TWI841063B - Memory device and forming method thereof - Google Patents

Memory device and forming method thereof Download PDF

Info

Publication number
TWI841063B
TWI841063B TW111144127A TW111144127A TWI841063B TW I841063 B TWI841063 B TW I841063B TW 111144127 A TW111144127 A TW 111144127A TW 111144127 A TW111144127 A TW 111144127A TW I841063 B TWI841063 B TW I841063B
Authority
TW
Taiwan
Prior art keywords
layer
bit line
width
air gap
metal layer
Prior art date
Application number
TW111144127A
Other languages
Chinese (zh)
Other versions
TW202423239A (en
Inventor
蔡易廷
Original Assignee
南亞科技股份有限公司
Filing date
Publication date
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Application granted granted Critical
Publication of TWI841063B publication Critical patent/TWI841063B/en
Publication of TW202423239A publication Critical patent/TW202423239A/en

Links

Images

Abstract

The present disclosure provides a memory device including a substrate and a bit line on the substrate, in which the bit line includes a capping layer being the topmost layer in a material stack of the bit line and a metal layer below the capping layer, and a top surface width of the metal layer is smaller than a bottom surface width. The memory device also includes a bit line spacer conformally covering a sidewall of the bit line, a contact structure neighboring the bit line, a contact spacer covering a sidewall of the contact structure, a capacitor above the contact structure, and an air gap between the bit line structure spacer and the contact spacer, in which an upper air gap width of the air gap is larger than a lower air gap width.

Description

記憶體裝置和其形成方法Memory device and method of forming the same

本公開內容是關於記憶體裝置,且特別是關於具有氣隙的記憶體裝置和其形成方法。The present disclosure relates to memory devices, and more particularly to memory devices having air gaps and methods of forming the same.

記憶體裝置的最小特徵臨界尺寸(critical dimension,CD)不斷縮小,進而縮減了記憶體裝置的整體尺寸,並且提高了記憶體裝置的元件密度。然而,由於緊密排列的元件之間的間距縮小,元件之間的寄生電容(parasitic capacitance)容易隨之增加。因此,如何在裝置元件之間形成有效降低寄生電容的氣隙,是記憶體裝置的重要開發項目。The critical dimension (CD) of the minimum characteristic of memory devices is constantly shrinking, which in turn reduces the overall size of memory devices and increases the component density of memory devices. However, as the spacing between closely arranged components decreases, the parasitic capacitance between components tends to increase. Therefore, how to form an air gap between device components to effectively reduce parasitic capacitance is an important development project for memory devices.

根據本公開的一些實施方式,一種記憶體裝置包括基板、位於基板上的位元線,其中位元線包括位於位元線的材料堆疊中的最頂層的蓋層,以及位於蓋層之下的金屬層,金屬層的頂面寬度小於底面寬度。記憶體裝置還包括、共形覆蓋位元線的側壁的位元線間隔層、鄰近位元線的接觸件結構、覆蓋接觸件結構的側壁的接觸件間隔層、位於接觸件結構上方的電容器,以及介於位元線間隔層和接觸件間隔層之間的氣隙,其中氣隙的上部氣隙寬度大於下部氣隙寬度。According to some embodiments of the present disclosure, a memory device includes a substrate, a bit line located on the substrate, wherein the bit line includes a cap layer located at the topmost layer in a material stack of the bit line, and a metal layer located below the cap layer, wherein the top surface width of the metal layer is smaller than the bottom surface width. The memory device also includes a bit line spacer layer conformally covering the sidewalls of the bit line, a contact structure adjacent to the bit line, a contact spacer layer covering the sidewalls of the contact structure, a capacitor located above the contact structure, and an air gap between the bit line spacer layer and the contact spacer layer, wherein the upper air gap width of the air gap is greater than the lower air gap width.

在一些實施方式中,氣隙在齊平金屬層的頂表面的位置具有上部氣隙寬度,且在齊平金屬層的底表面的位置具有下部氣隙寬度。In some embodiments, the air gap has an upper air gap width at a location flush with the top surface of the metal layer and a lower air gap width at a location flush with the bottom surface of the metal layer.

在一些實施方式中,上部氣隙寬度沿著金屬層的傾斜側壁漸縮至下部氣隙寬度。In some embodiments, the upper air gap width tapers to the lower air gap width along the sloped sidewalls of the metal layer.

在一些實施方式中,上部氣隙寬度與下部氣隙寬度的差距介於5nm至15nm間。In some implementations, the difference between the upper air gap width and the lower air gap width is between 5 nm and 15 nm.

在一些實施方式中,上部氣隙寬度與下部氣隙寬度的差距等於金屬層的頂面寬度與底面寬度的差距的一半。In some embodiments, the difference between the upper air gap width and the lower air gap width is equal to half the difference between the top width and the bottom width of the metal layer.

在一些實施方式中,蓋層的寬度等於金屬層的頂面寬度。In some implementations, the width of the capping layer is equal to the top width of the metal layer.

在一些實施方式中,接觸件結構包括單元接觸件和該單元接觸件上的接墊層,且單元接觸件和接墊層之間的界面與金屬層和蓋層之間的界面齊平。In some embodiments, the contact structure includes a unit contact and a pad layer on the unit contact, and an interface between the unit contact and the pad layer is flush with an interface between the metal layer and the capping layer.

根據本公開的一些實施方式,一種形成記憶體裝置的方法包括形成位元線於基板上,其中各個位元線包括金屬層,金屬層的頂面寬度小於底面寬度。方法還包括形成位元線間隔層以覆蓋位元線的側壁、填充犧牲材料於相鄰的位元線間隔層之間、蝕刻該牲材料以形成犧牲層,其中位元線間隔層位於位元線與犧牲層之間,犧牲層的上部寬度大於下部寬度。方法還包括形成接觸件間隔層覆蓋犧牲層的側壁,其中犧牲層位於位元線間隔層與接觸件間隔層之間。方法還包括形成接觸件結構於相鄰的接觸件間隔層之間,其中接觸件結構接觸接觸件間隔層。方法還包括移除犧牲層,以形成位元線間隔層和接觸件間隔層之間的氣隙。According to some embodiments of the present disclosure, a method for forming a memory device includes forming bit lines on a substrate, wherein each bit line includes a metal layer, and the top width of the metal layer is smaller than the bottom width. The method also includes forming a bit line spacer layer to cover the sidewalls of the bit line, filling a sacrificial material between adjacent bit line spacer layers, and etching the sacrificial material to form a sacrificial layer, wherein the bit line spacer layer is located between the bit line and the sacrificial layer, and the upper width of the sacrificial layer is greater than the lower width. The method also includes forming a contact spacer layer to cover the sidewalls of the sacrificial layer, wherein the sacrificial layer is located between the bit line spacer layer and the contact spacer layer. The method further includes forming a contact structure between adjacent inter-contact spacer layers, wherein the contact structure contacts the inter-contact spacer layers. The method further includes removing the sacrificial layer to form an air gap between the inter-bitline spacer layer and the inter-contact spacer layer.

在一些實施方式中,形成位元線包括形成各個位元線的材料堆疊於基板上,其中材料堆疊包括第一材料層、第一材料層上的金屬層及金屬層上的第二材料層。形成位元線還包括蝕刻材料堆疊以形成位元線,其中第一材料層的寬度等於金屬層的底面寬度,且第二材料層的寬度等於金屬層的頂面寬度。In some embodiments, forming the bit lines includes forming a material stack of each bit line on a substrate, wherein the material stack includes a first material layer, a metal layer on the first material layer, and a second material layer on the metal layer. Forming the bit lines also includes etching the material stack to form the bit lines, wherein the width of the first material layer is equal to the bottom width of the metal layer, and the width of the second material layer is equal to the top width of the metal layer.

在一些實施方式中,犧牲層的上部寬度的兩倍與金屬層的頂面寬度的總和相等於犧牲層的下部寬度的兩倍與金屬層的底面寬度的總和。In some implementations, the sum of twice the upper width of the sacrificial layer and the top width of the metal layer is equal to the sum of twice the lower width of the sacrificial layer and the bottom width of the metal layer.

根據上述實施方式,本公開所形成的記憶體裝置包括位元線間隔層和接觸件間隔層之間的氣隙。由於位元線中的金屬層的頂面寬度小於底面寬度,因此對應位元線的氣隙可具有上部氣隙寬度大於下部氣隙寬度,從而增加位元線與電容器之間的氣隙體積以降低位元線與電容器之間的寄生電容。According to the above implementation, the memory device formed by the present disclosure includes an air gap between the bit line spacer layer and the contact spacer layer. Since the top surface width of the metal layer in the bit line is smaller than the bottom surface width, the air gap corresponding to the bit line can have an upper air gap width greater than a lower air gap width, thereby increasing the air gap volume between the bit line and the capacitor to reduce the parasitic capacitance between the bit line and the capacitor.

為了實現提及主題的不同特徵,以下公開內容提供了許多不同的實施例或示例。以下描述組件、配置等的具體示例以簡化本公開。當然,這些僅僅是示例,而不是限制性的。例如,在以下的描述中,在第二特徵之上或上方形成第一特徵可以包括第一特徵和第二特徵以直接接觸形成的實施例,並且還可以包括在第一特徵和第二特徵之間形成附加特徵,使得第一特徵和第二特徵可以不直接接觸的實施例。另外,本公開可以在各種示例中重複參考數字和/或字母。此重複是為了簡單和清楚的目的,並且本身並不表示所討論的各種實施例和/或配置之間的關係。In order to implement different features of the mentioned subject matter, the following disclosure provides many different embodiments or examples. Specific examples of components, configurations, etc. are described below to simplify the present disclosure. Of course, these are merely examples and are not restrictive. For example, in the following description, forming a first feature on or above a second feature may include an embodiment in which the first feature and the second feature are formed in direct contact, and may also include an embodiment in which an additional feature is formed between the first feature and the second feature so that the first feature and the second feature may not be in direct contact. In addition, the present disclosure may repeatedly refer to numbers and/or letters in various examples. This repetition is for the purpose of simplicity and clarity, and does not itself represent the relationship between the various embodiments and/or configurations discussed.

此外,本文可以使用空間相對術語,諸如「在…下面」、「在…下方」、「下部」、「在…上面」、「上部」等,以便於描述一個元件或特徵與如圖所示的另一個元件或特徵的關係。除了圖中所示的取向之外,空間相對術語旨在包括使用或操作中的裝置的不同取向。裝置可以以其他方式定向(旋轉90度或在其他方向上),並且同樣可以相應地解釋在此使用的空間相對描述符號。Furthermore, spatially relative terminology, such as "below," "beneath," "lower," "above," "upper," etc., may be used herein to facilitate describing the relationship of one element or feature to another element or feature as depicted in the figures. Spatially relative terminology is intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

本公開內容提供一種記憶體裝置和其形成方法,其中記憶體裝置包括位元線、鄰近位元線的接觸件結構、接觸件結構上方的電容器,以及位元線間隔層與接觸件間隔層之間的氣隙。位元線中的金屬層具有頂面寬度小於底面寬度,使得位元線的上部寬度小於下部寬度。因此,位元線周圍的氣隙可具有上部氣隙寬度大於下部氣隙寬度,從而降低位元線與電容器之間的寄生電容。The present disclosure provides a memory device and a method for forming the same, wherein the memory device includes a bit line, a contact structure adjacent to the bit line, a capacitor above the contact structure, and an air gap between the bit line spacer and the contact spacer. The metal layer in the bit line has a top width that is smaller than a bottom width, so that the upper width of the bit line is smaller than the lower width. Therefore, the air gap around the bit line can have an upper air gap width that is larger than a lower air gap width, thereby reducing parasitic capacitance between the bit line and the capacitor.

依據本公開的一些實施方式,第1A圖繪示記憶體裝置10的截面圖。記憶體裝置10包括基板100、位於基板100上的位元線110、共形覆蓋位元線110的側壁的位元線間隔層120、鄰近位元線110的接觸件結構130、覆蓋接觸件結構130的側壁的接觸件間隔層140、覆蓋位元線間隔層120與接觸件間隔層140的蓋層(capping layer)150、位於位元線間隔層120與接觸件間隔層140之間的氣隙160,以及位於接觸件結構130上方的電容器170。氣隙160的上部氣隙寬度大於下部氣隙寬度,從而增加位元線110與電容器170之間的氣隙160的體積,因此可以降低位元線110與電容器170之間的寄生電容。According to some embodiments of the present disclosure, FIG. 1A shows a cross-sectional view of a memory device 10. The memory device 10 includes a substrate 100, a bit line 110 disposed on the substrate 100, a bit line spacer 120 conformally covering a sidewall of the bit line 110, a contact structure 130 adjacent to the bit line 110, a contact spacer 140 covering a sidewall of the contact structure 130, a capping layer 150 covering the bit line spacer 120 and the contact spacer 140, an air gap 160 disposed between the bit line spacer 120 and the contact spacer 140, and a capacitor 170 disposed above the contact structure 130. The upper air gap width of the air gap 160 is greater than the lower air gap width, thereby increasing the volume of the air gap 160 between the bit line 110 and the capacitor 170, thereby reducing the parasitic capacitance between the bit line 110 and the capacitor 170.

具體而言,基板100作為承載平台,使得位元線110和接觸件結構130交錯排列於基板100之上。在一些實施方式中,基板100可以例如是塊材半導體基板、絕緣體上半導體(semiconductor-on-insulator,SOI)基板等半導體基板,其中絕緣體可以是埋入氧化物(buried oxide,BOX)層、氧化矽層或類似者。基板100可以摻雜例如p型摻雜劑、n型摻雜劑或者未摻雜雜質。基板100的半導體材料可包括矽、鍺、化合物半導體(包括碳化矽、砷化鎵、磷化鎵、磷化銦、砷化銦及/或銻化銦)、合金半導體或其組合。基板100也可由其他材料形成,例如藍寶石、氧化錫銦等。Specifically, the substrate 100 serves as a supporting platform, so that the bit lines 110 and the contact structures 130 are arranged in a staggered manner on the substrate 100. In some embodiments, the substrate 100 can be, for example, a bulk semiconductor substrate, a semiconductor-on-insulator (SOI) substrate, or other semiconductor substrates, wherein the insulator can be a buried oxide (BOX) layer, a silicon oxide layer, or the like. The substrate 100 can be doped, for example, with a p-type dopant, an n-type dopant, or undoped. The semiconductor material of the substrate 100 may include silicon, germanium, compound semiconductors (including silicon carbide, gallium arsenide, gallium phosphide, indium phosphide, indium arsenide and/or indium antimonide), alloy semiconductors or combinations thereof. The substrate 100 may also be formed of other materials, such as sapphire, tin indium oxide, etc.

在一些實施方式中,基板100之中可包括適合的導電路徑,使電流訊號得以傳遞至位元線110或接觸件結構130。舉例而言,基板100可包括設置於位元線110下方的接觸件102,且接觸件102電性連接至位元線110。基板100也可包括設置於接觸件結構130下方的接觸件104,且接觸件104電性連接至接觸件結構130。在一些實施方式中,基板100中的接觸件102和接觸件104可包括適合的導電材料,例如金屬、金屬矽化物、金屬氮化物、類似者或其組合,用以良好地傳遞電流訊號至位元線110與接觸件結構130。在一些實施方式中,基板100的頂表面上可包括介電層106,用以保護基板100中的主動區(active area,AA)。In some embodiments, the substrate 100 may include a suitable conductive path therein to allow the current signal to be transmitted to the bit line 110 or the contact structure 130. For example, the substrate 100 may include a contact 102 disposed below the bit line 110, and the contact 102 is electrically connected to the bit line 110. The substrate 100 may also include a contact 104 disposed below the contact structure 130, and the contact 104 is electrically connected to the contact structure 130. In some embodiments, the contacts 102 and 104 in the substrate 100 may include suitable conductive materials, such as metal, metal silicide, metal nitride, the like, or a combination thereof, for effectively transmitting current signals to the bit line 110 and the contact structure 130. In some embodiments, the top surface of the substrate 100 may include a dielectric layer 106 for protecting an active area (AA) in the substrate 100.

位於基板100上的位元線110的上部寬度小於下部寬度,使得位元線110在X方向上具有變化的寬度。值得說明的是,在本文中的「上部」用以代指高於位元線110的功函數區域(例如金屬層116)的位置。相對地,「下部」用以代指低於位元線110的功函數區域的位置。The upper width of the bit line 110 on the substrate 100 is smaller than the lower width, so that the bit line 110 has a varying width in the X direction. It is worth noting that the "upper" in this article is used to refer to a position higher than the work function region (such as the metal layer 116) of the bit line 110. In contrast, the "lower" is used to refer to a position lower than the work function region of the bit line 110.

為了清楚說明位元線110的寬度變化,第1B圖繪示第1A圖中的記憶體裝置10的區域A的局部放大圖。參考第1A圖和第1B圖,沿著Z方向排列的多個材料層形成位元線110的材料堆疊,其中材料堆疊自基板100的頂表面依序包括第一材料層112、第二材料層114、金屬層116以及位於最頂層的蓋層118。第一材料層112、第二材料層114和金屬層116可集體提供位元線110的讀寫電流訊號功能,其中金屬層116可直接接觸蓋層118的底表面。蓋層118隔離金屬層116和後續形成於位元線110上的其他元件,以保護第一材料層112、第二材料層114和金屬層116所形成的堆疊結構。In order to clearly illustrate the width variation of the bit line 110, FIG. 1B shows a partial enlarged view of the region A of the memory device 10 in FIG. 1A. Referring to FIG. 1A and FIG. 1B, a plurality of material layers arranged along the Z direction form a material stack of the bit line 110, wherein the material stack includes a first material layer 112, a second material layer 114, a metal layer 116, and a cap layer 118 located at the topmost layer in order from the top surface of the substrate 100. The first material layer 112, the second material layer 114, and the metal layer 116 can collectively provide the read and write current signal functions of the bit line 110, wherein the metal layer 116 can directly contact the bottom surface of the cap layer 118. The capping layer 118 isolates the metal layer 116 and other components subsequently formed on the bit line 110 to protect the stacking structure formed by the first material layer 112, the second material layer 114 and the metal layer 116.

在位元線110中,金屬層116在X方向上具有變化的寬度。如第1B圖所示,金屬層116的頂表面具有頂面寬度W1,金屬層116的底表面具有底面寬度W2,且頂面寬度W1小於底面寬度W2。在一些實施方式中,頂面寬度W1可介於5nm至10nm間,且底面寬度W2可介於15nm至20nm間。由於金屬層116的底面寬度W2自底表面漸縮至頂表面的頂面寬度W1,金屬層116可具有非垂直於基板100的頂表面的側壁。舉例而言,金屬層116在第1B圖所示的X-Z平面上可具有傾斜筆直側壁,使得金屬層116具有梯形形狀。在一些其他示例中,金屬層116的側壁可以具有弧度。In the bit line 110, the metal layer 116 has a varying width in the X direction. As shown in FIG. 1B, the top surface of the metal layer 116 has a top surface width W1, and the bottom surface of the metal layer 116 has a bottom surface width W2, and the top surface width W1 is smaller than the bottom surface width W2. In some embodiments, the top surface width W1 may be between 5nm and 10nm, and the bottom surface width W2 may be between 15nm and 20nm. Since the bottom surface width W2 of the metal layer 116 gradually decreases from the bottom surface to the top surface width W1 of the top surface, the metal layer 116 may have a sidewall that is not perpendicular to the top surface of the substrate 100. For example, the metal layer 116 may have inclined straight sidewalls on the X-Z plane shown in FIG. 1B , so that the metal layer 116 has a trapezoidal shape. In some other examples, the sidewalls of the metal layer 116 may have a curvature.

位元線110的其他材料層在X方向上具有對應金屬層116的寬度。具體而言,金屬層116之下的材料層(例如第一材料層112和第二材料層114)在X方向上的寬度相同於金屬層116的底面寬度W2,而金屬層116之上的材料層(例如蓋層118)在X方向上的寬度相同於金屬層116的頂面寬度W1。換而言之,位元線110在X方向上具有變化的寬度,且位元線110的上部所具有的頂面寬度W1小於下部所具有的底面寬度W2。Other material layers of the bit line 110 have widths in the X direction corresponding to the metal layer 116. Specifically, the widths of the material layers below the metal layer 116 (e.g., the first material layer 112 and the second material layer 114) in the X direction are the same as the bottom width W2 of the metal layer 116, and the widths of the material layers above the metal layer 116 (e.g., the cap layer 118) in the X direction are the same as the top width W1 of the metal layer 116. In other words, the bit line 110 has a varying width in the X direction, and the top width W1 of the upper portion of the bit line 110 is smaller than the bottom width W2 of the lower portion.

位元線110的材料堆疊可依據記憶體裝置10的設計或材料之間的黏合度等需求而有不同的材料層組合。舉例而言,第一材料層112可包括介電材料或導電材料,例如氧化矽、氮化矽、高介電常數介電材料、多晶矽、類似者或其組合。第二材料層114可包括導電材料,例如摻雜或非摻雜的多晶矽、金屬氮化物、金屬矽化物、類似者或其組合。金屬層116可以例如是銅、銀、鋁、鈦或類似者的單一金屬、金屬化合物或其合金。蓋層118可包括介電材料,例如氧化矽、氮化矽、類似者或其組合。The material stack of the bit line 110 may have different material layer combinations depending on the design of the memory device 10 or the adhesion between the materials. For example, the first material layer 112 may include a dielectric material or a conductive material, such as silicon oxide, silicon nitride, a high-k dielectric material, polysilicon, the like, or a combination thereof. The second material layer 114 may include a conductive material, such as doped or undoped polysilicon, metal nitride, metal silicide, the like, or a combination thereof. The metal layer 116 may be, for example, a single metal, a metal compound, or an alloy thereof, such as copper, silver, aluminum, titanium, or the like. The cap layer 118 may include a dielectric material, such as silicon oxide, silicon nitride, the like, or a combination thereof.

應理解,第1A圖所示的位元線110包括蓋層118、金屬層116以及金屬層116之下的兩層材料層,但本公開的記憶體裝置並不以此為限。在其他實施方式中,位元線110在金屬層116和蓋層118之外可包括其他數量的額外材料層,且位元線110可具有不同於第1A圖所示的材料堆疊順序。舉例而言,與第1A圖所示的位元線110相比,互換位置的第一材料層112與第二材料層114所形成的位元線也在本公開的考慮範疇內。It should be understood that the bit line 110 shown in FIG. 1A includes a cap layer 118, a metal layer 116, and two material layers below the metal layer 116, but the memory device disclosed herein is not limited thereto. In other embodiments, the bit line 110 may include other numbers of additional material layers in addition to the metal layer 116 and the cap layer 118, and the bit line 110 may have a different material stacking sequence than that shown in FIG. 1A. For example, a bit line formed by swapping the first material layer 112 and the second material layer 114 compared to the bit line 110 shown in FIG. 1A is also within the scope of consideration of the present disclosure.

位元線間隔層120共形覆蓋位元線110的側壁,用以保護位元線110。具體而言,位元線間隔層120在位元線110的側壁上具有均勻的厚度,因此位元線間隔層120包括覆蓋第一材料層112與第二材料層114而垂直於基板100的頂表面的第一部分、覆蓋金屬層116而非垂直於基板100的頂表面的第二部分,以及覆蓋蓋層118而垂直於基板100的頂表面的第三部分。換而言之,連續覆蓋位元線110的第一部分、第二部分及第三部分形成彎折的位元線間隔層120。The bit line spacer layer 120 conformally covers the sidewalls of the bit line 110 to protect the bit line 110. Specifically, the bit line spacer layer 120 has a uniform thickness on the sidewalls of the bit line 110, so the bit line spacer layer 120 includes a first portion covering the first material layer 112 and the second material layer 114 and being perpendicular to the top surface of the substrate 100, a second portion covering the metal layer 116 but not perpendicular to the top surface of the substrate 100, and a third portion covering the cap layer 118 and being perpendicular to the top surface of the substrate 100. In other words, the first portion, the second portion, and the third portion that continuously cover the bit line 110 form a bent bit line spacer layer 120.

在一些實施方式中,位元線間隔層120可具有適當的厚度,用以保護位元線110的結構。舉例而言,位元線間隔層120的厚度可介於4nm至8nm間,並均勻覆蓋第一材料層112、第二材料層114、金屬層116和蓋層118的側壁。在一些實施方式中,形成位元線間隔層120的材料可為合適的介電材料,例如氮化矽、低介電常數介電材料或其組合。位元線間隔層120可為單層結構、雙層結構或多層結構的介電材料,且位元線間隔層120的多層結構可包括不同的材料組成。In some embodiments, the bit line spacer layer 120 may have an appropriate thickness to protect the structure of the bit line 110. For example, the thickness of the bit line spacer layer 120 may be between 4 nm and 8 nm, and uniformly cover the sidewalls of the first material layer 112, the second material layer 114, the metal layer 116, and the capping layer 118. In some embodiments, the material forming the bit line spacer layer 120 may be a suitable dielectric material, such as silicon nitride, a low-k dielectric material, or a combination thereof. The bit line spacer layer 120 may be a dielectric material of a single-layer structure, a double-layer structure, or a multi-layer structure, and the multi-layer structure of the bit line spacer layer 120 may include different material compositions.

接觸件結構130位於相鄰的位元線110之間,使得位元線110與接觸件結構130交錯排列於基板100上。接觸件結構130電性連接至其上方的電容器170,其中電容器170可作為記憶體裝置10的記憶體單元(memory cell)。換而言之,接觸件結構130作為記憶體裝置10在 Z方向上的導電路徑,使得電流訊號可傳遞在基板100與電容器170之間。如第1A圖所示,接觸件結構130可延伸進基板100中的主動區,使得接觸件結構130的底表面低於基板100的頂表面。The contact structure 130 is located between adjacent bit lines 110, so that the bit lines 110 and the contact structure 130 are arranged alternately on the substrate 100. The contact structure 130 is electrically connected to the capacitor 170 above it, wherein the capacitor 170 can serve as a memory cell of the memory device 10. In other words, the contact structure 130 serves as a conductive path of the memory device 10 in the Z direction, so that the current signal can be transmitted between the substrate 100 and the capacitor 170. As shown in FIG. 1A, the contact structure 130 can extend into the active area in the substrate 100, so that the bottom surface of the contact structure 130 is lower than the top surface of the substrate 100.

在一些實施方式中,接觸件結構130可包括單元接觸件132與單元接觸件132上的接墊層134。舉例而言,單元接觸件132可由多晶矽、摻雜的多晶矽、金屬、類似者或其組合所形成,而接墊層134可包括金屬、金屬矽化物、金屬氮化物或其他合適的材料。接觸件結構130還可包括位於單元接觸件132的側表面和底表面上的阻障層(未特別繪示),其中阻障層夾置於單元接觸件132與基板100之間。在一些實施方式中,單元接觸件132的頂表面與基板100之間的距離可相同於金屬層116的頂表面與基板100之間的距離,使得單元接觸件132與接墊層134之間的界面齊平於金屬層116與蓋層118之間的界面。In some embodiments, the contact structure 130 may include a cell contact 132 and a pad layer 134 on the cell contact 132. For example, the cell contact 132 may be formed of polysilicon, doped polysilicon, metal, the like, or a combination thereof, and the pad layer 134 may include metal, metal silicide, metal nitride, or other suitable materials. The contact structure 130 may further include a barrier layer (not specifically shown) located on the side surface and the bottom surface of the cell contact 132, wherein the barrier layer is interposed between the cell contact 132 and the substrate 100. In some embodiments, the distance between the top surface of the cell contact 132 and the substrate 100 may be the same as the distance between the top surface of the metal layer 116 and the substrate 100, so that the interface between the cell contact 132 and the pad layer 134 is flush with the interface between the metal layer 116 and the capping layer 118.

接觸件間隔層140覆蓋接觸件結構130的側壁,用以保護接觸件結構130。具體而言,接觸件間隔層140在接觸件結構130的側壁上具有均勻的厚度,因此接觸件間隔層140可共形覆蓋接觸件結構130。在接觸件結構130延伸進基板100的實施方式中,接觸件間隔層140可位於基板100之上而不形成於接觸件結構130與基板100之間。The contact spacer 140 covers the sidewalls of the contact structure 130 to protect the contact structure 130. Specifically, the contact spacer 140 has a uniform thickness on the sidewalls of the contact structure 130, so that the contact spacer 140 can conformally cover the contact structure 130. In an embodiment in which the contact structure 130 extends into the substrate 100, the contact spacer 140 can be located on the substrate 100 without being formed between the contact structure 130 and the substrate 100.

在一些實施方式中,接觸件間隔層140可具有適當的厚度,用以保護接觸件結構130的結構。舉例而言,接觸件間隔層140的厚度可介於4nm至8nm間,並均勻覆蓋單元接觸件132和接墊層134的側壁。在一些實施方式中,形成接觸件間隔層140的材料可為合適的介電材料,例如氮化矽、低介電常數介電材料或其組合。接觸件間隔層140可為單層結構、雙層結構或多層結構的介電材料,且接觸件間隔層140的多層結構可包括不同的材料組成。在一些實施方式中,形成位元線間隔層120和接觸件間隔層140的材料可為相同的材料,例如位元線間隔層120和接觸件間隔層140可由氮化矽所形成。In some embodiments, the contact spacer layer 140 may have an appropriate thickness to protect the structure of the contact structure 130. For example, the thickness of the contact spacer layer 140 may be between 4 nm and 8 nm, and evenly cover the sidewalls of the unit contact 132 and the pad layer 134. In some embodiments, the material forming the contact spacer layer 140 may be a suitable dielectric material, such as silicon nitride, a low dielectric constant dielectric material, or a combination thereof. The contact spacer layer 140 may be a dielectric material of a single-layer structure, a double-layer structure, or a multi-layer structure, and the multi-layer structure of the contact spacer layer 140 may include different material compositions. In some embodiments, the material forming the bit line spacer layer 120 and the contact spacer layer 140 may be the same material. For example, the bit line spacer layer 120 and the contact spacer layer 140 may be formed of silicon nitride.

位元線間隔層120和接觸件間隔層140之間在X方向上有所間隔,因此當蓋層150覆蓋位元線間隔層120和接觸件間隔層140的頂表面之後,位元線間隔層120和接觸件間隔層140之間可形成氣隙160。氣隙160之中可填入氣體,從而降低氣隙160的周圍元件之間的寄生電容。在一些實施方式中,蓋層150覆蓋位元線110及位元線110兩側的位元線間隔層120與接觸件間隔層140,而暴露接觸件結構130的頂表面。在一些實施方式中,蓋層150可包括氮化矽、氧化矽、氮碳氧化矽或其他適合的介電材料。在一些實施方式中,蓋層150可以是第1A圖中的水平薄膜,但在其他實施方式中,蓋層150可以包括延伸進氣隙160的部分,或者蓋層150可以是厚度足以圍繞電容器170的層間介電層,本公開並不以此為限。The bit line spacer layer 120 and the contact spacer layer 140 are spaced apart in the X direction, so when the cap layer 150 covers the top surfaces of the bit line spacer layer 120 and the contact spacer layer 140, an air gap 160 may be formed between the bit line spacer layer 120 and the contact spacer layer 140. A gas may be filled in the air gap 160 to reduce parasitic capacitance between components surrounding the air gap 160. In some embodiments, the cap layer 150 covers the bit line 110 and the bit line spacer layer 120 and the contact spacer layer 140 on both sides of the bit line 110, and exposes the top surface of the contact structure 130. In some embodiments, the cap layer 150 may include silicon nitride, silicon oxide, silicon nitride carbon oxide, or other suitable dielectric materials. In some embodiments, the cap layer 150 may be a horizontal film as shown in FIG. 1A , but in other embodiments, the cap layer 150 may include a portion extending into the air gap 160 , or the cap layer 150 may be an interlayer dielectric layer having a thickness sufficient to surround the capacitor 170 , and the present disclosure is not limited thereto.

位元線110在X方向上具有變化的寬度,導致氣隙160在X方向上也具有變化的寬度。具體而言,參考第1A圖和第1B圖,位元線110的上部寬度小於下部寬度,造成氣隙160的上部氣隙寬度W3大於下部氣隙寬度W4。由於氣隙160具有較大的上部氣隙寬度W3,使得位元線110的上部與電容器170之間具有較大的氣隙體積,因此氣隙160可更顯著降低位元線110與電容器170之間的寄生電容。The bit line 110 has a variable width in the X direction, resulting in the air gap 160 also having a variable width in the X direction. Specifically, referring to FIG. 1A and FIG. 1B , the upper width of the bit line 110 is smaller than the lower width, resulting in the upper air gap width W3 of the air gap 160 being larger than the lower air gap width W4. Since the air gap 160 has a larger upper air gap width W3, a larger air gap volume is provided between the upper portion of the bit line 110 and the capacitor 170, and thus the air gap 160 can more significantly reduce the parasitic capacitance between the bit line 110 and the capacitor 170.

更具體而言,在位元線110的頂表面與金屬層116的頂表面之間,氣隙160具有均勻的上部氣隙寬度W3。當氣隙160自金屬層116的頂表面向下延伸至金屬層116的底表面時,上部氣隙寬度W3沿著金屬層116的傾斜側壁漸縮至下部氣隙寬度W4。在金屬層116的底表面與基板100的頂表面之間,氣隙160具有均勻的下部氣隙寬度W4。換而言之,氣隙160的氣隙寬度是隨著位元線110的寬度發生變化,因此氣隙160在齊平金屬層116的頂表面的位置具有較大的上部氣隙寬度W3,而在齊平金屬層116的底表面的位置具有較小的下部氣隙寬度W4。More specifically, the air gap 160 has a uniform upper air gap width W3 between the top surface of the bit line 110 and the top surface of the metal layer 116. As the air gap 160 extends downward from the top surface of the metal layer 116 to the bottom surface of the metal layer 116, the upper air gap width W3 tapers to a lower air gap width W4 along the inclined sidewall of the metal layer 116. Between the bottom surface of the metal layer 116 and the top surface of the substrate 100, the air gap 160 has a uniform lower air gap width W4. In other words, the width of the air gap 160 varies with the width of the bit line 110 , so that the air gap 160 has a larger upper air gap width W3 at a position flush with the top surface of the metal layer 116 , and has a smaller lower air gap width W4 at a position flush with the bottom surface of the metal layer 116 .

在一些實施方式中,上部氣隙寬度W3和下部氣隙寬度W4可配合金屬層116的頂面寬度W1和底面寬度W2,使得氣隙160鄰接接觸件間隔層140的側壁垂直於基板100的頂表面。具體而言,上部氣隙寬度W3與下部氣隙寬度W4之間的差距可以等於金屬層116的頂面寬度W1與底面寬度W2之間的差距的一半。在這樣的實施方式中,相鄰的接觸件間隔層140之間可維持等距,從而形成氣隙160的垂直側壁。In some embodiments, the upper air gap width W3 and the lower air gap width W4 can be matched with the top surface width W1 and the bottom surface width W2 of the metal layer 116, so that the sidewall of the air gap 160 adjacent to the contact spacer layer 140 is perpendicular to the top surface of the substrate 100. Specifically, the difference between the upper air gap width W3 and the lower air gap width W4 can be equal to half the difference between the top surface width W1 and the bottom surface width W2 of the metal layer 116. In such an embodiment, adjacent contact spacer layers 140 can be kept equidistant, thereby forming a vertical sidewall of the air gap 160.

在一些實施方式中,上部氣隙寬度W3與下部氣隙寬度W4之間的差距可介於約5nm至約15nm間。舉例而言,氣隙160可以具有例如約9nm的上部氣隙寬度W3和約3nm的下部氣隙寬度W4,其中上部氣隙寬度W3與下部氣隙寬度W4之間的差距約6nm。若氣隙寬度之間的差距小於5nm,氣隙160的上部可能太窄而難以顯著降低位元線110與電容器170之間的寄生電容;若氣隙寬度之間的差距大於15nm,氣隙160可能導致位元線110的上部過細而使位元線110的結構容易受損。In some embodiments, the difference between the upper air gap width W3 and the lower air gap width W4 may be between about 5 nm and about 15 nm. For example, the air gap 160 may have, for example, an upper air gap width W3 of about 9 nm and a lower air gap width W4 of about 3 nm, wherein the difference between the upper air gap width W3 and the lower air gap width W4 is about 6 nm. If the difference between the air gap widths is less than 5 nm, the upper portion of the air gap 160 may be too narrow to significantly reduce the parasitic capacitance between the bit line 110 and the capacitor 170; if the difference between the air gap widths is greater than 15 nm, the air gap 160 may cause the upper portion of the bit line 110 to be too thin, making the structure of the bit line 110 easily damaged.

應理解的是,為了清楚繪示記憶體裝置10的結構,第1A圖與第1B圖中繪示記憶體裝置10的部分元件,但本公開的實施方式也可應用於包括額外元件(例如字元線、層間介電層、互連層等)或是刪減部分元件(例如介電層106)的記憶體裝置。It should be understood that in order to clearly illustrate the structure of the memory device 10, some components of the memory device 10 are shown in Figures 1A and 1B, but the implementation method of the present disclosure can also be applied to memory devices including additional components (such as word lines, interlayer dielectric layers, interconnect layers, etc.) or omitting some components (such as dielectric layer 106).

依據本公開的一些實施方式,第2A圖至第2J圖繪示記憶體裝置在製造製程的多個階段的截面圖。為了便於說明,第2A圖至第2J圖所示的製造製程將以形成記憶體裝置10作為示例,然而本領域技術人員應理解,第2A圖至第2J圖所繪示的製程也可應用於形成本公開範疇內的其他記憶體裝置。除非有額外說明,當第2A圖至第2J圖繪示成實施方式的一系列步驟時,這些步驟的描述順序不應受到限制。例如,一部分步驟可採取與所述實施方式不同的順序、可同時發生、可不須採用及/或可重複進行。此外,可以在所繪示的各步驟之前、期間或之後執行額外的步驟以形成記憶體裝置。According to some embodiments of the present disclosure, FIGS. 2A to 2J illustrate cross-sectional views of a memory device at various stages of a manufacturing process. For ease of explanation, the manufacturing process shown in FIGS. 2A to 2J will be used as an example to form a memory device 10, however, those skilled in the art should understand that the process shown in FIGS. 2A to 2J may also be applied to form other memory devices within the scope of the present disclosure. Unless otherwise specified, when FIGS. 2A to 2J are illustrated as a series of steps of an embodiment, the order in which these steps are described should not be limited. For example, a portion of the steps may be performed in a different order than the embodiment described, may occur simultaneously, may not be required, and/or may be repeated. Furthermore, additional steps may be performed before, during, or after the steps depicted to form the memory device.

首先,參考第2A圖,在基板100上形成多個位元線110。具體而言,在基板100的頂表面上依序形成第一材料層112、第二材料層114、金屬層116及蓋層118,從而形成位元線110的材料堆疊。位元線110的各個材料層的側壁可彼此齊平,使得位元線110具有筆直側壁且垂直於基板100的頂表面。在基板100之中包括接觸件102和接觸件104的實施方式中,位元線110可位於接觸件102之上,而接觸件104分布於相鄰的位元線110之間。First, referring to FIG. 2A , a plurality of bit lines 110 are formed on a substrate 100. Specifically, a first material layer 112, a second material layer 114, a metal layer 116, and a cap layer 118 are sequentially formed on the top surface of the substrate 100, thereby forming a material stack of the bit lines 110. The sidewalls of the material layers of the bit lines 110 may be aligned with each other, so that the bit lines 110 have straight sidewalls and are perpendicular to the top surface of the substrate 100. In an embodiment in which the substrate 100 includes the contacts 102 and the contacts 104, the bit lines 110 may be located on the contacts 102, and the contacts 104 may be distributed between adjacent bit lines 110.

參考第2 B圖,蝕刻位元線110的側壁,以形成上部寬度小於下部寬度的位元線110。具體而言,對位元線110的材料堆疊執行非等向性蝕刻製程,使得位元線110的上部蝕刻量大於下部蝕刻量。在一些實施方式中,非等向性蝕刻製程可以例如是使用電漿的乾式蝕刻製程。 2B , the sidewall of the bit line 110 is etched to form a bit line 110 having an upper width smaller than a lower width. Specifically, an anisotropic etching process is performed on the material stack of the bit line 110, so that the upper etching amount of the bit line 110 is greater than the lower etching amount. In some embodiments, the anisotropic etching process can be, for example, a dry etching process using plasma.

更具體而言,蝕刻製程可以選擇性蝕刻位元線110中的金屬層116及蓋層118,而對金屬層116下方的第一材料層112與第二材料層114基本上沒有蝕刻效果。此外,蝕刻製程可以對金屬層116的頂表面和底表面造成不同的蝕刻量,導致蝕刻後的金屬層116具有頂面寬度小於底面寬度。因此在蝕刻製程之後,金屬層116下方的第一材料層112與第二材料層114及金屬層116的底表面可維持位元線110的原始寬度,且金屬層116上方的蓋層118的寬度相同於金屬層116的頂面寬度。More specifically, the etching process can selectively etch the metal layer 116 and the cap layer 118 in the bit line 110, while having substantially no etching effect on the first material layer 112 and the second material layer 114 below the metal layer 116. In addition, the etching process can cause different etching amounts on the top surface and the bottom surface of the metal layer 116, resulting in the metal layer 116 having a top surface width smaller than a bottom surface width after etching. Therefore, after the etching process, the first material layer 112 and the second material layer 114 below the metal layer 116 and the bottom surface of the metal layer 116 can maintain the original width of the bit line 110, and the width of the capping layer 118 above the metal layer 116 is the same as the top surface width of the metal layer 116.

參考第2C圖,形成位元線間隔層120,以覆蓋位元線110的側壁。具體而言,在位元線110的側壁上共形沉積位元線間隔層120,以在後續製程中保護位元線110,從而增加裝置可靠性。在一些實施方式中,可使用適合的沉積製程形成位元線間隔層120,例如化學氣相沉積(chemical vapor deposition,CVD)、電漿增強化學氣相沉積(plasma enhanced CVD,PECVD)、原子層沉積(atomic layer deposition,ALD)等。Referring to FIG. 2C , a bit line spacer layer 120 is formed to cover the sidewalls of the bit line 110. Specifically, the bit line spacer layer 120 is conformally deposited on the sidewalls of the bit line 110 to protect the bit line 110 in subsequent processes, thereby increasing device reliability. In some embodiments, the bit line spacer layer 120 may be formed using a suitable deposition process, such as chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), atomic layer deposition (ALD), etc.

在一些實施方式中,位元線間隔層120可先沉積在基板100的頂表面、位元線110的側壁和位元線110的頂表面上,從而形成共形覆蓋位元線110的位元線間隔層120。接著,選擇性移除水平方向(即第2C圖的X方向)上延伸的位元線間隔層120,使得位元線間隔層120覆蓋位元線110的側壁且暴露位元線110的頂表面。由於位元線110之中位於最頂層的蓋層118可保護下方的其他材料層,因此可移除位元線110的頂表面上的位元線間隔層120,從而降低裝置的整體厚度。In some embodiments, the bit line spacer layer 120 may be first deposited on the top surface of the substrate 100, the sidewalls of the bit line 110, and the top surface of the bit line 110, thereby forming the bit line spacer layer 120 that conformally covers the bit line 110. Then, the bit line spacer layer 120 extending in the horizontal direction (i.e., the X direction in FIG. 2C ) is selectively removed, so that the bit line spacer layer 120 covers the sidewalls of the bit line 110 and exposes the top surface of the bit line 110. Since the capping layer 118 located at the topmost layer in the bit line 110 can protect other material layers below, the bit line spacer layer 120 on the top surface of the bit line 110 can be removed, thereby reducing the overall thickness of the device.

參考第2D圖,在相鄰的位元線間隔層120之間填充犧牲材料200。具體而言,犧牲材料200沉積在相鄰的位元線間隔層120之間,其中犧牲材料200直接接觸兩側的位元線間隔層120。犧牲材料200在Z方向上的高度相同於位元線110,使得犧牲材料200填充位元線間隔層120之間的間隙。在一些實施方式中,犧牲材料200的組成可包括合適的介電材料,且犧牲材料200的成分可不同於位元線間隔層120與後續形成的接觸件間隔層140,從而造成犧牲材料200與位元線間隔層120以及犧牲材料200與接觸件間隔層140之間的蝕刻選擇性。舉例而言,在位元線間隔層120與接觸件間隔層140由氮化矽所形成的實施方式中,犧牲材料200可包括氧化矽。Referring to FIG. 2D , a sacrificial material 200 is filled between adjacent bit line spacer layers 120. Specifically, the sacrificial material 200 is deposited between adjacent bit line spacer layers 120, wherein the sacrificial material 200 directly contacts the bit line spacer layers 120 on both sides. The height of the sacrificial material 200 in the Z direction is the same as that of the bit line 110, so that the sacrificial material 200 fills the gap between the bit line spacer layers 120. In some embodiments, the composition of the sacrificial material 200 may include a suitable dielectric material, and the composition of the sacrificial material 200 may be different from that of the bit line spacer layer 120 and the subsequently formed contact spacer layer 140, thereby resulting in etching selectivity between the sacrificial material 200 and the bit line spacer layer 120 and between the sacrificial material 200 and the contact spacer layer 140. For example, in an embodiment where the bit line spacer layer 120 and the contact spacer layer 140 are formed of silicon nitride, the sacrificial material 200 may include silicon oxide.

在一些實施方式中,可使用適合的沉積製程來形成犧牲材料200,例如化學氣相沉積、電漿增強化學氣相沉積、物理氣相沉積(physical vapor deposition,PVD)等。在一些實施方式中,犧牲材料200可先沉積而覆蓋位元線110和位元線間隔層120,使犧牲材料200的頂表面高於位元線110和位元線間隔層120的頂表面。接著,執行例如化學機械研磨(chemical mechanical polishing,CMP)的平坦化製程,使得犧牲材料200的頂表面與位元線110的頂表面齊平。In some embodiments, the sacrificial material 200 may be formed using a suitable deposition process, such as chemical vapor deposition, plasma enhanced chemical vapor deposition, physical vapor deposition (PVD), etc. In some embodiments, the sacrificial material 200 may be first deposited to cover the bit line 110 and the bit line spacer 120, so that the top surface of the sacrificial material 200 is higher than the top surface of the bit line 110 and the bit line spacer 120. Then, a planarization process such as chemical mechanical polishing (CMP) is performed to make the top surface of the sacrificial material 200 flush with the top surface of the bit line 110.

參考第2E圖,在犧牲材料200的頂表面上形成光阻層210。具體而言,光阻層210的材料先沉積而覆蓋犧牲材料200的頂表面。經過曝光與顯影製程後,具有圖案的光阻層210形成在犧牲材料200的頂表面上,且具有暴露犧牲材料200的部分頂表面的開口215。光阻層210的圖案對應於後續形成的氣隙160,因此光阻層210的在X方向上的寬度W5可對應於氣隙160的上部氣隙寬度(例如第1B圖所示的上部氣隙寬度W3)。在一些實施方式中,光阻層210的寬度W5可介於7nm至12nm間。Referring to FIG. 2E , a photoresist layer 210 is formed on the top surface of the sacrificial material 200. Specifically, the material of the photoresist layer 210 is first deposited to cover the top surface of the sacrificial material 200. After exposure and development processes, a photoresist layer 210 having a pattern is formed on the top surface of the sacrificial material 200 and has an opening 215 that exposes a portion of the top surface of the sacrificial material 200. The pattern of the photoresist layer 210 corresponds to the air gap 160 formed subsequently, so the width W5 of the photoresist layer 210 in the X direction may correspond to the upper air gap width of the air gap 160 (e.g., the upper air gap width W3 shown in FIG. 1B ). In some embodiments, the width W5 of the photoresist layer 210 may be between 7 nm and 12 nm.

參考第2F圖,在位元線間隔層120的側壁上形成犧牲層202。具體而言,使用光阻層210作為遮罩,並對犧牲材料200執行蝕刻製程,以將第2E圖中的開口215延伸進犧牲材料200中。蝕刻製程可停止在基板100的頂表面,從而暴露基板100的頂表面。在基板100的頂表面上包括介電層106的實施方式中,蝕刻製程可停止在介電層106的頂表面。在蝕刻製程之後,犧牲材料200被分離成多個犧牲層202,其中犧牲層202沿著Z方向覆蓋位元線間隔層120的側壁。換而言之,位元線間隔層120夾置於位元線110與犧牲層202之間。在一些實施方式中,蝕刻犧牲材料200之後可以使用例如剝離製程移除光阻層210,以暴露犧牲層202的頂表面,如第2G圖所示。2F , a sacrificial layer 202 is formed on the sidewalls of the bit line spacer layer 120. Specifically, the photoresist layer 210 is used as a mask, and an etching process is performed on the sacrificial material 200 to extend the opening 215 in FIG. 2E into the sacrificial material 200. The etching process may stop at the top surface of the substrate 100, thereby exposing the top surface of the substrate 100. In an embodiment in which the dielectric layer 106 is included on the top surface of the substrate 100, the etching process may stop at the top surface of the dielectric layer 106. After the etching process, the sacrificial material 200 is separated into a plurality of sacrificial layers 202, wherein the sacrificial layers 202 cover the sidewalls of the bit line spacer layer 120 along the Z direction. In other words, the bit line spacer layer 120 is sandwiched between the bit line 110 and the sacrificial layer 202. In some embodiments, after etching the sacrificial material 200, the photoresist layer 210 may be removed using, for example, a stripping process to expose the top surface of the sacrificial layer 202, as shown in FIG. 2G.

在一些實施方式中,使用以光阻層210作為遮罩的非等向性蝕刻製程來形成犧牲層202,因此犧牲層202遠離位元線110的側壁可垂直於基板100的頂表面。由於使用光阻層210作為蝕刻遮罩,導致犧牲層202的上部具有寬度相同於光阻層210的寬度W5。當犧牲層202延伸至位元線110的下部時,由於位元線110的下部寬度大於位元線110的上部寬度,因此犧牲層202的下部在X方向上也會對應縮減至寬度W6。在一些實施方式中,犧牲層202的下部的寬度W6可對應於氣隙160的下部氣隙寬度(例如第1B圖所示的下部氣隙寬度W4)。舉例而言,犧牲層202的下部的寬度W6可介於1nm至5nm間。In some embodiments, the sacrificial layer 202 is formed by an anisotropic etching process using the photoresist layer 210 as a mask, so that the sidewall of the sacrificial layer 202 away from the bit line 110 can be perpendicular to the top surface of the substrate 100. Since the photoresist layer 210 is used as an etching mask, the upper portion of the sacrificial layer 202 has a width W5 that is the same as the width of the photoresist layer 210. When the sacrificial layer 202 extends to the lower portion of the bit line 110, since the lower portion of the bit line 110 has a greater width than the upper portion of the bit line 110, the lower portion of the sacrificial layer 202 is correspondingly reduced to a width W6 in the X direction. In some implementations, the lower width W6 of the sacrificial layer 202 may correspond to the lower air gap width of the air gap 160 (eg, the lower air gap width W4 shown in FIG. 1B ). For example, the lower width W6 of the sacrificial layer 202 may be between 1 nm and 5 nm.

更具體而言,位元線110的兩側可包括覆蓋位元線間隔層120的犧牲層202,且兩側的犧牲層202具有遠離位元線110的垂直側壁。針對位元線110的上部與位元線110的下部而言,位元線110、兩側的位元線間隔層120與兩側的犧牲層202在X方向上的寬度總合可以相同。換而言之,犧牲層202的上部寬度W5的兩倍與金屬層116的頂面寬度(如第1B圖所示的頂面寬度W1)的總和可相等於犧牲層202的下部寬度W6的兩倍與金屬層116的底面寬度(如第1B圖所示的底面寬度W2)的總和。More specifically, both sides of the bit line 110 may include a sacrificial layer 202 covering the bit line spacer layer 120, and the sacrificial layer 202 on both sides has vertical sidewalls away from the bit line 110. For the upper portion of the bit line 110 and the lower portion of the bit line 110, the sum of the widths of the bit line 110, the bit line spacer layer 120 on both sides, and the sacrificial layer 202 on both sides in the X direction may be the same. In other words, the sum of twice the upper width W5 of the sacrificial layer 202 and the top width of the metal layer 116 (such as the top width W1 shown in FIG. 1B ) may be equal to the sum of twice the lower width W6 of the sacrificial layer 202 and the bottom width of the metal layer 116 (such as the bottom width W2 shown in FIG. 1B ).

參考第2H圖,形成接觸件間隔層140,以覆蓋犧牲層202的側壁。具體而言,在犧牲層202的側壁上沉積接觸件間隔層140,使得犧牲層202夾置於位元線間隔層120與接觸件間隔層140之間。在一些實施方式中,可使用類似於形成位元線間隔層120的沉積製程來形成接觸件間隔層140,例如化學氣相沉積、電漿增強化學氣相沉積、原子層沉積等。在一些實施方式中,沉積位元線間隔層120與接觸件間隔層140可使用相同的材料,例如氮化矽。2H , a contact spacer layer 140 is formed to cover the sidewalls of the sacrificial layer 202. Specifically, the contact spacer layer 140 is deposited on the sidewalls of the sacrificial layer 202 so that the sacrificial layer 202 is sandwiched between the bit line spacer layer 120 and the contact spacer layer 140. In some embodiments, the contact spacer layer 140 may be formed using a deposition process similar to that used to form the bit line spacer layer 120, such as chemical vapor deposition, plasma enhanced chemical vapor deposition, atomic layer deposition, etc. In some embodiments, the bit line spacer layer 120 and the contact spacer layer 140 may be deposited using the same material, such as silicon nitride.

在一些實施方式中,接觸件間隔層140可先沉積在基板100的頂表面、犧牲層202的側壁、犧牲層202的頂表面、位元線間隔層120的頂表面和位元線110的頂表面上,從而共形覆蓋第2G圖中的結構。接著,選擇性移除水平方向(即第2H圖的X方向)上延伸的接觸件間隔層140,使得接觸件間隔層140覆蓋犧牲層202的側壁且暴露犧牲層202的頂表面。In some embodiments, the contact spacer layer 140 may be first deposited on the top surface of the substrate 100, the sidewalls of the sacrificial layer 202, the top surface of the sacrificial layer 202, the top surface of the bit line spacer layer 120, and the top surface of the bit line 110, so as to conformally cover the structure in FIG. 2G. Then, the contact spacer layer 140 extending in the horizontal direction (i.e., the X direction in FIG. 2H) is selectively removed, so that the contact spacer layer 140 covers the sidewalls of the sacrificial layer 202 and exposes the top surface of the sacrificial layer 202.

參考第2I圖,在相鄰的接觸件間隔層140之間形成接觸件結構130。具體而言,可使用適合的沉積或電鍍製程形成接觸件結構130,使得接觸件結構130填充接觸件間隔層140之間的間隙而直接接觸兩側的接觸件間隔層140。接著,可執行平坦化製程,使得接觸件結構130在Z方向上的高度相同於位元線110,因此接觸件結構130、接觸件間隔層140、犧牲層202、位元線間隔層120、位元線110具有共平面的頂表面。2I , a contact structure 130 is formed between adjacent contact spacers 140. Specifically, a suitable deposition or electroplating process may be used to form the contact structure 130 so that the contact structure 130 fills the gap between the contact spacers 140 and directly contacts the contact spacers 140 on both sides. Next, a planarization process may be performed so that the height of the contact structure 130 in the Z direction is the same as that of the bit line 110, so that the contact structure 130, the contact spacer 140, the sacrificial layer 202, the bit line spacer 120, and the bit line 110 have coplanar top surfaces.

在一些實施方式中,形成接觸件結構130可以包括在接觸件間隔層140之間填充單元接觸件132的材料,並執行平坦化製程,使得單元接觸件132的頂表面齊平於金屬層116的頂表面。接著,在單元接觸件132的頂表面上填充接墊層134的材料,並執行平坦化製程,使得接墊層134的頂表面齊平於蓋層118的頂表面。在一些實施方式中,在形成接觸件結構130之前,可以蝕刻基板100而形成延伸進基板100的開口(未特別繪示)。接著,在開口中沉積接觸件結構130的材料,因此造成接觸件結構130的底表面低於基板100的頂表面,如第2I圖所示。In some embodiments, forming the contact structure 130 may include filling the material of the unit contact 132 between the contact spacer layer 140, and performing a planarization process so that the top surface of the unit contact 132 is flush with the top surface of the metal layer 116. Then, filling the material of the pad layer 134 on the top surface of the unit contact 132, and performing a planarization process so that the top surface of the pad layer 134 is flush with the top surface of the cap layer 118. In some embodiments, before forming the contact structure 130, the substrate 100 may be etched to form an opening (not specifically shown) extending into the substrate 100. Next, the material of the contact structure 130 is deposited in the opening, thereby causing the bottom surface of the contact structure 130 to be lower than the top surface of the substrate 100, as shown in FIG. 2I .

參考第2J圖,移除犧牲層202,以形成位元線間隔層120和接觸件間隔層140之間的氣隙160。具體而言,使用蝕刻製程移除犧牲層202,從而形成位元線間隔層120和接觸件間隔層140之間的間隙。由於位元線間隔層120和接觸件間隔層140的材料不同於犧牲層202的材料,蝕刻製程可以選擇性蝕刻犧牲層202,而對位元線間隔層120和接觸件間隔層140基本上沒有蝕刻效果。在一些實施方式中,蝕刻製程可以是濕式蝕刻。在移除犧牲層202之後,可以在位元線間隔層120和接觸件間隔層140上沉積蓋層150,從而形成氣隙160。2J, the sacrificial layer 202 is removed to form an air gap 160 between the bit line spacer layer 120 and the contact spacer layer 140. Specifically, the sacrificial layer 202 is removed using an etching process to form a gap between the bit line spacer layer 120 and the contact spacer layer 140. Since the material of the bit line spacer layer 120 and the contact spacer layer 140 is different from the material of the sacrificial layer 202, the etching process can selectively etch the sacrificial layer 202, while having substantially no etching effect on the bit line spacer layer 120 and the contact spacer layer 140. In some embodiments, the etching process can be wet etching. After removing the sacrificial layer 202 , a capping layer 150 may be deposited on the bit line spacer layer 120 and the contact spacer layer 140 , thereby forming an air gap 160 .

移除犧牲層202所形成的氣隙160具有類似於犧牲層202的輪廓,使得氣隙160的上部氣隙寬度大於下部氣隙寬度,因此增加位元線110的上部與接觸件結構130之間的氣隙160的體積。在後續形成電容器170於接觸件結構130上方後,氣隙160可以降低位元線110與電容器170之間的寄生電容,從而增加記憶體裝置10的可靠性。此外,由於氣隙160是源於被移除的犧牲層202,而犧牲層202的寬度變化是源於蝕刻位元線110的上部,因此可以在不影響其他元件尺寸的情況下增加氣隙160的上部氣隙寬度,從而維持記憶體裝置10的元件密度。The air gap 160 formed by removing the sacrificial layer 202 has a profile similar to that of the sacrificial layer 202, such that the upper air gap width of the air gap 160 is greater than the lower air gap width, thereby increasing the volume of the air gap 160 between the upper portion of the bit line 110 and the contact structure 130. After the capacitor 170 is subsequently formed above the contact structure 130, the air gap 160 can reduce the parasitic capacitance between the bit line 110 and the capacitor 170, thereby increasing the reliability of the memory device 10. In addition, since the air gap 160 is derived from the removed sacrificial layer 202 and the width variation of the sacrificial layer 202 is derived from etching the upper portion of the bit line 110, the upper air gap width of the air gap 160 can be increased without affecting other device sizes, thereby maintaining the device density of the memory device 10.

根據本公開上述實施方式,本公開的記憶體裝置包括上部寬度小於下部寬度的位元線,以及對應位元線的寬度變化而具有上部氣隙寬度大於下部氣隙寬度的氣隙。由於位元線的上部與電容器之間具有增大的氣隙寬度,氣隙可特別降低位元線與電容器之間的寄生電容,從而增加記憶體裝置的可靠性。本公開的記憶體裝置形成方法是透過縮減位元線的寬度來增加氣隙寬度,因此在可以在不影響裝置尺寸與元件密度的情況下,減少位元線與電容器之間的寄生電容。According to the above-mentioned implementation mode of the present disclosure, the memory device of the present disclosure includes a bit line whose upper width is smaller than the lower width, and an air gap whose upper air gap width is larger than the lower air gap width corresponding to the width change of the bit line. Since there is an increased air gap width between the upper part of the bit line and the capacitor, the air gap can particularly reduce the parasitic capacitance between the bit line and the capacitor, thereby increasing the reliability of the memory device. The method of forming a memory device of the present disclosure increases the air gap width by reducing the width of the bit line, thereby reducing the parasitic capacitance between the bit line and the capacitor without affecting the device size and component density.

前面概述一些實施例的特徵,使得本領域技術人員可更好地理解本公開的觀點。本領域技術人員應該理解,他們可以容易地使用本公開作為設計或修改其他製程和結構的基礎,以實現相同的目的和/或實現與本文介紹之實施例相同的優點。本領域技術人員還應該理解,這樣的等同構造不脫離本公開的精神和範圍,並且在不脫離本公開的精神和範圍的情況下,可以進行各種改變、替換和變更。The features of some embodiments are summarized above so that those skilled in the art can better understand the perspective of the present disclosure. Those skilled in the art should understand that they can easily use the present disclosure as a basis for designing or modifying other processes and structures to achieve the same purpose and/or achieve the same advantages as the embodiments described herein. Those skilled in the art should also understand that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that various changes, substitutions and modifications can be made without departing from the spirit and scope of the present disclosure.

10:記憶體裝置10: Memory device

100:基板100: Substrate

102,104:接觸件102,104: Contacts

106:介電層106: Dielectric layer

110:位元線110: Bit line

112:第一材料層112: First material layer

114:第二材料層114: Second material layer

116:金屬層116:Metal layer

118:蓋層118: Covering

120:位元線間隔層120: Bit line spacing layer

130:接觸件結構130: Contact structure

132:單元接觸件132: Unit contact

134:接墊層134:Pad layer

140:接觸件間隔層140: Contact spacer

150:蓋層150: Covering

160:氣隙160: Air gap

170:電容器170:Capacitor

200:犧牲材料200: Sacrificial Materials

202:犧牲層202: Sacrifice layer

210:光阻層210: Photoresist layer

215:開口215: Open

A:區域A: Area

W1:頂面寬度W1: Top width

W2:底面寬度W2: Bottom width

W3:上部氣隙寬度W3: Upper air gap width

W4:下部氣隙寬度W4: Lower air gap width

W5,W6:寬度W5,W6: Width

X,Z:方向X,Z: Direction

當結合附圖閱讀時,從以下詳細描述中可以最好地理解本公開的各方面。應注意,根據工業中的標準方法,各種特徵未按比例繪製。實際上,為了清楚地討論,可任意增加或減少各種特徵的尺寸。 第1A圖依據本公開的一些實施方式繪示記憶體裝置的截面圖。 第1B圖繪示第1A圖中的記憶體裝置的局部放大圖。 第2A圖至第2J圖依據本公開的一些實施方式繪示記憶體裝置在製造製程的多個階段的截面圖。 Various aspects of the present disclosure are best understood from the following detailed description when read in conjunction with the accompanying drawings. It should be noted that various features are not drawn to scale, in accordance with standard practices in the industry. In fact, the sizes of various features may be arbitrarily increased or decreased for clarity of discussion. FIG. 1A illustrates a cross-sectional view of a memory device according to some embodiments of the present disclosure. FIG. 1B illustrates a partial enlarged view of the memory device in FIG. 1A. FIGS. 2A to 2J illustrate cross-sectional views of a memory device at various stages of a manufacturing process according to some embodiments of the present disclosure.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

10:記憶體裝置 10: Memory device

100:基板 100: Substrate

102,104:接觸件 102,104: Contacts

106:介電層 106: Dielectric layer

110:位元線 110: Bit line

112:第一材料層 112: First material layer

114:第二材料層 114: Second material layer

116:金屬層 116:Metal layer

118:蓋層 118: Covering layer

120:位元線間隔層 120: Bit line spacing layer

130:接觸件結構 130: Contact structure

132:單元接觸件 132: Unit contact

134:接墊層 134:Pad layer

140:接觸件間隔層 140: Contact spacer layer

150:蓋層 150: Covering layer

160:氣隙 160: Air gap

170:電容器 170:Capacitor

A:區域 A: Area

X,Z:方向 X,Z: Direction

Claims (10)

一種記憶體裝置,包括:一基板;一位元線,位於該基板上,其中該位元線包括:一蓋層,位於該位元線的一材料堆疊中的最頂層;及一金屬層,位於該蓋層之下,其中該金屬層的一頂面寬度小於一底面寬度;一位元線間隔層,共形覆蓋該位元線的一側壁;一接觸件結構,鄰近該位元線;一接觸件間隔層,覆蓋該接觸件結構的一側壁;一電容器,位於該接觸件結構上方;及一氣隙,介於該位元線間隔層和該接觸件間隔層之間,其中該氣隙的一上部氣隙寬度大於一下部氣隙寬度。 A memory device comprises: a substrate; a bit line located on the substrate, wherein the bit line comprises: a cap layer located at the topmost layer in a material stack of the bit line; and a metal layer located below the cap layer, wherein a top surface width of the metal layer is smaller than a bottom surface width; and a bit line spacer layer conformally covering the bit line. A side wall of a bit line; a contact structure adjacent to the bit line; a contact spacer layer covering a side wall of the contact structure; a capacitor located above the contact structure; and an air gap between the bit line spacer layer and the contact spacer layer, wherein an upper air gap width of the air gap is greater than a lower air gap width. 如請求項1所述之記憶體裝置,其中該氣隙在齊平該金屬層的一頂表面的位置具有該上部氣隙寬度,且在齊平該金屬層的一底表面的位置具有該下部氣隙寬度。 A memory device as described in claim 1, wherein the air gap has the upper air gap width at a position flush with a top surface of the metal layer, and has the lower air gap width at a position flush with a bottom surface of the metal layer. 如請求項1所述之記憶體裝置,其中該上部氣隙寬度沿著該金屬層的一傾斜側壁漸縮至該下部氣隙寬度。 A memory device as described in claim 1, wherein the upper air gap width tapers to the lower air gap width along an inclined side wall of the metal layer. 如請求項1所述之記憶體裝置,其中該上部 氣隙寬度與該下部氣隙寬度的差距介於5nm至15nm間。 A memory device as described in claim 1, wherein the difference between the upper air gap width and the lower air gap width is between 5nm and 15nm. 如請求項4所述之記憶體裝置,其中該上部氣隙寬度與該下部氣隙寬度的差距等於該金屬層的該頂面寬度與該底面寬度的差距的一半。 A memory device as described in claim 4, wherein the difference between the upper air gap width and the lower air gap width is equal to half the difference between the top surface width and the bottom surface width of the metal layer. 如請求項1所述之記憶體裝置,其中該蓋層的一寬度等於該金屬層的該頂面寬度。 A memory device as described in claim 1, wherein a width of the cap layer is equal to the top width of the metal layer. 如請求項1所述之記憶體裝置,其中該接觸件結構包括一單元接觸件和該單元接觸件上的一接墊層,且該單元接觸件和該接墊層之間的一界面與該金屬層和該蓋層之間的一界面齊平。 A memory device as described in claim 1, wherein the contact structure includes a unit contact and a pad layer on the unit contact, and an interface between the unit contact and the pad layer is flush with an interface between the metal layer and the cap layer. 一種形成記憶體裝置的方法,包括:形成多個位元線於一基板上,其中該些位元線中之各者包括一金屬層,該金屬層的一頂面寬度小於一底面寬度;形成多個位元線間隔層,以覆蓋該些位元線的多個側壁;填充一犧牲材料於相鄰的該些位元線間隔層之間;蝕刻該犧牲材料以形成多個犧牲層,其中該些位元線間隔層位於該些位元線與該些犧牲層之間,該些犧牲層的一上部寬度大於一下部寬度;形成多個接觸件間隔層覆蓋該些犧牲層的多個側壁,其 中該些犧牲層位於該些位元線間隔層與該些接觸件間隔層之間;形成一接觸件結構於相鄰的該些接觸件間隔層之間,其中該接觸件結構接觸該些接觸件間隔層;及移除該些犧牲層,以形成該些位元線間隔層和該些接觸件間隔層之間的多個氣隙,其中該些氣隙的一上部氣隙寬度大於一下部氣隙寬度。 A method for forming a memory device includes: forming a plurality of bit lines on a substrate, wherein each of the bit lines includes a metal layer, a top surface width of the metal layer is smaller than a bottom surface width; forming a plurality of bit line spacer layers to cover a plurality of sidewalls of the bit lines; filling a sacrificial material between adjacent bit line spacer layers; etching the sacrificial material to form a plurality of sacrificial layers, wherein the bit line spacer layers are located between the bit lines and the sacrificial layers, and an upper width of the sacrificial layers is less than a bottom surface width. The invention relates to a method for forming a plurality of contact spacer layers to cover the plurality of side walls of the sacrificial layers, wherein the sacrificial layers are located between the bit line spacer layers and the contact spacer layers; forming a contact structure between the adjacent contact spacer layers, wherein the contact structure contacts the contact spacer layers; and removing the sacrificial layers to form a plurality of air gaps between the bit line spacer layers and the contact spacer layers, wherein an upper air gap width of the air gaps is greater than a lower air gap width. 如請求項8所述之方法,其中形成該些位元線包括:形成該些位元線中之各者的一材料堆疊於該基板上,其中該材料堆疊包括一第一材料層、該第一材料層上的該金屬層及該金屬層上的一第二材料層;及蝕刻該材料堆疊以形成該些位元線,其中該第一材料層的一寬度等於該金屬層的該底面寬度,且該第二材料層的一寬度等於該金屬層的該頂面寬度。 The method as described in claim 8, wherein forming the bit lines comprises: forming a material stack for each of the bit lines on the substrate, wherein the material stack comprises a first material layer, the metal layer on the first material layer, and a second material layer on the metal layer; and etching the material stack to form the bit lines, wherein a width of the first material layer is equal to the bottom width of the metal layer, and a width of the second material layer is equal to the top width of the metal layer. 如請求項8所述之方法,其中該些犧牲層的該上部寬度的兩倍與該金屬層的該頂面寬度的總和相等於該些犧牲層的該下部寬度的兩倍與該金屬層的該底面寬度的總和。 The method as described in claim 8, wherein the sum of twice the upper width of the sacrificial layers and the top width of the metal layer is equal to the sum of twice the lower width of the sacrificial layers and the bottom width of the metal layer.
TW111144127A 2022-11-18 Memory device and forming method thereof TWI841063B (en)

Publications (2)

Publication Number Publication Date
TWI841063B true TWI841063B (en) 2024-05-01
TW202423239A TW202423239A (en) 2024-06-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220271145A1 (en) 2021-02-25 2022-08-25 Nanya Technology Corporation Method for forming semiconductor device with air gap between two conductive features

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220271145A1 (en) 2021-02-25 2022-08-25 Nanya Technology Corporation Method for forming semiconductor device with air gap between two conductive features

Similar Documents

Publication Publication Date Title
US11600520B2 (en) Air gaps in memory array structures
US10439048B2 (en) Photomask layout, methods of forming fine patterns and method of manufacturing semiconductor devices
US20210035613A1 (en) Semiconductor device
KR101547386B1 (en) Decoupling finfet capacitors
KR102495914B1 (en) Semiconductor Device
US11658117B2 (en) Semiconductor devices having improved electrical characteristics and methods of fabricating the same
CN112054027A (en) Semiconductor device with a plurality of transistors
TW202201755A (en) Memory device and method of manufacturing the same
US20230354583A1 (en) Method of fabricating semiconductor device
TWI841063B (en) Memory device and forming method thereof
US11574915B2 (en) Semiconductor device including insulating patterns and method for forming the same
CN113241346B (en) Semiconductor device and method of forming the same
US11665888B2 (en) Semiconductor device and method for fabricating the same
TWI757043B (en) Semiconductor memory structure and method for forming the same
TWI779639B (en) Semiconductor structure and method of forming the same
KR20210032906A (en) Semiconductor device
TWI770822B (en) Semiconductor device and method of forming the same
US11825644B2 (en) Semiconductor memory device
TWI799144B (en) Semiconductor device and method of fabricating the same
US20230163201A1 (en) Semiconductor device and method of fabricating the same
WO2022088788A1 (en) Method for forming semiconductor structure, and semiconductor structure
US20240130116A1 (en) Semiconductor device
US20210320105A1 (en) Method for fabricating semiconductor device
US20230200057A1 (en) Semiconductor memory device
TW202320065A (en) Semiconductor memory devices