者。
- 如申請專利範圍第6或7項之膜過濾系統,具備在該膜過濾處理時以使該處理水之藍氏指數(LSI)成為未達0的方式,調整該處理水之pH的pH調整手段。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-155442 | 2016-08-08 | ||
JP2016155442 | 2016-08-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201808819A TW201808819A (zh) | 2018-03-16 |
TWI772317B true TWI772317B (zh) | 2022-08-01 |
Family
ID=61162913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106125792A TWI772317B (zh) | 2016-08-08 | 2017-08-01 | 膜過濾方法及膜過濾系統 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6735830B2 (zh) |
CN (1) | CN109562962B (zh) |
SG (1) | SG11201900176UA (zh) |
TW (1) | TWI772317B (zh) |
WO (1) | WO2018030109A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021117542A1 (ja) * | 2019-12-12 | 2021-06-17 | パナソニックIpマネジメント株式会社 | 軟水化装置 |
JP7074156B2 (ja) | 2020-06-01 | 2022-05-24 | 栗田工業株式会社 | 水処理方法及び水処理装置 |
CN112661328B (zh) * | 2020-11-27 | 2022-11-22 | 杭州正和纳米科技有限公司 | 一种生产压滤水处理工艺 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1962493A (zh) * | 2005-11-08 | 2007-05-16 | 栗田工业株式会社 | 排水处理装置及排水处理方法 |
CN101405226A (zh) * | 2006-03-24 | 2009-04-08 | 大野绿水株式会社 | 水处理方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001120964A (ja) * | 1999-10-25 | 2001-05-08 | Ishikawajima Harima Heavy Ind Co Ltd | 膜フィルターの目詰まり防止方法及びその装置 |
JP2003260486A (ja) * | 2002-03-11 | 2003-09-16 | Nippon Steel Corp | 汚水処理方法 |
US20040065613A1 (en) * | 2002-10-02 | 2004-04-08 | Jason Cadera | Use of polymer as flocculation aid in membrane filtration |
JP2004351375A (ja) * | 2003-05-30 | 2004-12-16 | Ebara Corp | 排水の高速浮上分離方法及び装置 |
FR2891540B1 (fr) * | 2005-09-30 | 2007-12-28 | Otv Sa | Procede de traitement d'eaux comprenant une etape de decantation rapide suivie d'une etape de filtration directement sur membranes de micro ou d'ultra-filtration, et dispositif correspondant. |
JP2007245078A (ja) * | 2006-03-17 | 2007-09-27 | Kurita Water Ind Ltd | 水処理装置及び水処理方法 |
JP2011016100A (ja) * | 2009-07-10 | 2011-01-27 | Kobelco Eco-Solutions Co Ltd | 排水処理方法 |
FR2958927B1 (fr) * | 2010-04-20 | 2012-05-25 | Otv Sa | Procede de traitement d'eau par floculation lestee mettant en oeuvre un agent floculant d'origine naturelle |
JP2013063372A (ja) * | 2011-09-15 | 2013-04-11 | Toshiba Corp | 淡水化システム |
KR101153187B1 (ko) * | 2012-04-12 | 2012-07-02 | 블루그린링크(주) | 오수의 정화장치 및 정화방법 |
JP5874925B2 (ja) * | 2012-08-01 | 2016-03-02 | Jfeエンジニアリング株式会社 | 焼却プラント排水の処理方法および処理設備 |
JP2014210232A (ja) * | 2013-04-18 | 2014-11-13 | 山陽特殊製鋼株式会社 | カルシウム溶出粒子を含むアルカリ排水の処理方法 |
JP6421461B2 (ja) * | 2014-05-30 | 2018-11-14 | 栗田工業株式会社 | イオン交換装置供給水の評価方法及び運転管理方法 |
CN104071919B (zh) * | 2014-06-23 | 2017-02-15 | 江苏久吾高科技股份有限公司 | 油田含聚污水的处理方法 |
JP2016131937A (ja) * | 2015-01-20 | 2016-07-25 | 株式会社日立製作所 | 海水淡水化システム及び海水淡水化方法 |
JP2016144778A (ja) * | 2015-02-06 | 2016-08-12 | 栗田工業株式会社 | 水処理凝集剤および水処理方法 |
-
2017
- 2017-07-20 SG SG11201900176UA patent/SG11201900176UA/en unknown
- 2017-07-20 JP JP2018532907A patent/JP6735830B2/ja active Active
- 2017-07-20 CN CN201780046662.4A patent/CN109562962B/zh active Active
- 2017-07-20 WO PCT/JP2017/026324 patent/WO2018030109A1/ja active Application Filing
- 2017-08-01 TW TW106125792A patent/TWI772317B/zh active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1962493A (zh) * | 2005-11-08 | 2007-05-16 | 栗田工业株式会社 | 排水处理装置及排水处理方法 |
CN101405226A (zh) * | 2006-03-24 | 2009-04-08 | 大野绿水株式会社 | 水处理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN109562962B (zh) | 2021-10-22 |
WO2018030109A1 (ja) | 2018-02-15 |
JP6735830B2 (ja) | 2020-08-05 |
JPWO2018030109A1 (ja) | 2019-01-10 |
TW201808819A (zh) | 2018-03-16 |
SG11201900176UA (en) | 2019-02-27 |
CN109562962A (zh) | 2019-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105384316B (zh) | 一种电子工业含氟含氨氮废水的处理方法 | |
JP2007245078A (ja) | 水処理装置及び水処理方法 | |
TWI772317B (zh) | 膜過濾方法及膜過濾系統 | |
JP2012196614A (ja) | 排水処理方法および排水処理システム | |
US9255018B2 (en) | Cost-efficient treatment of fluoride waste | |
JP2011050843A (ja) | 被処理水の淡水化方法および淡水化システム | |
JP6550851B2 (ja) | 逆浸透膜を用いた水処理方法及び水処理装置 | |
JP6061024B2 (ja) | 重金属含有排水の処理方法及び処理装置 | |
JP5103747B2 (ja) | 水処理装置及び水処理方法 | |
TW201920002A (zh) | 水處理方法及水處理裝置 | |
JPWO2016111372A1 (ja) | 半透膜の阻止性能向上方法、半透膜、半透膜造水装置 | |
JP6662558B2 (ja) | 水処理方法および水処理装置 | |
TWI717743B (zh) | 膜洗淨裝置及膜洗淨方法 | |
JP6687056B2 (ja) | 水処理方法及び水処理装置 | |
JP2016187790A (ja) | 無機炭素含有水の処理方法及び装置 | |
TWI771476B (zh) | 含二氧化矽之水的處理裝置及處理方法 | |
JP5054289B2 (ja) | 膜分離装置の運転方法 | |
JP2017064639A (ja) | 汽力発電所排水の回収利用方法及び装置 | |
JP7224753B2 (ja) | 凝集膜ろ過方法および凝集膜ろ過装置 | |
JP2004267830A (ja) | 生物処理水含有水の処理方法 | |
JP2005246157A (ja) | 水処理方法および水処理装置 | |
JP2019188338A (ja) | 水処理方法及び水処理装置 | |
JP7354744B2 (ja) | 排水利用システム | |
JP2017189743A (ja) | 有機脱酸素剤及び懸濁物質を含有する排水の処理方法及び処理装置 | |
JP2022174372A (ja) | 水処理装置および水処理方法 |