TWI790122B - Semiconductor structure - Google Patents

Semiconductor structure Download PDF

Info

Publication number
TWI790122B
TWI790122B TW111105269A TW111105269A TWI790122B TW I790122 B TWI790122 B TW I790122B TW 111105269 A TW111105269 A TW 111105269A TW 111105269 A TW111105269 A TW 111105269A TW I790122 B TWI790122 B TW I790122B
Authority
TW
Taiwan
Prior art keywords
layer
isolation
semiconductor
isolation layer
conductive
Prior art date
Application number
TW111105269A
Other languages
Chinese (zh)
Other versions
TW202333296A (en
Inventor
廖廷豐
翁茂元
劉光文
Original Assignee
旺宏電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旺宏電子股份有限公司 filed Critical 旺宏電子股份有限公司
Priority to TW111105269A priority Critical patent/TWI790122B/en
Application granted granted Critical
Publication of TWI790122B publication Critical patent/TWI790122B/en
Publication of TW202333296A publication Critical patent/TW202333296A/en

Links

Images

Landscapes

  • Element Separation (AREA)
  • Non-Volatile Memory (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Recrystallisation Techniques (AREA)
  • Bipolar Transistors (AREA)

Abstract

A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure includes a conductive pillar having a sidewall and a multi-layer isolation structure on the sidewall of the conductive pillar. The multi-layer isolation structure includes a first isolation layer and a second isolation layer. The first isolation layer is between the conductive pillar and the second isolation layer. The first isolation layer includes protrusions extending toward the second isolation layer. A density of the first isolation layer is different from that of the second isolation layer.

Description

半導體結構 semiconductor structure

本發明係有關於半導體結構及其製造方法,且特別有關於包含多層隔離結構之半導體結構及其製造方法。 The present invention relates to semiconductor structures and methods of fabrication thereof, and more particularly to semiconductor structures including multilayer isolation structures and methods of fabrication thereof.

隨著半導體技術進步,近年來,半導體結構的尺寸已逐漸縮小。然而,半導體結構的尺寸縮小會導致半導體結構中的元件之間的干擾增加,並可能使半導體結構之電性表現變差。因此,為了滿足市場對於高效能、經濟且可靠的半導體結構之需求,縮小半導體結構的尺寸同時保持其電性是相當重要的。 With the advancement of semiconductor technology, the size of semiconductor structures has been gradually reduced in recent years. However, shrinking the size of the semiconductor structure will lead to increased interference between devices in the semiconductor structure, and may degrade the electrical performance of the semiconductor structure. Therefore, in order to meet the market demand for high-performance, economical and reliable semiconductor structures, it is very important to reduce the size of semiconductor structures while maintaining their electrical properties.

本發明係有關於一種半導體結構及其製造方法。 The invention relates to a semiconductor structure and a manufacturing method thereof.

根據本發明之一方面,提出一種半導體結構,其包含具有側壁的導電柱、以及設置於導電柱的側壁之多層隔離結構。多層隔離結構包含第一隔離層與第二隔離層,第一隔離層係介於導電柱與第二隔離層之間,第一隔離層包含朝向第二隔離層延伸的多個凸部。第一隔離層的緻密度不同於第二隔離層的緻密度。 According to one aspect of the present invention, a semiconductor structure is provided, which includes a conductive column having a sidewall, and a multi-layer isolation structure disposed on the sidewall of the conductive column. The multi-layer isolation structure includes a first isolation layer and a second isolation layer. The first isolation layer is between the conductive column and the second isolation layer. The first isolation layer includes a plurality of protrusions extending toward the second isolation layer. The density of the first isolation layer is different from the density of the second isolation layer.

根據本發明之另一方面,提出一種半導體結構,其包含具有側壁的導電柱、以及設置於導電柱的側壁之多層隔離結構。多層隔離結構包含N個隔離層,其中N為3以上的正整數其中之一。N個隔離層包含朝向遠離導電柱的方向依序排列的第一個隔離層至第N個隔離層。第一隔離層的緻密度小於該些隔離層中的其他隔離層的緻密度。 According to another aspect of the present invention, a semiconductor structure is provided, which includes a conductive pillar having a sidewall, and a multi-layer isolation structure disposed on the sidewall of the conductive pillar. The multi-layer isolation structure includes N isolation layers, where N is one of positive integers greater than 3. The N isolation layers include a first isolation layer to an Nth isolation layer arranged in sequence in a direction away from the conductive pillar. The density of the first isolation layer is smaller than that of other isolation layers among the isolation layers.

根據本發明之又一方面,提出一種半導體結構的製造方法,其包含以下步驟。形成堆疊結構。在堆疊結構中形成多層隔離結構。在堆疊結構中形成多層隔離結構之步驟包含:透過沉積處理與蝕刻步驟以在堆疊結構中形成第二隔離層;透過另一沉積處理以在第二隔離層上形成第一隔離層。 According to yet another aspect of the present invention, a method for fabricating a semiconductor structure is provided, which includes the following steps. form a stacked structure. A multi-layer isolation structure is formed in a stacked structure. The step of forming a multi-layer isolation structure in the stack structure includes: forming a second isolation layer in the stack structure through deposition and etching steps; and forming a first isolation layer on the second isolation layer through another deposition process.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to have a better understanding of the above-mentioned and other aspects of the present invention, the following specific examples are given in detail with the accompanying drawings as follows:

10:半導體結構 10:Semiconductor structure

100:堆疊結構 100:Stack structure

101:導電層 101: Conductive layer

102:絕緣層 102: Insulation layer

103:半導體層 103: Semiconductor layer

104:半導體裝置 104:Semiconductor device

105:柱元件 105: column element

106:通道結構 106: Channel structure

106b:下通道端部 106b: end of lower channel

107:保護層 107: protective layer

115:導電柱 115: Conductive column

115s:側壁 115s: side wall

116,216:多層隔離結構 116,216: Multi-layer isolation structure

117:記憶膜 117: memory film

118:垂直通道膜 118: vertical channel membrane

119:絕緣柱 119: Insulation column

120:接墊 120: Pad

121:上導電部 121: Upper conductive part

122:下導電部 122: lower conductive part

122a:上端部 122a: upper end

122b:下端部 122b: lower end

123,223:第一隔離層 123,223: first isolation layer

123b:底表面 123b: bottom surface

123p:凸部 123p: convex part

124,224:第二隔離層 124,224: second isolation layer

124b:底表面 124b: bottom surface

124r:凹室 124r: alcove

205:柱元件 205: column element

225:第三隔離層 225: The third isolation layer

300:絕緣堆疊結構 300: insulation stack structure

301:犧牲層 301: sacrificial layer

310:半導體材料堆疊 310: Semiconductor Material Stacking

311:第一半導體材料層 311: the first semiconductor material layer

312:第一層間絕緣層 312: The first interlayer insulating layer

313:第二半導體材料層 313: second semiconductor material layer

314:第二層間絕緣層 314: The second interlayer insulating layer

315:第三半導體材料層 315: the third semiconductor material layer

320:溝槽 320: Groove

330:開孔 330: opening

411,412,413:絕緣膜 411, 412, 413: insulating film

520:狹縫 520: slit

611:第四半導體材料層 611: the fourth semiconductor material layer

920:空間 920: space

1020:溝槽 1020: Groove

1020r,1120r:凹室 1020r, 1120r: alcove

1124:隔離材料層 1124: isolation material layer

1224:緻密隔離材料層 1224: dense isolation material layer

X,Y,Z:方向 X, Y, Z: direction

第1圖係繪示根據本發明一實施例之半導體結構;第2圖係繪示根據本發明另一實施例之半導體結構;及第3圖至第16圖係繪示根據本發明一實施例之用以製造半導體結構的方法。 Figure 1 shows a semiconductor structure according to an embodiment of the present invention; Figure 2 shows a semiconductor structure according to another embodiment of the present invention; and Figures 3 to 16 show a semiconductor structure according to an embodiment of the present invention A method for fabricating a semiconductor structure.

以下係提出相關實施例,配合圖式以詳細說明本發明所提出之半導體結構及其製造方法。然而,本發明並不以此為限。實施例中之敘述,例如細部結構、製造方法之步驟和材料應用等,僅為舉例說明之用,本發明欲保護之範圍並非僅限於所述態樣。 The relevant embodiments are provided below, and the semiconductor structure and its manufacturing method proposed by the present invention are described in detail in conjunction with the drawings. However, the present invention is not limited thereto. The descriptions in the embodiments, such as the detailed structure, steps of the manufacturing method and application of materials, etc., are for illustration purposes only, and the protection scope of the present invention is not limited to the above-mentioned aspects.

同時,須注意的是,本發明並非顯示出所有可能的實施例。相關技術領域者當可在不脫離本發明之精神和範圍之前提下,對實施例之結構和製造方法加以變化與修飾,以符合實際應用所需。因此,未於本發明提出的其他實施態樣也可能可以應用。再者,圖式係簡化以利清楚說明實施例之內容,圖式上的尺寸比例並非按照實際產品等比例繪製。圖式中相同或相似的元件符號用以代表相同或相似的元件。 At the same time, it should be noted that not all possible embodiments of the present invention are presented. Those skilled in the art may change and modify the structures and manufacturing methods of the embodiments without departing from the spirit and scope of the present invention, so as to meet the needs of practical applications. Therefore, other implementation aspects not proposed in the present invention may also be applicable. Furthermore, the drawings are simplified to clearly illustrate the content of the embodiments, and the size ratios in the drawings are not drawn according to the proportion of the actual product. In the drawings, the same or similar element symbols are used to represent the same or similar elements.

再者,說明書與申請專利範圍中所使用的序數例如「第一」、「第二」、「第三」等用詞是為了修飾元件,其本身並不意含及代表該元件有任何之前的序數,也不代表某一元件與另一元件的順序、或是製造方法上的順序,該些序數的使用,僅是用來使具有某命名的一元件得以和另一具有相同命名的元件能作出清楚區分。 Furthermore, the ordinal numbers used in the specification and claims, such as "first", "second", and "third", are used to modify elements, which do not imply and represent that the element has any previous ordinal numbers. , nor does it represent the order of a certain element with another element, or the order of the manufacturing method. clearly distinguish.

本發明之多個實施例可應用於多種不同的三維(three-dimensional;3D)堆疊半導體結構。例如,實施例可應用於三維垂直通道(vertical channel;VC)反及閘(NAND)記憶裝置、或其它種類記憶裝置。 Embodiments of the present invention are applicable to various three-dimensional (3D) stacked semiconductor structures. For example, the embodiments can be applied to three-dimensional vertical channel (VC) NAND memory devices, or other types of memory devices.

請參照第1圖。第1圖係示例性繪示根據本發明一實施例之半導體結構10。半導體結構10可包含堆疊結構100、半導體層103、半導體裝置104、至少一柱元件105、以及至少一通道結構106。 Please refer to Figure 1. FIG. 1 schematically illustrates a semiconductor structure 10 according to an embodiment of the present invention. The semiconductor structure 10 may include a stack structure 100 , a semiconductor layer 103 , a semiconductor device 104 , at least one pillar element 105 , and at least one channel structure 106 .

堆疊結構100可包含多個導電層101與多個絕緣層102沿著Z方向交錯堆疊。導電層101與絕緣層102可在X方向及/或Y方向上延伸,X方向、Y方向和Z方向可相互垂直。多個導電層101使多個絕緣層102相互隔離。 The stack structure 100 may include a plurality of conductive layers 101 and a plurality of insulating layers 102 stacked alternately along the Z direction. The conductive layer 101 and the insulating layer 102 may extend in the X direction and/or the Y direction, and the X direction, the Y direction and the Z direction may be perpendicular to each other. The plurality of conductive layers 101 isolates the plurality of insulating layers 102 from each other.

半導體層103可位於堆疊結構100下方。半導體裝置104可位於半導體層103下方。在一實施例中,堆疊結構100、半導體層103和半導體裝置104在Z方向上可相互重疊。半導體裝置104可包含主動裝置及/或被動裝置。主動裝置可例如包含電晶體、二極體(diode)等。電晶體可例如包含N型金屬氧化物半導體場效電晶體(N-type metal-oxide-semiconductor field-Effect transistor;NMOS)、P型金屬氧化物半導體場效電晶體(P-type metal-oxide-semiconductor field-effect transistor;PMOS)、互補式金屬氧化物半導體場效電晶體(complementary metal-oxide-semiconductor field-effect transistor;CMOS)、雙極性電晶體(bipolar junction transistor;BJT)等。被動裝置可包括電阻、電容及/或電感。 The semiconductor layer 103 may be located under the stack structure 100 . The semiconductor device 104 can be located under the semiconductor layer 103 . In an embodiment, the stacked structure 100 , the semiconductor layer 103 and the semiconductor device 104 may overlap each other in the Z direction. The semiconductor device 104 may include active devices and/or passive devices. Active devices may, for example, include transistors, diodes, and the like. Transistors may, for example, include N-type metal-oxide-semiconductor field-Effect transistors (N-type metal-oxide-semiconductor field-Effect transistors; NMOS), P-type metal-oxide-semiconductor field-effect transistors (P-type metal-oxide- semiconductor field-effect transistor (PMOS), complementary metal-oxide-semiconductor field-effect transistor (complementary metal-oxide-semiconductor field-effect transistor; CMOS), bipolar junction transistor (bipolar junction transistor; BJT), etc. Passive devices may include resistors, capacitors and/or inductors.

至少一柱元件105與至少一通道結構106分散地設置於堆疊結構100與半導體層103中。柱元件105可包含具有 側壁115s的導電柱115、以及設置於導電柱115的側壁115s上的多層隔離結構116。導電柱115可沿著Z方向延伸且貫穿堆疊結構100。導電柱115可電性連接於半導體層103。 At least one column element 105 and at least one channel structure 106 are dispersedly disposed in the stack structure 100 and the semiconductor layer 103 . Column element 105 may contain a The conductive pillar 115 on the sidewall 115s, and the multi-layer isolation structure 116 disposed on the sidewall 115s of the conductive pillar 115 . The conductive pillar 115 can extend along the Z direction and penetrate through the stack structure 100 . The conductive pillar 115 can be electrically connected to the semiconductor layer 103 .

導電柱115可包含上導電部121與上導電部121下方的下導電部122。在一實施例中,上導電部121可沿著Z方向朝下逐漸變窄。在一實施例中,上導電部121可具有沿著Z方向從上導電部121之頂表面往上導電部121之底表面逐漸變小的橫向剖面尺寸(例如在X-Y平面上的橫向剖面尺寸)。但本揭露不以此為限,上導電部121也可具有其他合適的外形。下導電部122可沿著Z方向延伸且貫穿堆疊結構100。下導電部122可具有連接上導電部121之上端部122a、以及相對於上端部122a之下端部122b。下導電部122之上端部122a可位於堆疊結構100中。下導電部122之下端部122b可位於堆疊結構100的下方,且位於半導體層103中。 The conductive column 115 may include an upper conductive portion 121 and a lower conductive portion 122 below the upper conductive portion 121 . In an embodiment, the upper conductive portion 121 may gradually narrow downward along the Z direction. In one embodiment, the upper conductive portion 121 may have a transverse cross-sectional dimension (such as a transverse cross-sectional dimension on the X-Y plane) that gradually decreases from the top surface of the upper conductive portion 121 to the bottom surface of the upper conductive portion 121 along the Z direction. . However, the present disclosure is not limited thereto, and the upper conductive portion 121 may also have other suitable shapes. The lower conductive portion 122 may extend along the Z direction and penetrate through the stack structure 100 . The lower conductive portion 122 may have an upper end portion 122 a connected to the upper conductive portion 121 and a lower end portion 122 b opposite to the upper end portion 122 a. The upper end portion 122 a of the lower conductive portion 122 may be located in the stack structure 100 . The lower end portion 122 b of the lower conductive portion 122 may be located below the stacked structure 100 and located in the semiconductor layer 103 .

多層隔離結構116可貫穿堆疊結構100。多層隔離結構116可包含第一隔離層123與第二隔離層124。第一隔離層123介於導電柱115與第二隔離層124之間。下導電部122之下端部122b可位於第二隔離層124之底表面124b的下方第二隔離層124之底表面124b可位於第一隔離層123之底表面123b的下方。第一隔離層123可包含間隔設置且朝向第二隔離層124橫向地延伸的多個凸部123p。多個凸部123p可分別設置於堆疊結構100中的多個絕緣層102之間。多個凸部123p可對應於堆疊結 構100中的多個導電層101設置。舉例來說,多個凸部123p在Z方向上的位置(例如高度)可分別對應於多個導電層101,且各凸部123p朝向所對應的導電層101橫向地延伸。 The multilayer isolation structure 116 may penetrate the stacked structure 100 . The multi-layer isolation structure 116 may include a first isolation layer 123 and a second isolation layer 124 . The first isolation layer 123 is interposed between the conductive pillar 115 and the second isolation layer 124 . The lower end 122b of the lower conductive portion 122 may be located below the bottom surface 124b of the second isolation layer 124 . The bottom surface 124b of the second isolation layer 124 may be located below the bottom surface 123b of the first isolation layer 123 . The first isolation layer 123 may include a plurality of protrusions 123p disposed at intervals and extending laterally toward the second isolation layer 124 . The plurality of protrusions 123p may be respectively disposed between the plurality of insulating layers 102 in the stack structure 100 . The plurality of protrusions 123p may correspond to stacked junctions A plurality of conductive layers 101 in the structure 100 are provided. For example, positions (eg, heights) of the plurality of protrusions 123p in the Z direction may respectively correspond to the plurality of conductive layers 101 , and each protrusion 123p extends laterally toward the corresponding conductive layer 101 .

在一實施例中,第一隔離層123之緻密度可不同於第二隔離層124之緻密度。舉例而言,第一隔離層123的緻密度可小於第二隔離層124的緻密度。 In one embodiment, the density of the first isolation layer 123 may be different from the density of the second isolation layer 124 . For example, the density of the first isolation layer 123 may be smaller than that of the second isolation layer 124 .

通道結構106可沿著Z方向延伸且貫穿堆疊結構100。通道結構106可具有下通道端部106b。通道結構106的下通道端部106b可在第二隔離層124之底表面124b及/或下導電部122之下端部122b的下方。通道結構106可包含記憶膜117、垂直通道膜118、絕緣柱119與接墊120。記憶膜117可圍繞垂直通道膜118。在一實施例中,記憶膜117可圍繞部分的垂直通道膜118。例如,如第1圖所示,在半導體層103中,部分的垂直通道膜118可未被記憶膜117圍繞,電流可經由此處流動於通道結構106與半導體層103之間。通道結構106可電性連接於半導體層103,並電性連接於導電柱115。垂直通道膜118設置於記憶膜117與絕緣柱119之間。垂直通道膜118可具有管狀且圍繞絕緣柱119。在一實施例中,垂直通道膜118可具有一端封閉、一端開放之管狀。接墊120設置於垂直通道膜118與絕緣柱119上,且可被記憶膜117圍繞。當施加電壓至半導體結構10時,垂直通道膜118可用來提供通道給電子或電洞。 The channel structure 106 can extend along the Z direction and penetrate through the stack structure 100 . The channel structure 106 may have a lower channel end 106b. The lower channel end 106 b of the channel structure 106 may be below the bottom surface 124 b of the second isolation layer 124 and/or the lower end 122 b of the lower conductive portion 122 . The channel structure 106 may include a memory film 117 , a vertical channel film 118 , insulating pillars 119 and pads 120 . The memory film 117 may surround the vertical channel film 118 . In one embodiment, the memory film 117 may surround a portion of the vertical channel film 118 . For example, as shown in FIG. 1 , in the semiconductor layer 103 , a portion of the vertical channel film 118 may not be surrounded by the memory film 117 , through which current can flow between the channel structure 106 and the semiconductor layer 103 . The channel structure 106 can be electrically connected to the semiconductor layer 103 and electrically connected to the conductive pillar 115 . The vertical channel film 118 is disposed between the memory film 117 and the insulating pillar 119 . The vertical channel film 118 may have a tubular shape and surround the insulating post 119 . In one embodiment, the vertical channel membrane 118 may have a tube shape with one end closed and one end open. The pad 120 is disposed on the vertical channel film 118 and the insulating column 119 and can be surrounded by the memory film 117 . The vertical channel film 118 can be used to provide a channel for electrons or holes when a voltage is applied to the semiconductor structure 10 .

半導體結構10可包含多個記憶胞,設置於堆疊結構100中。記憶胞可定義於導電層101與通道結構106之垂直通道膜118交錯處的記憶膜117中。 The semiconductor structure 10 may include a plurality of memory cells disposed in the stack structure 100 . The memory cells can be defined in the memory film 117 where the conductive layer 101 intersects with the vertical channel film 118 of the channel structure 106 .

半導體結構10還可包含保護層107,設置於多層隔離結構116與半導體層103之間。 The semiconductor structure 10 may further include a passivation layer 107 disposed between the multilayer isolation structure 116 and the semiconductor layer 103 .

在一實施例中,導電層101可作為字元線(word line;WL),導電柱115可作為源極線(source line;SL),例如共同源極線(common source line;SL)。 In one embodiment, the conductive layer 101 may serve as a word line (WL), and the conductive pillar 115 may serve as a source line (SL), such as a common source line (SL).

如第1圖所示,半導體結構10包含兩個隔離層(第一隔離層123與第二隔離層124),但本發明不以此為限,本發明提供之技術方案可應用於包含兩個以上的隔離層之半導體結構。在一實施例中,本發明提供之技術方案可應用於包含三個隔離層之半導體結構,其形成之半導體結構20可如第2圖所示。 As shown in Figure 1, the semiconductor structure 10 includes two isolation layers (the first isolation layer 123 and the second isolation layer 124), but the present invention is not limited thereto, and the technical solution provided by the present invention can be applied to include two The semiconductor structure of the isolation layer above. In one embodiment, the technical solution provided by the present invention can be applied to a semiconductor structure including three isolation layers, and the formed semiconductor structure 20 can be as shown in FIG. 2 .

請參照第2圖。半導體結構20可包含至少一柱元件205設置於堆疊結構100中。柱元件205可包含導電柱115、以及設置於導電柱115的側壁115s上的多層隔離結構216。多層隔離結構216可包含第一隔離層223、第二隔離層224與第三隔離層225。第一隔離層223介於導電柱115和第二隔離層224之間。第二隔離層224介於第一隔離層223和第三隔離層225之間。第一隔離層223可相似於半導體結構10之第一隔離層123。第二隔離層224可相似於半導體結構10之第二隔離層124。在一實施例中,第一隔離層223的緻密度可不同於第二隔離層224的緻密 度及/或第三隔離層225的緻密度。舉例來說,第一隔離層223的緻密度可小於第二隔離層224的緻密度,及/或第一隔離層223的緻密度可小於第三隔離層225的緻密度。 Please refer to Figure 2. The semiconductor structure 20 can include at least one pillar element 205 disposed in the stack structure 100 . The post element 205 may include a conductive post 115 and a multi-layer isolation structure 216 disposed on the sidewall 115 s of the conductive post 115 . The multi-layer isolation structure 216 may include a first isolation layer 223 , a second isolation layer 224 and a third isolation layer 225 . The first isolation layer 223 is interposed between the conductive pillar 115 and the second isolation layer 224 . The second isolation layer 224 is interposed between the first isolation layer 223 and the third isolation layer 225 . The first isolation layer 223 may be similar to the first isolation layer 123 of the semiconductor structure 10 . The second isolation layer 224 may be similar to the second isolation layer 124 of the semiconductor structure 10 . In one embodiment, the density of the first isolation layer 223 may be different from the density of the second isolation layer 224 degree and/or the density of the third isolation layer 225. For example, the density of the first isolation layer 223 may be less than that of the second isolation layer 224 , and/or the density of the first isolation layer 223 may be less than that of the third isolation layer 225 .

第3圖至第16圖係示例性繪示根據本發明一實施例之用以製造半導體結構的方法。 3 to 16 schematically illustrate a method for fabricating a semiconductor structure according to an embodiment of the present invention.

請參照第3圖。提供絕緣堆疊結構300、半導體材料堆疊310與半導體裝置104。絕緣堆疊結構300可形成於半導體材料堆疊310上。半導體材料堆疊310可形成於半導體裝置104上。 Please refer to Figure 3. An insulating stack structure 300 , a semiconductor material stack 310 and a semiconductor device 104 are provided. The insulating stack structure 300 may be formed on a semiconductor material stack 310 . A semiconductor material stack 310 may be formed on the semiconductor device 104 .

半導體材料堆疊310可包含沿著Z方向由下往上依序堆疊的第一半導體材料層311、第一層間絕緣層312、第二半導體材料層313、第二層間絕緣層314、第三半導體材料層315。在一實施例中,第一半導體材料層311、第二半導體材料層313與第三半導體材料層315可包含摻雜的(doped)或未摻雜的(undoped)半導體材料,例如摻雜的或未摻雜的多晶矽(polysilicon)。第一層間絕緣層312與第二層間絕緣層314可包含絕緣材料,絕緣材料包括氧化物,例如氧化矽(silicon oxide)。在一實施例中,可藉由依序沉積第一半導體材料層311、第一層間絕緣層312、第二半導體材料層313、第二層間絕緣層314與第三半導體材料層315以在半導體裝置104上形成半導體材料堆疊310,例如是藉由化學氣相沉積處理(chemical vapor deposition;CVD)。 The semiconductor material stack 310 may include a first semiconductor material layer 311, a first interlayer insulating layer 312, a second semiconductor material layer 313, a second interlayer insulating layer 314, and a third semiconductor material layer stacked from bottom to top along the Z direction. material layer 315 . In one embodiment, the first semiconductor material layer 311, the second semiconductor material layer 313, and the third semiconductor material layer 315 may include doped or undoped semiconductor materials, such as doped or undoped Undoped polysilicon (polysilicon). The first interlayer insulating layer 312 and the second interlayer insulating layer 314 may include insulating materials, and the insulating materials include oxides, such as silicon oxide. In one embodiment, the first semiconductor material layer 311, the first interlayer insulating layer 312, the second semiconductor material layer 313, the second interlayer insulating layer 314, and the third semiconductor material layer 315 can be sequentially deposited to form a semiconductor device. A semiconductor material stack 310 is formed on 104, for example, by chemical vapor deposition (CVD).

絕緣堆疊結構300可包含多個犧牲層301與多個絕緣層102沿著Z方向交錯堆疊。犧牲層301與絕緣層102可在X方向及/或Y方向上延伸。多個犧牲層301使多個絕緣層102相互隔離。在一實施例中,絕緣堆疊結構300之犧牲層301可包含絕緣材料,絕緣材料包括氮化物,例如氮化矽(silicon nitride)。絕緣堆疊結構300之絕緣層102可包含絕緣材料,絕緣材料包括氧化物,例如氧化矽。在一實施例中,犧牲層301與絕緣層102可包含不同材料。在一實施例中,可藉由依序沉積絕緣層102與犧牲層301以在半導體材料堆疊310上形成絕緣堆疊結構300。 The insulating stack structure 300 may include a plurality of sacrificial layers 301 and a plurality of insulating layers 102 stacked alternately along the Z direction. The sacrificial layer 301 and the insulating layer 102 can extend in the X direction and/or the Y direction. The plurality of sacrificial layers 301 isolates the plurality of insulating layers 102 from each other. In one embodiment, the sacrificial layer 301 of the insulating stack structure 300 may include an insulating material, and the insulating material includes nitride, such as silicon nitride. The insulating layer 102 of the insulating stack structure 300 may include an insulating material, and the insulating material includes an oxide, such as silicon oxide. In one embodiment, the sacrificial layer 301 and the insulating layer 102 may comprise different materials. In one embodiment, the insulating stack structure 300 can be formed on the semiconductor material stack 310 by sequentially depositing the insulating layer 102 and the sacrificial layer 301 .

至少一通道結構106可形成於絕緣堆疊結構300中。通道結構106可沿著Z方向延伸且貫穿絕緣堆疊結構300、第三半導體材料層315、第二層間絕緣層314、第二半導體材料層313與第一層間絕緣層312。通道結構106的下通道端部106b可位於第一半導體材料層311中。通道結構106可包含記憶膜117、垂直通道膜118、絕緣柱119與接墊120。 At least one channel structure 106 can be formed in the insulating stack structure 300 . The channel structure 106 can extend along the Z direction and penetrate through the insulating stack structure 300 , the third semiconductor material layer 315 , the second interlayer insulating layer 314 , the second semiconductor material layer 313 and the first interlayer insulating layer 312 . The lower channel end 106b of the channel structure 106 may be located in the first semiconductor material layer 311 . The channel structure 106 may include a memory film 117 , a vertical channel film 118 , insulating pillars 119 and pads 120 .

記憶膜117可包含記憶體技術領域中已知的多層結構(multilayer structure),例如ONO(氧化物-氮化物-氧化物)結構、ONONO(氧化物-氮化物-氧化物-氮化物-氧化物)結構、ONONONO(氧化物-氮化物-氧化物-氮化物-氧化物-氮化物-氧化物)結構、SONOS(矽-氧化矽-氮化矽-氧化矽-矽)結構、BE-SONOS(能帶隙矽-氧化矽-氮化矽-氧化矽-矽)結構、TANOS(氮化鉭-氧化鋁-氮化矽-氧化矽-矽)結構、MA BE-SONOS(金 屬-高介電常數材料能帶隙矽-氧化矽-氮化矽-氧化矽-矽)結構及其組合。 The memory film 117 may comprise a multilayer structure (multilayer structure) known in the field of memory technology, such as ONO (oxide-nitride-oxide) structure, ONONO (oxide-nitride-oxide-nitride-oxide ) structure, ONONONO (oxide-nitride-oxide-nitride-oxide-nitride-oxide) structure, SONOS (silicon-silicon oxide-silicon nitride-silicon oxide-silicon) structure, BE-SONOS ( Band gap silicon-silicon oxide-silicon nitride-silicon oxide-silicon) structure, TANOS (tantalum nitride-alumina-silicon nitride-silicon oxide-silicon) structure, MA BE-SONOS (gold Genus-high dielectric constant material energy bandgap silicon-silicon oxide-silicon nitride-silicon oxide-silicon) structure and its combination.

垂直通道膜118可包含摻雜的或未摻雜的半導體材料,例如摻雜的多晶矽或未摻雜的多晶矽。絕緣柱119可包含介電材料,介電材料包含氧化物(例如氧化矽)。接墊120可包含摻雜的或未摻雜的半導體材料,例如摻雜的多晶矽或未摻雜的多晶矽。 The vertical channel film 118 may include doped or undoped semiconductor material, such as doped polysilicon or undoped polysilicon. The insulating pillar 119 may include a dielectric material including an oxide (eg, silicon oxide). The pad 120 may include doped or undoped semiconductor material, such as doped polysilicon or undoped polysilicon.

在一實施例中,通道結構106之形成可包含以下步驟:對絕緣堆疊結構300進行圖案化(pattern)製程以在絕緣堆疊結構300中形成至少一開孔330。例如,可藉由微影製程(photolithography process)以圖案化絕緣堆疊結構300。開孔330可沿著Z方向向下延伸,貫穿絕緣堆疊結構300、第三半導體材料層315、第二層間絕緣層314、第二半導體材料層313與第一層間絕緣層312,並停止於第一半導體材料層311中;第一半導體材料層311可被視為蝕刻停止層。接著,在開孔330中依序沉積記憶膜117、垂直通道膜118、絕緣柱119與接墊120,以形成通道結構106。 In one embodiment, the formation of the channel structure 106 may include the following steps: performing a patterning process on the insulating stack structure 300 to form at least one opening 330 in the insulating stack structure 300 . For example, the insulating stack structure 300 can be patterned by a photolithography process. The opening 330 can extend downward along the Z direction, through the insulating stack structure 300 , the third semiconductor material layer 315 , the second interlayer insulating layer 314 , the second semiconductor material layer 313 and the first interlayer insulating layer 312 , and stop at In the first semiconductor material layer 311; the first semiconductor material layer 311 can be regarded as an etch stop layer. Next, the memory film 117 , the vertical channel film 118 , the insulating column 119 and the pad 120 are sequentially deposited in the opening 330 to form the channel structure 106 .

對絕緣堆疊結構300進行圖案化製程以在絕緣堆疊結構300中形成至少一溝槽320。舉例而言,可藉由微影製程以圖案化絕緣堆疊結構300。溝槽320可沿著Z方向向下延伸,貫穿絕緣堆疊結構300並停止於第二層間絕緣層314。溝槽320使絕緣堆疊結構300之側壁和第三半導體材料層315之側壁(同 時也作為溝槽320之側壁)暴露,且使第二層間絕緣層314之部分上表面(同時也作為溝槽320之底部)暴露。在一實施例中,可透過蝕刻選擇性不同的兩次蝕刻步驟來形成溝槽320;例如,可先進行蝕刻選擇性較低的第一次蝕刻步驟以在絕緣堆疊結構300中形成溝槽320,此時的溝槽320沿著Z方向向下延伸、貫穿絕緣堆疊結構300並停止於第三半導體材料層315,第三半導體材料層315可被視為蝕刻停止層,此時的溝槽320的底部使第三半導體材料層315之一部分暴露;接著,再進行蝕刻選擇性較高的第二次蝕刻步驟以使溝槽320沿著Z方向向下延伸,移除部分的第三半導體材料層315後使第二層間絕緣層314之部分上表面暴露,形成如第3圖所示之溝槽320的態樣,蝕刻選擇性較高的第二次蝕刻步驟停止於第二層間絕緣層314。在此實施例中,採用蝕刻選擇性不同的兩次蝕刻步驟來形成溝槽320有助於精確控制溝槽320的輪廓,並確保溝槽320停止於期望的位置。 A patterning process is performed on the insulating stack structure 300 to form at least one trench 320 in the insulating stack structure 300 . For example, the insulating stack structure 300 can be patterned by a lithography process. The trench 320 may extend downward along the Z direction, pass through the insulating stack structure 300 and stop at the second interlayer insulating layer 314 . The trench 320 makes the sidewall of the insulating stack structure 300 and the sidewall of the third semiconductor material layer 315 (same as Also as the sidewall of the trench 320 ), and part of the upper surface of the second interlayer insulating layer 314 (also as the bottom of the trench 320 ) is exposed. In one embodiment, the trench 320 can be formed by two etching steps with different etching selectivities; for example, the first etching step with a lower etching selectivity can be performed first to form the trench 320 in the insulating stack structure 300 At this time, the trench 320 extends downward along the Z direction, penetrates the insulating stack structure 300 and stops at the third semiconductor material layer 315, and the third semiconductor material layer 315 can be regarded as an etch stop layer. At this time, the trench 320 The bottom part of the third semiconductor material layer 315 is partially exposed; then, a second etching step with higher etching selectivity is performed so that the trench 320 extends downward along the Z direction, and part of the third semiconductor material layer is removed. After 315, part of the upper surface of the second interlayer insulating layer 314 is exposed to form the trench 320 as shown in FIG. In this embodiment, two etching steps with different etch selectivities are used to form the trench 320 to help precisely control the profile of the trench 320 and ensure that the trench 320 stops at a desired position.

請參照第4圖。在第3圖所示之溝槽320的側壁、以及絕緣堆疊結構300的上表面上形成絕緣膜411、絕緣膜412與絕緣膜413。舉例來說,可藉由沉積處理使絕緣膜411形成於絕緣堆疊結構300的上表面上且襯裡式地形成於溝槽320中,再藉由蝕刻步驟移除溝槽320底部上的部分絕緣膜411;接著,可藉由沉積處理使絕緣膜412形成於絕緣膜411上,再藉由蝕刻步驟移除溝槽320底部上的部分絕緣膜412;然後,可藉由沉積處理使絕緣膜413形成於絕緣膜412上,再藉由蝕刻步驟移除溝槽 320底部上的部分絕緣膜413,此時,溝槽320的底部可使部分的第二層間絕緣層314暴露。絕緣膜411可包含絕緣材料,絕緣材料包括氮化物,例如氮化矽。絕緣膜412可包含絕緣材料,絕緣材料包括氧化物,例如氧化矽。絕緣膜413可包含絕緣材料,絕緣材料包括氮化物,例如氮化矽。 Please refer to Figure 4. An insulating film 411 , an insulating film 412 and an insulating film 413 are formed on the sidewalls of the trench 320 shown in FIG. 3 and the upper surface of the insulating stack structure 300 . For example, the insulating film 411 may be formed on the upper surface of the insulating stacked structure 300 and lined in the trench 320 by a deposition process, and then part of the insulating film on the bottom of the trench 320 may be removed by an etching step. 411; then, an insulating film 412 may be formed on the insulating film 411 by a deposition process, and then part of the insulating film 412 on the bottom of the trench 320 may be removed by an etching step; then, an insulating film 413 may be formed by a deposition process On the insulating film 412, the groove is removed by an etching step Part of the insulating film 413 on the bottom of the trench 320 , at this time, the bottom of the trench 320 can expose part of the second interlayer insulating layer 314 . The insulating film 411 may include an insulating material, and the insulating material includes nitride, such as silicon nitride. The insulating film 412 may include an insulating material, and the insulating material includes an oxide, such as silicon oxide. The insulating film 413 may include an insulating material, and the insulating material includes nitride, such as silicon nitride.

請參照第5圖。可進行蝕刻步驟以透過溝槽320移除部分的第二層間絕緣層314與第二半導體材料層313,從而形成狹縫520。狹縫520在第一層間絕緣層312與第二層間絕緣層314之間。此蝕刻步驟可實質上移除第二半導體材料層313,而不會移除第一層間絕緣層312下方的第一半導體材料層311與第二層間絕緣層314上方的第三半導體材料層315。狹縫520使通道結構106的部分側壁暴露。具體而言,狹縫520使通道結構106的記憶膜117的部分側壁暴露。 Please refer to Figure 5. An etching step may be performed to remove part of the second interlayer insulating layer 314 and the second semiconductor material layer 313 through the trench 320 to form the slit 520 . The slit 520 is between the first insulating interlayer 312 and the second insulating interlayer 314 . This etching step can substantially remove the second semiconductor material layer 313 without removing the first semiconductor material layer 311 below the first interlayer insulating layer 312 and the third semiconductor material layer 315 above the second interlayer insulating layer 314 . The slit 520 exposes a portion of the sidewall of the channel structure 106 . Specifically, the slit 520 exposes part of the sidewall of the memory film 117 of the channel structure 106 .

請參照第6圖。可進行一或更多的蝕刻步驟以移除第一層間絕緣層312、第二層間絕緣層314、絕緣膜412與絕緣膜413。在一實施例中,此一或更多的蝕刻步驟中可移除通道結構106之記憶膜117之一部分。在一實施例中,絕緣堆疊結構300上的部分絕緣膜411可被移除,且溝槽320之側壁上的部分絕緣膜411可被保留。舉例而言,絕緣堆疊結構300上的部分絕緣膜411可藉由化學機械平坦化(chemical-mechanical planarization)處理及/或蝕刻步驟來移除。 Please refer to Figure 6. One or more etching steps may be performed to remove the first insulating interlayer 312 , the second insulating interlayer 314 , the insulating film 412 and the insulating film 413 . In one embodiment, the one or more etching steps may remove a portion of the memory film 117 of the channel structure 106 . In one embodiment, part of the insulating film 411 on the insulating stack structure 300 may be removed, and part of the insulating film 411 on the sidewall of the trench 320 may be retained. For example, a portion of the insulating film 411 on the insulating stack structure 300 can be removed by chemical-mechanical planarization and/or etching.

請參照第7圖。可藉由沉積處理以在第一半導體材料層311與第三半導體材料層315之間形成第四半導體材料層611。在一實施例中,第四半導體材料層611可連接或接觸記憶膜117、垂直通道膜118、第一半導體材料層311與第三半導體材料層315。在一實施例中,第四半導體材料層611可包含摻雜的或未摻雜的半導體材料,例如摻雜的或未摻雜的多晶矽。第一半導體材料層311、第四半導體材料層611與第三半導體材料層315可形成半導體層103。半導體層103可包含摻雜的或未摻雜的半導體材料,例如摻雜的或未摻雜的多晶矽。 Please refer to Figure 7. The fourth semiconductor material layer 611 may be formed between the first semiconductor material layer 311 and the third semiconductor material layer 315 by a deposition process. In one embodiment, the fourth semiconductor material layer 611 can connect or contact the memory film 117 , the vertical channel film 118 , the first semiconductor material layer 311 and the third semiconductor material layer 315 . In one embodiment, the fourth semiconductor material layer 611 may include doped or undoped semiconductor material, such as doped or undoped polysilicon. The first semiconductor material layer 311 , the fourth semiconductor material layer 611 and the third semiconductor material layer 315 can form the semiconductor layer 103 . The semiconductor layer 103 may include doped or undoped semiconductor material, such as doped or undoped polysilicon.

請參照第8圖。可進行蝕刻步驟以移除剩餘的絕緣膜411,並在溝槽320的底部和部分側壁上形成保護層107。保護層107可覆蓋被溝槽320暴露之半導體層103。在一實施例中,保護層107可覆蓋絕緣堆疊結構300中的最下方的絕緣層102之側壁。在一實施例中,保護層107可包含絕緣材料,絕緣材料包含氧化物,例如氧化矽。 Please refer to Figure 8. An etching step may be performed to remove the remaining insulating film 411 and form the protective layer 107 on the bottom and part of the sidewalls of the trench 320 . The passivation layer 107 can cover the semiconductor layer 103 exposed by the trench 320 . In one embodiment, the passivation layer 107 can cover the sidewall of the bottommost insulating layer 102 in the insulating stack structure 300 . In one embodiment, the passivation layer 107 may include an insulating material, and the insulating material includes oxide, such as silicon oxide.

請參照第9圖。可透過溝槽320進行蝕刻步驟以移除絕緣堆疊結構300之犧牲層301,形成絕緣層102之間的多個空間920。在此蝕刻步驟中,保護層107可保護半導體層103,以避免半導體層103在蝕刻步驟中被移除。在一實施例中,蝕刻步驟可包含溼式蝕刻方式,例如使用熱磷酸(phosphoric acid;H3PO4)或其他合適的化學物。 Please refer to Figure 9. An etching step may be performed through the trenches 320 to remove the sacrificial layer 301 of the insulating stack structure 300 to form a plurality of spaces 920 between the insulating layers 102 . During this etching step, the protection layer 107 can protect the semiconductor layer 103 to prevent the semiconductor layer 103 from being removed during the etching step. In one embodiment, the etching step may include wet etching, such as using phosphoric acid (H 3 PO 4 ) or other suitable chemicals.

請參照第10圖。以導電材料填充多個空間920,形成在多個絕緣層102之間的多個導電層101。如此,形成了堆疊結構100以及在堆疊結構100中的溝槽1020。溝槽1020可包含介於絕緣層102之間的多個凹室1020r,其沿著X方向及/或Y方向延伸進入導電層101。 Please refer to Figure 10. The plurality of spaces 920 are filled with conductive material to form a plurality of conductive layers 101 between the plurality of insulating layers 102 . In this way, the stack structure 100 and the trench 1020 in the stack structure 100 are formed. The trench 1020 may include a plurality of recesses 1020r between the insulating layers 102 extending into the conductive layer 101 along the X-direction and/or the Y-direction.

在一實施例中,包含於第9-10圖之步驟可被理解為閘極取代(gate replacement)製程。在一實施例中,導電層101可包含導電材料,例如鎢(tungsten;W)。 In one embodiment, the steps included in FIGS. 9-10 can be understood as a gate replacement process. In one embodiment, the conductive layer 101 may include a conductive material, such as tungsten (W).

請參照第11圖。可藉由沉積處理以使隔離材料層1124襯裡式地形成於溝槽1020中。隔離材料層1124可沿著凹室1020r的側壁沉積,並形成分別對應凹室1020r的多個凹室1120r。隔離材料層1124可覆蓋堆疊結構100之導電層101與絕緣層102被溝槽1020暴露出來的側壁。在一實施例中,隔離材料層1124可包含氧化物,例如低溫氧化物(low temperature oxide;LTO)。 Please refer to Figure 11. The trench 1020 may be lined with a layer of isolation material 1124 by a deposition process. The isolation material layer 1124 may be deposited along the sidewalls of the alcove 1020r to form a plurality of alcoves 1120r respectively corresponding to the alcoves 1020r. The isolation material layer 1124 can cover the sidewalls of the conductive layer 101 and the insulating layer 102 of the stack structure 100 exposed by the trench 1020 . In one embodiment, the isolation material layer 1124 may include oxide, such as low temperature oxide (LTO).

請參照第12圖。對第11圖的隔離材料層1124進行熱處理步驟,以使隔離材料層1124緻密化。在熱處理步驟後,隔離材料層1124轉變為緻密隔離材料層1224。在一實施例中,熱處理步驟可為快速熱處理步驟(rapid thermal process;RTP),且於800-900℃之間進行約25-35秒。在一實施例中,快速熱處理步驟可在約850℃時進行約30秒。熱處理步驟亦可理解為緻密化處理,透過這樣的處理可使隔離材料層1124更加緻密。緻密隔 離材料層1224可比隔離材料層1124更加緻密。緻密隔離材料層1224的緻密度可大於隔離材料層1124的緻密度。 Please refer to Figure 12. A heat treatment step is performed on the isolation material layer 1124 of FIG. 11 to densify the isolation material layer 1124 . After the heat treatment step, the layer of isolation material 1124 is transformed into a layer of dense isolation material 1224 . In one embodiment, the heat treatment step may be a rapid thermal process (RTP), and is performed at 800-900° C. for about 25-35 seconds. In one embodiment, the rapid thermal processing step may be performed at about 850° C. for about 30 seconds. The heat treatment step can also be understood as a densification treatment, through which the isolation material layer 1124 can be made denser. dense septum The layer of release material 1224 may be denser than the layer of isolation material 1124 . The density of the dense isolation material layer 1224 may be greater than the density of the isolation material layer 1124 .

請參照第13圖。對緻密隔離材料層1224進行蝕刻步驟,形成貫穿堆疊結構100之第二隔離層124。在一實施例中,蝕刻步驟可沿著溝槽1020的側壁移除部分的緻密隔離材料層1224,使緻密隔離材料層1224的厚度降低。蝕刻步驟亦會移除凹室1020r中的部分的緻密隔離材料層1224,從而形成包含多個凹室124r之第二隔離層124(亦可理解為蝕刻步驟使第12圖的凹室1120r變大成為凹室124r)。第二隔離層124之多個凹室124r對應於堆疊結構100之多個導電層101。各凹室124r可朝向所對應的導電層101橫向地延伸。在一實施例中,第二隔離層124可包含氧化物,例如低溫氧化物。在一實施例中,第二隔離層124可包含緻密的低溫氧化物。 Please refer to Figure 13. An etching step is performed on the dense isolation material layer 1224 to form the second isolation layer 124 penetrating through the stack structure 100 . In one embodiment, the etching step can remove part of the dense isolation material layer 1224 along the sidewall of the trench 1020 , so that the thickness of the dense isolation material layer 1224 is reduced. The etching step will also remove part of the dense isolation material layer 1224 in the recess 1020r, thereby forming a second isolation layer 124 comprising a plurality of recesses 124r (it can also be understood that the etching step makes the recess 1120r in Figure 12 larger become alcove 124r). The plurality of alcoves 124 r of the second isolation layer 124 correspond to the plurality of conductive layers 101 of the stacked structure 100 . Each alcove 124r can extend laterally toward the corresponding conductive layer 101 . In one embodiment, the second isolation layer 124 may include oxide, such as low temperature oxide. In one embodiment, the second isolation layer 124 may include dense low temperature oxide.

在一實施例中,在蝕刻步驟之前進行熱處理步驟有助於降低蝕刻步驟之蝕刻速率以提升蝕刻控制性,並可獲得更精確的蝕刻輪廓。但在另一實施例中,對隔離材料層1124進行熱處理步驟是可省略的,可對隔離材料層1124進行蝕刻步驟來形成第二隔離層124。是否對隔離材料層1124進行熱處理步驟可取決於隔離材料層1124的材料特性及/或半導體結構之設計。舉例而言,在隔離材料層1124包含緻密材料、或隔離材料層1124之蝕刻速率較低的情況下,對隔離材料層1124進行熱處理步驟是可省略的。 In one embodiment, performing the heat treatment step before the etching step helps to reduce the etching rate of the etching step to improve the etching controllability and obtain a more accurate etching profile. However, in another embodiment, the heat treatment step on the isolation material layer 1124 can be omitted, and the second isolation layer 124 can be formed by performing an etching step on the isolation material layer 1124 . Whether to perform the heat treatment step on the isolation material layer 1124 may depend on the material properties of the isolation material layer 1124 and/or the design of the semiconductor structure. For example, in the case that the isolation material layer 1124 includes a dense material, or the etching rate of the isolation material layer 1124 is low, the heat treatment step for the isolation material layer 1124 may be omitted.

請參照第14圖。可進行沉積處理以在第二隔離層124上形成貫穿堆疊結構100的第一隔離層123。 Please refer to Figure 14. A deposition process may be performed to form the first isolation layer 123 penetrating through the stack structure 100 on the second isolation layer 124 .

請參照第15圖。可進行蝕刻步驟以移除溝槽1020底部的部分的第一隔離層123、第二隔離層124和保護層107,並暴露出半導體層103。如此,形成了包含第一隔離層123與第二隔離層124之多層隔離結構116。第一隔離層123可包含多個凸部123p。第一隔離層123之凸部123p形成於第二隔離層124的多個凹室124r中。第一隔離層123的緻密度可不同於第二隔離層124的緻密度,從而在第一隔離層123與第二隔離層124之間形成一界面(interface)。例如,第一隔離層123的緻密度可小於第二隔離層124的緻密度。在一實施例中,第二隔離層124之形成包含熱處理步驟(如第12圖所示),熱處理步驟使第二隔離層124比第一隔離層123更緻密。在一實施例中,第一隔離層123可包含氧化物,例如低溫氧化物。 Please refer to Figure 15. An etching step may be performed to remove portions of the first isolation layer 123 , the second isolation layer 124 and the protective layer 107 at the bottom of the trench 1020 and expose the semiconductor layer 103 . In this way, the multi-layer isolation structure 116 including the first isolation layer 123 and the second isolation layer 124 is formed. The first isolation layer 123 may include a plurality of protrusions 123p. The protrusions 123p of the first isolation layer 123 are formed in the plurality of recesses 124r of the second isolation layer 124 . The density of the first isolation layer 123 may be different from that of the second isolation layer 124 , so that an interface is formed between the first isolation layer 123 and the second isolation layer 124 . For example, the density of the first isolation layer 123 may be smaller than that of the second isolation layer 124 . In one embodiment, the formation of the second isolation layer 124 includes a heat treatment step (as shown in FIG. 12 ), and the heat treatment step makes the second isolation layer 124 denser than the first isolation layer 123 . In one embodiment, the first isolation layer 123 may include oxide, such as low temperature oxide.

請參照第16圖。形成導電柱115以填充溝槽1020。導電柱115之形成可例如包含:進行沉積處理以在第一隔離層123的側壁上形成下導電部122,進行另一沉積處理以在下導電部122上形成上導電部121。在一實施例中,導電柱115之形成可更包含,移除部分的第一隔離層123、部分的第二隔離層124、及/或部分的堆疊結構100中最上方的絕緣層102,以使上導電部121沿著Z方向朝下逐漸變窄。在一實施例中,上導電部121可包含金屬材料,例如鎢;下導電部122可包含摻雜的或未摻雜的半導 體材料,例如摻雜的或未摻雜的多晶矽。在另一實施例中,上導電部121和下導電部122可皆包含金屬材料,例如鎢。在一實施例中,可通過施行示例性繪示於第3-16圖之方法,得到如第1圖所述的半導體結構10。 Please refer to Figure 16. Conductive pillars 115 are formed to fill trenches 1020 . The formation of the conductive pillar 115 may include, for example, performing a deposition process to form the lower conductive portion 122 on the sidewall of the first isolation layer 123 , and performing another deposition process to form the upper conductive portion 121 on the lower conductive portion 122 . In one embodiment, the formation of the conductive pillar 115 may further include removing part of the first isolation layer 123, part of the second isolation layer 124, and/or part of the uppermost insulating layer 102 in the stacked structure 100, so as to The upper conductive portion 121 is gradually narrowed downward along the Z direction. In one embodiment, the upper conductive portion 121 may include metal material such as tungsten; the lower conductive portion 122 may include doped or undoped semiconductor Bulk materials such as doped or undoped polysilicon. In another embodiment, both the upper conductive portion 121 and the lower conductive portion 122 may include a metal material, such as tungsten. In one embodiment, the semiconductor structure 10 as shown in FIG. 1 can be obtained by implementing the methods exemplarily shown in FIGS. 3-16 .

如第3-16圖所示,本發明提供之用以製造半導體結構的方法可應用於形成包含兩個隔離層之半導體結構,但本發明不以此為限,本發明提供之技術方案亦可應用於形成包含兩個以上的隔離層之半導體結構。在一實施例中,本發明提供之技術方案可應用於包含N個隔離層之半導體結構(即半導體結構之多層隔離結構包含N個隔離層),N為大於等於2之正整數的其中之一。 As shown in Figures 3-16, the method for manufacturing a semiconductor structure provided by the present invention can be applied to form a semiconductor structure comprising two isolation layers, but the present invention is not limited thereto, and the technical solution provided by the present invention can also be Applied to the formation of semiconductor structures including more than two isolation layers. In one embodiment, the technical solution provided by the present invention can be applied to a semiconductor structure including N isolation layers (that is, the multilayer isolation structure of the semiconductor structure includes N isolation layers), where N is one of positive integers greater than or equal to 2 .

當N為2時,半導體結構之多層隔離結構包含兩個隔離層,其製造方法與形成的半導體結構可如第3-16圖所示。 When N is 2, the multilayer isolation structure of the semiconductor structure includes two isolation layers, and its manufacturing method and formed semiconductor structure can be shown in FIGS. 3-16.

當N為3時,半導體結構之多層隔離結構包含三個隔離層,其製造方法和用以製造包含兩個隔離層的半導體結構之製造方法的差異在於,方法更包含在形成第二隔離層之前,形成介於第二隔離層和堆疊結構之間的第三隔離層;其中第三隔離層之形成步驟可類似於第二隔離層之形成步驟。也就是說,第三隔離層之形成可包含沉積隔離材料層、以及對隔離材料層進行熱處理步驟與蝕刻步驟(熱處理步驟係為可選的)。所形成的第三隔離層可相似於第二隔離層。第一隔離層的緻密度可小於第二隔離層的緻密度,及/或第一隔離層的緻密度可小於第三隔離層的緻 密度。第二隔離層的緻密度可相同或不同於第三隔離層的緻密度。第三隔離層可包含氧化物,例如低溫氧化物或緻密的低溫氧化物。此製造方法形成的半導體結構可如第2圖所示之半導體結構20。 When N is 3, the multilayer isolation structure of the semiconductor structure comprises three isolation layers, and the difference between the manufacturing method and the manufacturing method used to manufacture the semiconductor structure comprising two isolation layers is that the method further includes before forming the second isolation layer , forming a third isolation layer between the second isolation layer and the stack structure; wherein the forming step of the third isolation layer can be similar to the forming step of the second isolation layer. That is, the formation of the third isolation layer may include depositing an isolation material layer, and performing a heat treatment step and an etching step on the isolation material layer (the heat treatment step is optional). The formed third isolation layer may be similar to the second isolation layer. The density of the first isolation layer may be less than that of the second isolation layer, and/or the density of the first isolation layer may be less than that of the third isolation layer. density. The density of the second isolation layer may be the same as or different from that of the third isolation layer. The third isolation layer may include oxide, such as low temperature oxide or dense low temperature oxide. The semiconductor structure formed by this manufacturing method can be the semiconductor structure 20 shown in FIG. 2 .

當N為大於等於3之正整數的其中之一時,半導體結構之多層隔離結構包含N個隔離層,N個隔離層包含朝向遠離導電柱的方向依序排列之第一隔離層、第二隔離層、......、第N個隔離層,其中第一隔離層的緻密度小於該些隔離層中的其他隔離層(即第二隔離層至第N個隔離層)的緻密度。用以製造半導體結構的方法可包含:在堆疊結構中依序形成第N個隔離層、第N-1個隔離層、......、第二隔離層、第一隔離層,其中第一隔離層以外的隔離層之形成步驟可類似於第11-13圖所述之第二隔離層124之形成步驟,第一隔離層之形成步驟可類似於第14圖所述之第一隔離層123之形成步驟。 When N is one of the positive integers greater than or equal to 3, the multilayer isolation structure of the semiconductor structure includes N isolation layers, and the N isolation layers include a first isolation layer and a second isolation layer arranged in sequence in a direction away from the conductive pillar , ..., the Nth isolation layer, wherein the density of the first isolation layer is smaller than that of other isolation layers (ie, the second isolation layer to the Nth isolation layer) among the isolation layers. The method for manufacturing a semiconductor structure may include: sequentially forming an Nth isolation layer, an N-1th isolation layer, ..., a second isolation layer, and a first isolation layer in a stacked structure, wherein the The formation steps of the isolation layer other than the isolation layer can be similar to the formation steps of the second isolation layer 124 described in Figures 11-13, and the formation steps of the first isolation layer can be similar to the first isolation layer described in Figure 14 123 formation steps.

在一比較例中,使用單層隔離結構以隔離半導體結構中的導電柱和堆疊結構,單層隔離結構之材料填充性較差,易在形成過程中產生多個孔隙(voids)。隔離結構中的孔隙會導致導電柱和堆疊結構之隔離效果降低,並降低半導體結構之電性表現。具體而言,導電層的材料會滲入單層隔離結構之多個孔隙中,而在導電柱和堆疊結構之導電層之間形成漏電路徑(leak path),漏電路徑會干擾半導體結構之運作,造成離子流(ion current)難以偵測,並降低半導體結構之電性表現。 In a comparative example, a single-layer isolation structure is used to isolate the conductive pillars and stacked structures in the semiconductor structure. The material filling property of the single-layer isolation structure is poor, and multiple voids are likely to be generated during the formation process. Voids in the isolation structure reduce the isolation effect of the conductive pillars and stack structures, and degrade the electrical performance of the semiconductor structure. Specifically, the material of the conductive layer will infiltrate into multiple pores of the single-layer isolation structure, thereby forming a leak path between the conductive pillar and the conductive layer of the stacked structure, and the leak path will interfere with the operation of the semiconductor structure, resulting in Ion current is difficult to detect and degrades the electrical performance of semiconductor structures.

本發明提供之半導體結構包含介於導電柱與堆疊結構之間的多層隔離結構。相較於比較例之包含單層隔離結構的半導體結構,本發明之多層隔離結構具有較佳的填充性與較少的孔隙。透過這樣的配置,可減少或解決導電層的材料滲入孔隙而導致的漏電問題,離子流得以被偵測,且可提升半導體結構之電性表現並提升產量。此外,在本發明提供之多層隔離結構中,多個隔離層之性質(例如緻密度)與輪廓(例如第一隔離層包含朝向對應的導電層延伸的多個凸部、及/或第二隔離層包含朝向對應導電層延伸的多個凹室)亦有助於進一步提升填充性。再者,在本發明提供之半導體結構之製造方法中,多層隔離結構的形成包含沉積、蝕刻、再沉積的步驟,其有助於形成良好的隔離層輪廓並可減少隔離層中的孔隙數量。 The semiconductor structure provided by the present invention includes a multi-layer isolation structure between the conductive pillar and the stack structure. Compared with the semiconductor structure including the single-layer isolation structure of the comparative example, the multi-layer isolation structure of the present invention has better filling property and fewer pores. Through such a configuration, the leakage problem caused by the material of the conductive layer penetrating into the pores can be reduced or solved, the ion flow can be detected, and the electrical performance of the semiconductor structure can be improved and the yield can be improved. In addition, in the multi-layer isolation structure provided by the present invention, the properties (such as density) and profiles of the plurality of isolation layers (eg, the first isolation layer includes a plurality of protrusions extending toward the corresponding conductive layer, and/or the second isolation layer layer comprising a plurality of cavities extending towards the corresponding conductive layer) also helps to further improve the fillability. Furthermore, in the manufacturing method of the semiconductor structure provided by the present invention, the formation of the multilayer isolation structure includes the steps of deposition, etching, and redeposition, which help to form a good profile of the isolation layer and reduce the number of pores in the isolation layer.

應注意的是,如上所述之圖式、結構和步驟,是用以敘述本發明之部分實施例或應用例,本發明並不限制於上述結構和步驟之範圍與應用態樣。其他不同結構態樣之實施例,例如不同內部組件的已知構件都可應用,其示例之結構和步驟可根據實際應用之需求而調整。因此圖式之結構僅用以舉例說明之,而非用以限制本發明。通常知識者當知,應用本發明之相關結構和步驟過程,例如半導體結構中的相關元件和層的排列方式或構型,或製造步驟細節等,都可能依實際應用樣態所需而可能有相應的調整和變化。 It should be noted that the above-mentioned drawings, structures and steps are used to describe some embodiments or application examples of the present invention, and the present invention is not limited to the scope and application of the above-mentioned structures and steps. Other embodiments with different structural forms, such as known components of different internal components, can be used, and the structure and steps of the example can be adjusted according to the actual application requirements. Therefore, the structures in the drawings are only used for illustration rather than to limit the present invention. Those with ordinary knowledge should know that the relevant structures and steps of the application of the present invention, such as the arrangement or configuration of the relevant elements and layers in the semiconductor structure, or the details of the manufacturing steps, etc., may vary according to the requirements of the actual application. Adjust and change accordingly.

綜上所述,雖然本發明已以實施例揭露如上,然而其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍前提下,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 To sum up, although the present invention has been disclosed by the above embodiments, they are not intended to limit the present invention. Those skilled in the technical field of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the scope of the appended patent application.

10:半導體結構 10:Semiconductor structure

100:堆疊結構 100:Stack structure

101:導電層 101: Conductive layer

102:絕緣層 102: Insulation layer

103:半導體層 103: Semiconductor layer

104:半導體裝置 104:Semiconductor device

105:柱元件 105: column element

106:通道結構 106: Channel structure

107:保護層 107: protective layer

115:導電柱 115: Conductive column

115s:側壁 115s: side wall

116:多層隔離結構 116: Multi-layer isolation structure

117:記憶膜 117: memory film

118:垂直通道膜 118: vertical channel membrane

119:絕緣柱 119: Insulation column

120:接墊 120: Pad

121:上導電部 121: Upper conductive part

122:下導電部 122: lower conductive part

122a:上端部 122a: upper end

122b:下端部 122b: lower end

123:第一隔離層 123: The first isolation layer

123b:底表面 123b: bottom surface

123p:凸部 123p: convex part

124:第二隔離層 124: second isolation layer

124b:底表面 124b: bottom surface

X,Y,Z:方向 X, Y, Z: direction

Claims (6)

一種半導體結構,包含:一導電柱,具有一側壁;以及一多層隔離結構,設置於該導電柱的該側壁,該多層隔離結構包含一第一隔離層與一第二隔離層,其中該第一隔離層係介於該導電柱與該第二隔離層之間,該第一隔離層包含朝向該第二隔離層延伸的多個凸部,該第一隔離層的該緻密度小於該第二隔離層的該緻密度。 A semiconductor structure, comprising: a conductive pillar with a sidewall; and a multilayer isolation structure disposed on the sidewall of the conductive pillar, the multilayer isolation structure includes a first isolation layer and a second isolation layer, wherein the first isolation layer An isolation layer is interposed between the conductive column and the second isolation layer, the first isolation layer includes a plurality of protrusions extending toward the second isolation layer, and the density of the first isolation layer is smaller than that of the second isolation layer. The density of the isolation layer. 如請求項1所述之半導體結構,其中該第一隔離層與該第二隔離層包含低溫氧化物。 The semiconductor structure of claim 1, wherein the first isolation layer and the second isolation layer comprise low temperature oxide. 如請求項1所述之半導體結構,更包含一堆疊結構,該多層隔離結構設置於該堆疊結構中,該堆疊結構包含交錯堆疊的多個導電層與多個絕緣層,其中該第一隔離層的該些凸部對應於該些導電層。 The semiconductor structure as described in Claim 1 further includes a stack structure, the multi-layer isolation structure is disposed in the stack structure, the stack structure includes a plurality of conductive layers and a plurality of insulating layers stacked alternately, wherein the first isolation layer The protrusions correspond to the conductive layers. 如請求項3所述之半導體結構,更包含一通道結構與一半導體層,該通道結構設置於該堆疊結構中,該半導體層位於該堆疊結構下方,其中該通道結構透過該半導體層電性連接於該導電柱。 The semiconductor structure as described in claim 3, further comprising a channel structure and a semiconductor layer, the channel structure is disposed in the stack structure, the semiconductor layer is located below the stack structure, wherein the channel structure is electrically connected through the semiconductor layer on the conductive column. 如請求項1所述之半導體結構,其中該導電柱包含一上導電部與在該上導電部下方的一下導電部,該上導電部包含一金屬材料,該下導電部包含一半導體材料。 The semiconductor structure according to claim 1, wherein the conductive column includes an upper conductive portion and a lower conductive portion below the upper conductive portion, the upper conductive portion includes a metal material, and the lower conductive portion includes a semiconductor material. 一種半導體結構,包含: 一導電柱,具有一側壁;以及一多層隔離結構,設置於該導電柱的該側壁,該多層隔離結構包含N個隔離層,其中N為3以上的正整數其中之一,該些隔離層包含朝向遠離該導電柱的方向依序排列的一第一個隔離層至一第N個隔離層,該第一隔離層的緻密度小於該些隔離層中的其他隔離層的緻密度。 A semiconductor structure comprising: A conductive column with a side wall; and a multilayer isolation structure disposed on the side wall of the conductive column, the multilayer isolation structure includes N isolation layers, wherein N is one of positive integers greater than 3, and the isolation layers It includes a first isolation layer to an Nth isolation layer sequentially arranged in a direction away from the conductive column, and the density of the first isolation layer is smaller than that of other isolation layers in the isolation layers.
TW111105269A 2022-02-14 2022-02-14 Semiconductor structure TWI790122B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111105269A TWI790122B (en) 2022-02-14 2022-02-14 Semiconductor structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111105269A TWI790122B (en) 2022-02-14 2022-02-14 Semiconductor structure

Publications (2)

Publication Number Publication Date
TWI790122B true TWI790122B (en) 2023-01-11
TW202333296A TW202333296A (en) 2023-08-16

Family

ID=86670296

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111105269A TWI790122B (en) 2022-02-14 2022-02-14 Semiconductor structure

Country Status (1)

Country Link
TW (1) TWI790122B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180097013A1 (en) * 2016-05-04 2018-04-05 SK Hynix Inc. Semiconductor device and manufacturing method thereof
TW201913977A (en) * 2017-08-23 2019-04-01 大陸商長江存儲科技有限責任公司 Method of forming a gate structure of a three-dimensional memory element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180097013A1 (en) * 2016-05-04 2018-04-05 SK Hynix Inc. Semiconductor device and manufacturing method thereof
TW201913977A (en) * 2017-08-23 2019-04-01 大陸商長江存儲科技有限責任公司 Method of forming a gate structure of a three-dimensional memory element

Also Published As

Publication number Publication date
TW202333296A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
TWI738381B (en) 3d memory device with back source contact
US11837646B2 (en) 3D capacitor and method of manufacturing same
KR102612259B1 (en) Three-dimensional NOR array comprising vertical word lines and individual channels and methods for manufacturing the same
KR102195112B1 (en) Vertical memory devices and methods of manufacturing the same
US8723271B2 (en) Voids in STI regions for forming bulk FinFETs
US9543313B2 (en) Nonvolatile memory device and method for fabricating the same
US11985822B2 (en) Memory device
US8921922B2 (en) Nonvolatile memory device and method for fabricating the same
US11751395B2 (en) Vertical semiconductor device and method for fabricating the vertical semiconductor device
US9324731B1 (en) Method for fabricating memory device
JP7524192B2 (en) Three-dimensional memory device and method for fabricating same
KR20200062353A (en) 3D memory device including multilevel drain select gate isolation and manufacturing method thereof
CN108878437B (en) Method for forming three-dimensional memory and three-dimensional memory
CN112466880A (en) Three-dimensional memory and preparation method thereof
KR20130036553A (en) Method of manufacturing a semiconductor device
US10886366B2 (en) Semiconductor structures for peripheral circuitry having hydrogen diffusion barriers and method of making the same
TWI738489B (en) Memory device
US20140264545A1 (en) Semiconductor element and manufacturing method and operating method of the same
US20230260912A1 (en) Semiconductor structure and method for manufacturing the same
US8617991B2 (en) Method of manufacturing semiconductor device
CN111769120A (en) Semiconductor structure and preparation method thereof
TWI790122B (en) Semiconductor structure
US20220328403A1 (en) Three-dimensional memory device with hybrid staircase structure and methods of forming the same
TW202228249A (en) Memory device and method for manufacturing the same
US20240088043A1 (en) Semiconductor device and method for fabricating the same