TWI769050B - Semiconductor structure and method for manufacturing the same - Google Patents

Semiconductor structure and method for manufacturing the same Download PDF

Info

Publication number
TWI769050B
TWI769050B TW110129768A TW110129768A TWI769050B TW I769050 B TWI769050 B TW I769050B TW 110129768 A TW110129768 A TW 110129768A TW 110129768 A TW110129768 A TW 110129768A TW I769050 B TWI769050 B TW I769050B
Authority
TW
Taiwan
Prior art keywords
channel
dielectric layer
semiconductor structure
spacer element
layer
Prior art date
Application number
TW110129768A
Other languages
Chinese (zh)
Other versions
TW202308127A (en
Inventor
廖廷豐
陳晟弘
劉光文
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW110129768A priority Critical patent/TWI769050B/en
Application granted granted Critical
Publication of TWI769050B publication Critical patent/TWI769050B/en
Publication of TW202308127A publication Critical patent/TW202308127A/en

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A semiconductor structure and a method for manufacturing a semiconductor are provided. The semiconductor structure includes a channel pillar, a dielectric layer formed on the channel pillar, a via formed in the dielectric layer and electrically connected to the channel pillar, and a spacer formed between the dielectric layer and the via.

Description

半導體結構及製造其之方法 Semiconductor structure and method of making the same

本揭露係有關於一種半導體結構及其製造方法,更特別有關於包括形成於通孔元件之側壁上的間隔元件之半導體結構及其製造方法。 The present disclosure relates to a semiconductor structure and a manufacturing method thereof, and more particularly, to a semiconductor structure including spacer elements formed on sidewalls of through-hole elements and a manufacturing method thereof.

蝕刻技術已廣泛地應用於半導體製程中。例如,為了形成通道柱之接墊(pad)和通孔元件之間的歐姆接觸(ohmic contact),可藉由蝕刻製程以在通道柱上形成通孔元件。然而,用以形成通孔元件之蝕刻製程可能會發生過蝕刻(over-etching)問題,進而在半導體結構中形成漏電路徑(leakage path),並影響半導體結構中導線的絕緣性。 Etching techniques have been widely used in semiconductor manufacturing. For example, in order to form ohmic contacts between the pads of the channel pillars and the via elements, the via elements may be formed on the channel pillars by an etching process. However, an over-etching problem may occur in the etching process used to form the through-hole device, thereby forming a leakage path in the semiconductor structure and affecting the insulation properties of the wires in the semiconductor structure.

因此,有需要提供一種半導體結構及其製造方法,其可避免漏電路徑之產生,同時確保通道柱和通孔元件之間的良好歐姆接觸,以提升半導體結構之電性表現。 Therefore, there is a need to provide a semiconductor structure and a method for fabricating the same, which can avoid the generation of leakage paths, and at the same time ensure good ohmic contact between the channel column and the via element, so as to improve the electrical performance of the semiconductor structure.

本揭露係有關於半導體結構及製造其之方法。 The present disclosure relates to semiconductor structures and methods of fabricating the same.

根據本揭露之一方面,提供製造半導體結構之方法。製造半導體結構之方法包括:提供通道柱;在通道柱上形成介電層;在介電層中形成間隔元件;以及在介電層中形成通孔元件,通孔元件電性連接於通道柱,間隔元件係介於介電層與通孔元件之間。 According to one aspect of the present disclosure, a method of fabricating a semiconductor structure is provided. A method of fabricating a semiconductor structure includes: providing a channel post; forming a dielectric layer on the channel post; forming spacer elements in the dielectric layer; and forming a via element in the dielectric layer, the via element being electrically connected to the channel post, The spacer elements are interposed between the dielectric layer and the via elements.

根據本揭露之另一方面,提供半導體結構。半導體結構包括通道柱、形成於通道柱上的介電層、形成於介電層中且電性連接於通道柱的通孔元件、以及形成於介電層與通孔元件之間的間隔元件。 According to another aspect of the present disclosure, a semiconductor structure is provided. The semiconductor structure includes a channel pillar, a dielectric layer formed on the channel pillar, a via element formed in the dielectric layer and electrically connected to the via pillar, and a spacer element formed between the dielectric layer and the via element.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下。 In order to have a better understanding of the above and other aspects of the present invention, the following embodiments are given and described in detail in conjunction with the accompanying drawings as follows.

10:半導體結構 10: Semiconductor structure

101:基板 101: Substrate

102:絕緣層 102: Insulation layer

103:導電層 103: Conductive layer

104:記憶層 104: Memory Layer

105:通道層 105: Channel Layer

105S:側壁 105S: Sidewall

106:絕緣柱 106: Insulation column

106S:側壁 106S: Sidewall

107:接墊 107: Pad

107S:側壁 107S: Sidewall

110:堆疊結構 110: Stacked Structure

111:通道柱 111: Channel column

111S:側壁 111S:Sidewall

111U:上表面 111U: Upper surface

112:氣隙 112: Air gap

115:介電膜 115: Dielectric film

116:導電膜 116: Conductive film

116S:側壁 116S: Sidewall

117:介電層 117: Dielectric layer

118:開口 118: Opening

120:間隔元件 120: Spacer element

121:阻障層 121: Barrier layer

122:通孔元件 122: Through-hole components

D1,D2:方向 D1, D2: direction

T1:厚度 T1: Thickness

第1圖至第5圖係繪示根據本揭露之實施例之製造半導體結構之方法的剖面示意圖。 1 to 5 are schematic cross-sectional views illustrating a method of fabricating a semiconductor structure according to an embodiment of the present disclosure.

在本揭露之實施例中,提出一種半導體結構及製造半導體結構的方法。根據製造方法之實施例可得到半導體結構,例如是包括形成於通孔元件(via)之側壁上的間隔元件(spacer)之 半導體結構,藉此避免產生通孔元件和半導體結構中的導電層之間的漏電路徑,並保持通孔元件和半導體結構中的導電層的絕緣性,以提升半導體結構之電性表現。 In the embodiments of the present disclosure, a semiconductor structure and a method of fabricating the semiconductor structure are provided. According to an embodiment of the manufacturing method, a semiconductor structure can be obtained, for example, including a spacer element (spacer) formed on the sidewall of a via element (via). The semiconductor structure, thereby avoiding the generation of a leakage path between the through-hole element and the conductive layer in the semiconductor structure, and maintaining the insulation between the through-hole element and the conductive layer in the semiconductor structure, so as to improve the electrical performance of the semiconductor structure.

在實際應用上,本揭露之實施例可實施為多種不同的半導體結構。例如,實施例可應用於三維垂直通道類型記憶裝置或具有高深寬比(aspect ratio)之三維積體電路(Integrated Circuit;IC)結構,但本揭露不限於此應用。以下係提出相關實施例,配合圖式以詳細說明本揭露所提出之記憶裝置及其製造方法。 In practical applications, the embodiments of the present disclosure may be implemented in various semiconductor structures. For example, the embodiment may be applied to a three-dimensional vertical channel type memory device or a three-dimensional integrated circuit (IC) structure with a high aspect ratio, but the present disclosure is not limited to this application. Relevant embodiments are provided below, and the memory device and the manufacturing method thereof provided by the present disclosure are described in detail in conjunction with the drawings.

同時,需注意的是,實施例中之敘述,例如細部結構、製造方法之步驟和材料應用等,僅為舉例說明之用,本揭露欲保護之範圍並非僅限於所述態樣。相關技術領域者當可在不脫離本揭露之精神和範圍之前提下,對實施例之結構和製造方法加以變化與修飾,以符合實際應用所需。因此,未於本揭露提出的其他實施態樣也可能可以應用。再者,圖式係簡化以利清楚說明實施例之內容,圖式上的尺寸比例並非按照實際產品等比例繪製。因此,說明書和圖式僅作敘述實施例之用,而非用以限縮本揭露保護範圍。以下是以相同/類似的符號表示相同/類似的元件做說明。 Meanwhile, it should be noted that the descriptions in the embodiments, such as the detailed structure, the steps of the manufacturing method and the material application, etc., are for illustrative purposes only, and the scope of protection of the present disclosure is not limited to the above-described aspects. Those skilled in the relevant art can make changes and modifications to the structures and manufacturing methods of the embodiments to meet the needs of practical applications without departing from the spirit and scope of the present disclosure. Therefore, other implementation aspects not proposed in the present disclosure may also be applicable. Furthermore, the drawings are simplified for the purpose of clearly explaining the contents of the embodiments, and the dimension ratios in the drawings are not drawn according to the actual product scale. Therefore, the description and the drawings are only used to describe the embodiments, rather than to limit the protection scope of the present disclosure. In the following, the same/similar symbols are used to represent the same/similar elements for description.

此外,說明書與申請專利範圍中的用語「電性連接」可代表多個元件形成歐姆接觸、可代表電流流經多個元件之間、也可代表多個元件具有操作上的關聯性。操作上的關聯性可例如 是一元件用以驅動另一元件,但電流可不直接流過這兩個元件之間。 In addition, the term "electrically connected" in the description and the scope of the patent application may mean that a plurality of elements form ohmic contacts, that current flows between the plurality of elements, or that the plurality of elements are operatively related. Operational associativity can be e.g. One element is used to drive another element, but current may not flow directly between these two elements.

第1圖至第5圖係繪示根據一實施例之製造半導體結構的方法的剖面圖。半導體結構的製造方法包含以下步驟:請參照第1圖,提供基板101。基板101可包含摻雜(doped)或未摻雜(undoped)的半導體材料,例如包含p型摻雜、n型摻雜或無摻雜的矽。但本發明不以此為限。在另一實施例中,基板101可使用其他材料,例如介電材料或導電材料。堆疊結構110形成在基板101上。堆疊結構110可包括沿著第一方向D1交錯堆疊的多個絕緣層102與多個導電層103。第一方向D1可為基板101之上表面的法線方向。多個導電層103使多個絕緣層102相互隔離。絕緣層102可包含絕緣材料,絕緣材料包括氧化物。在一實施例中,絕緣層102可包含氧化矽(silicon oxide)。導電層103可包含例如金屬等導電材料。在一實施例中,導電層103可包含鎢(tungsten)。 1-5 are cross-sectional views illustrating a method of fabricating a semiconductor structure according to an embodiment. The manufacturing method of the semiconductor structure includes the following steps: Referring to FIG. 1 , a substrate 101 is provided. The substrate 101 may include doped or undoped semiconductor materials, such as p-doped, n-doped or undoped silicon. However, the present invention is not limited to this. In another embodiment, the substrate 101 may use other materials, such as dielectric materials or conductive materials. The stacked structure 110 is formed on the substrate 101 . The stacked structure 110 may include a plurality of insulating layers 102 and a plurality of conductive layers 103 that are alternately stacked along the first direction D1. The first direction D1 may be the normal direction of the upper surface of the substrate 101 . The plurality of conductive layers 103 isolate the plurality of insulating layers 102 from each other. The insulating layer 102 may include an insulating material including an oxide. In one embodiment, the insulating layer 102 may include silicon oxide. The conductive layer 103 may include a conductive material such as metal. In one embodiment, the conductive layer 103 may include tungsten.

通道柱111提供於堆疊結構110中。在此實施例中,通道柱111沿著第一方向D1延伸通過堆疊結構110形成於基板101上。通道柱111可包括記憶層104、通道層105、絕緣柱106與接墊107。接墊107可形成於絕緣柱106上。通道層105可形成於絕緣柱106的側壁106S上且形成於接墊107的側壁107S上。記憶層104可形成於通道層105的側壁105S上。在此實施例中,記憶層104可具有管狀且圍繞通道層105,通道層105 可具有管狀且圍繞絕緣柱106與接墊107,通道層105介於記憶層104與絕緣柱106之間及/或記憶層104與接墊107之間。 Channel pillars 111 are provided in the stacked structure 110 . In this embodiment, the channel pillars 111 are formed on the substrate 101 through the stacked structure 110 extending along the first direction D1. The channel pillars 111 may include the memory layer 104 , the channel layer 105 , the insulating pillars 106 and the pads 107 . Pads 107 may be formed on the insulating pillars 106 . The channel layer 105 may be formed on the sidewalls 106S of the insulating pillars 106 and on the sidewalls 107S of the pads 107 . The memory layer 104 may be formed on the sidewalls 105S of the channel layer 105 . In this embodiment, the memory layer 104 may have a tubular shape and surround the channel layer 105, the channel layer 105 It may have a tubular shape and surround the insulating pillars 106 and the pads 107 , and the channel layer 105 is interposed between the memory layer 104 and the insulating pillars 106 and/or between the memory layer 104 and the pads 107 .

記憶層104可包含記憶體技術領域中已知的多層結構(multilayer structure),例如ONO(氧化物-氮化物-氧化物)結構、ONONO(氧化物-氮化物-氧化物-氮化物-氧化物)結構、ONONONO(氧化物-氮化物-氧化物-氮化物-氧化物-氮化物-氧化物)結構、SONOS(矽-氧化矽-氮化矽-氧化矽-矽)結構、BE-SONOS(能帶隙矽-氧化矽-氮化矽-氧化矽-矽)結構、TANOS(氮化鉭-氧化鋁-氮化矽-氧化矽-矽)結構、MA BE-SONOS(金屬-高介電常數材料能帶隙矽-氧化矽-氮化矽-氧化矽-矽)結構及其組合。通道層105可包含摻雜的或未摻雜的半導體材料。在一實施例中,通道層105可包含多晶矽(polysilicon),例如摻雜的多晶矽或未摻雜的多晶矽。絕緣柱106可包含絕緣材料,絕緣材料包含氧化物。在一實施例中,絕緣柱106可包含氧化矽。接墊107可包含半導體材料,例如金屬矽化物(silicide)、摻雜的半導體材料或未摻雜的半導體材料。在一實施例中,接墊107可包含多晶矽,例如摻雜的多晶矽或未摻雜的多晶矽。接墊107可電性連接於通道層105。 The memory layer 104 may include a multilayer structure known in the field of memory technology, such as ONO (oxide-nitride-oxide) structure, ONONO (oxide-nitride-oxide-nitride-oxide) ) structure, ONONONO (oxide-nitride-oxide-nitride-oxide-nitride-oxide) structure, SONOS (silicon-silicon oxide-silicon nitride-silicon oxide-silicon) structure, BE-SONOS ( Band gap silicon-silicon oxide-silicon nitride-silicon oxide-silicon) structure, TANOS (tantalum nitride-alumina-silicon nitride-silicon oxide-silicon) structure, MA BE-SONOS (metal-high dielectric constant) Material energy band gap silicon-silicon oxide-silicon nitride-silicon oxide-silicon) structure and its combination. The channel layer 105 may comprise doped or undoped semiconductor material. In one embodiment, the channel layer 105 may comprise polysilicon, such as doped polysilicon or undoped polysilicon. The insulating pillars 106 may include an insulating material including an oxide. In one embodiment, the insulating pillars 106 may comprise silicon oxide. The pads 107 may comprise a semiconductor material, such as a silicide, a doped semiconductor material, or an undoped semiconductor material. In one embodiment, the pads 107 may comprise polysilicon, such as doped polysilicon or undoped polysilicon. The pads 107 can be electrically connected to the channel layer 105 .

在一實施例中,導電膜116提供於堆疊結構110中。導電膜116沿著第一方向D1延伸通過堆疊結構110且形成於基板101上。介電膜115可形成於導電膜116之側壁116S上且設置於於導電膜116與堆疊結構110之間。在一實施例中,導 電膜116可包括形成於導電膜116內部的氣隙112。導電膜116可包含多晶矽、金屬或其他合適的導電材料。在一實施例中,導電膜116可包含鎢。介電膜115可包含介電材料,例如氧化矽。接著,可在堆疊結構110與通道柱111上形成介電層117,例如是藉由沉積製程來形成。介電層117可包含氧化物,例如氧化矽。 In one embodiment, the conductive film 116 is provided in the stacked structure 110 . The conductive film 116 extends through the stacked structure 110 along the first direction D1 and is formed on the substrate 101 . The dielectric film 115 may be formed on the sidewalls 116S of the conductive film 116 and disposed between the conductive film 116 and the stacked structure 110 . In one embodiment, the lead The electrical film 116 may include an air gap 112 formed inside the conductive film 116 . The conductive film 116 may comprise polysilicon, metal, or other suitable conductive materials. In one embodiment, the conductive film 116 may include tungsten. The dielectric film 115 may include a dielectric material such as silicon oxide. Next, a dielectric layer 117 may be formed on the stack structure 110 and the channel pillars 111, for example, by a deposition process. The dielectric layer 117 may include oxide, such as silicon oxide.

請參照第2圖。在介電層117中形成多個開口118。舉例而言,可藉由曝光微影製程(photolithography process)來圖案化介電層117以形成開口118。多個開口118沿著第一方向D1向下延伸通過介電層117,並延伸至堆疊結構110中位於頂部的絕緣層102以分別使通道柱111的上表面111U暴露。在一實施例中,用以形成開口118的曝光微影製程中的蝕刻處理未停止於通道柱111的上表面111U,蝕刻處理在使通道柱111的上表面111U暴露之後繼續進行,使部分的記憶層104被移除,並使堆疊結構110中的至少一導電層103暴露於開口118中。在此實施例中,如第2圖所示,開口118使通道柱111的上表面111U、通道柱111的側壁111S(或可理解為記憶層104)、以及多個導電層103中最上層的導電層103的側壁暴露。 Please refer to Figure 2. A plurality of openings 118 are formed in the dielectric layer 117 . For example, the dielectric layer 117 may be patterned by an exposure photolithography process to form the openings 118 . A plurality of openings 118 extend downward through the dielectric layer 117 along the first direction D1, and extend to the top insulating layer 102 in the stacked structure 110 to expose the upper surfaces 111U of the channel pillars 111, respectively. In one embodiment, the etching process in the exposure lithography process for forming the openings 118 does not stop at the upper surface 111U of the channel column 111, and the etching process continues after exposing the upper surface 111U of the channel column 111, so that part of the upper surface 111U is exposed. The memory layer 104 is removed, and the at least one conductive layer 103 in the stack structure 110 is exposed in the opening 118 . In this embodiment, as shown in FIG. 2 , the opening 118 makes the upper surface 111U of the channel column 111 , the sidewall 111S of the channel column 111 (or can be understood as the memory layer 104 ), and the uppermost layer of the plurality of conductive layers 103 . The sidewalls of the conductive layer 103 are exposed.

請參照第3圖。接著,在介電層117中形成間隔元件120。具體而言,在開口118的內部側壁與底表面上形成間隔元件120,例如是藉由沉積製程來形成。間隔元件120可包含氧化物,例如氧化矽。在一實施例中,間隔元件120並不限於如圖所示的輪廓,而可包含沉積於開口118的內部側壁與底表面上的 任何可能輪廓。舉例來說,間隔元件120的上表面可能為平整的表面或非平整的表面。 Please refer to Figure 3. Next, spacer elements 120 are formed in the dielectric layer 117 . Specifically, the spacer elements 120 are formed on the inner sidewalls and bottom surfaces of the openings 118, for example, by a deposition process. Spacer elements 120 may include oxides, such as silicon oxide. In one embodiment, the spacer element 120 is not limited to the profile as shown, but may include spacers deposited on the inner sidewalls and bottom surface of the opening 118 . any possible outline. For example, the upper surface of the spacer element 120 may be a flat surface or a non-flat surface.

請參照第4圖。接著,可利用非等向蝕刻製程移除間隔元件120中位於通道柱111的上表面111U上的部分,留下間隔元件120中位於開口118的內部側壁上的部分。具體而言,移除形成於通道柱111的上表面111U上的間隔元件120以使接墊107暴露。在一實施例中,如第4圖所示,在非等向蝕刻製程之後,間隔元件120的一部分設置於通道柱111和堆疊結構110的導電層103之間;或者,也可理解為間隔元件120的一部分形成於通道柱111的側壁111S上。 Please refer to Figure 4. Next, the portion of the spacer element 120 located on the upper surface 111U of the channel pillar 111 may be removed by an anisotropic etching process, leaving the portion of the spacer element 120 located on the inner sidewall of the opening 118 . Specifically, the spacer members 120 formed on the upper surfaces 111U of the channel pillars 111 are removed to expose the pads 107 . In one embodiment, as shown in FIG. 4 , after the anisotropic etching process, a part of the spacer element 120 is disposed between the channel column 111 and the conductive layer 103 of the stack structure 110 ; or, it can also be understood as a spacer element A part of 120 is formed on the sidewall 111S of the channel pillar 111 .

請參照第5圖。接著,可藉由沉積製程以在間隔元件120的側壁與通道柱111的上表面111U上形成阻障層121。阻障層121可包含導電材料,例如金屬。在一實施例中,阻障層121可包含鈦(titanium;Ti)或氮化鈦(titanium nitride;TiN)。形成阻障層121後,可藉由沉積製程以在阻障層121的內部側壁上形成通孔元件122以填充開口118。通孔元件122可包含例如金屬等導電材料。在一實施例中,通孔元件122可包含鎢。間隔元件120可介於介電層107與通孔元件122之間,阻障層121可位於間隔元件120與通孔元件122之間,通孔元件122可透過阻障層121電性連接於通道柱111的接墊107。在此實施例中,阻障層121直接接觸通道柱111的接墊107,但本揭露不以此為限。 Please refer to Figure 5. Next, a barrier layer 121 may be formed on the sidewalls of the spacer elements 120 and the upper surfaces 111U of the channel pillars 111 through a deposition process. The barrier layer 121 may include a conductive material, such as metal. In one embodiment, the barrier layer 121 may include titanium (titanium; Ti) or titanium nitride (titanium nitride; TiN). After the barrier layer 121 is formed, through-hole elements 122 can be formed on the inner sidewalls of the barrier layer 121 by a deposition process to fill the openings 118 . Via element 122 may comprise a conductive material such as metal. In one embodiment, the via element 122 may comprise tungsten. The spacer element 120 may be interposed between the dielectric layer 107 and the via element 122 , the barrier layer 121 may be located between the spacer element 120 and the via element 122 , and the via element 122 may be electrically connected to the channel through the barrier layer 121 Pad 107 of post 111 . In this embodiment, the barrier layer 121 directly contacts the pads 107 of the channel pillars 111 , but the present disclosure is not limited thereto.

透過上述參考第1圖至第5圖描述之製造方法可得半導體結構10。如第5圖所示,半導體結構10包括基板101、設置於基板101上且包括沿著第一方向D1交錯堆疊的多個導電層103與多個絕緣層102的堆疊結構110、沿著第一方向D1延伸通過堆疊結構110的通道柱111、形成於通道柱111與堆疊結構110上的介電層117、形成於介電層117中且電性連接於通道柱111的通孔元件122、以及形成於介電層117與通孔元件122之間的間隔元件120。 The semiconductor structure 10 can be obtained by the manufacturing method described above with reference to FIGS. 1 to 5 . As shown in FIG. 5 , the semiconductor structure 10 includes a substrate 101 , a stacked structure 110 disposed on the substrate 101 and including a plurality of conductive layers 103 and a plurality of insulating layers 102 staggered and stacked along the first direction D1 , along the first direction D1 . The direction D1 extends through the channel pillars 111 of the stacked structure 110 , the dielectric layer 117 formed on the channel pillars 111 and the stacked structure 110 , the via elements 122 formed in the dielectric layer 117 and electrically connected to the channel pillars 111 , and Spacer elements 120 are formed between the dielectric layer 117 and the via elements 122 .

間隔元件120可用以使通孔元件122和堆疊結構110中的導電層103隔離。間隔元件120可具有在第二方向D2上的介於10-500埃(angstrom;Å)之一厚度T1,第一方向D1正交於第二方向D2。具體而言,如第5圖所示,間隔元件120之一部分形成於通道柱111與多個導電層103中被開口118暴露的導電層103(在此實施例中亦可理解為多個導電層103中最上層的導電層103)之間,以避免通孔元件122接觸被開口118暴露的導電層103而導致通孔元件122與導電層103之間的漏電路徑。間隔元件120可使通孔元件122電性絕緣於被開口118暴露的導電層103。 The spacer element 120 may be used to isolate the via element 122 from the conductive layer 103 in the stack structure 110 . The spacer element 120 may have a thickness T1 between 10-500 angstroms (angstrom; Å) in the second direction D2, which is orthogonal to the second direction D2. Specifically, as shown in FIG. 5 , a portion of the spacer element 120 is formed on the conductive layer 103 exposed by the opening 118 in the channel column 111 and the plurality of conductive layers 103 (in this embodiment, it can also be understood as a plurality of conductive layers 103 ) between the uppermost conductive layer 103 ) to prevent the via element 122 from contacting the conductive layer 103 exposed by the opening 118 to cause a leakage path between the via element 122 and the conductive layer 103 . The spacer element 120 can electrically insulate the via element 122 from the conductive layer 103 exposed by the opening 118 .

在一實施例中,間隔元件120在第二方向D2上的厚度T1可為100埃。在間隔元件120在第二方向D2上的厚度T1小於10埃的情況下,堆疊結構110中的導電層103與通孔元件122之間的絕緣性不足,難以避免漏電路徑之產生。在間隔元 件120在第二方向D2上的厚度T1大於500埃的情況下,可導致通孔元件122與接墊107之間的導電路徑被阻隔(blinded)而無法提供可靠的導電通路。 In one embodiment, the thickness T1 of the spacer element 120 in the second direction D2 may be 100 angstroms. When the thickness T1 of the spacer element 120 in the second direction D2 is less than 10 angstroms, the insulation between the conductive layer 103 and the via element 122 in the stacked structure 110 is insufficient, and it is difficult to avoid the generation of leakage paths. in the spacer When the thickness T1 of the member 120 in the second direction D2 is greater than 500 angstroms, the conductive path between the via element 122 and the pad 107 may be blinded and a reliable conductive path cannot be provided.

半導體結構10還可包括形成於通孔元件122與間隔元件120之間的阻障層121。阻障層121可位於通孔元件122的側壁上且圍繞通孔元件122。半導體結構10還可包括沿著第一方向D1延伸通過堆疊結構110的導電膜116、以及介於導電膜116與堆疊結構110之間的介電膜115。在此實施例中,半導體結構10繪示為包括兩個通道柱111和兩個導電膜116,然而本揭露不限於此,半導體結構可包括更多或更少的通道柱111和更多或更少的導電膜116。 The semiconductor structure 10 may also include a barrier layer 121 formed between the via elements 122 and the spacer elements 120 . The barrier layer 121 may be on the sidewall of the via element 122 and surround the via element 122 . The semiconductor structure 10 may further include a conductive film 116 extending through the stacked structure 110 along the first direction D1 , and a dielectric film 115 interposed between the conductive film 116 and the stacked structure 110 . In this embodiment, the semiconductor structure 10 is illustrated as including two channel pillars 111 and two conductive films 116 , however, the present disclosure is not limited thereto, and the semiconductor structure may include more or less channel pillars 111 and more or more less conductive film 116.

在一實施例中,半導體結構10可應用於具有垂直通道結構之反及閘(NAND)類型的三維記憶裝置,半導體結構10可包括定義於記憶層104中的多個記憶胞。更具體地,記憶胞可定義在多個導電層103中的每一者與通道柱111之通道層105交錯處的記憶層104中。導電層103可做為字元線(word line;WL),導電膜116可做為共同源極線(common source line;CSL)。在一實施例中,半導體結構10可應用於閘極全環繞(gate-all-around)類型的記憶裝置。 In one embodiment, the semiconductor structure 10 may be applied to a three-dimensional memory device having a vertical channel structure inverse and gate (NAND) type, and the semiconductor structure 10 may include a plurality of memory cells defined in the memory layer 104 . More specifically, memory cells may be defined in the memory layer 104 where each of the plurality of conductive layers 103 is interleaved with the channel layers 105 of the channel pillars 111 . The conductive layer 103 can be used as a word line (WL), and the conductive film 116 can be used as a common source line (CSL). In one embodiment, the semiconductor structure 10 may be applied to a gate-all-around type memory device.

在本揭露之半導體結構10中,透過設置間隔元件120可有效確保導電層103的絕緣性,即便通孔元件122未完全對準通道柱111或設置通孔元件122時發生過蝕刻問題,亦可確 保通道柱111和通孔元件122之間的良好歐姆接觸,並避免通孔元件122與導電層103之間的漏電路徑,提升半導體結構之電性表現。例如,在通道柱111未垂直於基板101的上表面的情況下,用以形成通孔元件122之蝕刻製程(例如,形成開口118之蝕刻製程)會因通道柱111之傾斜而未停止於通道柱111的上表面,此蝕刻製程會朝向基板101的方向繼續進行,進而破壞堆疊結構中的導電層103之絕緣性(或可理解為過蝕刻)。本揭露藉由設置間隔元件120可有效修復導電層103之絕緣性。本揭露之實施例可整合於現有之半導體結構製程中。此外,在本揭露之半導體結構應用於三維記憶裝置的情況下,透過設置間隔元件120可避免字元線和位元線(bit line;BL)之間的漏電路徑之產生,並確保字元線和位元線的絕緣性。 In the semiconductor structure 10 of the present disclosure, the insulating properties of the conductive layer 103 can be effectively ensured by disposing the spacer elements 120 , even if the through-hole elements 122 are not completely aligned with the channel pillars 111 or the over-etching problem occurs when the through-hole elements 122 are disposed, the sure Good ohmic contact between the via post 111 and the via element 122 is maintained, and a leakage path between the via element 122 and the conductive layer 103 is avoided, thereby improving the electrical performance of the semiconductor structure. For example, in the case where the channel pillars 111 are not perpendicular to the upper surface of the substrate 101 , the etching process for forming the via element 122 (eg, the etching process for forming the openings 118 ) may not stop at the channel due to the inclination of the channel pillars 111 On the upper surface of the pillar 111 , the etching process will continue toward the direction of the substrate 101 , thereby destroying the insulation of the conductive layer 103 in the stacked structure (or can be understood as over-etching). The present disclosure can effectively repair the insulation of the conductive layer 103 by disposing the spacer element 120 . Embodiments of the present disclosure can be integrated into existing semiconductor structure processes. In addition, when the semiconductor structure of the present disclosure is applied to a three-dimensional memory device, by disposing the spacer element 120, the generation of a leakage path between the word line and the bit line (BL) can be avoided, and the word line can be ensured and bit line insulation.

在一比較例中,半導體結構未包括形成於介電層與通孔元件之間的間隔元件,從而形成開口的過程中發生的過蝕刻問題會使導電層暴露於開口中,使得通孔元件及/或阻障層會形成於被開口暴露之導電層上,導致電性連接無法被正確地建立,並產生非預期的漏電路徑。 In a comparative example, the semiconductor structure does not include a spacer element formed between the dielectric layer and the via element, so that the over-etching problem that occurs during the formation of the opening can expose the conductive layer to the opening, so that the via element and the via element are exposed. /or the barrier layer may be formed on the conductive layer exposed by the opening, resulting in that the electrical connection cannot be established correctly, and an unexpected leakage path may be generated.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 To sum up, although the present invention has been disclosed by the above embodiments, it is not intended to limit the present invention. Those skilled in the art to which the present invention pertains can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the scope of the appended patent application.

10:半導體結構 10: Semiconductor structure

101:基板 101: Substrate

102:絕緣層 102: Insulation layer

103:導電層 103: Conductive layer

104:記憶層 104: Memory Layer

105:通道層 105: Channel Layer

106:絕緣柱 106: Insulation column

107:接墊 107: Pad

110:堆疊結構 110: Stacked Structure

111:通道柱 111: Channel column

111U:上表面 111U: Upper surface

115:介電膜 115: Dielectric film

116:導電膜 116: Conductive film

117:介電層 117: Dielectric layer

118:開口 118: Opening

120:間隔元件 120: Spacer element

121:阻障層 121: Barrier layer

122:通孔元件 122: Through-hole components

D1,D2:方向 D1, D2: direction

T1:厚度 T1: Thickness

Claims (9)

一種半導體結構,包括:一堆疊結構,包含交錯堆疊的多個導電層與多個絕緣層;一通道柱,沿著一第一方向延伸通過該堆疊結構;一介電層,形成於該通道柱上且形成於該堆疊結構上;一通孔元件,形成於該介電層中且電性連接於該通道柱;以及一間隔元件,形成於該介電層與該通孔元件之間,該間隔元件延伸通過該介電層且延伸至該堆疊結構中,該間隔元件與該導電層接觸。 A semiconductor structure, comprising: a stack structure including a plurality of conductive layers and a plurality of insulating layers stacked alternately; a channel column extending through the stack structure along a first direction; a dielectric layer formed on the channel column and formed on the stacked structure; a via element formed in the dielectric layer and electrically connected to the channel column; and a spacer element formed between the dielectric layer and the via element, the spacer Elements extend through the dielectric layer and into the stack, and the spacer elements are in contact with the conductive layer. 如請求項1所述之半導體結構,其中該間隔元件之一部分形成於該通道柱的一側壁上。 The semiconductor structure of claim 1, wherein a portion of the spacer element is formed on a sidewall of the channel pillar. 如請求項1所述之半導體結構,其中該間隔元件具有在一第二方向上的介於10-500埃之一厚度,該第一方向正交於該第二方向。 The semiconductor structure of claim 1, wherein the spacer element has a thickness between 10-500 angstroms in a second direction, the first direction being orthogonal to the second direction. 如請求項1所述之半導體結構,其中該間隔元件之一部分形成於該通道柱與該些導電層中的至少一導電層之間。 The semiconductor structure of claim 1, wherein a portion of the spacer element is formed between the channel post and at least one of the conductive layers. 如請求項1所述之半導體結構,其中該間隔元件包含氧化物。 The semiconductor structure of claim 1, wherein the spacer element comprises an oxide. 一種製造半導體結構的方法,包括:提供一通道柱;在該通道柱上形成一介電層;在該介電層中形成一間隔元件,包括: 形成通過該介電層之一開口以暴露出該通道柱;及在該開口之一側壁上形成該間隔元件;以及在該介電層中形成一通孔元件,該通孔元件電性連接於該通道柱,該間隔元件係介於該介電層與該通孔元件之間。 A method of fabricating a semiconductor structure, comprising: providing a channel column; forming a dielectric layer on the channel column; forming a spacer element in the dielectric layer, comprising: forming an opening through the dielectric layer to expose the via post; and forming the spacer element on a sidewall of the opening; and forming a via element in the dielectric layer electrically connected to the via element A channel column, the spacer element is interposed between the dielectric layer and the through hole element. 如請求項6所述之方法,更包括:提供一堆疊結構,該通道柱延著一第一方向延伸通過該堆疊結構,其中該間隔元件之一部分形成於該堆疊結構與該通道柱之間,該間隔元件具有在一第二方向上的介於10-500埃之一厚度,該第一方向正交於該第二方向。 The method of claim 6, further comprising: providing a stack structure through which the channel column extends along a first direction, wherein a portion of the spacer element is formed between the stack structure and the channel column, The spacer element has a thickness of between 10-500 angstroms in a second direction, the first direction being orthogonal to the second direction. 如請求項6所述之方法,其中該開口暴露出該通道柱之一上表面與該通道柱之一側壁。 The method of claim 6, wherein the opening exposes an upper surface of the channel column and a side wall of the channel column. 如請求項6所述之方法,其中在該介電層中形成該間隔元件之該步驟更包括:移除該間隔元件之一部分以暴露出該通道柱之一接墊。 The method of claim 6, wherein the step of forming the spacer element in the dielectric layer further comprises: removing a portion of the spacer element to expose a pad of the channel post.
TW110129768A 2021-08-12 2021-08-12 Semiconductor structure and method for manufacturing the same TWI769050B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110129768A TWI769050B (en) 2021-08-12 2021-08-12 Semiconductor structure and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110129768A TWI769050B (en) 2021-08-12 2021-08-12 Semiconductor structure and method for manufacturing the same

Publications (2)

Publication Number Publication Date
TWI769050B true TWI769050B (en) 2022-06-21
TW202308127A TW202308127A (en) 2023-02-16

Family

ID=83104159

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110129768A TWI769050B (en) 2021-08-12 2021-08-12 Semiconductor structure and method for manufacturing the same

Country Status (1)

Country Link
TW (1) TWI769050B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578318B (en) * 2015-08-05 2017-04-11 旺宏電子股份有限公司 3d nand memory device and operation thereof
US10553599B1 (en) * 2018-09-26 2020-02-04 Sandisk Technologies Llc Three-dimensional memory device containing drain select isolation structures and on-pitch channels and methods of making the same without an etch stop layer
US20200328225A1 (en) * 2019-04-12 2020-10-15 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device with deposited semiconductor plugs and methods for forming the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578318B (en) * 2015-08-05 2017-04-11 旺宏電子股份有限公司 3d nand memory device and operation thereof
US10553599B1 (en) * 2018-09-26 2020-02-04 Sandisk Technologies Llc Three-dimensional memory device containing drain select isolation structures and on-pitch channels and methods of making the same without an etch stop layer
US20200328225A1 (en) * 2019-04-12 2020-10-15 Yangtze Memory Technologies Co., Ltd. Three-dimensional memory device with deposited semiconductor plugs and methods for forming the same

Also Published As

Publication number Publication date
TW202308127A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
US11114459B2 (en) Three-dimensional memory device containing width-modulated connection strips and methods of forming the same
JP2002280467A (en) Sonos flash memory element and its fabricating method
US10923498B2 (en) Three-dimensional memory device containing direct source contact structure and methods for making the same
TWI646634B (en) Three-dimensional semiconductor device and method for manufacturing the same
JP5190205B2 (en) Manufacturing method of semiconductor device
US7521348B2 (en) Method of fabricating semiconductor device having fine contact holes
US6713337B2 (en) Method for manufacturing a semiconductor device having self-aligned contacts
US7846795B2 (en) Bit line of a semiconductor device and method for fabricating the same
TWI769050B (en) Semiconductor structure and method for manufacturing the same
US8476693B2 (en) Nonvolatile semiconductor memory and method for manufacturing the same
JP2004072109A (en) Integrated circuit having insulating spacer extended below conductive line and method for producing same
US20230070835A1 (en) Semiconductor devices
TW202032756A (en) Memory device and method of manufacturing the same
US11665888B2 (en) Semiconductor device and method for fabricating the same
US20230051621A1 (en) Semiconductor structure and method for manufacturing the same
TWI588973B (en) Memory device and method of manufacturing the same
TWI593086B (en) Memory device and method of manufacturing the same
CN106992178B (en) Memory element and manufacturing method thereof
TW202105680A (en) Three-dimensional memory device and manufacturing method thereof
US11600635B2 (en) Three-dimensional memory device containing bump stack structures and method of deformation measurement thereof
TWI790122B (en) Semiconductor structure
TWI841063B (en) Memory device and forming method thereof
TWI414056B (en) Semiconductor device and a method of fabricating the same
TWI818612B (en) Semiconductor memory devices
TWI807991B (en) Semiconductor device and method for fabricating the same