TWI769160B - 用以軟啟動大功率電荷泵的方法、電路,及電子系統 - Google Patents

用以軟啟動大功率電荷泵的方法、電路,及電子系統 Download PDF

Info

Publication number
TWI769160B
TWI769160B TW106117545A TW106117545A TWI769160B TW I769160 B TWI769160 B TW I769160B TW 106117545 A TW106117545 A TW 106117545A TW 106117545 A TW106117545 A TW 106117545A TW I769160 B TWI769160 B TW I769160B
Authority
TW
Taiwan
Prior art keywords
power
bootstrap
charge pump
gate
circuit
Prior art date
Application number
TW106117545A
Other languages
English (en)
Other versions
TW201743549A (zh
Inventor
艾瑞克曼寧 索利
梅裕爾 沙
冰 李
保羅K 斯弗拉扎
Original Assignee
美商英特矽爾美國有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商英特矽爾美國有限公司 filed Critical 美商英特矽爾美國有限公司
Publication of TW201743549A publication Critical patent/TW201743549A/zh
Application granted granted Critical
Publication of TWI769160B publication Critical patent/TWI769160B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps

Abstract

根據實施例的軟啟動電荷泵電路的方法包括:啟用複數個功率電晶體的開關,從複數個開關控制信號中為所選擇的複數個功率電晶體選擇第一開關控制信號,緩慢斜升與所選擇的複數個功率電晶體相關聯的複數個自舉電源電壓,以第一預定義位準驅動所選擇的複數個功率電晶體之每一功率電晶體的閘源電壓,及決定複數個自舉電源電壓是否小於第二預定義位準。若複數個自舉電源電壓小於第二預定義位準,則該方法亦包括切換,從而從複數個開關控制信號中為第二所選擇的複數個功率電晶體選擇第二開關控制信號。

Description

用以軟啟動大功率電荷泵的方法、電路,及電子系統
本專利申請案主張於2016年6月3日提交的美國臨時申請第62/345,714號和2017年3月31日提交的美國臨時申請第62/480,286號的優先權,所有該等申請的內容以引用方式全部併入本文。
本發明的實施例大體而言係關於電子系統的功率,更特定言之係關於軟啟動大功率電荷泵的方法和裝置。
電荷泵是開關電容器、無電感器的DC-DC電壓或功率轉換器,主要用於為可攜式消費電子設備(例如筆記型電腦、膝上型電腦、個人電腦、平板電腦、智慧型電話、數碼相機等)提供工作電壓或功率。大功率電荷泵需要將其電容器從初始狀態電壓充電到穩態電壓。會出現與此種需求相關的問題。
根據實施例的軟啟動電荷泵電路的方法包括啟用複數個功率電晶體的開關切換,從複數個開關控制信號中為所選擇的複數個功率電晶體選擇第一開關控制信號,緩慢斜升與所選擇的複數個功率電晶體相關聯的複數個自舉電源電壓,以第一預定義位準驅動所選擇的複數個功率電晶體之每一功率電晶體的閘源電壓,及決定複數個自舉電源電壓是否小於第二預定義位準。若複數個自舉電源電壓小於第二預定義位準,則該方法亦包括切換,從而從複數個開關控制信號中為第二所選擇的複數個功率電晶體選擇第二開關控制信號。
現在將參考附圖詳細描述本發明的實施例,作為實施例的說明性實例提供附圖,以使得本領域技藝人士能夠實踐對於本領域技藝人士顯而易見的實施例和替代方案。值得注意的是,下面的附圖和實例並不意味著將本發明實施例的範疇局限於單個實施例,而是藉由交換一些或所有所述或所示的元件,其他實施例亦是可能的。此外,在本發明的實施例的某些元件可以使用已知部件部分或完全實施的情況下,將僅說明該等已知部件的理解本發明的實施例所必需的那些部分,將省略該等已知部件的其它部分的詳細說明,以免使本發明的實施例難以理解。被描述為以軟體實施的實施例不應該被限制於此,而是可以包括以硬體或軟體和硬體的組合實施的實施例,反之亦然,如對本領域技藝人士將是顯而易見的,除非另有說明。在本說明書中,顯示單數部件的實施例不應被認為是限制性的;相反,本案內容意欲涵蓋包括複數個相同部件的其他實施例,反之亦然,除非本文另有明確說明。此外,申請人不打算將說明書或申請專利範圍中的任何術語歸為不常見或特殊含義,除非明確如此闡明。此外,本發明的實施例包括本文藉由說明的方式提及的已知部件的當前和將來知曉的均等物。
電荷泵是開關電容器、無電感器的DC-DC電壓或功率轉換器,主要用於為可攜式消費電子設備(例如筆記型電腦、膝上型電腦、個人電腦、平板電腦、智慧型電話、數碼相機等)提供工作電壓或功率。電荷泵通常用於基於CMOS的系統中,此係因為電荷泵電路系統節省面積並因此具有成本效益,並且可以容易地利用現有的積體電路技術實施。
然而,現有的大功率電荷泵(例如,具有高於1A的工作電流的電荷泵)存在許多嚴重問題。當大功率電荷泵電路的電容器從其初始狀態電壓充電到其穩態電壓時的啟動期間會出現該等問題。特別地,在啟動期間,在達到穩態之前,在電路的開關電晶體和電容器中產生非常高的電流(例如>100A)。產生該等非常高的電流是因為在電荷泵電路中沒有使用可用於限制該等電流(di/dt)及/或儲存啟動期間產生的相應能量的電感器。因此,該等啟動電流僅受到所涉及的大功率電荷泵電路中的開關電晶體(Rdson)和電容器(Resr)的固有電阻的限制。因此,在啟動期間,大功率電荷泵電路的輸出電壓可以快速上升到大大高於期望的穩態電壓位準,並且所產生的過電壓可以損壞連接到電路輸出端的負載。
用於現有大功率電荷泵的替代啟動技術是將脈衝寬度調制(PWM)開關電壓的工作週期從0%斜升到穩態百分比。例如,若開關電壓的工作週期開始於1%並且斜升到50%,則在單個週期內產生的平均電流將借助工作週期降低到低值,但是產生的瞬時電流仍將很高。因此,此種替代啟動技術仍然將產生非常高的電流,儘管時間段較短。
第二種替代啟動技術是在開關事件之前利用低壓降(LDO)穩壓器將所有電路電容器充電到其穩態電壓。然而,若LDO穩壓器的輸出端有負載,則LDO穩壓器可能不能在大功率電荷泵電路中傳送足夠的電流。而且,所產生的局限於LDO通路元件通路元件中的大功率耗散在所涉及的控制器中產生高溫。例如,利用此種大功率電荷泵的DC-DC轉換器通常設計用於10A負載。若LDO正在嘗試對電荷泵電路的輸出電壓充電時存在此種大負載,則LDO將不能將輸出電壓(V輸出)充電到輸入電壓的一半(Vin/2)。然而,若存在較小的負載,並且LDO能夠將輸出電壓充電至輸入電壓的一半,則LDO將在控制器的小的區域內消耗大量功率(例如4V*10A或40W),從而損壞該部分。然而,儘管現有大功率電荷泵存在上述問題,但是如下所述,本發明藉由用於軟啟動大功率電荷泵的新穎方法和電路系統來解決該等和其他相關問題。
圖1是可以用於實施本發明的一個示例性實施例的大功率電荷泵電路100的示意性電路圖。參考圖1,大功率電荷泵電路100包括第一閘極驅動電路102。第一閘極驅動電路102的輸出端耦合到用作第一電子開關的第一功率場效應電晶體(FET)106的閘極端104。因此,第一閘極驅動電路102用於回應於在第一閘極驅動電路102的信號輸入端接收的第一PWMN(PWM NOT)信號108而驅動第一功率FET 106的閘極(104)。例如,PWM和PWMN信號可以是工作週期為50%的互補的固定頻率方波信號,或具有可變工作週期的可變頻率方波信號。大功率電荷泵電路100亦包括第二閘極驅動電路110。第二閘極驅動電路110的輸出端耦合到用作第二電子開關的第二功率(FET)114的閘極端112。因此,第二閘極驅動電路110用於回應於在第二閘極驅動電路110的信號輸入端接收的第一PWM信號116而驅動第二功率FET 114的閘極(112)。對於該示例性實施例,第一功率FET 106的汲極端耦合到第二功率FET 114的源極端,並且第一功率FET 106的源極端耦合到參考電位,例如大地。第一功率FET 106的汲極端和第二功率FET 114的源極端都耦合到泵電容器(fly capacitor)118的一側。
大功率電荷泵電路100亦包括第三閘極驅動電路120。第三閘極驅動電路120的輸出端耦合到用作第三電子開關的第三功率FET 124的閘極端122。因此,第三閘極驅動電路120用於回應於在第三閘極驅動電路120的信號輸入端接收的第二PWMN信號126而驅動第三功率FET 124的閘極(122)。值得注意的是,對於該示例性實施例,第一PWMN信號108和第二PWMN信號126可以是例如從所涉及的系統中的PWM信號產生器電路接收的相同信號。然而,在第二實施例中,第一PWMN信號108和第二PWMN信號126可以例如從單獨的PWM信號產生器電路接收。在任何情況下,大功率電荷泵電路100亦包括第四閘極驅動電路128。第四閘極驅動電路128的輸出端耦合到用作第四電子開關的第四功率FET 132的閘極端130。因此,第四閘極驅動電路128用於回應於在第四閘極驅動電路128的信號輸入端接收的第二PWM信號134而驅動第四功率FET 132的閘極(130)。值得注意的是,對於該示例性實施例,第一PWM信號116和第二PWM信號134可以是例如從所涉及的系統中的PWM信號產生器電路接收的相同信號。然而,在第二實施例中,第一PWM信號116和第二PWM信號134可以例如從單獨的PWM信號產生器電路接收。在一些實施例中,第一PWMN信號108和第二PWMN信號126可以是第一PWM信號116或第二PWM信號134的反相版本。在任何情況下,對於該示例性實施例,第三功率FET 124的汲極端耦合到第四功率FET 132的源極端,並且第三功率FET 124的源極端耦合到第二功率FET 114的汲極端和大功率電荷泵電路100的輸出端136。第三功率FET 124的汲極端和第四功率FET 132的源極端都耦合到泵電容器118的第二側。第四功率FET 132的汲極端耦合到第一輸出電容器138的一側和大功率電荷泵電路100的輸入端142。第一輸出電容器138的第二側耦合到輸出端136和第二輸出電容器140的一側,並且第二輸出電容器140的第二側耦合到參考電位,例如大地。
在操作中,參考圖1所示的示例性實施例,大功率電荷泵電路100回應於經由閘極驅動電路102、110、120、128驅動功率FET 106、114、124、132的閘極104、112、122、130的PWM和PWMN信號108、116、126、134,在數百個開關週期中使每個功率FET 106、114、124、132的閘源電壓(Vgs)從0V斜升到5V。例如,在啟動時,可以以較慢的速率切換並接通(導通)功率FET 106、114、124、132,以使Vgs遞增斜升0.1V(例如,.5V,隨後.6V,隨後.7V等)。值得注意的是,所使用的斜坡信號可以是線性或非線性信號。在任何情況下,一旦電容器138、140上的電荷及因此輸出端136的電壓V輸出達到穩態位準,則可以加速斜坡信號的速度(例如,從1.5V快速斜升到5V)。
與現有方案相比,此種「軟啟動」方案的一個益處是,由於所使用的功率FET 106、114、124、132的低Vgs值,大功率電荷泵電路100中的電流在啟動期間被大大限制。此外,在輸出端136的電壓V輸出單調增加,因此在啟動期間受到足夠限制,以至於它不能高於必需的穩態電壓位準。此外,在大功率電荷泵電路100中耗散的功率有利地分佈在四個功率FET 106、114、124、132上,而不是僅集中在諸如現有的大功率電荷泵電路中的一個LDO通路元件中。此外,大功率電荷泵電路100的另一個顯著益處是在啟動期間可以載入其輸出。
更準確而言,在圖1所示的實施例的示例性軟啟動操作中,在大功率電荷泵電路100中啟用開關週期之前,所有閘極驅動電路102、110、120、128的輸出將為0V,輸出端136處的電壓V輸出將為0V,並且輸入端142處的電壓V輸入可以為8V。當啟用開關週期時,PWM和PWM控制信號108、116、126、134開始以800khz進行切換,並且作為回應,浮動自舉電源BT1至S1、BT2至S2、BT3至S3和BT4至S4,及因此的閘極驅動電路102、110、120、128開始緩慢斜升(例如,以1V/ms速率增加)。對於該示例性操作,當自舉將BT1提供給S1,將BT2提供給S2,將BT3提供給S3,將BT4提供給S4,因而閘極驅動電路102、110、120、128斜升至0.5V,並且PWM控制信號等於1時,則應該開啟或導通的功率FET(例如,114、132)將以0.5V的其Vgs受到驅動。隨著自舉電源電壓上升,施加到每個「導通FET」的Vgs亦將上升。當Vgs達到所涉及的功率FET的電壓閾值Vth時,彼等功率FET將會開始傳導電流但具有非常高電阻(例如>1kΩ)。因此,例如,若將泵電容器118充電到啟動前為V輸入或8V的輸入電壓的值,則當在閘極104和122的方波開關信號接通其相應的功率FET 106、124時,在軟啟動過程期間,功率FET 106、124的高電阻將相當大地限制從泵電容器118向C輸出 140(例如,V輸出處的電容)傳送的電流。類似地,當在閘極112和130的方波開關信號接通相應的功率FET 114、132時,在軟啟動過程期間,功率FET 114、132的高電阻將相當大地限制從C輸出 138(例如,V輸出處的電容)傳送到泵電容器118的電流。
圖2是可以用於實施本發明的第二示例性實施例的大功率電荷泵電路200的示意性電路圖。參考圖2,大功率電荷泵電路200包括第一閘極驅動電路202。第一閘極驅動電路202的輸出端耦合到用作第一電子開關的第一功率FET 206的閘極端204。因此,第一閘極驅動電路202回應於在第一閘極驅動電路202的信號輸入端接收的第一PWMN信號208而驅動第一功率FET 206的閘極(204)。大功率電荷泵電路200亦包括第二閘極驅動電路210。第二閘極驅動電路210的輸出端耦合到第二功率FET 214的閘極端212。因此,第二閘極驅動電路210回應於在第二閘極驅動電路210的信號輸入端接收的第一PWM信號216而驅動第二功率FET 214的閘極(212)。對於該示例性實施例,第一功率FET 206的汲極端耦合到第二功率FET 214的源極端,並且第一功率FET 206的源極端耦合到參考電位,例如大地。第一功率FET 206的汲極端和第二功率FET 214的源極端都耦合到泵電容器218的一側。
大功率電荷泵電路200亦包括第三閘極驅動電路220。第三閘極驅動電路220的輸出端耦合到用作第三電子開關的第三功率FET 224的閘極端222。因此,第三閘極驅動電路220回應於在第三閘極驅動電路220的信號輸入端接收的第二PWMN信號226(例如,與第一PWMN信號208相同的信號)而驅動第三功率FET 224的閘極(222)。此外,大功率電荷泵電路200包括第四閘極驅動電路228。第四閘極驅動電路228的輸出端耦合到用作第四電子開關的第四功率FET 232的閘極端230。因此,第四閘極驅動電路228回應於在第四閘極驅動電路228的信號輸入端接收的第二PWM信號234(例如,與第一PWM信號216相同的信號)而驅動第四功率FET 232的閘極(230)。對於該示例性實施例,第三功率FET 224的汲極端耦合到第四功率FET 232的源極端,並且第三功率FET 224的源極端耦合到第二功率FET 214的汲極端和大功率電荷泵電路200的輸出端236。第三功率FET 224的汲極端和第四功率FET 232的源極端都耦合到泵電容器218的第二側。第四功率FET 232的汲極端耦合到第一輸出電容器238的一側和大功率電荷泵電路200的輸入端242。第一輸出電容器238的第二側耦合到輸出端236和第二輸出電容器240的一側,並且第二輸出電容器240的第二側耦合到參考電位,例如大地。
對於該示例性實施例,大功率電荷泵電路200亦包括LDO穩壓器244,LDO穩壓器244在其輸出端耦合到自舉二極體246的一個端子和自舉電容器203的一個端子。自舉電容器203的第二端耦合到參考電位,例如大地。LDO穩壓器244的非反相輸入端耦合到斜坡參考產生器252的一個端子,並且斜坡參考產生器252的第二端耦合到參考電位,例如大地。對於該實施例,LDO穩壓器244被配置為斜升第一閘極驅動電路202及其相關聯的自舉電容器203。另外,自舉二極體246、248、250串聯耦合到LDO穩壓器244的輸出端。因此,自舉二極體246、248、250中的每一個用於使自舉電容器203上的充電電壓在二極體梯形電路(diode ladder)246、248、250向上傳遞,因此充電並斜升各自舉電容器211、221、229中的每一個。
特別地,在本示例性實施例的示例性軟啟動操作中,將由斜坡參考產生器252產生的斜坡參考電壓「Ramp Ref」施加到LDO穩壓器244的非反相輸入端,並且「Ramp Ref」電壓從0V斜升至5V。作為回應,LDO穩壓器244驅動第一閘極驅動電壓(BT1至S1)以跟隨斜坡電壓。當第一閘極驅動電壓(BT1至S1)足夠高以接通第一功率FET 206時,自舉電容器211將經由從自舉電容器203到BT1、經過二極體246、自舉電容器221到BT2以及功率FET 206的電流路徑充電至第一閘極驅動電壓(BT1至S1)。換言之,自舉電容器211(C_BT2)將對自舉電容器221(C_BT3)充電,並且自舉電容器221(C_BT3)將對自舉電容器229(C_BT4)充電。換言之,自舉二極體246、248、250被配置為將充電電壓在二極體梯形電路向上傳遞,使得用於每個自舉電源BT2至S2、BT3至S3和BT4至S4的自舉電容器211、221、229上的電荷在軟啟動過程中亦斜升斜坡參考電壓Ramp Ref。
圖3是可以用於實施本發明的第三示例性實施例的大功率電荷泵電路300的示意性電路圖。參考圖3,大功率電荷泵電路300包括第一閘極驅動電路302。第一閘極驅動電路302的輸出端耦合到用作第一電子開關的第一功率FET 306的閘極端304。因此,第一閘極驅動電路302回應於在第一閘極驅動電路302的信號輸入端接收的第一PWMN信號308而驅動第一功率FET 306的閘極(304)。大功率電荷泵電路300亦包括第二閘極驅動電路310。第二閘極驅動電路310的輸出端耦合到第二功率FET 314的閘極端312。因此,第二閘極驅動電路310回應於在第二閘極驅動電路310的信號輸入端接收的第一PWM信號316而驅動第二功率FET 314的閘極(312)。對於該示例性實施例,第一功率FET 306的汲極端耦合到第二功率FET 314的源極端,並且第一功率FET 306的源極端耦合到參考電位,例如大地。第一功率FET 306的汲極端和第二功率FET 314的源極端都耦合到泵電容器318的一側。
大功率電荷泵電路300亦包括第三閘極驅動電路320。第三閘極驅動電路320的輸出端耦合到用作第三電子開關的第三功率FET 324的閘極端322。因此,第三閘極驅動電路320回應於在第三閘極驅動電路320的信號輸入端接收的第二PWMN信號326(例如,與第一PWMN信號308相同的信號)而驅動第三功率FET 324的閘極(322)。此外,大功率電荷泵電路300包括第四閘極驅動電路328。第四閘極驅動電路328的輸出端耦合到用作第四電子開關的第四功率FET 332的閘極端330。因此,第四閘極驅動電路328回應於在第四閘極驅動電路328的信號輸入端接收的第二PWM信號334(例如,與第一PWM信號316相同的信號)而驅動第四功率FET 332的閘極(330)。對於該示例性實施例,第三功率FET 324的汲極端耦合到第四功率FET 332的源極端,並且第三功率FET 324的源極端耦合到第二功率FET 314的汲極端和大功率電荷泵電路300的輸出端336。第三功率FET 324的汲極端和第四功率FET 332的源極端都耦合到泵電容器318的第二側。第四功率FET 332的汲極端耦合到第一輸出電容器338的一側和大功率電荷泵電路300的輸入端342。第一輸出電容器338的第二側耦合到輸出端336和第二輸出電容器340的一側,並且第二輸出電容器340的第二側耦合到參考電位,例如大地。
對於該示例性實施例,大功率電荷泵電路300亦包括LDO穩壓器344,LDO穩壓器344被配置為使第一閘極驅動電路302及其相關的自舉電容器303斜坡上升。然而,值得注意的是,在該實施例中,LDO穩壓器344配置有耦合到LDO穩壓器344的反相輸入端的在大功率電荷泵電路300的輸出端336的電壓V輸出。因此,在大功率電荷泵電路300的輸出端336的電壓V輸出跟隨來自斜坡參考產生器352的參考斜坡信號Ramp Ref。特別地,LDO穩壓器344驅動跨越電容器303的電荷,使得輸出電壓V輸出跟隨或追蹤參考斜坡信號Ramp Ref。值得注意的是,該軟啟動過程可以顯著縮短所需的軟啟動時間(例如,與圖2所示的實施例相比)。
特別地,在示例性操作中,在輸出端336的輸出電壓V輸出開始趕上斜坡電壓(例如,在1V)。當在輸出端336的輸出電壓V輸出達到4V時,斜坡電壓將繼續上升至5V,以將BT1至S1電源電壓驅動至5V,從而加快完全增強開關FET 306、314、324、332所需的時間。在此實施例中,藉由快速斜升至開關FET 306、314、324、332的1.5V閾值,隨後繼續斜升到穩態電壓位準,從而增強開關過程,實質上縮短了軟啟動持續時間。
圖4是可以用於實施本發明的第四示例性實施例的大功率電荷泵電路400的示意性電路圖。參考圖4,大功率電荷泵電路400包括LDO穩壓器444,其用於斜升第一自舉電源電壓(BT1至S1)及其相關聯的自舉電容器403,以及自舉二極體446、448、450,它們被配置為將充電電壓在二極體梯形電路向上傳遞,並因此斜升它們各自的自舉電容器411、421、429,類似於上面關於圖2所示實施例描述的過程。值得注意的是,圖4中所示的實施例被配置為與圖2中所示實施例基本相同。然而,對於圖4所示的該示例性實施例,複數個仿真二極體(emulated diode)447,449和451(例如,被配置為分別用作自舉二極體446、448、450的PMOS電晶體裝置)亦被圖示為連接到它們各自的自舉二極體446、448、450。如此,在圖示的大功率電荷泵電路400的示例性操作中,在啟動時,只有用於仿真自舉二極體446、448、450的PMOS電晶體447、449、451的一部分導通,以便對控制三個自舉電容器411、421、429的斜坡率的轉換速率和峰值電流進行控制,使得它們不是以固定不變的方式被充電。換言之,在啟動時和期間,「部分」自舉二極體446、448、450(例如,表示為仿真二極體447、449、451)連接到電路系統,從而用於提供軟起動,並且在啟動之後,整個部分或「全部」自舉二極體(例如,表示為二極體446、448、450)於是用於大功率電荷泵電路400中。
圖5圖示根據本發明的一個示例性實施例的可以用於實施大功率電荷泵電路的示例性方法500的流程圖。參考圖5中所示的流程圖和圖1中所示的示例性大功率電荷泵電路100,示例性方法500開始於啟用對功率FET 106、114、124、132的開關(502)。接下來,該方法切換選擇用於(例如,「高」)功率FET 114、132的PWM控制或用於(例如,「低」)功率FET 106、124的PWMN控制(504)。假設對於該實施例,選擇PWM控制信號(並以800khz切換)。接下來,自舉電源BT1至S1、BT2至S2、BT3至S3和BT4至S4開始緩慢斜升(例如,以1V/ms增加)功率FET 106、114、124、132的閘極驅動電壓(506)。在預定義的自舉電源電壓位準(例如,0.5V),利用所選擇的功率FET的閘極驅動電路來以預定義位準(例如,0.5Vgs)驅動「導通的」所選擇的功率FET(例如,「高」或「低」功率FET)的Vgs(508)。該方法隨後決定自舉電源電壓BT1至S1、BT2至S2、BT3至S3和BT4至S4是否小於預定義位準(例如,小於5V的位準)(510)。若(在510處)自舉電源電壓小於預定義位準,則流程返回到「切換」(504),並且選擇另一個控制信號(例如,在該實例中為PWMN)。然而,若(在510處)自舉電源電壓不小於預定義位準,則軟啟動方法完成。
圖6是根據本發明的一個示例性實施例的可以用於實施大功率電荷泵電路的可攜式或行動電子系統600的示意性方塊圖。例如,在一些實施例中,本文所述的大功率電荷泵電路可以被認為是一或多個電力輸送系統。因此,在所示的示例性實施例中,電子系統600包括電力系統602、數位處理器單元604和周邊子系統606。例如,數位處理器單元604可以是微處理器或微控制器等。周邊子系統606包括用於儲存由數位處理器單元604處理的資料的記憶體單元608和用於向/從記憶體單元608和數位處理器單元604傳送和接收資料的輸入/輸出(I/O)單元610。在圖6所示的示例性實施例中,電力系統602包括大功率電荷泵電路612,其能夠傳送電壓以對系統600供電。電力系統602經由線路616提供經調節(或未調節)的電壓,以對數位處理器單元604和周邊子系統606中的電子部件供電。在所示的示例性實施例中,大功率電荷泵電路612可以例如利用圖1至圖4所示的大功率電荷泵電路中的一個來實施。在一些實施例中,電子系統600的部件可以在一或多個積體電路、晶圓、晶片或晶粒中實施。
儘管本文已經圖示和說明了特定實施例,但是本領域一般技藝人士將理解,為了實現相同目的而考慮的任何佈置可以代替所示的特定實施例。因此,顯然意圖是本案僅由請求項及其均等物來限制。值得注意的是,上述示例性技術是2比1的分頻比,但是可擴展到包括其它分頻比,例如3比1或更大。上述示例性技術亦可以與個別或整合的功率FET一起使用。
100‧‧‧大功率電荷泵電路102‧‧‧第一閘極驅動電路104‧‧‧閘極端106‧‧‧第一功率FET108‧‧‧第一PWMN信號110‧‧‧第二閘極驅動電路112‧‧‧閘極端114‧‧‧第二功率FET116‧‧‧第一PWM信號118‧‧‧泵電容器120‧‧‧第三閘極驅動電路122‧‧‧閘極端124‧‧‧第三功率FET126‧‧‧第二PWMN信號128‧‧‧第四閘極驅動電路130‧‧‧閘極端132‧‧‧第四功率FET134‧‧‧第二PWM信號136‧‧‧輸出端138‧‧‧第一輸出電容器140‧‧‧第二輸出電容器142‧‧‧輸入端200‧‧‧大功率電荷泵電路202‧‧‧第一閘極驅動電路203‧‧‧自舉電容器204‧‧‧閘極端206‧‧‧第一功率FET208‧‧‧第一PWMN信號210‧‧‧第二閘極驅動電路211‧‧‧自舉電容器212‧‧‧閘極端214‧‧‧第二功率FET216‧‧‧第一PWM信號218‧‧‧泵電容器220‧‧‧第三閘極驅動電路221‧‧‧自舉電容器222‧‧‧閘極端224‧‧‧第三功率FET226‧‧‧第二PWMN信號228‧‧‧第四閘極驅動電路229‧‧‧自舉電容器230‧‧‧閘極端232‧‧‧第四功率FET234‧‧‧第二PWM信號236‧‧‧輸出端238‧‧‧第一輸出電容器240‧‧‧第二輸出電容器242‧‧‧輸入端244‧‧‧LDO穩壓器246‧‧‧二極體梯形電路248‧‧‧二極體梯形電路250‧‧‧二極體梯形電路252‧‧‧斜坡參考產生器300‧‧‧大功率電荷泵電路302‧‧‧第一閘極驅動電路303‧‧‧自舉電容器304‧‧‧閘極端306‧‧‧第一功率FET308‧‧‧第一PWMN信號310‧‧‧第二閘極驅動電路312‧‧‧閘極端314‧‧‧第二功率FET316‧‧‧第一PWM信號318‧‧‧泵電容器320‧‧‧第三閘極驅動電路322‧‧‧閘極端324‧‧‧第三功率FET326‧‧‧第二PWMN信號328‧‧‧第四閘極驅動電路330‧‧‧閘極端332‧‧‧第四功率FET334‧‧‧第二PWM信號336‧‧‧輸出端338‧‧‧第一輸出電容器340‧‧‧第二輸出電容器342‧‧‧輸入端344‧‧‧LDO穩壓器352‧‧‧斜坡參考產生器400‧‧‧大功率電荷泵電路403‧‧‧自舉電容器411‧‧‧自舉電容器421‧‧‧自舉電容器429‧‧‧自舉電容器444‧‧‧LDO穩壓器446‧‧‧自舉二極體447‧‧‧仿真二極體448‧‧‧自舉二極體449‧‧‧仿真二極體450‧‧‧自舉二極體451‧‧‧仿真二極體500‧‧‧方法502‧‧‧步驟504‧‧‧步驟506‧‧‧步驟508‧‧‧步驟510‧‧‧步驟600‧‧‧電子系統602‧‧‧電力系統604‧‧‧數位處理器單元606‧‧‧周邊子系統608‧‧‧記憶體單元610‧‧‧輸入/輸出(I/O)單元612‧‧‧大功率電荷泵電路616‧‧‧線路
在結合附圖閱讀了以下特定實施例的說明後,本發明的實施例的該等和其它方面和特徵對於本領域一般技藝人士將變得顯而易見,在附圖中:
圖1是可用於實施本發明的一個示例性實施例的大功率電荷泵電路的示意性電路圖。
圖2是可用於實施本發明的第二示例性實施例的大功率電荷泵電路的示意性電路圖。
圖3是可用於實施本發明的第三示例性實施例的大功率電荷泵電路的示意性電路圖。
圖4是可用於實施本發明的第四示例性實施例的大功率電荷泵電路的示意性電路圖。
圖5圖示根據本發明的一個示例性實施例的可用於實施大功率電荷泵電路的示例性方法的流程圖。
圖6是根據本發明的一個示例性實施例的可用於實施大功率電荷泵電路的可攜式或行動電子系統的示意性方塊圖。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
100‧‧‧大功率電荷泵電路
102‧‧‧第一閘極驅動電路
104‧‧‧閘極端
106‧‧‧第一功率FET
108‧‧‧第一PWMN信號
110‧‧‧第二閘極驅動電路
112‧‧‧閘極端
114‧‧‧第二功率FET
116‧‧‧第一PWM信號
118‧‧‧泵電容器
120‧‧‧第三閘極驅動電路
122‧‧‧閘極端
124‧‧‧第三功率FET
126‧‧‧第二PWMN信號
128‧‧‧第四閘極驅動電路
130‧‧‧閘極端
132‧‧‧第四功率FET
134‧‧‧第二PWM信號
136‧‧‧輸出端
138‧‧‧第一輸出電容器
140‧‧‧第二輸出電容器
142‧‧‧輸入端

Claims (19)

  1. 一種軟啟動一電荷泵電路的方法,包括以下步驟:啟用複數個功率電晶體的開關;從複數個開關控制信號中為一第一所選擇的複數個功率電晶體選擇一第一開關控制信號;以一第一斜升速率緩慢斜升與該第一所選擇的複數個功率電晶體相關聯的複數個自舉電源電壓;以一第一預定義位準驅動該第一所選擇的複數個功率電晶體之每一功率電晶體的一閘源電壓;決定該複數個自舉電源電壓是否小於一第二預定義位準;若該複數個自舉電源電壓小於該第二預定義位準,則切換,並從而從該複數個開關控制信號中為一第二所選擇的複數個功率電晶體選擇一第二開關控制信號;及若該複數個自舉電源電壓大於或等於該第二預定義位準,則停止以該第一斜升速率緩慢斜升該複數個自舉電源電壓並開始以比該第一斜升速率快的一第二斜升速率斜升該複數個自舉電源電壓。
  2. 如請求項1所述之方法,其中該選擇該第一開關控制信號的步驟包括以下步驟:選擇一PWM控制信 號。
  3. 如請求項1所述之方法,其中該選擇該第二開關控制信號的步驟包括以下步驟:選擇一PWMN控制信號。
  4. 如請求項1所述之方法,其中該選擇該第一開關控制信號的步驟包括以下步驟:為該第一所選擇的複數個功率電晶體選擇複數個方波開關信號。
  5. 如請求項1所述之方法,其中該選擇該第二開關控制信號的步驟包括以下步驟:為該第二所選擇的複數個功率電晶體選擇複數個反相方波開關信號。
  6. 如請求項1所述之方法,其中該緩慢斜升該複數個自舉電源電壓的步驟亦包括以下步驟:一二極體和一相關聯的電容器產生該複數個自舉電源電壓中的至少一個自舉電源電壓。
  7. 如請求項1所述之方法,其中該緩慢斜升該複數個自舉電源電壓的步驟亦包括以下步驟:一仿真二極體和一相關聯的電容器產生該複數個自舉電源電壓中的至少一個自舉電源電壓。
  8. 如請求項1所述之方法,其中該斜升該複數個自舉電源電壓的步驟包括以下步驟:回應於一斜坡參考產生器信號而斜升該複數個自舉電源電壓。
  9. 一種電荷泵電路,包括: 複數個自舉電源;複數個閘極驅動電路,其中該複數個閘極驅動電路之每一閘極驅動電路耦合到該複數個自舉電源中的一相關聯的自舉電源;複數個功率電晶體,其中該複數個功率電晶體之每一功率電晶體耦合到該複數個閘極驅動電路中的一相關聯的閘極驅動電路和該電荷泵電路的一輸出端,及其中該複數個自舉電源之每一自舉電源被配置為控制由該複數個閘極驅動電路中的一相關聯的閘極驅動電路施加到該複數個功率電晶體中的一相關聯的功率電晶體的一閘極的一閘極驅動信號的一斜升速率,其中該複數個自舉電源之每一自舉電源在一軟啟動程序期間以一第一緩慢斜升速率斜升該閘極驅動訊號,然後在該軟啟動程序完成之後,以一第二較快的斜升速率斜升該閘極驅動訊號;及複數個電容器,耦合到該複數個功率電晶體和該電荷泵電路的該輸出端。
  10. 如請求項9所述之電荷泵電路,其中該電荷泵電路包括一大功率電荷泵電路。
  11. 如請求項9所述之電荷泵電路,亦包括耦合到該複數個自舉電源的一低壓降(LDO)穩壓器。
  12. 如請求項9所述之電荷泵電路,其中至少 一個自舉電源包括一電容器和一二極體。
  13. 如請求項9所述之電荷泵電路,其中至少一個自舉電源包括一仿真二極體和一電容器。
  14. 一種大功率電荷泵電路,包括:一輸入端;一輸出端;至少一個參考電壓產生器;複數個閘極驅動電路,該複數個閘極驅動電路耦合到該至少一個參考電壓產生器和至少一個脈衝寬度調制(PWM)信號產生器;複數個電晶體,該複數個電晶體耦合到該複數個閘極驅動電路、該輸入端、該輸出端和一泵電容器,其中該至少一個參考電壓產生器包括一自舉電源,該複數個自舉電源之每一自舉電源被配置為控制由該複數個閘極驅動電路中的一相關聯的閘極驅動電路施加到該複數個電晶體中的一相關聯的電晶體的一閘極的一閘極驅動信號的一斜升速率,其中該複數個自舉電源之每一自舉電源在一軟啟動程序期間以一第一緩慢斜升速率斜升該閘極驅動訊號,然後在該軟啟動程序完成之後,以一第二較快的斜升速率斜升該閘極驅動訊號;及一第一電容器,該第一電容器連接到該輸入端和該 輸出端,及一第二電容器,該第二電容器連接到該第一電容器、該輸出端和一參考電位。
  15. 如請求項14所述之大功率電荷泵電路,亦包括:一LDO穩壓器,該LDO穩壓器耦合到該至少一個參考電壓產生器,其中該至少一個參考電壓產生器被配置為產生一斜坡參考信號。
  16. 如請求項14所述之大功率電荷泵電路,其中該至少一個參考電壓產生器亦包括一二極體和一相關聯的電容器,或者一仿真二極體和一相關聯的電容器。
  17. 一種電子系統,包括:一數位處理器;一周邊子系統,該周邊子系統耦合到該數位處理器;及一電力系統,該電力系統耦合到該數位處理器和該周邊子系統的電路部件,並且被配置為產生對該數位處理器和該周邊子系統的該等電路部件供電的一輸出電壓,其中該電力系統包括一大功率電荷泵電路,該大功率電荷泵電路包括:複數個自舉電源;複數個閘極驅動電路,其中該複數個閘極驅動電路之每一閘極驅動電路耦合到該複數個自舉電源中 一相關聯的自舉電源;複數個功率電晶體,其中該複數個功率電晶體之每一功率電晶體耦合到該複數個閘極驅動電路中的一相關聯的閘極驅動電路和該電荷泵電路的一輸出端,及其中該複數個自舉電源之每一自舉電源被配置為控制由該複數個閘極驅動電路中的一相關聯的閘極驅動電路施加到該複數個功率電晶體中的一相關聯的功率電晶體的一閘極的一閘極驅動信號的一斜升速率;及複數個電容器,耦合到該複數個功率電晶體和該電荷泵電路的該輸出端,其中該複數個自舉電源之每一自舉電源在一軟啟動程序期間以一第一緩慢斜升速率斜升該閘極驅動訊號,然後在該軟啟動程序完成之後,以一第二較快的斜升速率斜升該閘極驅動訊號。
  18. 如請求項17所述之電子系統,其中該大功率電荷泵電路形成在一積體電路、晶圓、晶片或晶粒上。
  19. 如請求項17所述之電子系統,其中該電力系統和該大功率電荷泵電路形成在一積體電路、晶圓、晶片或晶粒上。
TW106117545A 2016-06-03 2017-05-26 用以軟啟動大功率電荷泵的方法、電路,及電子系統 TWI769160B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662345714P 2016-06-03 2016-06-03
US62/345,714 2016-06-03
US201762480286P 2017-03-31 2017-03-31
US62/480,286 2017-03-31

Publications (2)

Publication Number Publication Date
TW201743549A TW201743549A (zh) 2017-12-16
TWI769160B true TWI769160B (zh) 2022-07-01

Family

ID=60483613

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106117545A TWI769160B (zh) 2016-06-03 2017-05-26 用以軟啟動大功率電荷泵的方法、電路,及電子系統

Country Status (3)

Country Link
US (1) US10498229B2 (zh)
CN (1) CN107465339B (zh)
TW (1) TWI769160B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI769160B (zh) * 2016-06-03 2022-07-01 美商英特矽爾美國有限公司 用以軟啟動大功率電荷泵的方法、電路,及電子系統
US10447152B2 (en) 2016-07-15 2019-10-15 Linear Technology Corporation Driving charge pump circuits
US10027223B1 (en) * 2017-06-12 2018-07-17 Linear Technology Holding Llc Soft-charging of switched capacitors in power converter circuits
US10181804B1 (en) 2017-08-11 2019-01-15 Linear Technology Holding Llc Soft-start circuit for switched resonant power converters
US10715035B2 (en) * 2018-02-23 2020-07-14 Lion Semiconductor Inc. Circuits and methods for slew rate control of switched capacitor regulators
CN113765373A (zh) * 2018-08-01 2021-12-07 华为技术有限公司 一种电压转换电路的控制电路
US10693367B1 (en) 2019-02-19 2020-06-23 Rolls-Royce North American Technologies, Inc. Pre-charging circuit for power converters
JP7222753B2 (ja) * 2019-02-28 2023-02-15 キヤノン株式会社 電圧変換装置および制御方法
CN110474531B (zh) * 2019-08-15 2021-06-15 南京矽力微电子技术有限公司 驱动电路、驱动方法及集成电路
US11527951B2 (en) * 2019-12-20 2022-12-13 Qualcomm Incorporated Reverse X2 mode charge pump soft start
CN111224540B (zh) * 2019-12-20 2021-04-06 南京矽力微电子技术有限公司 开关电容变换器及其驱动电路
US11496050B2 (en) * 2020-03-17 2022-11-08 Texas Instruments Incorporated Gate driver for DC-DC converters
CN111736686B (zh) * 2020-06-12 2023-04-11 苏州浪潮智能科技有限公司 一种异常开启scc电路的保护电路及服务器
US11095229B1 (en) * 2020-09-24 2021-08-17 Monolithic Power Systems, Inc. High switching frequency direct AC to AC converter
KR20220050662A (ko) * 2020-10-16 2022-04-25 삼성전자주식회사 스위칭 레귤레이터 및 이것의 동작 방법
US11374400B2 (en) 2020-12-01 2022-06-28 Rolls-Royce Singapore Pte. Ltd. Topology of a solid state power controller with two mid-capacitors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075072A1 (en) * 2000-11-16 2002-06-20 Masaomi Ishida Switching power amplifier
TW200527815A (en) * 2004-02-02 2005-08-16 Aimtron Technology Corp Soft-start charge pump circuit
TW200828769A (en) * 2006-12-21 2008-07-01 System General Corp Switching controller for resonant power converter
US20090160534A1 (en) * 2007-12-21 2009-06-25 Infineon Technologies Ag Circuit Arrangement for Providing a Voltage Supply for a Transistor Driver Circuit
CN202004641U (zh) * 2011-03-01 2011-10-05 深圳艾科创新微电子有限公司 一种具有软启动电路的开关电容电荷泵
US20110241570A1 (en) * 2010-04-01 2011-10-06 Nguyen Don J Intelligent soft start control to reduce electrostatic discharge clamp current spikes
CN103620954A (zh) * 2011-06-14 2014-03-05 梅鲁斯音频有限公司 功率晶体管栅极驱动器

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US14853A (en) * 1856-05-13 Surgical splint
US6108352A (en) 1995-03-01 2000-08-22 Intersil Corporation Circuit and method for synchronizing outputs of two simultaneously transmitting devices in a multiplexed communication system
US7023187B2 (en) 2001-08-16 2006-04-04 Intersil Americas Inc. Integrated circuit for generating a plurality of direct current (DC) output voltages
US6700365B2 (en) 2001-12-10 2004-03-02 Intersil Americas Inc. Programmable current-sensing circuit providing discrete step temperature compensation for DC-DC converter
US6958596B1 (en) 2002-12-20 2005-10-25 Intersil Americas Inc. Compensation sample and hold for voltage regulator amplifier
US6940262B2 (en) 2002-12-31 2005-09-06 Intersil Americas Inc. PWM-based DC-DC converter with assured dead time control exhibiting no shoot-through current and independent of type of FET used
US6873191B2 (en) 2002-12-31 2005-03-29 Intersil Americas Inc. Mechanism for providing over-voltage protection during power up of DC-DC converter
US6930520B2 (en) 2003-05-13 2005-08-16 Intersil Americas Inc. High bandwidth feed-forward oscillator
US6998829B2 (en) 2003-05-14 2006-02-14 Intersil Americas Inc. Soft start precharge circuit for DC power supply
US7199558B2 (en) 2003-07-22 2007-04-03 Intersil Americas Inc. AC-DC adapter interface and battery charger having high speed battery charger current foldback when adapter current demand exceeds prescribed limit
US7031175B2 (en) 2003-12-16 2006-04-18 Intersil Americas Inc. System and method of detecting phase body diode using a comparator in a synchronous rectified FET driver
US7102335B1 (en) 2004-02-27 2006-09-05 Intersil Americas Inc. Rail—rail current sense amplifier
US7088151B1 (en) 2004-04-21 2006-08-08 Intersil Americas Inc. High voltage gate driver using a low voltage multi-level current pulse translator
US7235955B2 (en) 2004-07-26 2007-06-26 Intersil Americas Inc. Method and apparatus for preventing boosting system bus when charging a battery
US7420791B1 (en) 2004-08-09 2008-09-02 Intersil Americas Inc. Fault signature system for power management integrated circuits
US20060044051A1 (en) * 2004-08-24 2006-03-02 International Rectifier Corporation Bootstrap diode emulator with dynamic back-gate biasing and short-circuit protection
US7145317B1 (en) 2004-12-13 2006-12-05 Intersil Americas Inc. Constant frequency duty cycle independent synthetic ripple regulator
US7504816B2 (en) 2005-09-28 2009-03-17 Intersil Americas Inc. Circuit for multiplexing digital and analog information via single pin of driver for switched MOSFETs of DC-DC converter
US7880443B2 (en) 2006-10-12 2011-02-01 Intersil Americas Inc. System and method of trickle charging a battery in a narrow rail architecture
US7990116B2 (en) 2007-10-25 2011-08-02 Intersil Americas Inc. Modulator with linear period stretching capability
WO2009155540A1 (en) * 2008-06-20 2009-12-23 Monolithic Power Systems, Inc. Charge pumps with controlled ramp rate
US8823342B2 (en) * 2008-07-07 2014-09-02 Advanced Analogic Technologies Incorporated Multiple-output dual-polarity DC/DC converters and voltage regulators
US7898310B2 (en) 2008-09-30 2011-03-01 Intersil Americas Inc. Phase doubler
CN201490880U (zh) * 2009-05-31 2010-05-26 Bcd半导体制造有限公司 一种电荷泵的软启动电路
CN201904721U (zh) * 2010-12-29 2011-07-20 厦门联创微电子股份有限公司 一种升压电荷泵
JP2013070263A (ja) * 2011-09-22 2013-04-18 Renesas Electronics Corp 電力変換回路、多相ボルテージレギュレータ、及び電力変換方法
US9246348B2 (en) 2011-10-06 2016-01-26 Intersil Americas Llc. Battery charge modulator with boost capability
US9960620B2 (en) * 2014-09-16 2018-05-01 Navitas Semiconductor, Inc. Bootstrap capacitor charging circuit for GaN devices
US9614380B2 (en) 2014-10-10 2017-04-04 Intersil Americas LLC Hysteretic current mode buck-boost control architecture
US9715244B2 (en) 2015-02-24 2017-07-25 Intersil Americas LLC System and method for determining adapter current limit
US9871446B2 (en) 2015-06-01 2018-01-16 Intersil Americas LLC Current mode control regulator with load resistor emulation
US9819257B2 (en) 2015-07-10 2017-11-14 Intersil Americas LLC DC-to-DC converter input node short protection
US9954422B2 (en) * 2016-03-30 2018-04-24 Texas Instruments Incorporated Integrated gate driver for motor control
TWI769160B (zh) * 2016-06-03 2022-07-01 美商英特矽爾美國有限公司 用以軟啟動大功率電荷泵的方法、電路,及電子系統
GB201609907D0 (en) * 2016-06-07 2016-07-20 Rolls Royce Plc Method for estimating power system health
US9906221B1 (en) * 2016-12-30 2018-02-27 Delta Electronics, Inc. Driving circuit of a power circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020075072A1 (en) * 2000-11-16 2002-06-20 Masaomi Ishida Switching power amplifier
TW200527815A (en) * 2004-02-02 2005-08-16 Aimtron Technology Corp Soft-start charge pump circuit
TW200828769A (en) * 2006-12-21 2008-07-01 System General Corp Switching controller for resonant power converter
US20090160534A1 (en) * 2007-12-21 2009-06-25 Infineon Technologies Ag Circuit Arrangement for Providing a Voltage Supply for a Transistor Driver Circuit
US20110241570A1 (en) * 2010-04-01 2011-10-06 Nguyen Don J Intelligent soft start control to reduce electrostatic discharge clamp current spikes
CN202004641U (zh) * 2011-03-01 2011-10-05 深圳艾科创新微电子有限公司 一种具有软启动电路的开关电容电荷泵
CN103620954A (zh) * 2011-06-14 2014-03-05 梅鲁斯音频有限公司 功率晶体管栅极驱动器

Also Published As

Publication number Publication date
US20170353105A1 (en) 2017-12-07
US10498229B2 (en) 2019-12-03
CN107465339A (zh) 2017-12-12
TW201743549A (zh) 2017-12-16
CN107465339B (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
TWI769160B (zh) 用以軟啟動大功率電荷泵的方法、電路,及電子系統
US8120338B2 (en) Dropper-type regulator
US10008932B2 (en) Synchronous rectification DC/DC converter
US9058050B2 (en) Clock-based soft-start circuit and power management integrated circuit device
KR20160132172A (ko) 플라잉 커패시터 전압 제어를 위한 회로들을 가지는 dc-dc 컨버터 및 그에 따른 전압 제어 방법
JP4855153B2 (ja) 電源装置、レギュレータ回路、チャージポンプ回路およびそれらを用いた電子機器
US20130176008A1 (en) Soft Start Circuit and Power Supply Device Using the Same
CN103296717A (zh) 电池充电系统
JP2013511253A5 (zh)
US11239680B2 (en) Battery charger
US9407138B2 (en) Control circuit and control method for charge pump circuit
CN107305402B (zh) 带隙基准电路以及具有该带隙基准电路的dcdc转换器
TW200843311A (en) Apparatus and methods for improving the transient response capability of a switching power supply
US9564886B2 (en) Circuit and method for controlling operation voltage, and storage device
US10686377B1 (en) Start-up method and apparatus for boost converters
JP2016143227A (ja) 定電圧生成回路
US8497719B2 (en) Slew rate PWM controlled charge pump for limited in-rush current switch driving
US11038420B2 (en) Charge pump transient response optimization by controlled flying capacitor discharge during bypass to switching mode transition
US8513930B2 (en) Active power switch topology for switching regulators
US10784849B1 (en) Energy storage element control circuit
JP2017060354A (ja) 充放電制御装置
JP2006204020A (ja) 電源装置および電子装置
CN111312313A (zh) 一种电荷泵电压快切的电路
US20130162234A1 (en) Buck regulation of a boost regulator
JP6629593B2 (ja) 電源回路およびその制御回路、制御方法、ならびにそれを用いた電子機器