TWI771782B - 用於穩定單元臨限電壓之系統及方法 - Google Patents

用於穩定單元臨限電壓之系統及方法 Download PDF

Info

Publication number
TWI771782B
TWI771782B TW109137561A TW109137561A TWI771782B TW I771782 B TWI771782 B TW I771782B TW 109137561 A TW109137561 A TW 109137561A TW 109137561 A TW109137561 A TW 109137561A TW I771782 B TWI771782 B TW I771782B
Authority
TW
Taiwan
Prior art keywords
memory device
memory
stabilization
pulses
logic circuit
Prior art date
Application number
TW109137561A
Other languages
English (en)
Other versions
TW202137212A (zh
Inventor
帕歐羅 阿瑪托
馬克 斯佛森
Original Assignee
美商美光科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商美光科技公司 filed Critical 美商美光科技公司
Publication of TW202137212A publication Critical patent/TW202137212A/zh
Application granted granted Critical
Publication of TWI771782B publication Critical patent/TWI771782B/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0023Address circuits or decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0073Write using bi-directional cell biasing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0078Write using current through the cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0083Write to perform initialising, forming process, electro forming or conditioning
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0069Writing or programming circuits or methods
    • G11C2013/0092Write characterized by the shape, e.g. form, length, amplitude of the write pulse
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/73Array where access device function, e.g. diode function, being merged with memorizing function of memory element

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

本發明係關於一種記憶體裝置,其包括:複數個記憶體單元,各記憶體單元可程式化為由該記憶體單元回應於一經施加電壓而展現之對應於一臨限電壓之一邏輯狀態;及一邏輯電路部分,其可操作地耦合至該複數個記憶體單元,其中該邏輯電路部分經組態以掃描該記憶體裝置之記憶體位址,且產生調穩(seasoning)脈衝以施加至該記憶體裝置之經定址頁面。亦揭示一種相關電子系統及相關方法。

Description

用於穩定單元臨限電壓之系統及方法
本發明係關於用於穩定單元臨限電壓之系統及方法,且更特定而言係關於用於在第一設定-重設循環期間穩定單元臨限電壓之系統及方法。
記憶體裝置包括經調適以可程式化邏輯狀態之形式儲存資料之複數個記憶體單元。例如,二進位記憶體單元可經程式化為兩種不同邏輯狀態,通常由一邏輯「1」(亦稱為「SET」狀態)或一邏輯「0」(亦稱為「RESET」狀態)表示。為了存取經儲存資料,一專用電路可讀取或感測記憶體裝置中之經儲存邏輯狀態。為了儲存資料,一專用電路可在記憶體裝置中寫入或程式化邏輯狀態。
記憶體裝置用於諸多電子系統中,諸如行動電話、個人數位助理、膝上型電腦、數位相機及類似物。非揮發性記憶體在電力被切斷時留存其等內容(即,記憶體單元能夠藉由維持其等經程式化邏輯狀態達延長時段來留存經儲存資料,即使在不存在一外部電源之情況下),從而使其等在記憶體裝置中成為用於儲存待在一系統電力循環之後擷取之資訊之良好選擇。若干種類之非揮發性記憶體裝置在此項技術中係已知的,其非窮舉性清單包括唯讀記憶體裝置、快閃記憶體裝置、鐵電隨機存取記憶體(RAM)裝置、磁性記憶體儲存裝置(諸如舉例而言硬碟機)、光學記憶體裝置(諸如舉例而言CD-ROM磁碟、DVD-ROM磁碟、藍光碟)、相變記憶體(PCM)裝置。
重要的是儘可能改良記憶體單元之臨限電壓之穩定性。存在諸多單元電壓穩定技術,其等涉及以一足夠級執行使該單元老化之一調穩程序。此程序需要使用與該裝置互動之一測試機。因此可期望具有用於在無需任何外部測試機之情況下穩定單元臨限電壓之成本有效、省時、高效的系統及方法。
在一實施例中,一種記憶體裝置包括:複數個記憶體單元,各記憶體單元可程式化為由該記憶體單元回應於一經施加電壓而展現之對應於一臨限電壓之一邏輯狀態;及一邏輯電路部分,其可操作地耦合至該複數個記憶體單元,其中該邏輯電路部分經組態以:掃描該記憶體裝置之記憶體位址;且產生調穩脈衝以施加至該記憶體裝置之經定址頁面以穩定該等記憶體單元之該臨限電壓。
在另一實施例中,一種電子系統包括:一主機裝置,其包含一處理器模組;一記憶體裝置,其可操作地耦合至該主機裝置;及該記憶體裝置之一管理單元,其中該記憶體裝置包括:複數個記憶體單元,各記憶體單元可程式化為由該記憶體單元回應於一經施加電壓而展現之對應於一臨限電壓之一邏輯狀態;及一邏輯電路部分,其可操作地耦合至該複數個記憶體單元,其中該邏輯電路部分經組態以:掃描該記憶體裝置之記憶體位址;且產生調穩脈衝以施加至該記憶體裝置之經定址頁面以穩定該等記憶體單元之該臨限電壓。
在另一實施例中,一種用於穩定一記憶體裝置中包含之複數個記憶體單元之臨限電壓之方法,各記憶體單元可程式化為由該記憶體單元回應於一經施加電壓而展現之對應於一臨限電壓之一邏輯狀態,該方法包括以下步驟:掃描該記憶體裝置之記憶體位址,其中該掃描由該記憶體裝置內部之一邏輯電路部分來執行;在該記憶體裝置之該邏輯電路部分內產生一調穩脈衝以施加至該記憶體裝置之經定址頁面;及將一調穩脈衝序列施加至該記憶體裝置之該等經定址頁面。
在另一實施例中,一種用於操作一記憶體裝置之方法包括以下步驟:以晶圓級執行一第一調穩程序;在組裝及接合該記憶體裝置之後以單元級執行一第二調穩程序;及在焊接該記憶體裝置之後以單元級執行一第三調穩程序,其中該等調穩程序之至少一者係根據用於穩定記憶體單元之臨限電壓之方法之實施例自主地執行。
參考彼等圖式,本文中將揭示用於單元臨限電壓之一改良式穩定之系統及方法。
當電力被切斷時,非揮發性記憶體留存其等內容,此使其等成為用於儲存待在一系統電力循環之後擷取之資訊之良好選擇。一快閃記憶體係一種類型之非揮發性記憶體,其可留存經儲存資料且藉由一非常快存取時間特性化。此外,其可以區塊擦除,而非一次一個位元組地擦除。記憶體之各可擦除區塊包括以列及行之一矩陣配置之複數個非揮發性記憶體單元。各單元經耦合至一存取線及/或一資料線。藉由操縱存取線及資料線上之電壓來程式化及擦除該等單元。
圖1繪示根據本發明之可穩定臨限電壓之一實例性記憶體單元100之一方塊圖。
在圖1中所繪示之實施例中,記憶體單元100包含在存取線104與106之間的一儲存材料102。存取線104、106將記憶體單元100與寫入至及讀取記憶體單元100之電路142電耦合。術語「耦合」可指代直接或間接實體連接、電連接及/或通信連接之元件,且在本文中可與術語「連接」互換地使用。實體耦合可包含直接接觸。電耦合包含允許組件之間的電流及/或發信之一介面或互連。通信耦合包含使組件能夠交換資料之連接,包含有線及無線連接。
在一項實施例中,儲存材料102包含展現記憶體效應之一自選擇材料。一自選擇材料係使一陣列中之一記憶體單元能夠在無需一單獨選擇器元件之情況下選擇之一材料。因此,圖1將儲存材料102繪示為一「選擇器/儲存材料」。若用於存取記憶體單元之電路可引起一材料處於多種狀態之一者(例如,經由一寫入操作)且隨後判定經程式化狀態(例如,經由一讀取操作),則該材料展現記憶體效應。用於存取記憶體單元(例如,經由讀取及寫入操作)之電路通常稱為「存取電路」且在下文參考存取電路143進一步論述。存取電路可藉由引起儲存材料102處於一特定狀態來將資訊儲存於記憶體單元100中。儲存材料102可包含例如硫族化物材料,諸如Te-Se合金、As-Se合金、Ge-Te合金、As-Se-Te合金、Ge-As-Se合金、Te-As-Ge合金、Si-Ge-As-Se合金、Si-Te-As-Ge合金或能夠用作一儲存元件及一選擇器兩者以能夠定址一特定記憶體單元且判定該記憶體單元之狀態之其他材料。因此,在一項實施例中,記憶體單元100係一自選擇記憶體單元,其包含充當用來選擇該記憶體單元之一選擇器元件及用來儲存一邏輯狀態(即,與該單元之一給定極性相關之一狀態)之一記憶體元件兩者之單個材料層。
在一項實施例中,儲存材料102係一相變材料。一相變材料可跨完全非晶狀態與完全結晶狀態之間的整個頻譜在一大體上非晶狀態與一大體上結晶狀態之間電切換。記憶體單元100可進一步包含在存取線104與106之間的一選擇裝置(未展示);該選擇裝置可串聯地耦合至儲存材料200。在另一實施例中,儲存材料102並非一相變材料。在其中儲存材料102並非一相變材料之一項實施例中,該儲存材料能夠在兩種或更多種穩定狀態之間切換而不改變相位。存取電路143能夠藉由施加具有一特定極性之一電壓以引起儲存材料102處於所要穩定狀態來程式化記憶體單元100。
在一項此實施例中,程式化記憶體單元100引起記憶體單元100「定限」或經歷一「臨限值事件」。當一記憶體單元定限時(例如,在一程式化電壓脈衝期間),該記憶體單元經歷一實體變化,該實體變化引起該記憶體單元回應於經施加一後續電壓(例如,具有一特定量值及極性之一讀取電壓)而展現一特定臨限電壓。程式化記憶體單元100因此可涉及施加一給定極性之一電壓以引發一程式化臨限值事件,此引起記憶體單元100在相同或不同極性之一後續讀取電壓下展現一特定臨限電壓。在一項此實施例中,儲存材料102係可藉由引發一臨限值事件而程式化之一自選擇材料(例如,一非相變硫屬化物材料或其他自選擇材料)。
如上文所提及,存取線104、106將記憶體單元100與電路142電耦合。存取線104、106可分別稱為位元線及字線。字線用於存取一記憶體陣列中之一特定字組且位元線用於存取該字組中之一特定位元。存取線104、106可由以下者組成:一或多種金屬,其包含:Al、Cu、Ni、Cr、Co、Ru、Rh、Pd、Ag、Pt、Au、Ir、Ta及W;導電金屬氮化物,其等包含TiN、TaN、WN及TaCN;導電金屬矽化物,其等包含矽化鉭、矽化鎢、矽化鎳、矽化鈷及矽化鈦;導電金屬矽化物氮化物,其等包含TiSiN及WSiN;導電金屬碳化物氮化物,其等包含TiCN及WCN;或任何其他合適導電材料。
在一項實施例中,電極108經安置於儲存材料102與存取線104、106之間。電極108將存取線104、106與儲存材料102電耦合。電極108可由以下者組成:一或多種導電及/或半導電材料,諸如舉例而言:碳(C)、氮化碳(Cx Ny );n摻雜多晶矽及p摻雜多晶矽;金屬,其等包含:Al、Cu、Ni、Cr、Co、Ru、Rh、Pd、Ag、Pt、Au、Ir、Ta及W;導電金屬氮化物,其等包含TiN、TaN、WN及TaCN;導電金屬矽化物,其等包含矽化鉭、矽化鎢、矽化鎳、矽化鈷及矽化鈦;導電金屬矽化物氮化物,其等包含TiSiN及WSiN;導電金屬碳化物氮化物,其等包含TiCN及WCN;導電金屬氧化物,其等包含RuO2 ;或其他合適導電材料。在一項實施例中,導電字線層可包含:任何合適金屬,包含例如包含Al、Cu、Ni、Cr、Co、Ru、Rh、Pd、Ag、Pt、Au、Ir、Ta及W之金屬;導電金屬氮化物,其等包含TiN、TaN、WN及TaCN;導電金屬矽化物,其等包含矽化鉭、矽化鎢、矽化鎳、矽化鈷及矽化鈦;導電金屬矽化物氮化物,其等包含TiSiN及WSiN;導電金屬碳化物氮化物,其等包含TiCN及WCN;或另一合適導電材料。
再次參考電路142,根據一實施例,存取線104、106將電路142通信地耦合至記憶體單元100。電路142包含存取電路143及感測電路145。電路包含電耦合以對經接收或經儲存資訊執行類比或邏輯運算、輸出資訊及/或儲存資訊之電子組件。硬體邏輯係用來執行諸如資料處理中涉及之邏輯運算之邏輯運算之電路。在一項實施例中,存取電路143將電壓脈衝施加至存取線104、106以寫入至或讀取記憶體單元100。術語「寫入」及「程式化」可互換地用來描述將資訊儲存於一記憶體單元中之動作。為了寫入至記憶體單元100,存取電路將具有一特定量值及極性之一電壓脈衝施加至存取線104、106,該等存取線104、106既可選擇記憶體單元100又可程式化記憶體單元100。
例如,存取電路143施加具有一個極性之一脈衝以將記憶體單元100程式化為一個邏輯狀態,且施加具有一不同極性之一脈衝以將記憶體單元100程式化為一不同邏輯狀態。存取電路143接著可由於一記憶體單元之程式化極性而在不同邏輯狀態之間進行區分。例如,在一記憶體讀取之一情況中,存取電路143將具有一特定量值及極性之一電壓脈衝施加至存取線104、106,此導致感測電路145可偵測之一電回應。偵測電回應可包含例如偵測以下一或多者:跨陣列之一給定記憶體單元之端子之一電壓降(例如,一臨限電壓);通過給定記憶體單元之電流;及給定記憶體單元之一臨限值事件。在一些情況中,偵測一記憶體單元之一臨限電壓可包含判定該單元之臨限電壓低於或高於一參考電壓,例如一讀取電壓。存取電路143可基於對讀取序列中之電壓脈衝之一或多者之電回應而判定記憶體單元100之邏輯狀態。
在施加一讀取電壓時產生之電流因此取決於由邏輯狀態儲存元件之電阻判定之記憶體單元之臨限電壓。例如,一第一邏輯狀態(例如,SET狀態)可對應於有限量之電流,而一第二邏輯狀態(例如,RESET狀態)可對應於無電流或可忽略不計的小電流。替代地,一第一邏輯狀態可對應於高於一電流臨限值之一電流,而一第二邏輯狀態可對應於低於電流臨限值之一電流。
記憶體單元100係一記憶體單元之一個實例。其他實施例可包含具有除圖1中所繪示之材料層以外或不同於圖1中所繪示之材料層之材料層之記憶體單元(例如,在儲存材料與存取線之間的一薄介電材料)。
圖2展示根據一實施例之可包含諸如圖1之記憶體單元100之一記憶體單元之一記憶體單元陣列200之一部分。記憶體單元陣列200係一三維交叉點記憶體結構(3D X Point)之一實例。記憶體單元陣列200包含複數個存取線204、206,其等可相同或類似於關於圖1所描述之存取線104、106。存取線204、206可稱為位元線及字線。在圖2中所繪示之實施例中,位元線(例如,存取線204)與字線(例如,存取線206)正交。一儲存材料202 (諸如圖1之儲存材料102)經安置於存取線204、206之間。在一些實例中,儲存材料202可為一自選擇儲存材料;在其他實例中,儲存材料202可串聯地耦合至一選擇裝置(未展示)。在一項實施例中,一「交叉點」經形成於一位元線、一字線之間的一相交點處。自在位元線與字線之間的儲存材料202產生一記憶體單元,其中位元線與字線相交。儲存材料202可為硫屬化物材料,諸如上文關於圖1所描述之儲存材料102。在一項實施例中,存取線204、206由一或多種導電材料組成,諸如上文關於圖1所描述之存取線104、106。儘管圖2中展示單個記憶體單元層級或層,但記憶體單元陣列200可包含多個記憶體單元層級或層(例如,在z方向上)。一般而言,相交點定義記憶體單元之位址。
圖1及圖2繪示一記憶體單元及陣列之一實例。然而,可使用其他記憶體單元結構及陣列,其中記憶體單元展現特殊電回應,即,特殊臨限電壓。
如上文所述,一記憶體材料(諸如相變材料)可取決於其相位而展現不同電阻率值,該等電阻率值與對應不同邏輯狀態相關聯。例如,處於非晶相之一相變材料之電阻率高於處於結晶相之此材料之電阻率。不同部分結晶程度亦為可能,即在(完全)非晶相之一者與(完全)結晶相之一者之間存在中間電阻率值。
理想地,一記憶體裝置之所有記憶體單元應以一相同(標稱)電阻率及因此一相同邏輯狀態之一相同臨限電壓為特徵,其中該臨限電壓係待施加至記憶體單元以引起其等傳導一電流之電壓,即,在端子之間產生一傳導路徑所需之電壓之最小值,如上文所定義。然而,由於程式化成一相同邏輯狀態之不同單元實際上因為若干因素(舉例而言,諸如由執行數次讀取-寫入操作及/或由於製造容限引起之相變材料之電特性之變動)而展現不同電阻率值,故各邏輯狀態實際上與一各自電阻率分佈(通常係高斯型分佈)相關聯,且因此與一各自臨限電壓分佈相關聯。
為了評估一單元之邏輯狀態,實行一讀取操作以評估該單元之臨限電壓所屬之臨限電壓分佈。例如,可將一讀取電壓施加至該單元且基於回應於該讀取電壓之一電流(之存在或不存在)而評估該單元之邏輯狀態,該電流(之存在或不存在)取決於該單元之臨限電壓。一單元在其兩個端子之間施加一合適電壓差時定限(例如,其變為導電);此一電壓差可以不同方式獲得,例如將一個端子(諸如一字線端子)偏壓至一負電壓(例如一選擇電壓),且將另一端子(諸如一位元線端子)偏壓至一正電壓(例如一讀取電壓)。其他偏壓組態可產生相同效應(例如,字線端子及位元線端子兩者經偏壓至正電壓,或字線端子經偏壓至一參考電壓(例如一接地電壓),且位元線端子經偏壓至一正電壓)。
已知一給定邏輯狀態之單元臨限電壓在第一設定-重設循環中迅速減小,在判定數目次經施加循環之後穩定至一可接受範圍內,如圖3中所展示,圖3係繪示臨限電壓值相對於施加至一實例性記憶體單元之設定-重設循環之次數之一示意性圖表。
通常,單元臨限電壓穩定技術涉及以一足夠級執行使該單元老化之一調穩程序(即,將調穩脈衝施加至單元)。更特定而言,調穩程序執行陣列之單元之循環以便使其臨限電壓穩定至一可接受範圍內。根據已知解決方案,以測試模式執行此調穩程序,其中一測試機藉由提供待調穩之頁面之位址來與一記憶體裝置互動。在此情況中,測試機針對全部調穩時間控制記憶體裝置,該調穩時間可非常大。此導致執行單元臨限電壓之穩定之較高成本、不良效率及延遲。
如上文關於圖3所述,一單元之臨限電壓VTH 在第一設定-重設循環之後迅速減小。在數次設定-重設循環之後,將臨限電壓VTH 變動約束至一可接受範圍內,使得臨限電壓變動在該裝置之操作階段中係可管理的。通常,出於可行性原因,可根據一給定序列,例如每給定數目個奈秒,將脈衝施配給該裝置之頁面。此外,一單元穩定其臨限電壓所需之調穩脈衝之數目可約為數百個,使得調穩時間可非常長。因此,針對全部此長調穩時間將測試機應用於記憶體裝置。此缺點可藉由本發明之系統及方法來克服。
根據本發明,用於在第一設定-重設循環期間穩定單元臨限電壓之一自主調穩系統及方法係由一記憶體裝置之一專用邏輯電路部分來實施,如圖4中所展示。有利地,記憶體裝置能夠執行調穩,且因此能夠在沒有一外部測試機之控制或介入之情況下執行單元臨限電壓之穩定。
參考圖4,記憶體裝置400包括能夠以一自主方式執行調穩程序之一控制邏輯或邏輯電路部分401。邏輯電路部分401能夠掃描記憶體裝置400之所有地址,將一調穩脈衝施加至經定址頁面,且接著重複對該裝置之全掃描達適當次數以便獲得單元臨限電壓之恰當穩定。在一實施例中,在自主調穩程序期間,記憶體裝置經設定為忙碌狀態且不執行任何其他活動。
更特定而言,如圖4中所展示,記憶體裝置400包括複數個記憶體單元402,各記憶體單元可程式化為至少兩種邏輯狀態,對應於一各自臨限電壓之各邏輯狀態由該記憶體單元回應於一經施加電壓而展現。記憶體單元402可類似於圖1中所揭示之單元或圖2之單元。
邏輯電路部分401可操作地耦合至複數個記憶體單元402且經組態以掃描記憶體裝置400之記憶體地址,並且產生調穩脈衝以施加至經定址頁面。在一實施例中,根據包括預定數目個脈衝之一給定序列施加調穩脈衝,如下文進一步解釋。
根據本發明,由於邏輯電路部分401之存在,記憶體裝置400因此能夠自主地執行記憶體單元402之預調節以便在無需一外部測試機之情況下穩定其等臨限電壓,該邏輯電路部分401能夠提供頁面之位址(或位址之一子集)以調穩且產生恰當調穩脈衝以施加至經定址頁面。
為此,邏輯電路部分401包括經組態以掃描記憶體裝置400之記憶體位址之一計數器403。記憶體裝置400亦包括可操作地耦合至計數器403之一管理單元404。
管理單元404經組態以管理邏輯電路部分401之操作,特定言之以管理調穩脈衝之產生及至經定址頁面之施加。
根據本發明,根據一經判定脈衝序列重複調穩脈衝之產生及施加,其中經施加脈衝序列包括預設數目個調穩脈衝,該預設數目經儲存於記憶體裝置400之邏輯電路部分401中。因此,邏輯電路部分401 (除掃描記憶體位址且產生一脈衝以施加至經定址頁面外)經組態以產生一恰當命令以重複將調穩脈衝施加至經定址頁面達一恰當次數。
在一實施例中,調穩脈衝可經設計以加速調穩程序,由此減少總調穩時間。此外,每特定數目個奈秒(例如,每100 ns至200 ns),可將脈衝分配或供應給記憶體裝置之頁面。
根據本發明之一實施例,邏輯電路部分401經組態以產生具有長於用於記憶體單元之程式化脈衝之一持續時間之調穩脈衝。在此情況中,調穩脈衝本質上係一放大重設脈衝。換言之,根據本發明,「調穩脈衝」係施加至該單元之一初始脈衝,該脈衝可長於後續程式化脈衝,此調穩脈衝之目的係將電阻調整為一穩定值,且因此調整該單元之臨限電壓。
本發明之實施例因此提供一種自主、低成本、高效且可靠之調穩系統,其用於在第一設定-重設循環期間穩定單元臨限電壓,而無需使用一測試機來在整個調穩時間控制該裝置。此自主調穩經設計以加速調穩程序由此減少總調穩時間。
根據本發明之一實施例,邏輯電路部分401包括經調適以對經施加調穩脈衝之數目進行計數之另一計數器405。邏輯電路部分401之管理單元404接著經調適以比較經計數脈衝與經儲存預設數目,且當經施加脈衝數目等於預設數目時停止施加調穩脈衝。在一實施例中,預設數目經儲存於管理單元404中。
在一項實施例中,記憶體裝置400經組態以在施加調穩脈衝期間設定為忙碌狀態,使得其無法執行任何其他活動。在此情況中,僅操作記憶體裝置400之電路邏輯部分401以執行自主調穩。
在一項實施例中,邏輯電路部分401經組態以回應於接收到施加至其輸入/輸出墊之一特定命令或一特定信號序列或亦回應於不同於規格電壓(即,不同於標稱供應電壓)之一特定供應電壓而起始調穩程序。在一項實施例中,在發動自主調穩程序之後,該裝置僅需具有供應電壓。
例如,記憶體裝置400可在其電壓輸入408處接收一供應電壓,且接著一專用電路409經組態以評估經施加供應電壓是否大於該裝置之標準操作所需之標稱供應電壓。若經施加供應電壓大於標稱供應電壓,則電路409產生發送至邏輯電路部分401以起始調穩程序之一啟動信號。在另一實施例中,記憶體裝置400包括經結構化以(例如自一控制器)接收用於執行調穩程序之一命令之至少一個專用墊410。
通常,記憶體裝置在其製造期間經歷不同調穩事件。更特定而言,調穩程序可以晶圓級執行,在組裝及接合之後以單元級執行,且可能在品質測試中以單元級執行。所有此等調穩事件通常由製造商在該裝置之製造步驟期間(例如,在晶圓級測試/分類時)執行。
此外,根據本發明,調穩程序亦可在焊接之後以單元級自主地執行,即,其亦可以在客戶級自主地執行。在任何情況中,如前文所提及,自主調穩程序可容易藉由施加至該裝置之墊之一特定命令或藉由一特定供應電壓來發動。在發動根據本發明之自主調穩程序之後,記憶體裝置能夠在沒有一外部測試機之情況下執行該自主調穩程序,僅必須將供應電壓遞送至該裝置。實際上,有利地根據本發明,記憶體裝置400包含具有適當地經結構化且經組態以執行自主調穩之邏輯電路部分401。
為了儘可能降低調穩程序相對於最後提及之調穩事件(即,相對於在焊接之後處於單元級之調穩)之影響,可在前景利用對客戶之直接影響執行該裝置之一部分調穩,從而以此方式降低對客戶之該直接影響。
更特定而言,根據本發明之一實施例,該邏輯電路部分經組態以在一第一調穩程序中將預設數目個調穩脈衝施加至記憶體單元之一選定部分(即,經定址頁面之一選定部分),且接著在一第二調穩程序中將預設數目個調穩脈衝施加至記憶體裝置之記憶體單元之一選定第二部分。在一些實施例中,記憶體單元之選定第二部分包括不在選定部分中之所有記憶體單元(即,第二調穩程序應用於剩餘經定址頁面);在其他實施例中,全裝置之調穩程序以兩個以上步驟完成(例如,在第一及第二調穩程序之後可存在額外調穩程序)。
換言之,可針對記憶體裝置400之僅一部分操作一調穩程序。例如,在記憶體裝置400用於行動應用中(例如,其經嵌入於一行動電話中)之情況下,記憶體裝置之選定部分包括源量測單元(SMU)之一部分及線路監測單元(LMU)之一部分。此儘可能降低客戶影響。在前景中之第一調穩程序之後,一旦該裝置起始在應用中工作,調穩便在背景中完成,因此降低測試成本及對客戶之影響,背景調穩對使用者之影響可忽略不計。
此外,根據本發明之另一實施例,邏輯電路部分可經組態以在一第一調穩程序中(即,在前景中)將僅第一數目個調穩脈衝施加至記憶體裝置之所有經定址頁面,且接著在一第二調穩程序中(即,在背景中)將後續調穩脈衝施加至記憶體裝置之所有經定址頁面。例如,可在第二調穩程序期間施加額外第二數目個調穩脈衝;在一些情況中,(第一外加第二)脈衝之總數目等於調穩脈衝之預設數目。在此情況中,在一第一時間僅施加特定數目個脈衝,以便使臨限電壓移動接近於如圖3之圖表中所展示之裝置操作範圍,且接著在一第二時刻完成剩餘脈衝。
如圖4中所展示,記憶體裝置400包括一控制器406,該控制器406可包含一嵌入式韌體且經調適以管理及控制總體記憶體裝置400之操作。在一實施例中,該控制器經組態以產生存取命令,記憶體控制器406經耦合至複數個記憶體單元402且經組態以在一讀取操作期間將一讀取電壓施加至記憶體單元以評估其邏輯狀態。根據一實施例,控制器406負責將記憶體裝置400與一主機介接及程式化記憶體單元。
記憶體裝置400亦可包括其他組件,諸如耦合至控制器406之處理器單元、天線、與一主機裝置之連接構件(未展示)及類似物。
即使圖4展示與邏輯電路部分401分離之一控制器406,根據一實施例,邏輯電路部分401可嵌入於控制器406中。
此外,根據本發明之一實施例,邏輯電路部分401經由計數器403耦合至解碼器407,解碼器407容許對記憶體單元402之存取。
因此透過解碼器407控制對記憶體單元402之存取。解碼器407可包括接收一列位址且根據經接收列位址供能給一對應字線之一列解碼器。類似地,解碼器407可包括接收一行位址且相應地供能給一組對應位元線之一行解碼器。
根據一實施例,解碼器407自計數器403接收位址,該計數器403繼而經由連接至普通位址路徑之一位址介面掃描記憶體裝置400之所有位址。在存取記憶體單元402時,可使用對應字線及位元線施加一電壓。
藉由邏輯電路部分401之一調穩脈衝產生單元411產生調穩脈衝。接著將經產生調穩脈衝施加至由連接至解碼器407之計數器403提供之對應經定址頁面。
如先前所提及,根據一實施例,調穩脈衝不同於一標準重設脈衝(其係由記憶體裝置之一脈衝產生單元412產生)之處在於,前者具有一更長持續時間(約100 ns)且可具有一類似電壓。為此,在一項實施例中,記憶體裝置可具備一計時單元414 (其可嵌入於邏輯控制電路401中,即使其他架構亦可行),從而提供經產生脈衝之適當計時。該計時單元可與脈衝產生單元連接。
管理單元404因此與調穩脈衝產生單元411可操作地連接以產生該等調穩脈衝且將該等調穩脈衝施加至記憶體單元402。在一項實施例中,一多工器413可在其輸入處接收由單元411及412產生之脈衝且可經組態以將該等脈衝遞送至記憶體單元402。
圖5係根據本發明之可執行自主調穩之一電子系統500’之一高階方案。系統500’包含一記憶體裝置500,記憶體裝置500繼而包含一記憶體單元陣列502及可操作地耦合至記憶體單元502之一邏輯電路部分501;圖5之記憶體裝置500、邏輯電路部分501及記憶體單元502可分別對應於圖4之記憶體裝置400、邏輯電路部分401及記憶體單元402。
記憶體裝置500包括一記憶體控制器506 (對應於圖4之控制器406),該記憶體控制器506表示例如回應於一主機520之命令而產生記憶體存取命令之控制邏輯。記憶體控制器506存取記憶體單元502。在一項實施例中,與一主機處理器521可操作地耦合之記憶體控制器506亦可在主機520中實施,尤其作為主機處理器521之部分,即使本發明不受限於一特定架構。
多個信號線將記憶體控制器506與記憶體單元502及邏輯電路部分501耦合。例如,此等信號線可包含時脈、命令/位址及寫入資料(DQ)、讀取DQ、及零個或更多其他信號線。記憶體控制器506因此經由合適匯流排可操作地耦合至該裝置之記憶體部分。
記憶體單元502表示系統500’之記憶體資源。在一項實施例中,記憶體單元陣列502作為資料列進行管理,經由字線(列)及位元線(一列內之個別位元)控制而存取。在一項實施例中,記憶體單元陣列502包含一3D交叉點陣列,諸如圖2之記憶體單元陣列200。記憶體單元陣列502可被組織為單獨記憶體通道、記憶體秩(rank)及記憶體庫(bank)。通道係至記憶體部分內之儲存位置之獨立控制路徑。秩指代跨多個記憶體裝置之共同位置(例如,不同裝置內之相同列位址)。庫指代一記憶體裝置內之記憶體位置陣列。在一項實施例中,記憶體庫被劃分為子庫,該等子庫具有共用電路之至少一部分(例如,驅動器、信號線、控制邏輯)。應理解,記憶體位置之通道、秩、庫或其他組織及該等組織之組合可與實體資源重疊。例如,可透過作為亦可屬於一秩之一特定庫之一特定通道存取相同實體記憶體位置。因此,將以一包含性而非排他性方式理解記憶體資源之組織。
在一項實施例中,記憶體控制器506包含再新(REF)邏輯561。在一項實施例中,再新邏輯561指示用於再新之一位置及待執行之再新之一類型。再新邏輯561可觸發記憶體內之自再新,且藉由發送再新命令以觸發一再新操作之執行來發出外部再新。
在圖5中所繪示之實例性實施例中,記憶體控制器506亦包含錯誤偵測/校正電路562。錯誤偵測/校正電路562可包含硬體邏輯以實施一錯誤校正碼(ECC)來偵測在自記憶體部分讀取之資料中發生之錯誤。在一項實施例中,錯誤偵測/校正電路562亦校正錯誤(基於經實施ECC碼,直至一特定錯誤率)。然而,在其他實施例中,錯誤偵測/校正電路562僅偵測但不校正錯誤。
在所繪示實施例中,記憶體控制器506包含命令(CMD)邏輯563,該命令(CMD)邏輯563表示用來產生命令以發送至邏輯電路部分501及記憶體單元502之邏輯或電路。顯然,亦可採用其他架構。
記憶體裝置500例如經由控制器506與主機裝置520可操作地耦合。主機裝置520表示根據本文中所描述之任何實施例之一運算裝置,且可為一膝上型電腦、一桌上型電腦、一伺服器、一遊戲或娛樂控制系統、一掃描儀、一複印機、一列印機、路由或交換裝置、嵌入式運算裝置或其他電子裝置(諸如一智慧型電話)。在本發明之一較佳實施例中,主機520係一行動電話。記憶體裝置500亦可嵌入於主機裝置520中。
在一項實施例中,系統500’包含耦合至處理器521之一介面530,該介面530可表示用於需要較高頻寬連接之系統組件及/或圖形介面組件之一高速介面或一高輸送量介面。圖形介面與圖形組件介接以向系統500之一使用者提供一視覺顯示。在一項實施例中,圖形介面基於儲存於記憶體裝置中之資料或基於由處理器執行之操作或兩者而產生一顯示。系統500’亦可包括通信地耦合至主機或記憶體裝置例如以與其他系統連接之網路介面540,及/或經耦合以將電力提供至該系統之一電池。換言之,系統500’可進一步包括經組態以實現與其他電子系統之通信之一通信模組,及/或經組態以實現一使用者之介接之介面裝置。
如上文所提及,在一項實施例中,邏輯電路部分501經組態以在處理器之操作期間在前景中將預設數目個調穩脈衝施加至記憶體裝置之經定址頁面之一選定部分,且接著在處理器之操作期間在背景中將預設數目個調穩脈衝施加至記憶體裝置之經定址頁面之一選定第二部分。在一些實施例中,記憶體單元之選定第二部分包括不在第一選定部分之所有頁面(即,第二調穩程序應用於剩餘經定址頁面);在其他實施例中,全裝置之調穩程序在背景中以兩個以上步驟完成(例如,在第一及第二調穩程序之後可存在數個部分調穩程序)。此等實施例在前景中提供該裝置之一部分調穩,有助於儘可能降低調穩程序對客戶之影響。
例如,在行動應用中,記憶體裝置之選定部分包括源量測單元(SMU)之一部分及線路監測單元(LMU)之一部分。
在另一實施例中,邏輯電路部分經組態以在處理器之操作期間在前景中將第一數目個調穩脈衝施加至記憶體裝置之所有經定址頁面,且接著在處理器之操作期間在背景中將後續調穩脈衝施加至記憶體裝置之所有經定址頁面。例如,可在第二調穩程序期間施加額外第二數目個調穩脈衝;在一些情況中,(第一外加第二)脈衝之總數目等於調穩脈衝之預設數目。在此情況中,在第一調穩程序期間僅施加特定數目個脈衝,且在一第二調穩程序期間完成剩餘脈衝之施加(然而,可設想額外後續調穩程序;例如,完整程序可分裂成兩個或更多個子程序)。
本發明亦涉及一種用於穩定一記憶體裝置中包括之複數個記憶體單元之臨限電壓之方法,各記憶體單元可程式化成一邏輯狀態,各邏輯狀態對應於由該記憶體單元回應於一經施加電壓而展現之一各自臨限電壓。
圖6係表示根據本發明之方法600之步驟之一流程圖。如圖6中所展示,該方法包括掃描與記憶體裝置之記憶體單元相關聯之記憶體位址之一第一步驟610,此步驟係使用記憶體裝置內部之計數器(諸如圖4之計數器403)來執行。
該方法接著包括由記憶體裝置內部之一專用電路產生調穩脈衝以施加至記憶體裝置之經定址頁面之一步驟620。該專用電路可為例如圖4之邏輯電路部分401或圖5之501。
方法600在步驟630處提供將一調穩脈衝序列施加至記憶體裝置之經定址頁面,以便在無需使用一外部測試機之情況下獲得單元臨限電壓之所要穩定。
更特定而言,根據本發明之一實施例,調穩脈衝序列之施加包括施加對應於將臨限電壓穩定在一可接受操作範圍內(即,在其中臨限電壓之變動可忽略不計之一範圍內)所需之數目之預設數目個調穩脈衝。
接著比較經施加脈衝之實際數目與調穩脈衝之預設數目,使得一旦經施加脈衝數目等於預設臨限數目,便停止施加。
根據本發明之一實施例,調穩脈衝序列之施加包括在一第一調穩程序中將預設數目個調穩脈衝施加至經定址頁面之一選定部分之一第一步驟,及接著在一第二調穩程序中將調穩脈衝序列施加至經定址頁面之一第二選定部分之一第二步驟。
在另一實施例中,該方法包括在一第一調穩程序中將第一數目個調穩脈衝施加至所有經定址頁面之一第一步驟,及接著在一第二調穩程序中將後續調穩脈衝施加至所有經定址頁面之一第二步驟。
根據一實施例,調穩脈衝具有長於用來程式化記憶體單元之程式化脈衝之脈衝持續時間。
如上文所提及,一裝置在其製造及測試期間可經歷多個調穩事件。例如,根據圖7中所繪示之一方法700,在一第一步驟710,以晶圓級執行一第一調穩程序。接著,在步驟720,該方法提供在組裝及接合記憶體裝置之後以單元級執行一第二調穩程序。最終,在步驟730,該方法提供在焊接記憶體裝置之後以單元級執行一第三調穩程序。一或多個或甚至所有此等調穩程序由本發明之專用邏輯電路自主地執行。
此具有尤其在最後步驟730中亦可在製造商之外以客戶級自主地執行調穩程序之優點,且執行一部分調穩之可能性降低調穩對客戶之影響。
總之,本文中揭示一種用於在第一設定-重設循環期間(即,在第一狀態改變循環期間)穩定單元臨限電壓之自主調穩系統及方法。調穩程序可以晶圓級執行,在組裝及接合之後以單元級執行且在品質測試中以單元級執行。此外,有利地根據本發明,調穩程序可在焊接之後以單元級自主地執行,即,其亦可在製造商之外以客戶級自主地執行。自主調穩程序可藉由施加至輸入或輸出墊之一特定命令或一特定信號序列及/或亦藉由大於標稱供應電壓之一特定供應電壓來發動。在發動自主調穩方法之後,對該裝置之唯一要求係具有供應電壓。
更特定而言,一種實例性記憶體裝置包括複數個記憶體單元,各記憶體單元可程式化為由該記憶體單元回應於一經施加電壓而展現之對應於一臨限電壓之一邏輯狀態,並且其包括可操作地耦合至複數個記憶體單元之一邏輯電路部分,其中該邏輯電路部分經組態以掃描該記憶體裝置之記憶體位址,且產生調穩脈衝以例如根據一預定序列施加至該記憶體裝置之經定址頁面以穩定該等記憶體單元之臨限電壓。亦揭示一種實例性相關電子系統及實例性相關方法。
在前文詳細描述中,參考形成其部分之隨附圖式,且其中藉由圖解展示特定實例。在圖式中,貫穿若干視圖,類似數字描述實質上類似的組件。在不脫離本發明之範疇之情況下,可利用其他實例且可進行結構、邏輯及/或電氣改變。另外,如將明白,該等圖中所提供之元件之比例及相對尺度意欲繪示本發明之實施例且不應被認為係限制性的。
如本文中所使用,「一」、「一個」或「數個」事物可指代一或多個此等事物。「複數個」事物意欲兩個或更多個。如本文中所使用,術語「耦合」可包含不與中間元件電耦合、直接耦合及/或直接連接(例如,藉由直接實體接觸)或與中間元件間接耦合及/或連接。術語耦合可進一步包含彼此協作或互動之兩個或更多個元件(例如,如處於一因果關係)。
儘管本文中已繪示及描述特定實例,但一般技術者將明白,經計算以達成相同結果之一配置可置換所展示之特定實施例。本發明意欲涵蓋本發明之一或多項實施例之調適或變動。因此,應理解,以上描述已以一闡釋性方式且非一限制性方式進行。省略熟知組件及處理技術之描述以免不必要地使本文中之實施例模糊。本文中所使用之實例僅意欲促進對其中可實踐本文中之實施例之方式之理解且進一步使熟習此項技術者能夠實踐本文中之實施例。據此,該等實例不應被解釋為限制本文中之實施例之範疇。本發明之一或多項實例之範疇應參考隨附發明申請專利範圍及此發明申請專利範圍所授權之等效物之全範圍來判定。
100:記憶體單元 102:儲存材料 104:存取線 106:存取線 108:電極 142:電路 143:存取電路 145:感測電路 200:記憶體單元陣列 202:儲存材料 204:存取線 206:存取線 400:記憶體裝置 401:控制邏輯或邏輯電路部分 402:記憶體單元 403:計數器 404:管理單元 405:計數器 406:控制器/記憶體控制器 407:解碼器 408:電壓輸入 409:專用電路 410:專用墊 411:調穩脈衝產生單元 412:脈衝產生單元 413:多工器 414:計時單元 500:記憶體裝置 500’:電子系統 501:邏輯電路部分 502:記憶體單元陣列/記憶體單元 506:記憶體控制器 520:主機 521:主機處理器 530:介面 540:網路介面 561:再新(REF)邏輯 562:錯誤偵測/校正電路 563:命令(CMD)邏輯 600:方法 610:第一步驟 620:步驟 630:步驟 700:方法 710:第一步驟 720:步驟 730:步驟
圖1係繪示一實例性記憶體單元之一方塊圖;
圖2示意性地繪示一實例性記憶體單元陣列之一部分;
圖3係繪示臨限電壓值相對於施加至一實例性記憶體單元之設定-重設循環之次數之一曲線圖;
圖4係根據本發明之包含用於穩定單元臨限電壓之一邏輯電路部分之一記憶體裝置之一實例性方塊方案;
圖5展示包含根據本發明之一記憶體裝置之一系統之一示意性方塊圖;
圖6係表示根據本發明之一方法之步驟之一流程圖;及
圖7係表示根據本發明之一實施例之一方法之步驟之一流程圖。
400:記憶體裝置
401:控制邏輯或邏輯電路部分
402:記憶體單元
403:計數器
404:管理單元
405:計數器
406:控制器/記憶體控制器
407:解碼器
408:電壓輸入
409:專用電路
410:專用墊
411:調穩脈衝產生單元
412:脈衝產生單元
413:多工器
414:計時單元

Claims (29)

  1. 一種記憶體裝置,其包括:複數個記憶體單元,各記憶體單元可程式化為由該記憶體單元回應於一經施加電壓而展現之對應於一臨限電壓之一邏輯狀態;及一邏輯電路部分,其可操作地耦合至該複數個記憶體單元,其中該邏輯電路部分經組態以:掃描該記憶體裝置之記憶體位址(memory addresses);且產生調穩脈衝(seasoning pulses)以施加至該記憶體裝置之經定址頁面以穩定該等記憶體單元之該臨限電壓。
  2. 如請求項1之記憶體裝置,其中該邏輯電路部分包括經組態以掃描該記憶體裝置之該等記憶體位址之一計數器,該計數器與該記憶體裝置之一管理單元可操作地耦合以將該等調穩脈衝施加至該等經定址頁面。
  3. 如請求項1之記憶體裝置,其中該邏輯電路部分經組態使得包括預設數目個調穩脈衝之一序列經施加至該等記憶體單元。
  4. 如請求項3之記憶體裝置,其中該邏輯電路部分包括經調適以對該經施加調穩脈衝數目進行計數之另一計數器,且其中該邏輯電路部分進一步經組態以比較該等經計數脈衝與該預設數目。
  5. 如請求項1之記憶體裝置,其中該邏輯電路部分經組態以產生具有長 於用於該等記憶體單元之程式化脈衝之一持續時間之調穩脈衝。
  6. 如請求項1之記憶體裝置,其中該邏輯電路部分經組態以在一第一調穩程序中將預設數目個調穩脈衝施加至該記憶體裝置之該等經定址頁面之一選定第一部分,且接著在一第二調穩程序中將該預定數目個調穩脈衝施加至該記憶體裝置之經定址頁面之一選定第二部分。
  7. 如請求項1之記憶體裝置,其中該邏輯電路部分經組態以在一第一調穩程序中將第一數目個調穩脈衝施加至該記憶體裝置之所有該等經定址頁面,且接著在一第二調穩程序中將後續調穩脈衝施加至該記憶體裝置之所有該等經定址頁面。
  8. 如請求項1之記憶體裝置,其包括經組態以產生存取命令之一記憶體控制器,該記憶體控制器經耦合至該複數個記憶體單元且經組態以在一讀取操作期間將一讀取電壓施加至記憶體單元以評估其邏輯狀態。
  9. 如請求項8之記憶體裝置,其中該邏輯電路部分經嵌入於該記憶體控制器中且可操作地耦合至該記憶體裝置之一解碼器。
  10. 如請求項1之記憶體裝置,其中該記憶體部分包括一3D交叉點(3D X Point)記憶體。
  11. 如請求項1之記憶體裝置,其中該邏輯電路部分經組態以掃描該等記 憶體位址且回應於接收施加至該裝置之輸入/輸出墊之一特定命令或一特定信號序列及/或回應於接收不同於標稱供應電壓之一特定供應電壓而產生該等調穩脈衝。
  12. 如請求項1之記憶體裝置,其中該記憶體裝置經組態以在施加該等調穩脈衝期間設定為忙碌狀態。
  13. 一種電子系統,其包括:一主機裝置,其包含一處理器模組;一記憶體裝置,其可操作地耦合至該主機裝置;及該記憶體裝置之一管理單元,其中該記憶體裝置包括:複數個記憶體單元,各記憶體單元可程式化為由該記憶體單元回應於一經施加電壓而展現之對應於一臨限電壓之一邏輯狀態;及一邏輯電路部分,其可操作地耦合至該複數個記憶體單元,其中該邏輯電路部分經組態以:掃描該記憶體裝置之記憶體位址;且產生調穩脈衝以施加至該記憶體裝置之經定址頁面以穩定該等記憶體單元之該臨限電壓。
  14. 如請求項13之電子系統,其中該邏輯電路部分經組態以在該處理器模組之操作期間在前景(foreground)中將預設數目個調穩脈衝施加至該記憶體裝置之該等經定址頁面之一選定部分,且接著在該處理器模組之操作 期間在背景(background)中將該預設數目個調穩脈衝施加至該記憶體裝置之經定址頁面之一選定第二部分。
  15. 如請求項14之電子系統,其中該主機係一行動電話,且其中該記憶體裝置之該選定部分包括源量測單元(SMU)之一部分及線路監測單元(LMU)之一部分。
  16. 如請求項13之電子系統,其中該邏輯電路部分經組態以在該處理器模組之操作期間在前景中將第一數目個該等調穩脈衝施加至該記憶體裝置之所有該等經定址頁面,且接著在該處理器模組之操作期間在背景中將後續調穩脈衝施加至該記憶體裝置之所有該等經定址頁面。
  17. 如請求項13之電子系統,其包括經組態以掃描該記憶體裝置之該等記憶體位址之一計數器,該計數器與該記憶體裝置之該管理單元可操作地耦合以將該等調穩脈衝施加至該等經定址頁面。
  18. 如請求項13之電子系統,其包括經組態以產生存取命令之一記憶體控制器,該記憶體控制器與該處理器模組可操作地連接。
  19. 如請求項13之電子系統,其中該邏輯電路部分之該管理單元與一調穩脈衝產生單元可操作地連接以產生該等調穩脈衝且將該等調穩脈衝施加至該記憶體裝置之該等記憶體單元。
  20. 如請求項13之電子系統,其中該邏輯電路部分經組態以掃描該等記憶體位址且在接收施加至該系統之輸入/輸出墊之一特定命令或一特定信號序列之後及/或在接收不同於標稱供應電壓之一特定供應電壓之後產生該等調穩脈衝。
  21. 如請求項13之電子系統,其進一步包括:一通信模組,其經組態以實現與其他電子系統之通信;及/或介面裝置,其等經組態以實現一使用者之介接。
  22. 一種用於穩定一記憶體裝置中包含之複數個記憶體單元之臨限電壓之方法,各記憶體單元可程式化為由該記憶體單元回應於一經施加電壓而展現之對應於一臨限電壓之一邏輯狀態,該方法包括以下步驟:掃描該記憶體裝置之記憶體位址,其中該掃描由該記憶體裝置內部之一邏輯電路部分來執行;在該記憶體裝置之該邏輯電路部分內部產生一調穩脈衝以施加至該記憶體裝置之經定址頁面;及將一調穩脈衝序列施加至該記憶體裝置之該等經定址頁面。
  23. 如請求項22之方法,其中施加該調穩脈衝序列包括施加對應於穩定該等臨限電壓所需之一數目之預設數目個調穩脈衝,該方法進一步包括比較經施加脈衝之實際數目與調穩脈衝之該預設數目。
  24. 如請求項22之方法,其中施加一調穩脈衝序列涉及施加具有長於用 來程式化該單元之程式化脈衝之脈衝持續時間之一脈衝。
  25. 如請求項22之方法,其中在施加該調穩脈衝期間設定一忙碌狀態且不執行其他操作。
  26. 如請求項22之方法,其包括在一第一調穩程序中將該調穩脈衝序列施加至該等經定址頁面之一選定部分之一第一步驟,及接著在一第二調穩程序中將該調穩脈衝序列施加至該等經定址頁面之一第二選定部分之一第二步驟。
  27. 如請求項22之方法,其包括在一第一調穩程序中將第一數目個該等調穩脈衝施加至所有該等經定址頁面之一第一步驟,及接著在一第二調穩程序中將後續調穩脈衝施加至所有該等經定址頁面之一第二步驟。
  28. 如請求項22之方法,其中該等步驟在接收一特定命令或一特定信號序列之後及/或在接收不同於標稱供應電壓之一特定供應電壓之後執行。
  29. 一種用於操作一記憶體裝置之方法,其包括以下步驟:以晶圓級執行一第一調穩程序;在組裝及接合該記憶體裝置之後以單元級執行一第二調穩程序;及在焊接該記憶體裝置之後以單元級執行一第三調穩程序,其中該等調穩程序之至少一者係如請求項22般自主地執行。
TW109137561A 2019-12-03 2020-10-29 用於穩定單元臨限電壓之系統及方法 TWI771782B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/IB2019/001201 WO2021111155A1 (en) 2019-12-03 2019-12-03 Systems and methods for stabilizing cell threshold voltage
WOPCT/IB2019/001201 2019-12-03

Publications (2)

Publication Number Publication Date
TW202137212A TW202137212A (zh) 2021-10-01
TWI771782B true TWI771782B (zh) 2022-07-21

Family

ID=76221639

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109137561A TWI771782B (zh) 2019-12-03 2020-10-29 用於穩定單元臨限電壓之系統及方法

Country Status (7)

Country Link
US (2) US11309021B2 (zh)
EP (1) EP4070312A1 (zh)
JP (1) JP2023505454A (zh)
KR (1) KR20220079985A (zh)
CN (1) CN114746945A (zh)
TW (1) TWI771782B (zh)
WO (1) WO2021111155A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021111155A1 (en) 2019-12-03 2021-06-10 Micron Technology, Inc. Systems and methods for stabilizing cell threshold voltage
US11307249B1 (en) * 2020-12-29 2022-04-19 Nanya Technology Corporation Method for characterizing resistance state of programmable element
US11495316B1 (en) 2021-09-02 2022-11-08 Micron Technology, Inc. Optimized seasoning trim values based on form factors in memory sub-system manufacturing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980505A (en) * 1973-09-12 1976-09-14 Buckley William D Process of making a filament-type memory semiconductor device
US5771192A (en) * 1995-07-28 1998-06-23 Samsung Electronics, Co., Ltd. Bit line reference circuit for a nonvolatile semiconductor memory device
US6014330A (en) * 1993-06-29 2000-01-11 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
US7936610B1 (en) * 2009-08-03 2011-05-03 Micron Technology, Inc. Selective refresh of single bit memory cells
US20150055409A1 (en) * 2008-04-09 2015-02-26 Ovonyx, Inc. Seasoning Phase Change Memories

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4381750B2 (ja) * 2003-08-28 2009-12-09 株式会社ルネサステクノロジ 半導体集積回路
US20050149786A1 (en) * 2003-12-19 2005-07-07 Hassan Mohamed A. Apparatus and method for determining threshold voltages in a flash memory unit
US7848158B2 (en) 2008-05-05 2010-12-07 Micron Technologies, Inc. Methods and apparatuses for programming flash memory using modulated pulses
JP2010244665A (ja) 2009-04-09 2010-10-28 Renesas Electronics Corp フラッシュメモリおよびその消去方法
JP5204825B2 (ja) * 2010-09-17 2013-06-05 シャープ株式会社 半導体記憶装置
US8441861B2 (en) * 2011-03-16 2013-05-14 Micron Technology, Inc. Self-check calibration of program or erase and verify process using memory cell distribution
US8787065B2 (en) * 2011-10-18 2014-07-22 Micron Technology, Inc. Apparatuses and methods for determining stability of a memory cell
WO2013061191A1 (en) * 2011-10-28 2013-05-02 International Business Machines Corporation Conditioning phase change memory cells
US10089170B1 (en) * 2016-06-15 2018-10-02 Seagate Technology Llc Open block management
JP6419140B2 (ja) * 2016-12-08 2018-11-07 ウィンボンド エレクトロニクス コーポレーション 半導体装置およびその調整方法
US10777275B2 (en) * 2018-09-26 2020-09-15 Intel Corporation Reset refresh techniques for self-selecting memory
WO2021111155A1 (en) 2019-12-03 2021-06-10 Micron Technology, Inc. Systems and methods for stabilizing cell threshold voltage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3980505A (en) * 1973-09-12 1976-09-14 Buckley William D Process of making a filament-type memory semiconductor device
US6014330A (en) * 1993-06-29 2000-01-11 Kabushiki Kaisha Toshiba Non-volatile semiconductor memory device
US5771192A (en) * 1995-07-28 1998-06-23 Samsung Electronics, Co., Ltd. Bit line reference circuit for a nonvolatile semiconductor memory device
US20150055409A1 (en) * 2008-04-09 2015-02-26 Ovonyx, Inc. Seasoning Phase Change Memories
US7936610B1 (en) * 2009-08-03 2011-05-03 Micron Technology, Inc. Selective refresh of single bit memory cells

Also Published As

Publication number Publication date
KR20220079985A (ko) 2022-06-14
US20210407591A1 (en) 2021-12-30
CN114746945A (zh) 2022-07-12
US20220223204A1 (en) 2022-07-14
EP4070312A1 (en) 2022-10-12
WO2021111155A1 (en) 2021-06-10
US11309021B2 (en) 2022-04-19
JP2023505454A (ja) 2023-02-09
TW202137212A (zh) 2021-10-01
US11830548B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
TWI771782B (zh) 用於穩定單元臨限電壓之系統及方法
US7916524B2 (en) Program method with locally optimized write parameters
US11705211B2 (en) Methods and systems for improving access to memory cells
US20240194272A1 (en) Method and system for accessing memory cells
EP3799050A1 (en) Techniques to generate & adjust program current pulses for cross-point nonvolatile memory
KR20210036457A (ko) 메모리 장치 및 메모리 장치의 동작방법
US11626161B2 (en) Selection scheme for crosspoint memory
KR20200078209A (ko) 메모리 장치의 데이터 재기입 방법, 상기 메모리 장치를 제어하는 메모리 컨트롤러 및 상기 메모리 컨트롤러의 제어 방법
US11302391B2 (en) System and method for reading memory cells
US11164626B2 (en) Methods and systems for accessing memory cells
TWI760924B (zh) 用於存取記憶體單元之方法及系統
US11880571B2 (en) Counter-based methods and systems for accessing memory cells
US12027230B2 (en) Methods and systems for improving read and write of memory cells
US11694748B2 (en) System and method for reading memory cells
US11087854B1 (en) High current fast read scheme for crosspoint memory
US20220068335A1 (en) Methods and Systems for Improving Read and Write of Memory Cells
JP6972059B2 (ja) 抵抗変化型メモリ
JP2023037482A (ja) 半導体記憶装置