TWI769179B - 氯二矽氮烷 - Google Patents

氯二矽氮烷 Download PDF

Info

Publication number
TWI769179B
TWI769179B TW106133216A TW106133216A TWI769179B TW I769179 B TWI769179 B TW I769179B TW 106133216 A TW106133216 A TW 106133216A TW 106133216 A TW106133216 A TW 106133216A TW I769179 B TWI769179 B TW I769179B
Authority
TW
Taiwan
Prior art keywords
silicon
substrate
contacting step
pentachlorodisilazane
deposition
Prior art date
Application number
TW106133216A
Other languages
English (en)
Other versions
TW201817908A (zh
Inventor
秉槿 黃
布萊恩D 雷肯
麥克D 特根霍夫
孝賓 周
Original Assignee
美商Ddp特種電子材料美國第9有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Ddp特種電子材料美國第9有限公司 filed Critical 美商Ddp特種電子材料美國第9有限公司
Publication of TW201817908A publication Critical patent/TW201817908A/zh
Application granted granted Critical
Publication of TWI769179B publication Critical patent/TWI769179B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • C01B21/0823Silicon oxynitrides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0828Carbonitrides or oxycarbonitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • C01B32/963Preparation from compounds containing silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/126Preparation of silica of undetermined type
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • C07F7/121Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20
    • C07F7/126Preparation or treatment not provided for in C07F7/14, C07F7/16 or C07F7/20 by reactions involving the formation of Si-Y linkages, where Y is not a carbon or halogen atom
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Silicon Compounds (AREA)

Abstract

氯二矽氮烷;從其合成的矽雜原子化合物;含有該等矽雜原子化合物之裝置;製造該等氯二矽氮烷、該等矽雜原子化合物、及該等裝置的方法;以及該等氯二矽氮烷、矽雜原子化合物、及裝置的用途。

Description

氯二矽氮烷
氯二矽氮烷;從其合成的矽雜原子化合物;含有該等矽雜原子化合物之膜與裝置;製造該等氯二矽氮烷、矽雜原子化合物、膜、及裝置的方法;以及該等氯二矽氮烷、矽雜原子化合物、膜、及裝置的用途。
矽雜原子化合物之膜可作為電子裝置或微機電系統(MEMS)中的介電層、阻障層或應力源層。在組件存在下,藉由使一或多種適合的前驅物化合物經受膜沉積方法,可在需要這類作用的電子裝置或MEMS之組件的一表面上形成膜。前驅物化合物係在組件之表面上蒸發並與之反應或分解的小分子、寡聚物、或巨分子,以這種方式在其上形成矽雜原子化合物之薄的適形塗層。為了形成表現令人滿意地膜,現有前驅物化合物可能需要在高溫下(例如,600°至1,000℃)加熱。
我們(本案發明人)已發現了現有前驅物化合物的問題。一些現有含雜質的前驅物化合物將污染電子裝置或MEMS。為了形成令人滿意的矽雜原子化合物膜,一些現有的前驅物化合物必需在 所塗覆組份之熱敏性特徵降級的溫度下加熱。此外,一些膜可能係有缺陷的,例如,非所欲的厚度或密度或沒有令人滿意的均勻性。
我們對此(等)問題的技術解決方案包含一或多種氯二矽氮烷及其等作為前驅物化合物之用途;從其合成的矽雜原子化合物;含有該等矽雜原子化合物之膜與裝置;製造該等氯二矽氮烷、矽雜原子化合物、膜、及裝置的方法;以及該等氯二矽氮烷、矽雜原子化合物、膜、及裝置的用途。
發明內容及摘要以引用方式併入此處。本發明係以說明性方式藉由揭示複數個代表性、非限制性實施例及實例而描述於本文中。在一些實施例中,本發明係以下編號態樣中任一者。
態樣1:一種1,1,1,3,3-五氯二矽氮烷。即,Cl2HSiN(H)SiCl3
態樣2:一種製造1,1,1,3,3-五氯二矽氮烷的方法,該方法包含使1,1,1-三氯-3,3,3-三甲基二矽氮烷與三氯矽烷(HSiCl3)接觸,以給出1,1,1,3,3-五氯二矽氮烷。在一些實施例中,該方法進一步包含(i)使四氯矽烷(SiCl4)與1,1,1,3,3,3-六甲基二矽氮烷((CH3)3SiN(H)Si(CH3)3)接觸的初步步驟,以給出該1,1,1-三氯-3,3,3-三甲基二矽氮烷(Cl3SiN(H)Si(CH3)3);或(ii)其中該1,1,1,3,3-五氯二矽氮烷需要純化,且該方法進一步包含純化該1,1,1,3,3-五氯二矽氮 烷,以給出其主體形式,其基於該主體形式之總重量含有70至100面積百分比(氣相層析術)(「面積%(GC)」)的1,1,1,3,3-五氯二矽氮烷;或(iii)(i)及(ii)兩者。可替代地,一種製造1,1,1,3,3-五氯二矽氮烷的方法,該方法包含使3莫耳當量的氨(NH3)與1莫耳當量的三氯矽烷(HSiCl3)及1莫耳當量的四氯矽烷(SiCl4)接觸,以給出一莫耳當量的該1,1,1,3,3-五氯二矽氮烷及二莫耳當量的氯化銨(NH4Cl)。
態樣3:一種處理基材之初始表面的方法,該方法包含第一接觸步驟,該第一接觸步驟包含使該基材之該初始表面與以下式(I)之氯二矽氮烷的蒸氣接觸:X1Cl2SiN(H)SiCl2X2(I),其中X1及X2之各者獨立地係H或Cl,使用第一沉積方法以在該基材上給出包含經處理之表面的產物。在第一接觸步驟之前,該基材之初始表面係準備好接收矽雜原子化合物且可能需要介電層、阻障層或應力源層。基材之初始表面與基材之經處理之表面在組成物、反應性或功能性之至少一者不同。
態樣4:一種製造矽雜原子化合物的方法,該方法包含:第一接觸步驟,該第一接觸步驟包含使該基材之該初始表面與以下式(I)之氯二矽氮烷的蒸氣接觸:X1Cl2SiN(H)SiCl2X2(I),其中X1及X2之各者獨立地係H或Cl,使用第一沉積方法以在該基材上給出經處理之表面;以及第二接觸步驟,該第二接觸步驟包含使該基材之該初始表面或該經處理之表面與含(多個)氮原子、(多個)氧原子、(多個)碳原子、或其任二或更多個原子之組合的前驅物材料之蒸氣或電漿接觸,使用第二沉積方法以給出與該基材之該初始表面或該經 處理之表面形成、或在該基材之該初始表面或該經處理之表面上形成的包含矽雜原子化合物之產物。式(I)之氯二矽氮烷係為分子或分子之集合體的化合物,其中各分子獨立地具有式(I)。在第一接觸步驟之前,該基材之初始表面係準備好接收矽雜原子化合物且可能需要介電層、阻障層或應力源層。基材之初始表面與基材之經處理之表面在組成物、反應性或功能性之至少一者不同。第一沉積方法與第二沉積方法可相同或不同。第一沉積方法與第二沉積方法之一或二者可以係成膜方法。矽雜原子化合物之組成物與基材之經處理之表面以及基材之初始表面之組成物不同。在基材之初始表面上,該矽雜原子化合物可經製造作為膜、微粒固體、或經設計之結構。
態樣5:如態樣3或4之方法,其中該式(I)之氯二矽氮烷係1,1,3,3-四氯二矽氮烷(X1=X2=H)或1,1,1,3,3,3-六氯二矽氮烷(X1=X2=Cl)。在一些式(I)之氯二矽氮烷的態樣中,X1=X2=H,可替代地X1=X2=Cl。
態樣6:如態樣3或4之方法,其中該式(I)之氯二矽氮烷係1,1,1,3,3-五氯二矽氮烷(X1=Cl;X2=H)。
態樣7:如態樣4至6中任一者之方法,其中含(多個)氮原子之該前驅物材料係分子氮、氨、肼、有機肼、氫化疊氮、一級胺、或二級胺;含(多個)氧原子之前驅物材料係分子氧、臭氧、水、一氧化二氮(N2O)、或過氧化氫;且含(多個)碳原子之該前驅物材料係甲烷、乙烷、丙烷、丁烷、氯甲基矽烷、具有自1至5個Si原子之全甲基矽烷、或具有1至5個Si原子之甲基氫矽烷。
態樣8:如態樣4至6中任一者之方法,其中該前驅物材料進一步含有(多個)矽原子、(多個)氫原子、(多個)氯原子、或其任二或更多個原子之組合。
態樣9:如態樣4至8中任一者之方法,其中(i)該第一接觸步驟係在執行該第二接觸步驟之前完成,使得該第二接觸步驟包含使該基材之該經處理之表面與前驅物材料之該蒸氣或電漿接觸;或(ii)該方法包含原子層沉積;或(iii)(i)及(ii)兩者。在一些態樣中,該方法係(i)、可替代地(ii)、可替代地(iii)。該原子層沉積可以係電漿增強式。
態樣10:如態樣4至8中任一者之方法,其中(i)該第一接觸步驟與該第二接觸步驟係同時執行,使得該第二接觸步驟包含使該基材之該初始表面與前驅物材料之該蒸氣或電漿接觸;或(ii)該方法包含化學氣相沉積;或(iii)(i)及(ii)兩者。在一些態樣中,該方法係(i)、可替代地(ii)、可替代地(iii)。該化學氣相沉積可以係電漿增強式。
態樣11:如態樣4至10中任一者之方法,其中(i)所製成之該矽雜原子化合物係碳化矽、氮化矽、二氧化矽、氮氧化矽、碳氮化矽、碳氧化矽、或氧碳氮化矽;或(ii)該矽雜原子化合物在該基材之該初始表面上以膜的形狀製成;或(iii)(i)及(ii)兩者。
態樣12:如態樣4至11中任一者之方法,其進一步包含自該產物之該基材分離出該產物之該矽雜原子化合物的步驟,以給出呈自支撐(free-standing)主體形式的經分離之矽雜原子化合物。
態樣13:一種矽雜原子化合物,其係藉由如態樣4至12中任一者之方法所製成。
態樣14:一種製成物品,其包含藉由如態樣3至12中任一項之方法所製成的產物或如態樣13之矽雜原子化合物。該製成物品可以係一電子裝置或一微機電系統(MEMS),其中該產物係該電子裝置或MEMS之一組件。
我們對幾個問題提出技術解決方案。一個技術解決方案係前驅物-1,1,1,3,3-五氯二矽氮烷,其係用於形成矽雜原子化合物。
另一個技術解決方案係處理基材之表面的方法。該基材之表面係需要處理。
另一個技術解決方案係形成矽雜原子化合物的方法,該新方法包含使用式(I)之氯二矽氮烷作為前驅物。
另一個技術解決方案係將沉積溫度降低至600℃之下的方式。
該1,1,3,3-四氯二矽氮烷可由包含以下之方法製成:使3莫耳當量的氨(NH3)與2莫耳當量的三氯矽烷(HSiCl3)接觸,以給出一莫耳當量的該1,1,3,3-四氯二矽氮烷及二莫耳當量的氯化銨(NH4Cl)。
該1,1,1,3,3-五氯二矽氮烷可由態樣2之方法製成。
該1,1,1,3,3,3-六氯二矽氮烷可由包含以下之方法製成:使2莫耳當量的四氯矽烷(SiCl4)與3莫耳當量的氨(NH3)接觸,以給出1莫耳當量的1,1,1,3,3,3-六氯二矽氮烷及2莫耳當量的氯化銨 (NH4Cl)。1,1,1,3,3,3-六氯二矽氮烷具有CAS登錄號14657-30-8,且可購自商業供應商,諸如MOLBASE.com。
以主體形式製備的式(I)之氯二矽氮烷可具有足夠的純度以用於製造該矽雜原子化合物的方法中。在一些實施例中,所製備之式(I)之氯二矽氮烷的主體形式可能需要純化。式(I)之氯二矽氮烷的合成可進一步包含純化其之主體形式,諸如藉由分餾或氣相層析術。
式(I)之氯二矽氮烷的主體形式以及其他前驅物材料之純度可藉由29Si-NMR、逆相液相層析術、或更可能的是藉由如後所述的氣相層析術(GC)來測定。例如,由GC測定的純度可以自60面積%至
Figure 106133216-A0202-12-0007-4
100面積%(GC)、可替代地自70面積%至
Figure 106133216-A0202-12-0007-5
100面積%(GC)、可替代地自80面積%至
Figure 106133216-A0202-12-0007-6
100面積%(GC)、可替代地自90面積%至
Figure 106133216-A0202-12-0007-7
100面積%(GC)、可替代地自93面積%至
Figure 106133216-A0202-12-0007-8
100面積%(GC)、可替代地自95面積%至
Figure 106133216-A0202-12-0007-9
100面積%(GC)、可替代地自97面積%至
Figure 106133216-A0202-12-0007-10
100面積%(GC)、可替代地自99.0面積%至
Figure 106133216-A0202-12-0007-11
100面積%(GC)。各
Figure 106133216-A0202-12-0007-13
100面積%(GC)可獨立地如先前所定義。
矽雜原子化合物由矽與至少一個選自碳、氮及氧的雜原子所組成。矽雜原子化合物可由以下所組成:碳化矽(Si及C原子)、氮化矽(Si及N原子)、二氧化矽(Si及O原子)、碳氮化矽(Si、C、及N原子)、碳氧化矽(Si、C、及O原子)、氧碳氮化矽(Si、C、N、及O原子)、或氮氧化矽(Si、N、及O原子)。該矽雜原子化合物之主體形式(二或更多種分子之集合體)可能不含另外的元素或,可選地,可進一步含有一或多種摻雜物及/或一或多種雜質。 摻雜物係除Si、C、N、與O之外的元素,其係有意地以測量的量加至主體形式中以增強在特別應用中該主體材料之性質。雜質係除Si、C、N、與O以及污染主體形式的摻雜物之外的元素,其中(多種)雜質元素濃度越低越好。理想地矽雜原子化合物之主體形式係不含雜質(即(多種)雜質元素濃度為0%)。
製造矽雜原子化合物的方法包含第一與第二沉積方法。在本文中可使用的沉積方法不特別限制且包括眾所周知之任一種沉積技術、沉積設備、以及用於將矽雜原子化合物沉積到基材上之操縱前驅物材料的相關操作條件。適合使用於製造矽雜原子化合物之方法中的沉積技術、設備及與彼等相關的操作條件通常係本領域眾所周知的。沉積方法通常涉及將基材放置在沉積裝置之反應腔室中;抽空容納該基材的反應腔室;在反應腔室中加熱該基材;在反應腔室外產生一或多種前驅物;將(多種)前驅物進料到反應腔室中,其中當使用二或更多種前驅物時,其可以依序地或同時地進料;及允許(多種)前驅物經吸附在加熱的基材之表面上(其中彼等可分解以形成矽雜原子化合物),或允許(多種)前驅物進行化學反應以給出呈蒸氣形式之矽雜原子化合物(隨後吸附在加熱的基材之表面上);停止(多種)前驅物之進料,冷卻該基材並將其自反應腔室移出以給出產物。
在某些實施例中,各沉積方法獨立地包含物理氣相沉積、原子層沉積(ALD)、或化學氣相沉積(CVD)。該物理氣相沉積方法可包含濺鍍。適合的濺鍍方法包括直流(DC)磁控濺射法、離子束濺 鍍法、反應濺鍍法、以及離子輔助濺鍍法。一般而言,該沉積方法包含ALD或CVD。
適合的ALD方法包括電漿增強原子層沉積法(PEALD)、空間原子層沉積法(SALD)以及熱原子層沉積法(TALD)。當用PEALD方法時,該電漿可以係前述電漿之任一者。該電漿可以可選地進一步包含載氣諸如分子氮或氬氣體。電漿係由電漿形成氣體所形成,其可包含分子氮與分子氫之混合物。
適合的CVD方法包括以下之方法:簡單熱氣相沉積、電漿增強化學氣相沉積(PECVD)、電子迴旋共振(ECRCVD)、大氣壓化學氣相沉積(APCVD)、低壓化學氣相沉積(LPCVD)、超高真空化學氣相沉積(UHVCVD)、氣溶膠輔助化學氣相沉積(AACVD)、直接液體注入化學氣相沉積(DLICVD)、微波電漿輔助化學氣相沉積(MPCVD)、遠端電漿增強化學氣相沉積(RPECVD)、原子層化學氣相沉積(ALCVD)、熱絲化學氣相沉積(HWCVD)、混合物理化學氣相沉積(HPCVD)、快速熱化學氣相沉積(RTCVD)、及氣相磊晶化學氣相沉積(vapor-phase epitaxy chemical vapor deposition,VPECVD)、光輔助化學氣相沉積(photo-assisted chemical vapor disposition,PACVD)及火焰輔助化學氣相沉積(FACVD)。
CVD方法可使用CVD裝置進行,其係可流動化學氣相裝置、熱化學氣相沉積裝置、電漿增強化學氣相沉積裝置、光化學氣相沉積裝置、電子迴旋共振裝置、感應耦合電漿裝置、磁約束電漿裝置、低壓化學氣相沉積裝置、或噴射氣相沉積裝置。在某些實施例 中,該CVD技術與裝置包含電漿增強化學氣相沉積,可替代地低壓化學氣相沉積。適合的CVD技術與裝置係循環式CVD技術與循環式CVD裝置。
濺鍍、ALD、或CVD沉積裝置之反應腔室係容積式地封閉空間。該反應腔室可主控操作條件並容納形成該矽雜原子化合物的基材。在沉積方法期間,將式(I)之氯二矽氮烷、前驅物材料以及任何其他沉積材料(例如,惰性氣體或反應性物種)進料到反應腔室中。該進料可係依序的或同時的。用於形成矽雜原子化合物膜的蒸氣、氣體、或電漿可在反應腔室中混合與反應。該反應形成蒸氣狀態之適當膜元素或分子。接著該元素或分子沉積在基材(例如,半導體晶圓)上並積累以形成膜。在所有其他條件同等的情況下,元素或分子允許積累的時間越長,膜的厚度越大。
用於製造矽雜原子化合物之方法並獲得不同膜厚的技術、設備、及操作條件係可優化的。優化可基於諸如具體的式(I)之氯二矽氮烷及/或前驅物材料,以及用在該方法中之任何其他材料之考量、所製成之矽雜原子化合物的具體組成、矽雜原子化合物之所欲純度、基材之幾何組態、意圖併入或使用矽雜原子化合物的裝置或應用、以及經濟(成本)考量。額外考量為反應腔室中的溫度及壓力、式(I)之氯二矽氮烷之氣相濃度、任何額外的反應物氣體濃度(例如,任何碳前驅物材料、氮前驅物材料、及/或氧前驅物材料之氣體濃度)、總氣體流、基材溫度、以及基材安定性。氧前驅物材料,臭氧,可以在空氣中自>0體積/體積百分比(v/v%)至5 v/v%之濃度或在分子 氧中自>0 v/v%至14 v/v%之濃度遞送。無論優化與否,該等操作條件藉由在反應腔室中產生化學反應(諸如式(I)之氯二矽氮烷與任何其他前驅物材料之熱解、氧化、還原、水解、胺解(例如,胺化)、碳化、或其任二或更多者之組合),而導致矽雜原子化合物的形成。
沉積方法通常需要對反應腔室添加能量,諸如在式(I)之氯二矽氮烷、前驅物材料、以及任何其他沉積材料進料到其中之前,將反應腔室抽空並對反應腔室及容納在其中的基材加熱。沉積方法可在低於大氣壓力(諸如1至13,000帕斯卡(Pa)、可替代地1至1,300Pa、可替代地10至1,300Pa、可替代地130至1,300Pa)下進行。該沉積方法實行的溫度可以是恆溫的或是動態的。習知沉積方法(不使用式(I)之氯二矽氮烷)通常需要顯著較高的沉積溫度,諸如大於600℃,例如600°至1000℃。然而,咸信式(I)之氯二矽氮烷可在遠遠較低溫度的沉積方法中利用,例如自100°至700℃、可替代地自200°至700℃、可替代地自200°至<600℃、可替代地自200°至500℃、可替代地自200°至400℃、可替代地自100°至300℃。
製造矽雜原子化合物的方法之一些實施例可進一步包括包含一氧化二氮(N2O)的反應性環境。在這些實施例中,該方法通常涉及在一氧化二氮存在下分解式(I)之氯二矽氮烷。這類方法通常描述於US 5,310,583。相對於不包括一氧化二氮的方法之實施例,一氧化二氮可以修飾實施例所製得矽雜原子化合物之組成。
製造矽雜原子化合物的方法之一些實施例可進一步包括惰性氣體,其可與式(I)之氯二矽氮烷及/或前述前驅物材料之任一者組 合使用。惰性氣體的實例係氦、氬、及其混合物。例如,氦可與式(I)之氯二矽氮烷及/或含碳前驅物、含氮前驅物、及含氧前驅物中之任一者在該方法之實施例中組合使用,其中所形成之該矽雜原子化合物分別係矽碳化合物、矽氮化合物、或矽氧化合物。
基材一般使用在方法中以提供矽雜原子化合物合成或在其合成後沉積的地方。該基材在組成或形狀上不特別限制。在某些實施例中,在操作條件(諸如沉積裝置之反應腔室中的溫度與反應性環境)下該基材具有足夠的熱及/或化學安定性。適合的基材可以係由矽酸鹽玻璃、金屬、塑膠、陶瓷、或半導體材料所組成。半導體材料可以係元素矽(例如,單晶矽、多晶矽、或非晶矽)。沉積矽雜原子化合物的基材之表面可以係平坦(平面的)或經圖案化。該經圖案化表面可具有以下範圍之寬高比特徵:自1至500、可替代地自1至50、可替代地自10至50。該沉積方法可形成適形地塗覆基材之平坦或經圖案化表面的膜。該基材之經圖案化表面的圖案是可以被這樣設計的,即於其上形成的矽雜原子化合物膜具有設計好的互補形狀。
沉積方法一般形成矽雜原子化合物作為膜。該膜在一個維度受到限制,其可稱作其厚度。該膜可以係非晶或結晶材料。該膜可為結晶的或磊晶的。矽雜原子化合物膜可以係矽碳膜、矽氮膜、或矽氧膜。(例如氮化矽、碳氮化矽、氮氧化矽、或氧碳氮化矽膜),可替代地矽氮膜或矽氧膜(例如氮化矽、氧化矽)。本方法所形成之矽碳膜含有Si及C原子以及可選地N及/或O原子。本方法所形成之矽氮膜含有Si及N原子以及可選地C及/或O原子。本方法所形成之矽氧 膜含有Si及O原子以及可選地C及/或N原子。在一些態樣中,該膜係經沉積在矽晶圓上。在一些態樣中,矽雜原子化合物係氮化矽、可替代地碳化矽、可替代地二氧化矽、可替代地氮氧化矽、可替代地碳氮化矽、可替代地碳氧化矽、可替代地氧碳氮化矽。
可使用不同沉積方法或操作條件來形成具不同厚度之矽雜原子化合物膜。特定的沉積方法以及操作條件將對膜之結構與性質有所影響。通常,控制膜結構的定向、膜聚結之方式、膜的均勻性、以及膜的結晶/非結晶結構係可能的。特定膜之厚度可以係均勻,並且可對膜之不同預期最終用途製造具有不同厚度的不同膜。舉例來說,矽雜原子化合物膜的一個實施例可具有數奈米的厚度,而另一個實施例可具有數微米的厚度,且又另一個實施例可具有更大或更小的厚度或落在這些值之間的厚度。在一些實施例中,該膜具有自0.01至1,000奈米(nm)之厚度、可替代地0.1至100nm、可替代地1至100nm。
一旦形成,該矽雜原子化合物(例如,其膜)被當作(即)未覆蓋狀態使用。該膜可以於當其沉積在基材上的時候使用,或者在使用膜之前可將膜自基材分離。
可替代地,矽雜原子化合物(例如,其膜)可選地被一或多種頂塗層覆蓋。各頂塗層可獨立地由矽雜原子化合物之實施例或不同材料組成,並且可獨立地藉由製造矽雜原子化合物之方法或藉由不同(非本發明)的方法來形成。非本發明的方法可以使用不同於式(I)之氯二矽氮烷的前驅物材料。可覆蓋矽雜原子化合物(之膜)的頂 塗層之實例係SiO2塗層、SiO2/改質陶瓷氧化物層、含矽塗層、含矽碳塗層、含碳化矽塗層、含矽氮塗層、含氮化矽塗層、含矽氮碳塗層、含矽氧氮塗層、及/或類鑽石碳塗層。此等頂塗層及適合的製造方法通常係所屬技術領域中已知。
因為式(I)之氯二矽氮烷含有兩個Si-N鍵,在一些實施例中,可利用式(I)之氯二矽氮烷來形成氮化矽膜而不使用含氮前驅物。可替代地,必要時,也可以使用含氮前驅物。
該矽雜原子化合物可用於電子或光伏裝置與應用。這類用途包括呈膜之形狀、複數個粒子、或經設計之結構的矽雜原子化合物;無論該化合物係沉積在基材上或係自支撐的;且無論化合物係未覆蓋狀態或如上述係頂覆蓋狀態。該矽雜原子化合物可使用作為介電、阻障或應力源材料。矽雜原子化合物之氮化矽膜實施例在電容器之多晶矽層之間可充當絕緣層、鈍化層、或介電層。
此外,該沉積方法之操作條件可經調整以控制該方法是形成元素Si膜還是諸如SiN膜之矽雜原子化合物。在一額外的態樣中,本發明進一步包括形成不含雜原子N、C、與O之元素矽膜的方法,該方法包含態樣3之第一接觸步驟。
此描述係有意寫出,以使得任一所述之實例特徵或限制、任一所述之馬庫西次屬或種類、或任一所述之範圍次範圍數字皆可獲得憑藉,並對於修改申請專利範圍提供適當支持。
除非本文中另有定義,本文中所使用化學技術用語的意義可見於IUPAC。Compendium of Chemical Terminology,2nd ed. (「金皮書」)。編譯者為A.D.McNaught及A.Wilkinson。Blackwell Scientific Publications,Oxford(1997)。XML線上修正版本:http://goldbook.iupac.org(2006-),建立者為M.Nic、J.Jirat、B.Kosata;更新編譯者為A.Jenkins。ISBN 0-9678550-9-8.doi:10.1351/goldbook.Hawley’s CONDENSED CHEMICAL DICTIONARY,11th,N.Irving Sax & Richard J.Lewis,Sr.,1987(Van Nostrand Reinhold)可能有IUPAC未定義的用語。
除非本文中另有定義,本文中所使用通常用語的意義可見於此處。可替代地(alternatively)用於介紹相異之實施例。冠詞「一(a,an)」、及「該(the)」各自係指一或多者。化學元素或原子、化學元素之族應指由IUPAC於元素週期表(版本日期2013年5月1日)中所發表者。任何比較例係僅供說明目的,而不應意指先前技術。合成的產物可具有之結構可視用於製造其之特定反應物及合成條件而定。該可變更性並非不受限制,而是根據反應物之結構及合成化學與條件而受限。不含(free of)或沒有(lack)意指完全不存在;可替代地無法偵測到,例如利用核磁共振(NMR)光譜法(例如1H-NMR、13C-NMR、或29Si-NMR)或傅立葉轉換紅外線(FT-IR)光譜法無法偵測到。發明(invention)與發明性(inventive)意指代表性實施例或態樣,且不應解讀為構成整體發明。IUPAC係國際純化學和應用化學聯合會(International Union of Pure and Applied Chemistry)(IUPAC Secretariat,Research Triangle Park,North Carolina,USA)。馬庫西群組包含二或更多個成員之屬。成員A及B之馬庫西群組可等效表示 為:「選自A及B之成員(a member selected from A and B)」;「選自由A及B所組成之群組的成員(a member selected from the group consisting of A and B)」;或「成員A或B(a member A or B)」。各成員可獨立地係該屬之次屬或種類。可(may)代表允許有選擇性,而非必要性。操作性(operative)意指功能上可行或有效。可選(地)(optional(ly))意指不存在(或排除),可替代地存在(或包括)。性質係使用標準測試方法及用於該測量的條件來測量。數字的範圍包括其中所涵蓋的端點、子範圍、及整數及/或分數值,例外的是,整數的範圍不包括分數值。自多種組分之混合物移除一種組分,不包括選擇性使該組分衍生/反應以形成衍生物/產物,除非該衍生物/產物在實體上與該混合物的其他組分分離。媒劑(vehicle)意指作為載劑、分散劑、稀釋劑、儲存介質、上清液、或用於另一種材料之溶劑的液體,該材料可或不可溶於其中。
本文中的任何化合物包括所有其同位素形式,其包括天然豐度形式與同位素濃化形式。在一些態樣中,同位素形式係天然豐度形式,可替代地係同位素濃化形式。同位素濃化形式可具有額外用途,諸如醫學或防偽應用,其中同位素濃化化合物的偵測有助於治療或檢測。
在一些態樣中,本文所述之任何組成物可含有元素週期表第1至18族之化學元素中之任何一或多者。在一些態樣中,至少一個此類化學元素特別自組成物排除,例外不排除的係Si、O、H、C、N、以及Cl。在一些態樣中,特別排除的化學元素可為:(i)來自第2 至13及18族中任一者之至少一個化學元素,包括鑭系元素及錒系元素;(ii)來自元素週期表第三至第六列中任一者之至少一個化學元素,包括鑭系元素及錒系元素;或(iii)(i)及(ii)兩者,例外的是不排除Si、O、H、C、N、以及Cl。
實例
藉由以下的非限制性實例來進一步說明本發明,並且本發明實施例可以包括以下限制性實例之特徵和限制的任意組合。環境溫度約為23℃,且所有百分比皆為重量百分比,除非另有指明。
薄膜特性化方法:使用橢圓光譜偏光儀(M-2000DI,J.A.Woollam)測量薄膜之厚度及氮化矽之折射率(在632.8nm)。自375nm至1690nm收集橢圓偏光數據,並使用具有J.A.Woollam所提供之軟體的Cauchy或Tauc-Lorentz振盪器型號分析。
濕式蝕刻速率(WER):由PEALD SiN製程生長之薄膜的濕式蝕刻速率測試係在室溫下使用500:1 HF:水溶液執行。自歷時指定時間量的蝕刻之前與之後的厚度差計算濕式蝕刻速率。
氣相層析術-火焰離子化偵測器(GC-FID)條件:長度30公尺、內徑0.32mm的毛細管柱,並且在該毛細管柱的內表面上含有塗層形式的0.25μm厚固定相,其中該固定相由苯基甲基矽氧烷所組成。載氣是以每分鐘105mL的流速使用的氦氣。GC儀器是Agilent型號7890A氣相層析儀。入口溫度係200℃。GC實驗溫度曲線係由以下所組成:在50℃持溫(保持)2分鐘、以15℃/分鐘的速率升溫到250℃、然後在250℃持溫(保持)10分鐘。
GC-MS儀器和條件:藉由電子撞擊離子化及化學離子化氣相層析-質譜法(EI GC-MS及CI GC-MS)分析樣本。Agilent 6890 GC條件包括具有30公尺(m)×0.25毫米(mm)×0.50微米(μm)膜組態的DB-1管柱。烘箱程式為在50℃持溫2分鐘、以15℃/分鐘升溫至250℃、然後在250℃持溫10分鐘。氦載氣流量為70mL/分鐘的恆定流速和50:1的分離噴射。Agilent 5973 MSD條件包括自15至800道耳頓之MS掃描範圍、EI離子化,及CI離子化(使用混合5% NH3及95% CH4之訂製CI氣體)。
製備1:1,1,1-三氯-3,3,3-三甲基二矽氮烷的合成。添加23.75克(g)的六甲基二矽氮烷至100g沸騰超過5分鐘的SiCl4,然後使所得之混合物回流5小時,以給出粗製1,1,1-三氯-3,3,3-三甲基二矽氮烷((CH3)3SiNHSiCl3)。通過30公分(cm)的Vigreux管柱,分餾 粗製1,1,1-三氯-3,3,3-三甲基二矽氮烷,以給出25.39g的98面積%(GC)純之1,1,1-三氯-3,3,3-三甲基二矽氮烷。
實例1:1,1,1,3,3-五氯二矽氮烷的合成。在裝有熱電偶及回流冷凝器之100mL的3頸燒瓶中,將15.03g製備1之經純化的1,1,1-三氯-3,3,3-三甲基二矽氮烷溶於10.00g的十六烷中。向所得之溶液添加27.43g的三氯矽烷,並在冷凝器頂部上放置橡膠隔片。將所得之混合物加熱至大約45℃,並通過隔片釋放過量壓力。然後將混合物進一步加熱至大約60℃,並在其下將混合物攪拌1週。使所得之反應混合物冷卻,並在粗製混合物中獲得23%產率的1,1,1,3,3-五氯二矽氮烷。
實例2:1,1,1,3,3-五氯二矽氮烷的純化。通過30cm的Vigreux管柱,蒸餾實例1之1,1,1,3,3-五氯二矽氮烷,以給出2.05g(12.2%產率)的具有85面積%(GC)純度之1,1,1,3,3-五氯二矽氮烷。
實例3至實例15:使用1,1,1,3,3,3-六氯二矽氮烷以含氮氣體及PEALD形成氮化矽膜:使用PEALD反應器(含有經加熱到350至500℃之設定點的複數個水平定向並間隔開的矽晶圓)及小圓筒(含有HCDZ且與PEALD反應器流體連通),以在晶圓上產生膜。使圓筒維持在室溫下或將其加熱以其蒸氣壓。以氮(N2)吹掃PEALD反應器,然後以下列順序用HCDZ生長PEALD SiN膜:HCDZ劑量,1sec/N2吹掃,30sec/電漿伴隨著含氮氣體,諸如NH3+氬、NH3+N2、合成氣體(10% H2於N2中)+氬,歷時15sec/N2吹掃,30 sec。重複前述步驟順序直到在晶圓上形成具有所欲厚度之氮化矽膜。然後評估膜之濕式蝕刻速率。各實例之用於產生膜的參數及測試結果係列於表2中。
實例16至實例28:使用1,1,1,3,3,3-六氯二矽氮烷(HCDZ)以氧化劑氣體於ALD中形成氧化矽膜:使用ALD反應器(含 有經加熱到350至500℃之設定點的複數個水平定向並間隔開的矽晶圓)及小圓筒(含有HCDZ且與ALD反應器流體連通),以在晶圓上產生膜。以氬(Ar)吹掃ALD反應器。然後以下列順序用HCDZ生長ALD SiO2膜:HCDZ劑量,3sec/Ar吹掃,3sec/含氧化劑氣體,諸如O3(臭氧)/O2或H2O,歷時3sec/Ar吹掃,3sec。重複前述步驟順序直到在晶圓上形成具有所欲厚度之氧化矽膜。接下來測試膜之濕式蝕刻速率。用於生長膜的參數及膜之測試結果係於下表3中。
以下的申請專利範圍係以引用方式併入本文中,並且用語「請求項(claim)」係以用語「態樣(aspect)」取代。本發明之實施例也包括這些所得編號態樣。

Claims (11)

  1. 一種1,1,1,3,3-五氯二矽氮烷。
  2. 一種製造1,1,1,3,3-五氯二矽氮烷的方法,該方法包含使1,1,1-三氯-3,3,3-三甲基二矽氮烷與三氯矽烷(HSiCl3)接觸,以給出1,1,1,3,3-五氯二矽氮烷。
  3. 一種處理基材之初始表面的方法,該方法包含第一接觸步驟,該第一接觸步驟包含使該基材之該初始表面與1,1,1,3,3-五氯二矽氮烷的蒸氣接觸,使用第一沉積方法以在該基材上給出經處理之表面。
  4. 一種製備矽雜原子化合物的方法,該方法包含:第一接觸步驟,該第一接觸步驟包含使該基材之該初始表面與1,1,1,3,3-五氯二矽氮烷的蒸氣接觸,使用第一沉積方法以在該基材上給出經處理之表面;以及第二接觸步驟,該第二接觸步驟包含使該基材之該初始表面或該經處理之表面與含(多個)氮原子、(多個)氧原子、(多個)碳原子、或其任二或更多個原子之組合的前驅物材料之蒸氣或電漿接觸,使用第二沉積方法以給出與該基材之該初始表面或該經處理之表面形成、或在該基材之該初始表面或該經處理之表面上形成的包含矽雜原子化合物之產物。
  5. 如請求項4之方法,其中含(多個)氮原子之該前驅物材料係分子氮、氨、肼、有機肼、氫化疊氮、一級胺、或二級胺;含(多個)氧原子之該前驅物材料係分子氧、臭氧、水、一氧化二氮、或過氧化氫;且含(多個)碳原子之該前驅物材料係甲烷、乙烷、丙烷、 丁烷、氯甲基矽烷、具有自1至5個Si原子之全甲基矽烷、或具有1至5個Si原子之甲基氫矽烷。
  6. 如請求項4之方法,其中該前驅物材料進一步含有(多個)矽原子、(多個)氫原子、(多個)氯原子、或其任二或更多個原子之組合。
  7. 如請求項4之方法,其中該第一接觸步驟係在執行該第二接觸步驟之前完成,使得該第二接觸步驟包含使該基材之該經處理之表面與前驅物材料之該蒸氣或電漿接觸;或該方法包含原子層沉積;或兩者。
  8. 如請求項4之方法,其中該第一接觸步驟與該第二接觸步驟係同時執行,使得該第二接觸步驟包含使該基材之該初始表面與前驅物材料之該蒸氣或電漿接觸;或該方法包含化學氣相沉積;或兩者。
  9. 如請求項4之方法,其中所製成之該矽雜原子化合物係碳化矽、氮化矽、二氧化矽、氮氧化矽、碳氮化矽、碳氧化矽、或氧碳氮化矽;或其中該矽雜原子化合物在該基材之該初始表面上以膜的形狀製成;或兩者。
  10. 如請求項4之方法,其進一步包含自該產物之該基材分離出該產物之該矽雜原子化合物的步驟,以給出呈自支撐(free-standing)主體形式的經分離之矽雜原子化合物。
  11. 一種製造1,1,1,3,3-五氯二矽氮烷的方法,該方法包含使3莫耳當量的氨與1莫耳當量的三氯矽烷及1莫耳當量的四氯矽烷接觸,以 給出一莫耳當量的該1,1,1,3,3-五氯二矽氮烷及二莫耳當量的氯化銨。
TW106133216A 2016-09-28 2017-09-27 氯二矽氮烷 TWI769179B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662400720P 2016-09-28 2016-09-28
US62/400,720 2016-09-28

Publications (2)

Publication Number Publication Date
TW201817908A TW201817908A (zh) 2018-05-16
TWI769179B true TWI769179B (zh) 2022-07-01

Family

ID=60162241

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111110158A TW202227656A (zh) 2016-09-28 2017-09-27 氯二矽氮烷
TW106133216A TWI769179B (zh) 2016-09-28 2017-09-27 氯二矽氮烷

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111110158A TW202227656A (zh) 2016-09-28 2017-09-27 氯二矽氮烷

Country Status (7)

Country Link
US (2) US20190309416A1 (zh)
EP (2) EP3663260A1 (zh)
JP (2) JP6794533B2 (zh)
KR (2) KR102317300B1 (zh)
CN (2) CN109790036B (zh)
TW (2) TW202227656A (zh)
WO (1) WO2018063907A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109790036B (zh) * 2016-09-28 2022-11-04 美国陶氏有机硅公司 氯二硅氮烷
US10985010B2 (en) 2018-08-29 2021-04-20 Versum Materials Us, Llc Methods for making silicon and nitrogen containing films
CN112969818A (zh) 2018-10-03 2021-06-15 弗萨姆材料美国有限责任公司 用于制备含硅和氮的膜的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4482669A (en) * 1984-01-19 1984-11-13 Massachusetts Institute Of Technology Preceramic organosilazane polymers
US4535007A (en) * 1984-07-02 1985-08-13 Dow Corning Corporation Silicon nitride-containing ceramics
CN1023786C (zh) * 1987-12-04 1994-02-16 赫彻斯特股份公司 含四氮化三硅的陶瓷材料和其制备方法
DE3741059A1 (de) * 1987-12-04 1989-06-15 Hoechst Ag Polysilazane, verfahren zu ihrer herstellung, aus ihnen herstellbare siliziumnitrid enthaltende keramische materialien, sowie deren herstellung
US5310583A (en) 1992-11-02 1994-05-10 Dow Corning Corporation Vapor phase deposition of hydrogen silsesquioxane resin in the presence of nitrous oxide
US7365029B2 (en) * 2002-12-20 2008-04-29 Applied Materials, Inc. Method for silicon nitride chemical vapor deposition
JP4112448B2 (ja) 2003-07-28 2008-07-02 株式会社東芝 電気光配線基板及び半導体装置
US7129187B2 (en) 2004-07-14 2006-10-31 Tokyo Electron Limited Low-temperature plasma-enhanced chemical vapor deposition of silicon-nitrogen-containing films
US7902084B2 (en) * 2007-07-05 2011-03-08 Micron Technology, Inc. Silicon dioxide deposition methods using at least ozone and TEOS as deposition precursors
US20140273530A1 (en) * 2013-03-15 2014-09-18 Victor Nguyen Post-Deposition Treatment Methods For Silicon Nitride
US10453675B2 (en) * 2013-09-20 2019-10-22 Versum Materials Us, Llc Organoaminosilane precursors and methods for depositing films comprising same
JP6545093B2 (ja) 2015-12-14 2019-07-17 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
US9633838B2 (en) * 2015-12-28 2017-04-25 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Vapor deposition of silicon-containing films using penta-substituted disilanes
JP6470468B2 (ja) * 2016-03-18 2019-02-13 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置、およびプログラム
KR102698026B1 (ko) * 2016-09-28 2024-08-21 삼성전자주식회사 유전막 형성 방법 및 반도체 장치의 제조 방법
CN109790036B (zh) * 2016-09-28 2022-11-04 美国陶氏有机硅公司 氯二硅氮烷

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
G. Ziegenbalg et al., 1999. Gas-phase synthesis of amorphous silicon nitride — reaction paths and powder characteristics, Journal of Materials Science, Vol. 34, page: 2199-2206.
H. Fleischer et al., 1995. 1,1,3,3-Tetrachlordisilazan, ZAAC, Vol. 621, Issue 2, Abstract.;G. Ziegenbalg et al., 1999. Gas-phase synthesis of amorphous silicon nitride — reaction paths and powder characteristics, Journal of Materials Science, Vol. 34, page: 2199-2206. *

Also Published As

Publication number Publication date
US20220119947A1 (en) 2022-04-21
EP3519353A1 (en) 2019-08-07
WO2018063907A1 (en) 2018-04-05
EP3663260A1 (en) 2020-06-10
JP7077357B2 (ja) 2022-05-30
JP2020123750A (ja) 2020-08-13
KR20200113014A (ko) 2020-10-05
KR102317300B1 (ko) 2021-10-26
KR20190046972A (ko) 2019-05-07
CN115504477A (zh) 2022-12-23
US20190309416A1 (en) 2019-10-10
TW201817908A (zh) 2018-05-16
CN109790036A (zh) 2019-05-21
TW202227656A (zh) 2022-07-16
CN109790036B (zh) 2022-11-04
EP3519353B1 (en) 2021-03-17
JP2019532894A (ja) 2019-11-14
JP6794533B2 (ja) 2020-12-02
KR102244755B1 (ko) 2021-04-28

Similar Documents

Publication Publication Date Title
JP6934045B2 (ja) トリクロロジシラン
JP6343032B2 (ja) 新規なアミノシリルアミン化合物、および原子層蒸着法を用いたSi‐N結合を含む絶縁膜の製造方法
JP7077357B2 (ja) クロロジシラザン
TWI773643B (zh) 五氯二矽烷
TWI749067B (zh) 無SiH之乙烯基二矽烷