TWI768565B - Steam generator, exhaust heat recovery plant, compound plant, steam-electricity cogeneration plant - Google Patents
Steam generator, exhaust heat recovery plant, compound plant, steam-electricity cogeneration plant Download PDFInfo
- Publication number
- TWI768565B TWI768565B TW109141524A TW109141524A TWI768565B TW I768565 B TWI768565 B TW I768565B TW 109141524 A TW109141524 A TW 109141524A TW 109141524 A TW109141524 A TW 109141524A TW I768565 B TWI768565 B TW I768565B
- Authority
- TW
- Taiwan
- Prior art keywords
- carbon
- water
- steam
- economizer
- heat
- Prior art date
Links
- 238000011084 recovery Methods 0.000 title claims abstract description 43
- 150000001875 compounds Chemical class 0.000 title claims description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 808
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 407
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 406
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000003610 charcoal Substances 0.000 claims abstract description 5
- 239000002826 coolant Substances 0.000 claims description 31
- 238000001704 evaporation Methods 0.000 claims description 20
- 230000008020 evaporation Effects 0.000 claims description 20
- 239000000446 fuel Substances 0.000 claims description 17
- 239000007788 liquid Substances 0.000 claims description 14
- 239000008400 supply water Substances 0.000 claims description 4
- 239000012212 insulator Substances 0.000 claims 3
- 238000010025 steaming Methods 0.000 abstract 1
- 238000001816 cooling Methods 0.000 description 44
- 238000010586 diagram Methods 0.000 description 40
- 239000002131 composite material Substances 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 18
- 239000008236 heating water Substances 0.000 description 17
- 229920006395 saturated elastomer Polymers 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000010248 power generation Methods 0.000 description 7
- 238000009833 condensation Methods 0.000 description 6
- 230000005494 condensation Effects 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 239000010687 lubricating oil Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000002715 modification method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052594 sapphire Inorganic materials 0.000 description 2
- 239000010980 sapphire Substances 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 235000004213 low-fat Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- MSSNHSVIGIHOJA-UHFFFAOYSA-N pentafluoropropane Chemical compound FC(F)CC(F)(F)F MSSNHSVIGIHOJA-UHFFFAOYSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 238000009420 retrofitting Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000011426 transformation method Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/16—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02C—GAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
- F02C6/00—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
- F02C6/18—Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/18—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B3/00—Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
- F22B3/04—Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D1/00—Feed-water heaters, i.e. economisers or like preheaters
- F22D1/02—Feed-water heaters, i.e. economisers or like preheaters with water tubes arranged in the boiler furnace, fire tubes, or flue ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D5/00—Controlling water feed or water level; Automatic water feeding or water-level regulators
- F22D5/26—Automatic feed-control systems
- F22D5/36—Automatic feed-control systems for feeding a number of steam boilers designed for different ranges of temperature and pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22G—SUPERHEATING OF STEAM
- F22G1/00—Steam superheating characterised by heating method
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
提供一種蒸氣產生裝置及排熱回收廠。 Provided are a steam generating device and an exhaust heat recovery plant.
此蒸氣產生裝置,係具備:供熱媒體流動的熱媒體流路;設置於熱媒體流路的第1節碳器;於熱媒體流路中,於熱媒體的流動方向設置於第1節碳器的上游側的第2節碳器;於熱媒體流路中,於熱媒體的流動方向設置於第2節碳器的上游側的第1蒸發器;用以產生閃蒸蒸氣的第1閃蒸槽;以將由第1節碳器加熱後之水供給至第2節碳器之方式所構成的第1給水管線;及自第1給水管線分歧設置,以將由第1節碳器加熱後之水供給至熱利用設備之方式所構成的第2給水管線。 The steam generating device is provided with: a heat medium flow path for the heat medium to flow; a first carbon block arranged in the heat medium flow path; The second carbon section on the upstream side of the boiler; the first evaporator installed on the upstream side of the second carbon section in the flow direction of the heat medium in the heat medium flow path; the first flash for generating flash steam A steaming tank; a first water supply pipeline formed in such a way as to supply the water heated by the 1st charcoal device to the 2nd charcoal device; The second water supply line constituted by the method of supplying water to the heat utilization equipment.
Description
本發明有關一種蒸氣產生裝置、排熱回收廠、複合工廠、汽電共生工廠、排熱回收廠的改造方法及蒸氣產生方法。 The present invention relates to a steam generating device, an exhaust heat recovery plant, a composite plant, a steam-electricity co-generation plant, a transformation method for an exhaust heat recovery plant, and a steam generation method.
專利文獻1中,曾揭示一種利用燃氣渦輪機的排氣氣體(熱媒體)的熱將供給至節碳器的給水予以加熱,而將自節碳器往向蒸發器的給水之一部分供給至閃蒸槽(閃蒸器),藉由該閃蒸槽而產生閃蒸蒸氣之構成。根據此一構成,能夠利用通過節碳器之較低溫的排氣氣體的熱而產生蒸氣,能夠提高排氣氣體的熱利用效率。
[專利文獻1]日本特開2019-44678號公報 [Patent Document 1] Japanese Patent Laid-Open No. 2019-44678
根據專利文獻1所述之構成,與未設置閃蒸
槽的情況比較,因應供給至閃蒸槽之給水的流量而供給至節碳器之給水的流量變多,因此為了使供給至節碳器之給水的溫度接近飽和蒸氣溫度,必要之節碳器的尺寸變大。又,未設置閃蒸槽的系統亦然,在將自節碳器往向蒸發器之給水的一部分供給至熱利用設備而作為熱源利用的系統中,同樣地,為了使供給至節碳器之給水的溫度接近飽和蒸氣溫度,必要之節碳器的尺寸變大。
According to the configuration described in
有鑑於上述情事,本發明之目的在提供一種能夠抑制節碳器的尺寸之大型化,而且能夠提高熱媒體的熱利用效率之蒸氣產生裝置及具備該蒸氣產生裝置之排熱回收廠。 In view of the above-mentioned circumstances, an object of the present invention is to provide a steam generator capable of suppressing an increase in the size of a carbon economizer and improving the heat utilization efficiency of a heat medium, and an exhaust heat recovery plant equipped with the steam generator.
本發明之蒸氣產生裝置係具備:供熱媒體流動的熱媒體流路;設置於前述熱媒體流路的第1節碳器;於前述熱媒體流路中,於前述熱媒體的流動方向設置於前述第1節碳器的上游側的第2節碳器;於前述熱媒體流路中,於前述熱媒體的流動方向設置於前述第2節碳器的上游側的第1蒸發器;以將由前述第1節碳器加熱後之水供給至前述第2節碳器之方式所構成的第1給水管線;及自前述第1給水管線分歧設置,以將由前述第1節碳器所加熱後之水供給至熱利用設備之方式所構成的第2給水 管線。 The steam generator of the present invention is provided with: a heat medium flow path for the flow of the heat medium; a first carbon block provided in the heat medium flow path; The second carbon separator on the upstream side of the first carbon separator; the first evaporator provided on the upstream side of the second carbon separator in the flow direction of the heat medium in the heat medium flow path; The first water supply pipeline constituted by the way of supplying the water heated by the aforementioned first section of the carbon device to the aforementioned second section of the carbon device; The second water supply constituted by the method of supplying water to the heat utilization equipment pipeline.
根據本發明,提供一種能夠抑制節碳器的尺寸之大型化,而且能夠提高熱媒體的熱利用效率之蒸氣產生裝置、及具備該蒸氣產生裝置之排熱回收廠。 According to the present invention, there are provided a steam generator capable of suppressing an increase in the size of a carbon economizer, and also capable of improving the heat utilization efficiency of a heat medium, and an exhaust heat recovery plant provided with the steam generator.
2:複合工廠 2: Compound Factory
4:燃氣渦輪機 4: Gas Turbine
5:排熱回收鍋爐 5: Exhaust heat recovery boiler
6(6A~6D):蒸氣產生裝置 6(6A~6D): Steam generating device
8(8a~8d):閃蒸槽 8(8a~8d): Flash tank
9:煙囪 9: Chimney
12,140:壓縮機 12,140: Compressor
14:燃燒器 14: Burner
16:渦輪機 16: Turbine
18:排氣氣體流路 18: Exhaust gas flow path
19:發電機 19: Generator
20,116,120,122,124:熱交換器 20, 116, 120, 122, 124: Heat Exchangers
126,128,129,130,132:熱交換器 126, 128, 129, 130, 132: Heat Exchangers
21,48:給水管線 21,48: Water supply lines
22:第1低壓節碳器 22: 1st low pressure carbon saver
23:低溫熱交換器 23: Low temperature heat exchanger
24:第2低壓節碳器 24: 2nd low pressure carbon saver
25:第3低壓節碳器 25: 3rd low pressure carbon saver
26:低壓蒸發器 26: Low pressure evaporator
27,29,48,52,53,54,60:給水管線 27, 29, 48, 52, 53, 54, 60: Water supply lines
63,64,70,73,74,75,76,77,79:給水管線 63,64,70,73,74,75,76,77,79: Water supply lines
28:低壓過熱器 28: Low pressure superheater
30:第1高壓節碳器 30: 1st high pressure carbon saver
31:中壓節碳器 31: Medium pressure carbon saver
32:中壓蒸發器 32: Medium pressure evaporator
34:中壓過熱器 34: Medium pressure superheater
36:第2高壓節碳器 36: 2nd high pressure carbon saver
38:高壓蒸發器 38: High pressure evaporator
40:第1高壓過熱器 40: 1st high pressure superheater
42:第1再熱器 42: 1st reheater
44:第2高壓過熱器 44: 2nd high pressure superheater
46:第2再熱器 46: 2nd reheater
50:冷凝水泵 50: Condensate pump
51:冷凝水管線 51: Condensate line
55,65,77:給水閥 55, 65, 77: Feed valve
56,57,58,66,68,78,80:蒸氣管線 56, 57, 58, 66, 68, 78, 80: Vapor Lines
86,92,93,94,95,97,117,118:蒸氣管線 86, 92, 93, 94, 95, 97, 117, 118: Vapor Lines
59,84,85,86,87:減壓閥 59,84,85,86,87: Pressure reducing valve
61:給水泵 61: Feed water pump
62:中壓給水泵 62: Medium pressure feed pump
69,88,89,90,91:過熱器 69,88,89,90,91: Superheater
71:排放水管線 71: Drain water line
72:高壓給水泵 72: High pressure feed pump
81,83:減溫器 81,83: Desuperheater
82,98:再熱蒸氣管線 82,98: Reheat steam lines
96:低壓節碳器 96: Low pressure carbon economizer
100:蒸氣渦輪機系統 100: Steam Turbine Systems
102:高壓蒸氣渦輪機 102: High Pressure Steam Turbines
104:中壓蒸氣渦輪機 104: Intermediate pressure steam turbines
106:低壓蒸氣渦輪機 106: Low Pressure Steam Turbines
108:冷凝器 108: Condenser
110:中壓排氣管線 110: Medium pressure exhaust line
112:低壓排氣管線 112: Low pressure exhaust line
114:高壓排氣管線 114: High pressure exhaust line
119:閥 119: Valve
126:冷卻媒體冷卻器 126: Cooling Media Cooler
127:軸承 127: Bearings
128:潤滑油冷卻器 128: Lube oil cooler
134:冷卻用空氣管線 134: Air line for cooling
136,138:抽氣管線 136, 138: Extraction line
142:低沸點媒體藍金循環 142: Low Boiling Media Blue Gold Cycle
200:排熱回收廠 200: Exhaust heat recovery plant
205,206:流量調整閥 205, 206: Flow adjustment valve
[圖1]係表示有關一個實施方式之複合工廠2(2A)的概略性整體構成的圖。 1 is a diagram showing a schematic overall configuration of a composite factory 2 ( 2A) according to an embodiment.
[圖2]係表示蒸氣產生裝置之自節碳器至第1蒸發器的給水的熱量與溫度的關係之線、及自第1蒸發器至節碳器的排氣氣體的熱量與溫度的關係之線的圖,且係有關僅具備1個節碳器而不具備閃蒸槽之蒸氣產生裝置(比較例1)的圖。 [ Fig. 2 ] A line showing the relationship between the heat quantity and temperature of the feed water from the carbon economizer to the first evaporator of the steam generator, and the relationship between the heat quantity and temperature of the exhaust gas from the first evaporator to the carbon economizer The graph of the line is a graph relating to a steam generator (Comparative Example 1) provided with only one carbon economizer but not provided with a flash tank.
[圖3]係表示蒸氣產生裝置之自節碳器至第1蒸發器的給水的熱量與溫度的關係之線、及自第1蒸發器至節碳器的排氣氣體的熱量與溫度的關係之線的圖;圖3又為有關僅具備1個節碳器且具備閃蒸槽,而且利用閃蒸槽將第1蒸發器之入口的水予以閃蒸而回收理想上最大熱量之蒸氣產生裝置(比較例2)的圖。 [ Fig. 3 ] A line showing the relationship between the heat quantity and temperature of the feed water from the carbon economizer to the first evaporator of the steam generator, and the relationship between the heat quantity and temperature of the exhaust gas from the first evaporator to the carbon economizer Figure 3 is about a steam generator that only has one carbon economizer and a flash tank, and uses the flash tank to flash the water at the inlet of the first evaporator to recover the ideal maximum heat. (Comparative Example 2).
[圖4]係表示蒸氣產生裝置之自節碳器至第1蒸發器的給水的熱量與溫度的關係之線、及自第1蒸發器至節碳器 的排氣氣體的熱量與溫度的關係之線的圖,且係有關僅具備1個節碳器且具備閃蒸槽,而且逼近溫度差(第1蒸發器的壓力下之飽和溫度與第1蒸發器的入口之給水溫度的差)非為0之蒸氣產生裝置(比較例3)的圖。 [ Fig. 4 ] A line showing the relationship between the heat quantity and temperature of the feed water from the carbon economizer to the first evaporator of the steam generator, and from the first evaporator to the carbon economizer The graph of the relationship between the heat of the exhaust gas and the temperature, and the relationship is related to only one carbon economizer and a flash tank, and approaching the temperature difference (saturation temperature under the pressure of the first evaporator and the first evaporator A diagram of a steam generator (Comparative Example 3) in which the difference in feed water temperature at the inlet of the device) is not zero.
[圖5]係表示蒸氣產生裝置之自節碳器至第1蒸發器的給水的熱量與溫度的關係之線、及自第1蒸發器至節碳器的排氣氣體的熱量與溫度的關係之線的圖,且係有關具備第1節碳器、第2節碳器及閃蒸槽的實施方式之蒸氣產生裝置6的圖。
[ Fig. 5 ] A line showing the relationship between the heat quantity and temperature of the feed water from the carbon economizer to the first evaporator of the steam generator, and the relationship between the heat quantity and temperature of the exhaust gas from the first evaporator to the carbon economizer The diagram of the line is a diagram related to the
[圖6]係表示有關其他實施方式的複合工廠2(2B)之概略性整體構成的圖。 [ Fig. 6] Fig. 6 is a diagram showing a schematic overall configuration of a composite factory 2 (2B) according to another embodiment.
[圖7]係表示有關其他實施方式的複合工廠2(2C)之概略性整體構成的圖。 [ Fig. 7] Fig. 7 is a diagram showing a schematic overall configuration of a composite factory 2 (2C) according to another embodiment.
[圖8]係表示有關其他實施方式的複合工廠2(2D)之概略性整體構成的圖。 [ Fig. 8] Fig. 8 is a diagram showing a schematic overall configuration of a composite factory 2 (2D) according to another embodiment.
[圖9]係表示有關其他實施方式的複合工廠2(2B)之概略性整體構成的圖。 [ Fig. 9] Fig. 9 is a diagram showing a schematic overall configuration of a composite factory 2 (2B) according to another embodiment.
[圖10]係表示有關其他實施方式的複合工廠2(2D)之概略性整體構成的圖。 10 is a diagram showing a schematic overall configuration of a composite factory 2 (2D) according to another embodiment.
[圖11]係表示有關其他實施方式的複合工廠2(2E)之概略性整體構成的圖。 11 is a diagram showing a schematic overall configuration of a composite factory 2 ( 2E) according to another embodiment.
[圖12]係表示有關其他實施方式的複合工廠2(2E)之概略性整體構成的圖。 12 is a diagram showing a schematic overall configuration of a composite factory 2 ( 2E) according to another embodiment.
[圖13]係表示蒸氣產生裝置之自低溫熱交換器至第1
蒸發器的給水的熱量與溫度的關係之線,及自第1蒸發器至低溫熱交換器的排氣氣體的熱量與溫度的關係之線的圖,且係有關具備低溫熱交換器、第1節碳器、第2節碳器、第3節碳器及閃蒸槽的實施方式之蒸氣產生裝置6的圖。
[ Fig. 13 ] shows the steam generator from the low temperature heat exchanger to the first
A graph showing the relationship between the heat and temperature of the feed water of the evaporator, and the relationship between the heat and temperature of the exhaust gas from the first evaporator to the low-temperature heat exchanger, and the relationship is related to a low-temperature heat exchanger, A diagram of the
以下,佐以附圖針對若干個實施方式進行說明。其中,作為實施方式記載或圖面中所示之構成零件的尺寸、材質、形狀、其相對配置等等,並無將發明之範圍限定於其之意旨,單純只為說明例。 Hereinafter, some embodiments will be described with the accompanying drawings. The dimensions, materials, shapes, relative arrangements, etc. of the components described in the embodiments or shown in the drawings are not intended to limit the scope of the invention, but are merely illustrative examples.
例如,表示「於某一方向」、「沿著某一方向」、「平行」、「正交」、「中心」、「同心」或「同軸」等之相對性或絶對性配置的表現,嚴密而言並非只是表示如同該表述般之配置,其亦表示以公差、或是可獲得相同功能之程度的角度或距離而相對變位之狀態。 For example, expressions indicating relative or absolute arrangement such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are strictly It does not mean only the arrangement like this description, but also means the state of relative displacement by tolerance, or angle or distance to the extent that the same function can be obtained.
例如,「同一」、「相等」及「均質」等表示事物相等之狀態的表現,嚴密而言並非只是表示相等之狀態,其亦表示存在公差、或是可獲得相同功能之程度的差之狀態。 For example, expressions such as "identical," "equal," and "homogeneous" denote the state of equality of things. Strictly speaking, they do not only denote the state of equality, but also denote the state of the existence of tolerance, or the state of difference in the degree of obtaining the same function. .
例如,表示四角形狀或圓筒形狀等的形狀之表現,不只是表示幾何學嚴密意義上之四角形狀或圓筒形狀等的形狀,也表示在可獲得相同效果之範圍內,包含凹凸部或倒角部等之形狀。 For example, the expression indicating a shape such as a square shape or a cylindrical shape does not only indicate a shape such as a square shape or a cylindrical shape in the strict sense of geometry, but also indicates that the concavo-convex part or the inverted part is included within the range where the same effect can be obtained. shape of corners, etc.
另一方面,「包括」、「具有」、「具備」、「包含」、或「含有」一個構成要素此一表現,也並非排除其他構成要素的存在之排他性表現。 On the other hand, the expression "includes", "has", "has", "includes", or "includes" a constituent element is not an exclusive expression that excludes the existence of other constituent elements.
圖1係表示有關一個實施方式之複合工廠2(2A)的概略性整體構成的圖。。 FIG. 1 is a diagram showing a schematic overall configuration of a composite factory 2 ( 2A) according to an embodiment. .
複合工廠2具備:作為原動機的燃氣渦輪機4、蒸氣渦輪機系統100、包含排熱回收鍋爐5且產生蒸氣之蒸氣產生裝置6(6A)、及將自排熱回收鍋爐5排出之排氣氣體放出至大氣之煙囪9。蒸氣渦輪機系統100作為利用蒸氣產生裝置6所產生之蒸氣的蒸氣利用設備發揮功能。又,蒸氣產生裝置6及蒸氣渦輪機系統100構成用以將燃氣渦輪機4的排熱予以回收之排熱回收廠200。
The
燃氣渦輪機4包含:將空氣壓縮之壓縮機12、使用由壓縮機12產生之壓縮空氣令燃料燃燒之燃燒器14、及藉由燃燒器14所產生之燃燒空氣而被驅動之渦輪機16。於圖示之方式中,在與壓縮機12及渦輪機16同一的軸線上配置有發電機19,壓縮機12、渦輪機16及發電機19各自的轉子構成為一體作旋轉。
The
蒸氣渦輪機系統100具備:複數個蒸氣渦輪機102、104、106、及將自蒸氣渦輪機106排出之蒸氣予以冷卻使其回復成水之冷凝器108。蒸氣渦輪機系統100包含作為複數個蒸氣渦輪機之高壓蒸氣渦輪機102、中壓蒸氣渦輪機104、及低壓蒸氣渦輪機106。中壓蒸氣渦輪機104的蒸氣出口與低壓蒸氣渦輪機106的蒸氣入口係經由中壓排氣管線110連接,低壓蒸氣渦輪機106的蒸氣出口與冷凝器108係經由低壓排氣管線112連接。圖示之方式中,壓縮機12、渦輪機16、發電機19、高壓蒸氣渦輪機102、中壓蒸氣渦輪機104及低壓蒸氣渦輪機106係配置於同一軸線上,各轉子係構成為一體作旋轉。
The
蒸氣產生裝置6(6A)包含:被供給燃氣渦輪機4的排氣氣體(熱媒體)之排熱回收鍋爐5、及作為第1閃蒸槽之閃蒸槽8。又,閃蒸槽8也為接受加熱後之水的供給,並使用前述水的熱而產生蒸氣之熱利用設備。
The steam generator 6 ( 6A) includes the exhaust
排熱回收鍋爐5包含:供燃氣渦輪機4的排氣氣體流動之排氣氣體流路18(熱媒體流路)、及設於排氣氣體流路18之複數個熱交換器20。複數個熱交換器20,於排氣氣體流路18的排氣氣體之流動方向自下游側依序包含:第1低壓節碳器22(第1節碳器)、第2低壓節碳器24(第2節碳器)、低壓蒸發器26(第1蒸發器)、低壓過熱器28、第1高壓節碳器30、中壓蒸發器32、中壓過熱器34、第2高壓節碳
器36、高壓蒸發器38、第1高壓過熱器40、第1再熱器42、第2高壓過熱器44及第2再熱器46。排氣氣體流路18之排氣氣體的流動方向中,第2低壓節碳器24位於較第1低壓節碳器為上游側,低壓蒸發器26設於較第2低壓節碳器24為上游側。排氣氣體流路18中之低壓過熱器28與中壓蒸發器32之間,中壓節碳器31與第1高壓節碳器30並列設置。
The exhaust
冷凝器108與第1低壓節碳器22係經由給水管線48連接,給水管線48中,設有將出自冷凝器108之冷凝水供給至第1低壓節碳器22之冷凝水泵50。
The
第1低壓節碳器22係將由給水管線48供給之水藉由與排氣氣體之熱交換而加熱。由第1低壓節碳器22加熱後之水的一部分,係經由連接第1低壓節碳器22與第2低壓節碳器24之給水管線52而被供給至第2低壓節碳器24。
The first
閃蒸槽8上連接有自給水管線52分歧設置之給水管線53,由第1低壓節碳器22加熱後之水的一部分,係經由給水管線53被供給至閃蒸槽8。給水管線53上設有用以將自第1低壓節碳器22供給之加熱水減壓的減壓閥59。經由給水管線53供給至閃蒸槽8之加熱水,係由閃蒸槽8減壓而蒸發(閃蒸),成為閃蒸蒸氣。由閃蒸槽8所產生之閃蒸蒸氣,係經由連接閃蒸槽8與低壓蒸氣渦輪機106的中間區段之蒸氣管線57而被供給至低壓蒸氣渦輪機106的中間區段。
The
閃蒸槽8的底部所積留之冷凝水,係經由連
接閃蒸槽8與給水管線48之冷凝水管線51而流入給水管線48,並經由給水管線48被供給至第1低壓節碳器22。冷凝水管線51上設有給水泵61,自閃蒸槽8排出之冷凝水係經由給水泵61而被壓送至第1低壓節碳器22。自閃蒸槽8排出之冷凝水(例如90℃)係較在給水管線48流動之水(例如35℃)為高溫,在給水管線48流動之水藉由與自閃蒸槽8排出之冷凝水混合,而溫度上升至第1低壓節碳器22入口之給水溫度(例如60℃)。藉此,第1低壓節碳器22入口之給水的溫度,被確保為較排氣氣體的露點溫度為高,可防止第1低壓節碳器22中之排氣氣體中的水分之冷凝,即便是第1低壓節碳器22以較價廉之材料製作的情況下,仍可防止腐蝕。
The condensed water accumulated at the bottom of the
本例中,由第1低壓節碳器22加熱後之水的一部分,係經由給水管線53被供給至閃蒸槽8。由給水管線53供給之水的一部分,係由閃蒸槽8蒸發而用於低壓蒸氣渦輪機106的驅動,而其他部分係作為冷凝水與在給水管線48中流動之水混合,而用於在給水管線48中流動之水的加熱。亦即,冷凝水管線51與給水泵61,藉由對於在給水管線48中流動之水混合以由來於給水管線53所供給之水的溫度高之冷凝水,而構成將在給水管線48中流動之水加熱的熱利用設備,閃蒸槽8與低壓蒸氣渦輪機106構成將給水管線53所供給之水作為熱源而產生動力的動力產生裝置。
In this example, a part of the water heated by the first low-
一般而言,將成為140℃~180℃之低壓蒸發
器26(第1蒸發器)入口給水與在給水管線48中流動之水混合而用於升溫,終將使用必要以上高溫的熱,熱利用效率低。在給水管線48中流動之水的升溫,藉由利用到較低壓蒸發器26(第1蒸發器)入口給水為低溫之自第1低壓節碳器22的出口而出之加熱水,可有效活用低溫的熱而將吸氣加熱,可提高熱利用效率。超過100℃之溫度的熱可產生常壓的水蒸氣,超過100℃之溫度的熱與100℃以下的熱利用價值大幅不同。
Generally speaking, it will be a low pressure evaporation of 140℃~180℃
The feed water at the inlet of the evaporator 26 (the first evaporator) is mixed with the water flowing in the
因之,若將140℃~180℃的低壓蒸發器26(第1蒸發器)入口給水,與利用價值低之具有100℃以下的熱之被加熱媒體混合,而將被加熱媒體加熱,則會大幅損失熱的利用價值。反之,若使用較低壓蒸發器26(第1蒸發器)入口給水溫度為低之第1低壓節碳器22的出口之加熱水,來加熱100℃以下的被加熱媒體,則不會大幅損失熱的利用價值,而可提升熱利用效率。本實施方式中,係將第1低壓節碳器22的出口之加熱水閃蒸而獲得蒸氣,並將殘餘之更低溫的冷凝水與被加熱媒體混合而用於加熱,可更提高熱利用效率。
Therefore, if the feed water at the inlet of the low-pressure evaporator 26 (first evaporator) at 140°C to 180°C is mixed with the heating medium having a heat of 100°C or less, which is of low utility value, and the heating medium is heated, the water will be heated. Significant loss of heat utilization value. Conversely, if the heated water at the outlet of the first low-
第2低壓節碳器24係將自第1低壓節碳器22經由給水管線52供給之水藉由與排氣氣體熱交換而加熱。由第2低壓節碳器24加熱後之水的一部分,係經由連接第2低壓節碳器24與低壓蒸發器26之給水管線54而被供給至低壓蒸發器26。
The second
低壓蒸發器26係將自第2低壓節碳器24經由
給水管線54供給之水藉由與排氣氣體熱交換而加熱使其蒸發,而產生低壓蒸氣。給水管線54上設有用以將自第2低壓節碳器24供給之水減壓的給水閥55。由低壓蒸發器26產生之低壓蒸氣的一部分,係經由連接低壓蒸發器26與低壓過熱器28之蒸氣管線56而被供給至低壓過熱器28。
The
低壓過熱器28係將自低壓蒸發器26經由蒸氣管線56供給之低壓蒸氣藉由與排氣氣體熱交換而過熱,產生低壓過熱蒸氣。由低壓過熱器28產生之低壓過熱蒸氣,係經由連接低壓過熱器28與中壓排氣管線110之蒸氣管線58而流入中壓排氣管線110,並自中壓排氣管線110流入低壓蒸氣渦輪機106的蒸氣入口。
The
由第2低壓節碳器24加熱後之水的一部分,係經由給水管線60被供給至中壓節碳器31。給水管線60係自給水管線54分歧設置,並連接於中壓節碳器31。在給水管線60中流動之加熱水,係藉由給水管線60上設置之中壓給水泵62而被壓送至中壓節碳器31。
A part of the water heated by the second
中壓節碳器318係將自第2低壓節碳器24經由給水管線60供給之水藉由與排氣氣體熱交換而加熱。由中壓節碳器31加熱後之水,係經由連接中壓節碳器31與中壓蒸發器32之給水管線64而被供給至中壓蒸發器32。
The medium pressure economizer 318 heats the water supplied from the second
中壓蒸發器32係將自中壓節碳器31經由給水管線64供給之水藉由與排氣氣體熱交換而加熱使其蒸發,而產生中壓蒸氣。給水管線64上,設有用以將自中壓節碳器31供給之水減壓的給水閥65。由中壓蒸發器32產生之中
壓蒸氣的一部分,係經由連接中壓蒸發器32與中壓過熱器34之蒸氣管線66被供給至中壓過熱器34。
The medium-
中壓過熱器34係將自中壓蒸發器32經由蒸氣管線66供給之中壓蒸氣藉由與排氣氣體熱交換而過熱,產生中壓過熱蒸氣。由中壓過熱器34產生之中壓過熱蒸氣,係經由蒸氣管線68而被供給至連接高壓蒸氣渦輪機102的蒸氣出口與第1再熱器42的蒸氣入口之高壓排氣管線114。由中壓過熱器34產生之中壓過熱蒸氣,係經由蒸氣管線68及高壓排氣管線114流入第1再熱器42。
The
由第2低壓節碳器24加熱後之水的一部分,係經由連接第2低壓節碳器24與第1高壓節碳器30之給水管線70被供給至第1高壓節碳器30。在給水管線70中流動之加熱水,係藉由設於給水管線70之高壓給水泵72壓送至第1高壓節碳器30。
A part of the water heated by the second
第1高壓節碳器30係將自第2低壓節碳器24經由給水管線70供給之加熱水藉由與排氣氣體熱交換而加熱。由第1高壓節碳器30加熱之加熱水,係經由連接第1高壓節碳器30與第2高壓節碳器36之給水管線74而被供給至第2高壓節碳器36。
The first
第2高壓節碳器36係將自第1高壓節碳器30經由給水管線74供給之高壓加熱水藉由與排氣氣體熱交換而加熱。由第2高壓節碳器36加熱之高壓加熱水,係經由連接第2高壓節碳器36與高壓蒸發器38之給水管線76而被供給至高壓蒸發器38。
The second high-
高壓蒸發器38係將自第2高壓節碳器36經由給水管線76供給之水藉由與排氣氣體熱交換而加熱使其蒸發,而產生高壓蒸氣。給水管線76上設有用以將自第2高壓節碳器36供給之水減壓的給水閥77。由高壓蒸發器38產生之高壓蒸氣,係經由連接高壓蒸發器38與第1高壓過熱器40之蒸氣管線78而被供給至第1高壓過熱器40。
The high-
第1高壓過熱器40係將自高壓蒸發器38經由蒸氣管線78供給之高壓蒸氣藉由與排氣氣體熱交換而過熱,產生高壓過熱蒸氣。由第1高壓過熱器40產生之高壓過熱蒸氣,係經由連接第1高壓過熱器40與第2高壓過熱器44之蒸氣管線80而供給至第2高壓過熱器44。蒸氣管線80上,設有用以將在蒸氣管線80中流動之高壓過熱蒸氣予以減溫的減溫器81。
The first high-
第2高壓過熱器44係將自第1高壓過熱器40經由蒸氣管線80供給之高壓過熱蒸氣藉由與排氣氣體熱交換而進一步過熱。由第2高壓過熱器44過熱之高壓過熱蒸氣,係經由連接第2高壓過熱器44與高壓蒸氣渦輪機102的蒸氣入口之蒸氣管線97而被供給至高壓蒸氣渦輪機102。
The second high-
第1再熱器42係將自高壓蒸氣渦輪機102的蒸氣出口經由高壓排氣管線114供給至第1再熱器42之蒸氣及自中壓過熱器34經由蒸氣管線68及高壓排氣管線114供給至第1再熱器42之蒸氣藉由與排氣氣體熱交換而過熱。由第1再熱器42被過熱之蒸氣,係經由連接第1再熱器42與第2再熱器46之蒸氣管線82而被供給至第2再熱器46。蒸氣管
線82上,設有用以將在蒸氣管線82中流動之蒸氣減溫的減溫器83。
The
第2再熱器46係將經由蒸氣管線82供給之蒸氣藉由與排氣氣體熱交換而過熱。由第2再熱器46過熱之蒸氣係經由連接第2再熱器46與中壓蒸氣渦輪機104的蒸氣入口之蒸氣管線98而被供給至中壓蒸氣渦輪機104。
The
針對利用以上所說明之蒸氣產生裝置6獲得之效果,使用圖2~圖5所示之TQ線圖進行說明。圖2~圖5,係表示蒸氣產生裝置之自節碳器至第1蒸發器的給水的熱量與溫度的關係之線、及自第1蒸發器至節碳器的排氣氣體的熱量與溫度的關係之線的圖。圖2係有關僅具備1個節碳器而不具備閃蒸槽之蒸氣產生裝置(比較例1)的圖。圖3係有關僅具備1個節碳器且具備閃蒸槽,而且利用閃蒸槽將第1蒸發器的入口的水予以閃蒸而回收理想上最大熱量之蒸氣產生裝置(比較例2)的圖。圖4係有關僅具備1個節碳器且具備閃蒸槽,而且逼近溫度差(第1蒸發器的壓力下之飽和溫度與第1蒸發器的入口之給水溫度的差)非為0之蒸氣產生裝置(比較例3)的圖。圖5係有關具備第1節碳器、第2節碳器及閃蒸槽的上述實施方式之蒸氣產生裝置6的圖。
The effects obtained by the
圖2、圖3及圖5所示之例中,為了提高熱利用效率,逼近溫度差為0,表示蒸發器的入口之水為飽和水的情況(飽和溫度下乾燥度為0%的情況)。 In the examples shown in Fig. 2, Fig. 3 and Fig. 5, in order to improve the heat utilization efficiency, the approximate temperature difference is 0, which means that the water at the inlet of the evaporator is saturated water (the case where the dryness is 0% at the saturated temperature) .
如圖2所示,比較例1中,由於未設置閃蒸
槽,故而排熱回收鍋爐5之熱回收量少,將排氣氣體以溫度高之原狀放出,因而熱利用效率低。
As shown in Fig. 2, in Comparative Example 1, since no flash evaporation was provided
Therefore, the heat recovery amount of the exhaust
又,如圖3所示,比較例2中,在最為增大熱回收量,且增大熱利用效率之理想情況下,閃蒸流量乃設定為使表示給水之線的斜率與排氣氣體之線相等。此時,熱回收量大,節碳器之排氣氣體與給水之溫度差自入口至出口為小,因此可獲得高熱利用效率,但節碳器大型化。 In addition, as shown in FIG. 3, in the comparative example 2, in the ideal case where the heat recovery amount is maximized and the heat utilization efficiency is increased, the flash flow rate is set so that the gradient of the line representing the water supply and the exhaust gas is set. lines are equal. At this time, the heat recovery amount is large, and the temperature difference between the exhaust gas and the feed water of the carbon economizer is small from the inlet to the outlet, so high heat utilization efficiency can be obtained, but the carbon economizer is large.
又,如圖4所示,在比較例3中,閃蒸流量乃設定為使表示給水之線的斜率與排氣氣體之線相等,可避免若將第1蒸發器的入口的給水溫度降低則節碳器的傳熱面積過大此一現象。此時,熱回收量雖與圖5所示之情況相同,但於第1蒸發器,自排氣氣體回收之熱的一部分係用於自給水的第1蒸發器入口溫度至第1蒸發器的壓力下的飽和溫度之升溫,因此蒸發可利用之熱量減少,第1蒸發器的蒸氣減少。因此,更是低壓低溫的閃蒸蒸氣的流量增大,而另一方面較閃蒸蒸氣高壓高溫而利用價值高之第1蒸發器的蒸氣減少,因此較之圖5所示之情況熱利用效率低落。 In addition, as shown in FIG. 4, in Comparative Example 3, the flash flow rate was set so that the slope of the line representing the feed water was equal to the line of the exhaust gas, so that when the temperature of the feed water at the inlet of the first evaporator was lowered, it was avoided that the The phenomenon that the heat transfer area of the carbon economizer is too large. At this time, although the amount of heat recovered is the same as that shown in FIG. 5 , in the first evaporator, a part of the heat recovered from the exhaust gas is used from the inlet temperature of the first evaporator of the water supply to the temperature of the first evaporator. The increase in the saturation temperature under pressure reduces the amount of heat available for evaporation and reduces the amount of vapor in the first evaporator. Therefore, the flow rate of the flash vapor at low pressure and low temperature increases, while the vapor in the first evaporator, which is higher in pressure and high temperature than the flash vapor and has a higher utility value, is reduced. Therefore, the heat utilization efficiency is higher than that shown in FIG. 5 . low.
相對於此,圖1及圖5所示實施方式相關之蒸氣產生裝置6,由於具備將由第1低壓節碳器22加熱後之水供給至第2低壓節碳器24之給水管線52、及自加熱水管線52分歧設置之將由第1低壓節碳器22加熱後之水供給至閃蒸槽8之給水管線53,故而第2低壓節碳器24的流量較第1低壓節碳器22的流量為少(圖5中,第2低壓節碳器的給水
之線的斜率變得較第1低壓節碳器的給水之線的斜率為大)。因此,因應供給至閃蒸槽8之給水的流量,即使第1低壓節碳器22的給水的流量變多,利用較小之第2低壓節碳器24可使給水的溫度高效率地接近飽和蒸氣溫度。又,第1低壓節碳器22中,排氣氣體與給水的溫度差較大,因此即使給水的流量變多仍可設為較小之尺寸。因之,與利用1個節碳器將給水的溫度接近飽和蒸氣溫度之情況比較,可抑制節碳器尺寸(第1低壓節碳器22的尺寸與第2低壓節碳器24的尺寸之合計)的大型化,而且可使用閃蒸槽8來提高熱媒體的熱利用效率。
On the other hand, the
其次,使用圖6~圖12,說明複合工廠2的變化例。
Next, a modification example of the
於圖6~圖12所示之若干個實施方式相關之複合工廠2(2A~2F)中,與圖1所示複合工廠2的各構成共通之符號,只要沒有特別記載,乃表示與圖1所示蒸氣產生裝置的各構成為相同的構成,至於其說明則予省略。
In the composite factory 2 ( 2A to 2F) related to the several embodiments shown in FIGS. 6 to 12 , the symbols that are common to the respective components of the
圖6係表示有關其他實施方式的複合工廠2(2B)之概略性整體構成的圖。圖7係表示有關其他實施方式的複合工廠2(2C)之概略性整體構成的圖。 FIG. 6 is a diagram showing a schematic overall configuration of a composite factory 2 ( 2B) according to another embodiment. FIG. 7 is a diagram showing a schematic overall configuration of a composite factory 2 ( 2C) according to another embodiment.
於若干個實施方式中,例如如圖6及圖7所示,複合工廠2(2B、2C)的蒸氣產生裝置6(6B,6C),進一步具備用以將由第2低壓節碳器24加熱後之水供給至閃蒸槽8之給水管線63。給水管線63係自給水管線54分歧而與
給水管線53合流。
In some embodiments, for example, as shown in FIGS. 6 and 7 , the steam generator 6 ( 6B, 6C) of the compound plant 2 ( 2B, 2C) is further provided with a steam generator 6 ( 6B, 6C ) for heating the second low-
藉此,可調節第2低壓節碳器24的流量,能夠以適度尺寸的節碳器獲得高效率。又,可對低壓蒸發器26的蒸發量帶來影響,特別是將重要之第2低壓節碳器24出口的給水溫度保持為高(使低壓蒸發器26的逼近溫度差接近0),並將第1節碳器22之排氣氣體與給水的溫度差較第1節碳器22的給水出口保持為更大之一定值。此處,排氣氣體與給水的溫度差,為一定的情況下由於就相較尺寸而言其熱交換量最大,因此可在將第1節碳器22的尺寸合理地小型化下,僅使性能上特別重要之第2低壓節碳器24大型化而提高效率。
Thereby, the flow rate of the second low-
若干個實施方式中,例如如圖7所示,複合工廠2(2C)的蒸氣產生裝置6(6C),進一步具備將閃蒸槽8產生之蒸氣予以過熱用之過熱器69。過熱器69藉由將給水管線63中流動之加熱水與蒸氣管線57中流動之蒸氣進行熱交換,而使蒸氣管線57中流動之蒸氣過熱。其他的實施方式中,如圖6所示,可使給水管線63中流動之加熱水不經過過熱器69而直接供給至閃蒸槽8。
In some embodiments, for example, as shown in FIG. 7 , the steam generator 6 ( 6C) of the compound plant 2 ( 2C) further includes a
如圖7所示,藉由利用給水管線63中流動之高溫的給水將蒸氣管線57中流動之蒸氣以過熱器69過熱,可利用較不過熱之情況更高溫度的蒸氣,可提高熱利用效率。又,藉由使蒸氣形成為過熱狀態,可抑制蒸氣管線57等的配管內之冷凝,也可抑制排放水所導致之配管的阻塞等之麻煩。又,將出自過熱器69之蒸氣於蒸氣渦輪機使用
之情況下,可降低蒸氣渦輪機的下游段之潤濕度且抑制渦輪機翼的腐蝕,而且可提高蒸氣渦輪機的效率。尤其是藉由利用自複數個處所所取得之給水來產生閃蒸蒸氣,低溫的水閃蒸所產生之蒸氣也可以溫度高的給水過熱,可以大量產生高溫之加熱蒸氣。
As shown in FIG. 7 , by superheating the steam flowing in the
若干個實施方式中,例如如圖8所示,複合工廠2(2D)的蒸氣產生裝置6(6D),進一步具備低溫熱交換器23及第3低壓節碳器25。圖8所示之方式中,冷凝器108與低溫熱交換器23係由給水管線21連接,給水管線21上設有用以將出自冷凝器108之冷凝水供給至低溫熱交換器23的冷凝水泵50。
In some embodiments, for example, as shown in FIG. 8 , the steam generator 6 ( 6D) of the compound plant 2 ( 2D) further includes a low-
低溫熱交換器23係將自給水管線21供給之水藉由與排氣氣體熱交換而加熱。由低溫熱交換器23加熱後之水,係經由連接低溫熱交換器23與第1低壓節碳器22之給水管線29而供給至第1低壓節碳器22。低溫熱交換器23中,藉由與水之熱交換,排氣氣體的溫度降低,而排氣氣體中的水分之一部分冷凝,放出之潛熱的一部分也可回收於水中,可提高熱利用效率。低溫熱交換器23因可防止冷凝水所導致之腐蝕,故可以耐腐蝕性高之不鏽鋼等的材料製作。
The low
第1低壓節碳器22係將自給水管線29供給之水藉由與排氣氣體熱交換而加熱。由第1低壓節碳器22加熱後之水的一部分係經由連接第1低壓節碳器22與第2低壓節碳器24之給水管線52而被供給至第2低壓節碳器24。
The first low-
由第2低壓節碳器24加熱後之水的一部分,係經由連接第2低壓節碳器24與第3低壓節碳器25之給水管線27而被供給至第3低壓節碳器25。
A part of the water heated by the second
第3低壓節碳器25係將自第2低壓節碳器24經由給水管線27供給之水藉由與排氣氣體熱交換而加熱。由第3低壓節碳器25加熱後之水的一部分係經由連接第3低壓節碳器25與低壓蒸發器26之給水管線54而被供給至低壓蒸發器26。
The third low-
低壓蒸發器26係將自第3低壓節碳器25經由給水管線54供給之水藉由與排氣氣體熱交換而加熱使其蒸發,而產生低壓蒸氣。給水管線54上,設置有用以將自第3低壓節碳器25供給之水予以減壓的給水閥55。由低壓蒸發器26產生之低壓蒸氣的一部分,係經由連接低壓蒸發器26與低壓過熱器28之蒸氣管線56而被供給至低壓過熱器28。
The low-
由第3低壓節碳器25加熱後之水的一部分,係經由給水管線60而被供給至中壓節碳器31。給水管線60係自給水管線54分歧而連接於中壓節碳器31,給水管線60中流動之加熱水係藉由設於給水管線60之中壓給水泵62而被壓送至中壓節碳器31。
A part of the water heated by the third
中壓節碳器31係將自第3低壓節碳器25經由給水管線60供給之水藉由與排氣氣體熱交換而加熱。由中壓節碳器31加熱後之水,係經由連接中壓節碳器31與中壓蒸發器32之給水管線64而被供給至中壓蒸發器32。
The
圖8所示之方式中,複合工廠2(2D)的蒸氣產生裝置6(6D)具備:設定成彼此不同壓力之複數個閃蒸槽8a~8d、將複數個閃蒸槽8a~8d串聯連接且將自閃蒸槽8a~8d各自排出之排放水引導之排放水管線71、及將於排熱回收鍋爐5由排氣氣體加熱後之水供給至排放水管線71之複數個給水管線73、75、77。給水管線73自給水管線54分歧而連接於閃蒸槽8a。給水管線75係自給水管線27分歧而合流於排放水管線71之閃蒸槽8a與閃蒸槽8b之間的位置。給水管線77係自給水管線52分歧而合流於排放水管線71中之閃蒸槽8b與閃蒸槽8c之間的位置。
In the form shown in FIG. 8, the steam generator 6 (6D) of the compound plant 2 (2D) includes a plurality of
給水管線73上設有減壓閥84。排放水管線71中之閃蒸槽8a與閃蒸槽8b之間的位置設有減壓閥85。排放水管線71中之閃蒸槽8b與閃蒸槽8c之間的位置設有減壓閥86。排放水管線71中之閃蒸槽8c與閃蒸槽8d之間的位置設有減壓閥87。
A
自給水管線73分歧之給水管線79,係連接於排放水管線71中之閃蒸槽8c與閃蒸槽8d之間的位置。給水管線79上,設有複數個過熱器88、89、90、91。
The
閃蒸槽8係將自給水管線73供給之加熱水減壓使其蒸發(閃蒸)而產生閃蒸蒸氣。由閃蒸槽8a產生之閃蒸蒸氣係經由連接閃蒸槽8a與中壓排氣管線110之蒸氣管線92而流入中壓排氣管線110,並經由中壓排氣管線110而流入低壓蒸氣渦輪機106的蒸氣入口。蒸氣管線92上設有過熱器88,蒸氣管線92中流動之蒸氣,係於過熱器88藉由
與給水管線79中流動之加熱水的熱交換而被過熱後再被供給至低壓蒸氣渦輪機106。
In the
閃蒸槽8b係將自閃蒸槽8a排出之排放水及自給水管線75供給之加熱水減壓使其蒸發(閃蒸)而產生閃蒸蒸氣。由閃蒸槽8b產生之閃蒸蒸氣,係經由連接閃蒸槽8b與低壓蒸氣渦輪機106的中間區段之蒸氣管線93而流入低壓蒸氣渦輪機106。蒸氣管線93上設有過熱器89,在蒸氣管線93中流動之蒸氣,係以過熱器89藉由與給水管線79中流動之加熱水的熱交換而被過熱後再被供給至低壓蒸氣渦輪機106。
In the
閃蒸槽8c係將自閃蒸槽8b排出之排放水及自給水管線77供給之加熱水減壓使其蒸發(閃蒸)而產生閃蒸蒸氣。由閃蒸槽8c產生之閃蒸蒸氣,係經由連接閃蒸槽8c與低壓蒸氣渦輪機106的中間區段之蒸氣管線94而流入低壓蒸氣渦輪機106。蒸氣管線94上設有過熱器90,在蒸氣管線94中流動之蒸氣,係以過熱器90藉由與給水管線79中流動之加熱水的熱交換而被過熱後再被供給至低壓蒸氣渦輪機106。
In the
閃蒸槽8d係將自閃蒸槽8c排出之排放水及自給水管線79供給之加熱水減壓使其蒸發(閃蒸)而產生閃蒸蒸氣。由閃蒸槽8d產生之閃蒸蒸氣,係經由連接閃蒸槽8d與低壓蒸氣渦輪機106的中間區段之蒸氣管線95而流入低壓蒸氣渦輪機106。蒸氣管線95上設有過熱器91,在蒸氣管線95中流動之蒸氣,係以過熱器91藉由與給水管線79中
流動之加熱水的熱交換而被過熱後再被供給至低壓蒸氣渦輪機106。
In the
此處,低壓蒸氣渦輪機106中之蒸氣的流動方向中,蒸氣管線93與低壓蒸氣渦輪機106連接之位置,較中壓排氣管線110與低壓蒸氣渦輪機106連接之位置更為下游側;蒸氣管線94與低壓蒸氣渦輪機106連接之位置,較蒸氣管線93與低壓蒸氣渦輪機106連接之位置更為下游側,蒸氣管線95與低壓蒸氣渦輪機106連接之位置,較蒸氣管線94與低壓蒸氣渦輪機106連接之位置更為下游側。
Here, in the flow direction of the steam in the low-
此處,在給水管線75中流動之水的溫度Tw1,係較飽和溫度Ta更低,此飽和溫度Ta係相應於複數個閃蒸槽8a~8d中於排放水管線71的流動方向位於較排放水管線71與給水管線75之連接位置P1更為上游側之閃蒸槽8a的壓力Pa。又,給水管線75中流動之水的溫度Tw1,係較飽和溫度Tb更高,此飽和溫度Tb係相應於複數個閃蒸槽8a~8d中於排放水管線71的流動方向位於較排放水管線71與給水管線75之連接位置P1更為下游側之閃蒸槽8b的壓力Pb。
Here, the temperature Tw1 of the water flowing in the
在給水管線77中流動之水的溫度Tw2,係較飽和溫度更低,此飽和溫度係相應於複數個閃蒸槽8a~8d中於排放水管線71的流動方向位於較排放水管線71與給水管線77之連接位置P2更為上游側之閃蒸槽8b的壓力。又,給水管線77中流動之水的溫度,係較飽和溫度更高,此飽和溫度係相應於複數個閃蒸槽8a~8d中於排放水管線71的
流動方向位於較排放水管線71與給水管線77之連接位置P1更為下游側之閃蒸槽8c的壓力。
The temperature Tw2 of the water flowing in the
如此,若將給水管線75的水的溫度定義為Tw1,給水管線75的水的溫度定義為Tw2,與閃蒸槽8a中之蒸氣的壓力Pa對應之蒸氣的飽和溫度定義為Ta,與閃蒸槽8b中之蒸氣的壓力Pb對應之蒸氣的飽和溫度定義為Tb,與閃蒸槽8c中之蒸氣的壓力Pc對應之蒸氣的飽和溫度定義為Tc,與閃蒸槽8d中之蒸氣的壓力Pd對應之蒸氣的飽和溫度定義為Td,則滿足Ta>Tw1>Tb>Tw2>Tc>Td。
In this way, if the temperature of the water in the
根據圖8所示之構成,設有彼此壓力不同之複數個閃蒸槽8a~8d,複數處所的給水因應其溫度而投入排放水管線的適切之溫度的處所,因此可提升熱利用效率。又,藉由將閃蒸槽8a~8d的飽和水依次送至壓力及溫度低之閃蒸槽8使其閃蒸,可將熱因應溫度而予回收,可提升熱利用效率。
According to the configuration shown in FIG. 8, a plurality of
若干個實施方式中,例如如圖9所示,蒸氣產生裝置6(6B)係構成為將自複數個節碳器22、24中至少1個節碳器的出口所出之水的一部分作為熱源利用。於圖9所示之方式中,自複數個節碳器22、24的出口所出之水的一部分,係作為熱源供給至設於排熱回收鍋爐5的外部之熱交換器120、122。
In some embodiments, for example, as shown in FIG. 9 , the steam generator 6 ( 6B) is configured to use a part of the water discharged from the outlet of at least one carbon economizer among the plurality of
自給水管線53分歧之給水管線K,係與連接於壓縮機12的入口之吸氣管線上所設的熱交換器120連接,自第1低壓節碳器22的出口而出之加熱水的一部分,
係通過給水管線K被供給至熱交換器120,並於熱交換器120將壓縮機12的吸氣藉由熱交換而加熱。通過給水管線K供給至熱交換器120之加熱水,在通過熱交換器120後,通過給水管線L回送到冷凝器108。此情況之熱交換器120乃熱利用設備的一種。藉由加熱壓縮機12的吸氣,可獲得低大氣溫度時或作縮小入口引導翼(IGV)的角度之運轉時,防止吸氣中之水分的冷凝、結冰之效果、及在電力需要少的時間帶能夠以低輸出運轉之效果。即使是吸氣的溫度高時,亦為40℃左右,其加熱一般若使用140℃~180℃之低壓蒸發器26(第1蒸發器)入口給水,則將變得使用到必要以上高溫的熱,熱利用效率低。藉由針對吸氣的加熱使用較低壓蒸發器26(第1蒸發器)入口給水為低溫的自第1低壓節碳器22的出口而出之加熱水,可有效地活用低溫的熱將吸氣加熱,可提高熱利用效率。超過100℃之溫度的熱可產生常壓的水蒸氣,超過100℃之溫度的熱與100℃以下的熱利用價值大有不同。因之,使用140℃~180℃的低壓蒸發器26(第1蒸發器)入口給水,將利用價值低之具有100℃以下的熱之被加熱媒體加熱,會大幅損失熱的利用價值。反之,若使用較低壓蒸發器26(第1蒸發器)入口給水溫度為低之第1低壓節碳器22之出口的加熱水,將100℃以下的被加熱媒體加熱,則不會大幅損害熱的利用價值,可提升熱利用效率。
The water supply line K branched from the
自給水管線63分歧之給水管線M,係連接於設置在對燃燒器14供給燃料之燃料供給管線的熱交換器
122,自第2低壓節碳器24的出口而出之加熱水的一部分,係通過給水管線M被供給至熱交換器122,於熱交換器122將供給至燃燒器14燃料藉由熱交換而予加熱。通過給水管線M供給至熱交換器122之加熱水,於通過熱交換器122後,係通過給水管線N流入冷凝水管線51。如以上般,就熱交換器120、122,藉由適當選擇分別接近必要溫度之溫度的節碳器出口的加熱水予以利用,可提高熱利用效率。
The water supply line M branched from the
於若干個實施方式中,例如如圖9所示,蒸氣產生裝置6(6B),係構成為將在對複數個節碳器22、24中至少1個節碳器的入口供給水之管線中流動之水的一部分作為冷卻媒體利用,而將排熱回收。於圖9所示之方式中,連接於節碳器22的入口之管線48、53中流動之水的一部分,係對設於排熱回收鍋爐5的外部之熱交換器124、126、128、129、130、132作為冷卻媒體被供給。
In some embodiments, for example, as shown in FIG. 9 , the steam generator 6 ( 6B) is configured to supply water to the inlet of at least one carbon economizer among the plurality of
自給水管線70分歧之給水管線A,係連接於熱交換器124。熱交換器124係設於將壓縮機12所壓縮之空氣的一部分作為冷卻用空氣而供給至燃燒器14之冷卻用空氣管線134,出自第2低壓節碳器24之水的一部分,係通過給水管線A供給至熱交換器124,於熱交換器124藉由熱交換將冷卻用空氣冷卻。通過給水管線A而供給至熱交換器124之加熱水,在通過熱交換器124後,係通過給水管線B流入給水管線76。
The water supply line A branched from the
自給水管線48分歧之給水管線C,係連接於用以將發電機19的冷卻媒體冷卻之冷卻媒體冷卻器126。
在給水管線48中流動之水的一部分,係通過給水管線C供給至冷卻媒體冷卻器126,於冷卻媒體冷卻器126將冷卻媒體藉由熱交換予以冷卻。通過給水管線C被供給至冷卻媒體冷卻器126之水,係供給至用以將壓縮機12的軸承127使用之潤滑油冷卻的潤滑油冷卻器128,將潤滑油藉由熱交換予以冷卻。供給至冷卻媒體冷卻器126之水,在通過冷卻媒體冷卻器後,係通過給水管線D回到給水管線48,並流入第1低壓節碳器22。
The water supply line C branched from the
自給水管線48分歧之給水管線E,係連接於熱交換器129。熱交換器129係設於將自壓縮機12抽出之空氣供給至渦輪機16之抽氣管線138,在給水管線48中流動之水的一部分,係通過給水管線E供給至熱交換器129,於熱交換器129將自壓縮機12抽出之空氣藉由熱交換予以冷卻。自給水管線E供給至熱交換器129之水,係通過給水管線F流入給水管線52。
The water supply line E branched from the
自給水管線48分歧之給水管線G,係連接於熱交換器130。熱交換器130係設於冷卻用空氣管線134中之熱交換器124的下游側,在給水管線48中流動之水的一部分,係通過給水管線G供給至熱交換器130,於熱交換器130將冷卻用空氣藉由熱交換予以冷卻。通過給水管線G供給至熱交換器130之加熱水,在通過熱交換器130後,通過給水管線H流入給水管線52。又,冷卻用空氣管線134中之熱交換器130的下游側,設有壓縮冷卻空氣之壓縮機140。
The water supply line G branched from the
自給水管線53分歧之給水管線I,係連接於
熱交換器132。熱交換器132係設於將自較壓縮機12之於抽氣管線138連接之位置更下游側所抽吸之空氣供給至渦輪機16之抽氣管線136,在給水管線53中流動之水的一部分,係通過給水管線I供給至熱交換器132,於熱交換器132將自壓縮機抽吸之空氣藉由熱交換予以冷卻。自給水管線I供給至熱交換器132之水,係通過給水管線J而流入給水管線54。
The water supply pipeline I branched from the
如此,藉由將自複數個節碳器22、24中之至少1個節碳器的出口所出之水的一部分作為熱源利用,可提高複合工廠2整體的熱利用效率。
In this way, by utilizing a part of the water discharged from the outlet of at least one carbon economizer among the plurality of
又,藉由將對複數個節碳器22、24中之至少1個節碳器的入口供給水之管線中流動之水的一部分作為冷卻媒體利用而回收排熱,可提高複合工廠2整體的熱利用效率。
In addition, by using a part of the water flowing in the pipeline for supplying water to the inlet of at least one of the plurality of
又,如圖9所示,以各種溫度進行低溫排熱的利用或低溫排熱的回收之情況下,給水管線48及給水管線52、53、63的給水流量因溫度水準而變,造成第1低壓節碳器22及第2低壓節碳器24中流動之給水的流量產生變化,TQ線圖(例如參見圖5)的斜率就低壓節碳器的尺寸減小的觀點而言並不理想。於此,用於閃蒸之水的量就各溫度水準例如使用減壓閥59調整,藉由調整第1低壓節碳器22及第2低壓節碳器24中流動之給水的流量,使第1低壓節碳器22中流動之給水的TQ線圖的斜率,變得接近排氣氣體的TQ線圖的斜率,且使第2低壓節碳器24的給水出口溫
度接近低壓蒸發器26(第1蒸發器)的作動壓力下之飽和溫度(使逼近溫度差接近0),可以較小尺寸的節碳器22、24獲得高效率。
Further, as shown in FIG. 9 , when the utilization of low-temperature exhaust heat or the recovery of low-temperature exhaust heat is performed at various temperatures, the water supply flow rates of the
若干個實施方式中,將使用圖9說明之複合工廠2(2B)中之給水作為熱源或冷卻媒體利用之構成,如圖10所示,亦可應用於上述具備複數個閃蒸槽8a~8d(多段閃蒸)之複合工廠2(2D)。如圖10所示,若採用多段閃蒸的構成,將給水回收至接近之飽和溫度的處所使其閃蒸,可獲得更高之效率。此一情況下,作為熱源或冷卻媒體使用之給水,在連接冷凝器108與低溫熱交換器23之給水管線21、各熱交換器20之間,亦即,低溫熱交換器23的給水出口、第1低壓節碳器22的給水出口、第2低壓節碳器24的給水出口、第3低壓節碳器25的給水出口(低壓蒸發器26(第1蒸發器)的給水入口)之中,自所期望的溫度之處所取得,使用後的給水,在上述各處所之中,若回收至溫度最接近之處所,則可提高熱利用效率,令人滿意。
In some embodiments, the configuration in which the feed water in the compound plant 2 (2B) described in FIG. 9 is used as a heat source or a cooling medium, as shown in FIG. 10 , can also be applied to the above-described configuration with a plurality of
與圖10對應之TQ線圖示於圖13中。本圖中,給水係自右側供給,依序經由低溫熱交換器(圖10中的23)、第1低壓節碳器(圖10中的22,第3節碳器)、第2低壓節碳器(圖10中的24,第1節碳器)、第3低壓節碳器(圖10中的25,第2節碳器)而被加熱,將給水通過以自第3低壓節碳器(圖10中的25,第2節碳器)在不與熱媒體(排氣氣體)熱交換下供給至低壓蒸發器26(第1蒸發器)之方式所構成之給水管線54(第6給水管線),供給至低壓蒸發器(圖10中
的26,第1蒸發器)。低溫熱交換器(圖10中的23)係被供給給水。給水取得管線E,係將出自低溫熱交換器(圖10中的23)之給水的一部分,作為成為冷卻被冷卻媒體即冷卻空氣之熱利用設備亦即冷卻空氣冷卻器129的冷熱源之給水而予取得。又,自低溫熱交換器(圖10中的23)而出,供給至第1低壓節碳器(圖10中的22,第3節碳器)之給水中,混合有出自閃蒸槽8d之冷凝水,其係經由冷凝水管線(給水供給管線)51、給水泵61而混合。
The TQ line diagram corresponding to FIG. 10 is shown in FIG. 13 . In this figure, the water supply system is supplied from the right side, and passes through the low-temperature heat exchanger (23 in Figure 10), the first low-pressure carbon saver (22 in Figure 10, the third carbon saver), and the second low-pressure zone. The carbon collector (24 in Figure 10, the first carbon collector) and the third low-pressure carbon collector (25 in Figure 10, the second carbon collector) are heated, and the feed water is passed through the third low pressure carbon collector. (25 in Fig. 10, second carbon collector) A water supply line 54 (sixth water supply) constituted so as to be supplied to the low-pressure evaporator 26 (first evaporator) without heat exchange with the heat medium (exhaust gas). line), which is fed to the low pressure evaporator (Figure 10
26, 1st evaporator). The low temperature heat exchanger (23 in Fig. 10) is supplied with feed water. The feed water acquisition line E is to use a part of the feed water from the low-temperature heat exchanger (23 in FIG. 10 ) as feed water to be the cooling and heat source of the cooling
本實施方式中,較低溫熱交換器(圖10中的23)出口的水,以冷凝水的溫度較高,因此於TQ線圖上(圖13),較低溫熱交換器(圖10中的23)出口的給水,以第1低壓節碳器(圖10中的22,第3節碳器)入口的給水之溫度為高。又,低溫熱交換器(圖10中的23)中,於中途排氣氣體中的水分的一部分冷凝,而潛熱放出,因此排氣氣體下游側的排氣氣體的TQ線圖的斜率變小。又,第1低壓節碳器(圖10中的22,第3節碳器)中會加入冷凝水,因此較低溫熱交換器(圖10中的23)給水的流量多,第1低壓節碳器(圖10中的22,第3節碳器)之給水的TQ線圖的斜率較低溫熱交換器(圖10中的23)為小。 In this embodiment, the temperature of the condensed water at the outlet of the lower temperature heat exchanger (23 in FIG. 10 ) is higher, so on the TQ diagram ( FIG. 13 ), the lower temperature heat exchanger ( FIG. 10 ) 23) in the outlet feed water, the temperature of the feed water at the inlet of the first low-pressure carbon economizer (22 in Figure 10, the third carbon economizer) is high. Further, in the low-temperature heat exchanger (23 in FIG. 10 ), part of the moisture in the exhaust gas condenses in the middle to release latent heat, so the slope of the TQ diagram of the exhaust gas on the downstream side of the exhaust gas becomes small. . In addition, condensed water will be added to the first low-pressure carbon economizer (22 in Figure 10, the third carbon economizer), so the flow rate of the feed water to the lower temperature heat exchanger (23 in Figure 10) is large, and the first low-pressure zone The slope of the TQ plot of the feed water to the carbonizer (22 in Fig. 10, section 3 carbonizer) is smaller than that of the low temperature heat exchanger (23 in Fig. 10).
第1低壓節碳器(圖10中的22,第3節碳器)出口的給水的一部分,係利用給水取得管線K,作為加熱燃氣渦輪機4之壓縮機12的吸氣之熱利用設備即熱交換器120的熱源之給水而經取得,且利用給水取得管線G,作為成為冷卻燃氣渦輪機4之燃燒器的冷卻空氣之冷卻空氣冷卻
器130的冷熱源,且回收排熱之給水而經取得。又,第1低壓節碳器(圖10中的22,第3節碳器)出口之給水的一部分,係由給水管線(給水取得管線)77送至閃蒸槽8c。由於取得此等水,在第2低壓節碳器(圖10中的24,第1節碳器)中流動之給水的流量,較第1低壓節碳器(圖10中的22,第3節碳器)為少,第2低壓節碳器(圖10中的24,第1節碳器)之給水的TQ線圖的斜率較第1低壓節碳器(圖10中的22,第3節碳器)為大。
A part of the feed water at the outlet of the first low-pressure carbon economizer (22 in FIG. 10, the third economizer) is obtained from the feed water pipeline K as a heat utilization device for heating the suction of the
第2低壓節碳器(圖10中的24,第1節碳器)出口,亦即,第3低壓節碳器(圖10中的25,第2節碳器)入口的給水中,於熱利用設備即冷卻空氣冷卻器129、130中作為冷熱源經利用而吸收排熱之給水,係由給水供給管線F、H混合,且藉由給水取得管線I,作為熱利用設備即冷卻空氣冷卻器132的冷熱源經取得,而且藉由給水取得管線M對於熱利用設備即燃料預熱器122作為熱源被供給。本例中,藉由給水供給管線給水混入,第3低壓節碳器(圖10中的25,第2節碳器)入口的給水溫度,較第2低壓節碳器(圖10中的24,第1節碳器)出口的給水的溫度稍低(圖13)。此處,較冷卻空氣冷卻器129及130,以冷卻空氣冷卻器132之作為被冷卻媒體之冷卻空氣的溫度高,因此,對於被冷卻媒體的溫度高之冷卻空氣冷卻器132,供給較被冷卻媒體的溫度低之冷卻空氣冷卻器129,130為高溫的給水作為冷熱源。藉此,可將冷卻空氣冷卻器,亦即熱利用設備的排熱回收至更接近溫度的冷卻媒體而有效活用,
熱利用效率提高。
The outlet of the second low-pressure carbon economizer (24 in Fig. 10, the first carbon economizer), that is, the feed water at the inlet of the third low-pressure economizer (25 in Fig. 10, the second economizer), is heated by heat The utilization equipment, namely, the cooling
如以上般,對於第2低壓節碳器(圖10中的24,第1節碳器)出口,亦即,第3低壓節碳器(圖10中的25,第2節碳器)入口的給水,設有各種給水取得管線、給水供給管線,進行各種給水的授受。本實施方式中,在構成上自第2低壓節碳器(圖10中的24,第1節碳器)出口,亦即,第3低壓節碳器(圖10中的25,第2節碳器)入口取得之給水的量,係較供給之給水的量為多。因之,在流至第3低壓節碳器(圖10中的25,第2節碳器)中之給水的質量流量,較流入第2低壓節碳器(圖10中的24,第1節碳器)中之給水的質量流量為少,第3低壓節碳器(圖10中的25,第2節碳器)的TQ線圖的斜率,較第2低壓節碳器(圖10中的24,第1節碳器)的TQ線圖的斜率為大(圖13)。藉由實現如此般之TQ線圖的斜率,第2低壓節碳器(圖10中的24,第1節碳器)中,給水的TQ線圖的斜率變得接近排氣氣體的TQ線圖的斜率,可將排氣氣體-給水的溫度差保持於接近一定之適度的溫度差。
As above, for the exit of the 2nd low pressure carbon economizer (24 in Fig. 10, the 1st economizer), that is, the inlet of the 3rd low pressure economizer (25 in Fig. 10, the 2nd economizer) For water supply, there are various water supply pipelines and water supply pipelines, and various types of water supply are given and received. In this embodiment, the structure is from the outlet of the second low-pressure carbon economizer (24 in FIG. 10, the first carbon economizer), that is, the third low-pressure economizer (25 in FIG. 10, the second economizer) The amount of feed water obtained from the inlet of the device) is more than the amount of feed water supplied. Therefore, the mass flow rate of the feed water flowing to the 3rd low pressure economizer (25 in Fig. 10, 2nd economizer) is higher than that of the feed water flowing into the 2nd low pressure economizer (24 in Fig. 10, 1st segment). The mass flow rate of the feed water in the carbon collector) is less, and the slope of the TQ diagram of the third low-pressure carbon collector (25 in Figure 10, the second carbon collector) is lower than that of the second low-
又,第3低壓節碳器(圖10中的25,第2節碳器)的流量少,TQ線圖的斜率大,藉此第3低壓節碳器(圖10中的25,第2節碳器)可對低壓蒸發器26(第1蒸發器)供給接近對應於低壓蒸發器26(第1蒸發器)的蒸氣壓力之飽和溫度(圖13中,水平的線)之溫度的水,同時於自熱媒體的流動觀之配置於下游側之熱交換器(節碳器)中可充分確保排氣氣體(熱媒體)-給水的溫度差。因之,可以尺寸小之熱 交換器(節碳器)實現較高之熱利用效率。 In addition, the flow rate of the third low-pressure carbon saver (25 in Fig. 10, the second carbon saver) is small, and the slope of the TQ diagram is large, so that the third low pressure carbon saver (25 in Fig. 10, the 2nd step) The carbonizer) can supply the low-pressure evaporator 26 (first evaporator) with water at a temperature close to the saturation temperature (in FIG. 13 , the horizontal line) corresponding to the vapor pressure of the low-pressure evaporator 26 (first evaporator), while In view of the flow of the heat medium, the heat exchanger (carbon economizer) disposed on the downstream side can sufficiently ensure the temperature difference between the exhaust gas (heat medium) and the feed water. Therefore, the heat of small size can be The exchanger (carbon economizer) achieves higher heat utilization efficiency.
又,在流至第3低壓節碳器(圖10中的25,第2節碳器)中之給水的質量流量,較流至第1低壓節碳器(圖10中的22,第3節碳器)中之給水的質量流量為少,第3低壓節碳器(圖10中的25,第2節碳器)之給水的TQ線圖的斜率,較第1低壓節碳器(圖10中的22,第3節碳器)之給水的TQ線圖的斜率為大,更令人滿意。若具有此一構成,自熱媒體(排氣氣體)觀察至下游側為止,可將排氣氣體-給水的溫度差倒持於接近一定之適度的溫度差,可以尺寸較小之熱交換器(節碳器)獲得高熱利用效率。又,第3低壓節碳器(圖10中的25,第2節碳器)的給水的流量,自熱媒體(排氣氣體)觀之較其下游側的所有節碳器(熱交換器)為少更佳。此一情況下,可以尺寸更小之熱交換器(節碳器)獲得高熱利用效率。 Furthermore, the mass flow rate of the feed water flowing to the third low-pressure carbon economizer (25 in Fig. 10, the second carbon economizer) is higher than that of the feed water flowing to the first low-pressure economizer (22 in Fig. 10, the 3rd economizer). The mass flow rate of the feed water in the carbon collector) is less, the slope of the TQ line graph of the feed water of the third low-pressure carbon saver (25 in Figure 10, the second carbon saver) is lower than that of the first low-pressure carbon saver (Figure 10). The slope of the TQ line graph of the feed water in 22, Section 3 carbon device) is large, which is more satisfactory. With this configuration, the temperature difference between the exhaust gas and the feed water can be kept at an appropriate temperature difference close to a certain temperature from the heat medium (exhaust gas) to the downstream side, and a small-sized heat exchanger ( carbon economizer) to obtain high heat utilization efficiency. Also, the flow rate of the feed water of the third low-pressure economizer (25 in FIG. 10, the second economizer) is compared with all economizers (heat exchangers) on the downstream side when viewed from the heat medium (exhaust gas). Less is better. In this case, a heat exchanger (carbon economizer) with a smaller size can obtain high heat utilization efficiency.
又,如以上所說明,熱媒體(排氣氣體)流路中之熱媒體的流動方向中,較低壓蒸發器(26,第1蒸發器)為下游側,包含含有第2低壓節碳器(圖10中的24,第1節碳器)及第3低壓節碳器(圖10中的25,第2節碳器)之複數個節碳器,且取得自複數個節碳器中之1個節碳器的出口所出之水的一部分之給水取得管線,或是對複數個節碳器中之1個節碳器的入口供給給水之給水供給管線之中,若具有至少一者,則藉由取得或供給給水來調整前後的節碳器的給水流量,可實現如上述般較佳之TQ線圖的斜率,可以尺寸小之熱交換器(節碳器)實現較高之熱利用效率。 特別是分別取得出自不同節碳器的出口之水的一部分之2個以上的給水取得管線、分別對不同節碳器的入口供給給水之2個以上的給水供給管線之中,具有至少一者,則可自適於利用給水之熱利用設備的利用之適度溫度的處所取得給水,或是對接近溫度的處所供給給水,可提高熱利用效率,提升工廠效率。又,若具備給水取得管線與給水供給管線二者,則更可有效地提高熱利用效率,提升工廠效率。 In addition, as described above, in the flow direction of the heat medium in the heat medium (exhaust gas) flow path, the lower pressure evaporator (26, the first evaporator) is on the downstream side, including the second low pressure carbon economizer. (24 in Figure 10, the first carbon saver) and the third low pressure carbon saver (25 in Figure 10, the second carbon saver), and obtained from a plurality of carbon savers The water supply pipeline for a part of the water from the outlet of one carbon economizer, or the water supply pipeline for supplying feed water to the inlet of one carbon economizer in a plurality of carbon economizers, if there is at least one, Then, by obtaining or supplying feed water to adjust the feed water flow rate of the carbon economizer before and after, the slope of the TQ diagram as above can be achieved, and the heat exchanger (carbon economizer) with small size can achieve higher heat utilization efficiency. . In particular, there are at least one of the two or more water supply pipelines for obtaining a part of the water from the outlet of the different carbon economizers, and the two or more water supply lines for supplying the feed water to the inlets of the different carbon economizers, respectively, Then, the feed water can be obtained from a place with a moderate temperature suitable for the utilization of the heat utilization equipment of the feed water, or the feed water can be supplied to a place close to the temperature, which can improve the heat utilization efficiency and the plant efficiency. In addition, if both the water supply line and the water supply line are provided, the heat utilization efficiency can be more effectively improved, and the plant efficiency can be improved.
又,給水供給管線,較佳的是供給以下之給水:較對其給水入口供給給水之節碳器的給水出口溫度為低,且於熱媒體(排氣氣體)的流動方向中,較對其給水入口供給給水之節碳器設置於更下游之節碳器的給水入口溫度為高之給水。藉由設為如是構成,可減少混合處所的給水與被供給的給水之溫度差。因此,可減少對其入口供給給水之節碳器的給水入口溫度、與在熱媒體(排氣氣體)的流動方向於下游側(給水的流動方向中為上游側)連接給水管線而設置之節碳器的給水出口溫度之溫度差。例如,於圖10、圖13的實施方式中,若是給水供給管線F、H所供給之給水的溫度,較第3低壓節碳器(圖10中的25,第2節碳器)之給水出口的溫度為低,較第2低壓節碳器(圖10中的24,第1節碳器)之給水入口溫度為高,則給水供給管線F、H所供給之給水的溫度接近在第3低壓節碳器(圖10中的25,第2節碳器)與第2低壓節碳器(圖10中的24,第1節碳器)之間流動之給水的溫度,可減少第2低壓節碳器(圖10 中的24,第1節碳器)的給水出口與第3低壓節碳器(圖10中的25,第2節碳器)的給水入口之溫度差。 In addition, it is preferable to supply the feed water to the feed water supply line whose temperature is lower than that of the feed water outlet of the carbon economizer to which feed water is supplied to the feed water inlet, and which is higher than the temperature of the feed water outlet in the flow direction of the heat medium (exhaust gas). The carbon economizer for supplying the feed water to the feed water inlet is set to the feed water where the feed water inlet temperature of the carbon economizer is further downstream. By setting it as such a structure, the temperature difference of the feed water of a mixing place and the feed water to be supplied can be reduced. Therefore, it is possible to reduce the feed water inlet temperature of the carbon economizer for supplying feed water to its inlet, and to connect the feed water line to the downstream side (upstream side in the feed water flow direction) in the flow direction of the heat medium (exhaust gas). The temperature difference between the temperature of the feed water outlet of the carbonizer. For example, in the embodiments of FIGS. 10 and 13 , the temperature of the feed water supplied by the feed water supply lines F and H is higher than that of the feed water outlet of the third low-pressure carbon saver (25 in FIG. 10 , the second carbon saver). The temperature of the feedwater is lower than that of the feedwater inlet temperature of the second low pressure carbon economizer (24 in Figure 10, the first carbon economizer), so the temperature of the feedwater supplied by the feedwater supply lines F and H is close to that of the third low pressure The temperature of the feed water flowing between the carbon economizer (25 in Figure 10, the 2nd carbon economizer) and the second low pressure economizer (24 in Figure 10, the 1st economizer) can reduce the temperature of the 2nd low pressure economizer Carbon device (Figure 10 The temperature difference between the feed water outlet of 24 in the 1st carbon segment and the feed water inlet of the 3rd low pressure carbon segment (25 in Figure 10, the 2nd carbon segment).
因此,TQ線圖(圖13)中,可減少相當於第2低壓節碳器(圖10中的24,第1節碳器)的給水之線的左端(相當於給水出口)與相當於第3低壓節碳器(圖10中的25,第2節碳器)的給水之線的右端(相當於給水入口)之溫度差,可使第2低壓節碳器(圖10中的24,第1節碳器)的給水出口與第3低壓節碳器(圖10中的25,第2節碳器)的給水入口之熱媒體(排氣氣體)-給水的溫度差設為接近值,可以尺寸小之熱交換器(節碳器),獲得高熱利用效率。 Therefore, in the TQ diagram (Fig. 13), the left end of the water supply line (equivalent to the water supply outlet) corresponding to the second low-pressure carbon saver (24 in Fig. 10, the first carbon saver) and the 3 The temperature difference between the right end (equivalent to the feed water inlet) of the feed water line of the low-pressure carbon economizer (25 in Figure 10, the second carbon economizer) can make the second low-pressure economizer (24 in Figure 10, part 2). The temperature difference between the heat medium (exhaust gas) and the feed water between the feed water outlet of the 1 carbon economizer and the feed water inlet of the 3rd low pressure economizer (25 in Figure 10, the 2 carbon economizer) is set to a close value, which can be Small size heat exchanger (carbon economizer) to obtain high heat utilization efficiency.
再者,第2低壓節碳器(圖10中的24,第1節碳器)出口的給水的一部分係經由給水管線73被送至閃蒸槽8b,藉由減壓沸騰產生之蒸氣係供給至低壓蒸氣渦輪機的中間段,取出其動力。再者,第2低壓節碳器(圖10中的24,第1節碳器)出口的給水的一部分係被送至低沸點媒體藍金循環142,將在低沸點媒體藍金循環142的內部循環之低沸點媒體(例如,戊烷、環己烷、R245fa等)加熱。經加熱之低沸點媒體蒸發,而驅動渦輪機產生動力。如以上般,閃蒸槽8a~8d與低壓蒸氣渦輪機106的組合、低沸點媒體藍金循環142,係設於其中有排氣氣體(熱媒體)流動之熱媒體流路,將取得加熱給水之複數個熱交換器(節碳器)之間的給水之給水取得管線中,自其至少1個取得之給水送至動力產生裝置,前述動力產生裝置使用接受之給水產生動力。
Furthermore, a part of the feed water at the outlet of the second low-pressure carbon economizer (24 in Fig. 10, the first carbon economizer) is sent to the
根據本構成,可有效地活用給水的熱而取出動力,工廠之效率提高。此外,利用減壓閥84、流量調整閥205、206,將給水管線(給水取得管線)73、75、77的流量分別調節,使第3低壓節碳器25的給水出口溫度接近低壓蒸發器26(第1蒸發器)的作動壓力下之飽和溫度(使逼近溫度差接近0),而且調節第2低壓節碳器24、第3低壓節碳器25的流量而使第2低壓節碳器24、第3低壓節碳器25之給水的TQ線圖的斜率分別接近排氣氣體的TQ線圖的斜率。若增大給水管線(給水取得管線)73、75、77的流量,則各自之分歧點的自給水觀之為上游的節碳器,亦即第3低壓節碳器25、第2低壓節碳器24、第1低壓節碳器22的給水流量增大,TQ線圖的斜率變小。
According to this configuration, the heat of the water supply can be effectively utilized to extract power, and the efficiency of the plant can be improved. In addition, the flow rates of the feed water lines (feed water acquisition lines) 73, 75, and 77 are adjusted by the
反之,為了將各自之TQ線圖的斜率增大,將給水管線73、75、77的流量減少即可。如此為之,可使第3低壓節碳器25給水出口(低壓蒸發器26的給水入口)的溫度接近與低壓蒸發器26的作動壓力對應之飽和溫度,而且可使第1低壓節碳器22、第2低壓節碳器24之給水的TQ線圖的斜率接近排氣氣體的TQ線圖的斜率,而能夠以較小尺寸的節碳器提高熱利用效率。又,本實施方式的低沸點媒體藍金循環142的構成僅為一例,可適當地採用各種構成的低沸點媒體藍金循環。日本特開2015-183595號中有揭示各種構成,因此若予參照,此界業者諒可應用各種構成。
Conversely, in order to increase the slope of the respective TQ diagrams, the flow rates of the
不包含動力產生裝置之燃氣渦輪機4的吸氣
加熱器120、冷卻空氣冷卻器129、130、132、燃料預熱器122等之工廠內的熱利用設備中,成為必要熱源、冷熱源之給水的流量,係根據加熱或冷卻的必要性而決定,無法自由設定。另一方面,動力產生裝置可適當地賦予成為熱源之給水的溫度、流量,根據所獲得之給水的溫度、流量而產生動力。是以,如本實施方式般,若具備動力產生裝置,則即便是有必要對各種工廠內的熱利用設備供給必要溫度、流量的給水之情況下,藉由改變供給至動力產生裝置之給水的流量或節碳器間的取得位置,如前所述,可改善複數個節碳器中流動之給水的流量分布,使低壓蒸發器(第1蒸發器26)入口的給水溫度接近與低壓蒸發器(第1蒸發器26)的蒸氣壓力對應之飽和溫度,而且可將各部分的熱媒體(排氣氣體)-給水的溫度差保持於適度之溫度,以尺寸小之熱交換器(節碳器),可獲得高熱利用效率。
Intake of
又,若干個實施方式中,如圖1所示,將由第2節碳器24加熱後之水的全量,送至低壓蒸發器26(第1蒸發器)、或加熱至較對應低壓蒸發器26(第1蒸發器)的蒸氣壓力之飽和溫度為高溫之高溫熱交換器中之至少一者。圖1中,由第2節碳器24加熱後之水,全量係送至低壓蒸發器26(第1蒸發器)、中壓節碳器31、第1高壓節碳器30的任一者,不供給至除此以外之熱利用設備。對於中壓節碳器31、第1高壓節碳器30分別利用中壓給水泵62、高壓給水泵72壓送給水。中壓節碳器31、第1高壓節碳器30中,由於給水被升壓,因此在對應低壓蒸發器26(第1蒸發器)的
蒸氣壓力之飽和溫度下不會沸騰,而呈液相原狀,可被加熱至更高溫。由中壓節碳器31、第1高壓節碳器30升溫之給水,分別由中壓蒸發器32、高壓蒸發器38蒸發後,最終驅動蒸氣渦輪機而產生動力。
Furthermore, in some embodiments, as shown in FIG. 1 , the whole amount of water heated by the
由對低壓蒸發器26(第1蒸發器)直接送出給水之第2節碳器24加熱之給水,不會送至用於較低溫的熱利用之各種熱利用設備,而是限定送至低壓蒸發器26(第1蒸發器)、加熱至較對應低壓蒸發器26(第1蒸發器)的蒸氣壓力之飽和溫度更高溫度之中壓節碳器31、第1高壓節碳器30,藉此,可減少由第2節碳器24加熱之給水的流量。據此,可使節碳器中流動之給水的溫度分布接近前述的較佳溫度分布,在TQ線圖上可使相當於第2節碳器24的給水之線的斜率變大,使供給至低壓蒸發器26(第1蒸發器)之給水的溫度接近對應低壓蒸發器26(第1蒸發器)的蒸氣壓力之飽和溫度,可提高熱利用效率。此一情況下,對於用於較低溫熱利用之各種熱利用設備,自節碳器之間取得較低溫的給水而予送出(給水管線53)。
The feed water heated by the
又,若干個實施方式中,如圖10所示,燃氣渦輪機4的壓縮機12出口之空氣的一部分係作為冷卻燃氣渦輪機4的燃燒器之冷卻空氣而取得。此一冷卻空氣,可減少將該冷卻空氣送往燃燒器之壓縮機140的動力,而且為了提高燃燒器冷卻時的冷卻效果,由熱交換器130予以冷卻、減溫。另一方面,第1低壓節碳器22出口的給水之一部分係作為冷卻媒體供給至熱交換器130。熱交換器130
中,藉由將前述冷卻空氣與前述給水熱交換,而將前述冷卻空氣冷卻並將前述給水加熱。亦即,熱交換器130係將給水作為冷熱源利用之熱利用設備。又,冷卻空氣為被冷卻媒體的一種。
Furthermore, in some embodiments, as shown in FIG. 10 , part of the air at the outlet of the
熱交換器130入口、出口中之前述冷卻空氣的溫度,分別為例如180℃、90℃,於熱交換器130入口、出口之前述給水的溫度,分別為80℃、130℃。於此,超過100℃之溫度的熱可產生常壓的水蒸氣,超過100℃之溫度的熱與100℃以下的熱利用價值大幅不同。因此,如本例般之將冷卻空氣減溫的排熱有效地活用,若將未達100℃的節碳器出口的水加熱至較100℃為高之溫度,則可回收利用價值高的熱,尤其可提高熱利用效率。
The temperatures of the cooling air at the inlet and outlet of the
又,此一情況下,由於在燃燒器中可獲得充分之冷卻效果,因此在熱交換器130中,有必要將作為被冷卻媒體之冷卻空氣冷卻至較低壓蒸發器26(第1蒸發器)的蒸氣壓力下之飽和溫度(例如150℃)為低之溫度。此時,假設考慮熱交換器20為單一之情況,將成為單一的熱交換器20的入口或出口的水被用於被冷卻媒體的冷卻。單一的熱交換器20中,給水出口的溫度經成為與低壓蒸發器26(第1蒸發器)的蒸氣壓力下之飽和溫度接近之溫度,因此無法將被冷卻媒體冷卻至充分低之溫度,而將使用熱交換器20的入口的給水來冷卻。因之,乃成為將被冷卻媒體冷卻時的排熱回收至低溫的給水,排熱無法有效回收,熱利用效率低。
In this case, since a sufficient cooling effect can be obtained in the burner, the
從而,如本發明般,若設置複數個熱交換器20,自其中途取得給水而用於熱回收,則即便是有必要將冷卻媒體冷卻至較低壓蒸發器26(第1蒸發器)的蒸氣壓力下之飽和溫度(例如150℃)為低之溫度的情況下,仍可將排熱回收於適度溫度的給水,可將排熱效率良好地回收。
Therefore, as in the present invention, if a plurality of
於若干個實施方式中,例如如圖11所示,低壓節碳器的數目也可為1個。圖11所示之複合工廠2(2E)中,代替圖7所示複合工廠2(2C)的第1低壓節碳器22及第2低壓節碳器24,而設置1個低壓節碳器96。
In some embodiments, for example, as shown in FIG. 11 , the number of low-pressure carbon economizers may also be one. In the compound plant 2 ( 2E ) shown in FIG. 11 , instead of the first
圖11所示之構成中,給水管線48係將冷凝器108與低壓節碳器96連接。低壓節碳器96係將自給水管線48供給之水藉由與排氣氣體熱交換而加熱。由低壓節碳器96加熱後之水的一部分,係經由連接低壓節碳器96與低壓蒸發器26之給水管線52而供給至低壓蒸發器26。
In the configuration shown in FIG. 11 , the
又,由低壓節碳器96加熱後之水的一部分,係經由給水管線60供給至中壓節碳器31。給水管線60係自給水管線54分歧而連接於中壓節碳器31,給水管線60中流動之加熱水,係藉由給水管線60上所設之中壓給水泵62壓送至中壓節碳器31。
In addition, a part of the water heated by the low-
閃蒸槽8上連接有自給水管線52分歧之給水管線53,由低壓節碳器96加熱後之水的一部分,係經由給水管線53供給至閃蒸槽8。給水管線53上,設有用以將自低壓節碳器96供給之加熱水減壓的減壓閥59。經由給水管線53供給至閃蒸槽8之加熱水,係由閃蒸槽8減壓蒸發(閃
蒸),而成為閃蒸蒸氣。由閃蒸槽8產生之閃蒸蒸氣,係經由連接閃蒸槽8與低壓蒸氣渦輪機106的中間區段之蒸氣管線57而供給至低壓蒸氣渦輪機106的中間區段。
The
積留於閃蒸槽8的底部之冷凝水,係經由連接閃蒸槽8與給水管線48之冷凝水管線51而流入給水管線48,經由給水管線48供給至低壓節碳器96。冷凝水管線51上設有給水泵61,自閃蒸槽8排出之冷凝水係藉由給水泵61壓送至低壓節碳器96。
The condensed water accumulated at the bottom of the
如是,即使是自1個處所取得給水,令其閃蒸所產生之閃蒸蒸氣,以閃蒸前的給水過熱之情況下,也可利用較不過熱之情況為高溫的蒸氣,可提高熱利用效率。又,藉由使蒸氣設為過熱狀態,可抑制蒸氣管線57等的配管內之冷凝,可抑制排放水所導致之配管的阻塞等之麻煩。又,出自過熱器69之蒸氣在蒸氣渦輪機使用之情況下,可降低蒸氣渦輪機的下游段的潤濕度而抑制渦輪機翼的腐蝕,而且可提高蒸氣渦輪機的效率。
In this case, even if the feed water is obtained from one location and the flash steam generated by flash evaporation is used in the case of overheating the feed water before the flash evaporation, the steam with a higher temperature can be used than in the case of not superheated, which can improve the heat utilization. efficiency. In addition, by making the steam into a superheated state, condensation in the piping such as the
若干個實施方式中,例如如圖12所示,複合工廠2(2F)也可作為以蒸氣產生裝置6產生之蒸氣為熱源利用之汽電共生工廠而構成。
In some embodiments, for example, as shown in FIG. 12 , the composite plant 2 ( 2F ) may be configured as a steam-electricity cogeneration plant using the steam generated by the
圖12所示之複合工廠2(2F)中,自蒸氣產生裝置6產生之蒸氣,亦即蒸氣管線58、92、93、94、95、117中流動之蒸氣,可利用於化學反應、食品加工、空調(以蒸氣為熱源之暖房或作為吸收冷凍機的熱源使用之冷房等)等的用途。圖12所示之例示的方式中,排熱回收鍋
爐5的外部設有熱交換器116,由第2高壓過熱器44過熱之高壓過熱蒸氣,係通過連接第2高壓過熱器44與熱交換器116之蒸氣管線117供給至熱交換器116。熱交換器116中,經由蒸氣管線117供給之高壓過熱蒸氣也可使用於上述用途。由熱交換器116進行過熱交換之高壓過熱蒸氣,係經由設有閥119之蒸氣管線118供給至第1再熱器42。
In the compound plant 2 (2F) shown in FIG. 12, the steam generated from the
圖10所示之複合工廠中,對於閃蒸槽8a、8b、8c供給給水之給水管線73、75、77上,分別備有減壓閥84、流量調整閥205、206。藉由調整此等各閥的開度,可調整供給至閃蒸槽8a、8b、8c之給水的流量。根據本構成,由於可調整各熱交換器20(節碳器)的流量,因此可維持較高之熱利用效率,且可減小熱交換器的尺寸。調整供給至以上之閃蒸槽之給水的流量的構成,雖以圖10的複合工廠為例圖示及說明,但亦可適用於其他實施方式。
In the compound plant shown in FIG. 10, the
又,圖10所示之複合工廠中,排放水管線71中之閃蒸槽8a與閃蒸槽8b之間的位置設有減壓閥85。排放水管線71中之閃蒸槽8b與閃蒸槽8c之間的位置設有減壓閥86。排放水管線71中之閃蒸槽8c與閃蒸槽8d之間的位置設有減壓閥87。
Moreover, in the compound plant shown in FIG. 10, the
藉由調整此等減壓閥85至87的開度,而調整排放水管線71的各部分中流動之排放水的流量,對於排放水管線71上游側的閃蒸槽8a至8c的排放水的液位可分別保持一定。例如,減壓閥86上游的閃蒸槽8b的液位上升之情況下,藉由增大減壓閥86的開度,而增大減壓閥86中流動
之排放水的流量,而使閃蒸槽8b的液位下降。反之,閃蒸槽8b的液位下降之情況下,藉由減小減壓閥86的開度,而減少減壓閥86中流動之排放水的流量,可使閃蒸槽8b的液位上升,將閃蒸槽8b的液位保持一定。
By adjusting the opening degrees of these pressure-reducing
針對下游的排放水管線上不具有減壓閥之閃蒸槽8d,藉由控制泵61的流量,而將液位保持一定。圖中雖未示,若是使用在泵6設置將出口的排放水的一部分再循環至入口之再循環流路、及於前述再循環流路上設置流量調整閥而將再循環流量以流量調整閥調整之方法,或是將泵61以附設變頻器之電動機驅動而控制轉數之方法等,可控制泵61的流量。
For the
藉由具備此一構成,可將閃蒸槽的液位保持於一定,防止低壓蒸氣渦輪機106通過蒸氣管線(92至95)吸入液體,而維持低壓蒸氣渦輪機106的信頼性,而且可將閃蒸槽內保持充分量的液體,確保蒸發量,使低壓蒸氣渦輪機106的輸出充分增大,提高工廠效率。將以上的閃蒸槽的液位保持於一定之構成,雖以圖10的複合工廠為例圖示、說明,但亦可適用於其他實施方式。
With this configuration, the liquid level of the flash tank can be kept constant, the low-
本發明不限於上述實施方式,亦包含對於上述實施方式施加變化之方式、或是將此等方式適當組合之方式。 The present invention is not limited to the above-described embodiments, and includes a mode in which changes are added to the above-described embodiment, or a mode in which these modes are appropriately combined.
例如,上述若干個實施方式中,雖例示自燃氣渦輪機4將排氣氣體供給至排熱回收鍋爐5之構成,但對於排熱回收鍋爐5供給排氣氣體之供給源,不限於燃氣渦
輪機,例如也可為燃氣引擎等的其他原動機,也可為鍋爐,也可為燃料電池。
For example, in the above-mentioned several embodiments, although the configuration in which the exhaust gas is supplied from the
又,也可改造既有之排熱回收廠而實現具備上述蒸氣產生裝置6(6A~6F)之排熱回收廠200。
Moreover, the exhaust
此一情況下,排熱回收廠的改造方法,例如為了將如圖1所示之上述產生裝置6(6A)藉由改造而製造,乃具備:將排氣氣體流路18中之配置於第1蒸發器26的下游側之節碳器的數目增加設為2個以上之步驟;及將2個以上的節碳器中相鄰之2個節碳器22、24連接之給水管線52與閃蒸槽8等的熱利用設備以給水管線53連接之步驟。
In this case, the modification method of the exhaust heat recovery plant, for example, in order to manufacture the above-mentioned generator 6 ( 6A) shown in FIG. 1. The steps of increasing the number of carbon economizers on the downstream side of the
藉此,與以1個節碳器將給水的溫度接近飽和蒸氣溫度的情況比較,可抑制節碳器之尺寸(2個以上的節碳器的合計尺寸)的大型化,且可利用閃蒸槽8等的熱利用設備提高熱媒體的熱利用效率。
Thereby, compared with the case where the temperature of the feed water is close to the saturated steam temperature with one carbon economizer, the size of the carbon economizer (the total size of two or more economizers) can be suppressed from increasing in size, and flash evaporation can be used. The heat utilization facilities such as the
上述各實施方式中記載的內容,例如可以下般之掌握。 The content described in each of the above-mentioned embodiments can be grasped as follows, for example.
(1)本發明的一個實施方式相關之蒸氣產生裝置(6),係具備:供熱媒體流動的熱媒體流路(18);設置於前述熱媒體流路的第1節碳器(22);於前述熱媒體流路中,於前述熱媒體的流動方向設置於前述第1節碳器的上游側的第2節碳器(24);於前述熱媒體流路中,於前述熱媒體的流動方向設置 於前述第2節碳器的上游側的第1蒸發器(26);以將由前述第1節碳器加熱後之水供給至前述第2節碳器之方式所構成的第1給水管線(52,27);及自前述第1給水管線分歧,以將由前述第1節碳器加熱後之水供給至熱利用設備(8,51,61,120,122,129,130,132)之方式所構成的第2給水管線(53,75,77)。 (1) A steam generator (6) according to an embodiment of the present invention includes: a heat medium flow path (18) through which a heat medium flows; and a first carbon block (22) provided in the heat medium flow path ; In the flow path of the heat medium, the second carbon section (24) is arranged on the upstream side of the first carbon section in the flow direction of the heat medium; in the flow path of the heat medium, in the flow direction of the heat medium Flow direction setting The first evaporator (26) on the upstream side of the above-mentioned second-stage carbon device; the first water supply pipeline (52) constituted by supplying the water heated by the above-mentioned first-stage carbon device to the above-mentioned second-stage carbon device , 27); and the second water supply pipeline (53, 75) formed by branching from the aforementioned first water supply pipeline to supply the water heated by the aforementioned first carbon heater to the heat utilization equipment (8, 51, 61, 120, 122, 129, 130, 132). , 77).
根據上述(1)所述之蒸氣產生裝置,由於具備將水自第1節碳器供給至第2節碳器的第1給水管線、及自第1給水管線分歧將水供給至熱利用設備的第2給水管線,因此第2節碳器的流量較第1節碳器的流量為少。因此,因應供給至熱利用設備之給水的流量,即使第1節碳器的給水的流量變多,仍可以較小之第2節碳器使給水的溫度高效率地接近飽和蒸氣溫度。因此,與以1個節碳器使給水的溫度接近飽和蒸氣溫度的情況比較,可抑制節碳器的尺寸(第1節碳器的尺寸與第2節碳器的尺寸的合計)的大型化,且可使用熱利用設備來提高熱媒體之熱利用效率。 According to the steam generator described in the above (1), since the first water supply line for supplying water from the first carbon section to the second carbon section is provided, and the branch for supplying water to the heat utilization facility from the first water supply line is provided. The 2nd water supply line, so the flow rate of the 2nd carbonizer is less than that of the 1st carbonizer. Therefore, according to the flow rate of the feed water supplied to the heat utilization equipment, even if the flow rate of the feed water to the 1st stage carbonizer increases, the temperature of the feedwater can be efficiently approached to the saturated steam temperature with the smaller 2nd stage carbonizer. Therefore, the size of the carbon economizer (the sum of the size of the first carbon economizer and the size of the second carbon economizer) can be suppressed from increasing in size compared with the case where the temperature of the feed water is made closer to the saturated steam temperature by one economizer , and heat utilization equipment can be used to improve the heat utilization efficiency of the heat medium.
(2)若干個實施方式中,上述(1)所述之蒸氣產生裝置中,前述熱利用設備為用以產生閃蒸蒸氣的第1閃蒸槽(8)。 (2) In some embodiments, in the steam generator described in the above (1), the heat utilization device is a first flash tank (8) for generating flash steam.
上述(2)所述之蒸氣產生裝置,由於具備將水自第1節碳器供給至第2節碳器的第1給水管線、及自第1給水管線分歧將水供給至第1閃蒸槽的第2給水管線,第2 節碳器的流量較第1節碳器的流量為少。因此,因應供給至閃蒸槽之給水的流量,即使第1節碳器的給水的流量變多,仍可以較小之第2節碳器使給水的溫度高效率地接近飽和蒸氣溫度。因此,與以1個節碳器使給水的溫度接近飽和蒸氣溫度的情況比較,可抑制節碳器的尺寸(第1節碳器的尺寸與第2節碳器的尺寸的合計)的大型化,且可使用熱利用設備提高熱媒體之熱利用的效率。 The steam generator described in the above (2) is provided with a first water supply line for supplying water from the first carbon tank to the second carbon tank, and a branch from the first water supply line for supplying water to the first flash tank of the 2nd water supply line, the 2nd The flow rate of the carbon saver is less than that of the first carbon saver. Therefore, according to the flow rate of the feed water supplied to the flash tank, even if the flow rate of the feed water to the first-stage carbonizer increases, the temperature of the feedwater can be efficiently approached to the saturated steam temperature with the smaller second-stage carbonizer. Therefore, the size of the carbon economizer (the sum of the size of the first carbon economizer and the size of the second carbon economizer) can be suppressed from increasing in size compared with the case where the temperature of the feed water is made closer to the saturated steam temperature by one economizer , and the heat utilization equipment can be used to improve the heat utilization efficiency of the heat medium.
(3)若干個實施方式中,上述(2)所述之蒸氣產生裝置中,前述熱媒體流路中,設有包含前述第1蒸發器的複數個蒸發器(26,32,38);前述第1蒸發器係於前述複數個蒸發器中於前述熱媒體流路的流動方向位於最下游側的蒸發器。 (3) In some embodiments, in the steam generator described in (2) above, a plurality of evaporators (26, 32, 38) including the first evaporator are provided in the heat medium flow path; The first evaporator is an evaporator located on the most downstream side in the flow direction of the heat medium flow path among the plurality of evaporators.
閃蒸所得之蒸氣、冷凝水的溫度較原本的水的溫度為低,因此與蒸發器比較,閃蒸所致之蒸氣產生其熱利用效率低。自取得閃蒸之水之節碳器的熱媒體(排氣氣體)觀之在下游側存在有其他蒸發器之情況下,若取得閃蒸之水,則供給至下游側的其他蒸發器之熱媒體(排氣氣體)的熱量減少,下游側的其他蒸發器可利用可能之熱量減少。因此,出自熱利用效率高之蒸發器的蒸氣產生量減少,另一方面熱利用效率較其為低之閃蒸蒸氣流量增大,熱利用效率低落。另一方面,根據上述(2)所述之蒸氣產生裝置,係自熱媒體流路的流動方向最下游側的蒸發器,亦即較第1蒸發器更下游的節碳器取得給水,並予閃 蒸,因此可在不減少蒸發器所產生之蒸氣的量之情況下獲得閃蒸蒸氣,故可在熱利用效率不致降低下有效果地活用熱媒體的熱,工廠效率提升效果尤其之大。又,將自節碳器取得之給水活用於閃蒸蒸氣的產生以外的用途之情況下亦然,若是第1蒸發器位於熱媒體流路的流動方向最下游側,則可不減少其他蒸發器之蒸發量下獲得給水,可獲得尤其大的工廠效率提升效果。 The temperature of the steam and condensed water obtained by flash evaporation is lower than the temperature of the original water, so compared with the evaporator, the steam generated by the flash evaporation has lower heat utilization efficiency. When another evaporator exists on the downstream side from the heat medium (exhaust gas) of the carbon economizer from which the flash water is obtained, if the flash water is obtained, the heat is supplied to the other evaporator on the downstream side. The heat of the medium (exhaust gas) is reduced, and other evaporators on the downstream side can utilize the possible heat reduction. Therefore, the amount of steam generated from the evaporator with high heat utilization efficiency decreases, while the flow rate of flash steam increases compared with the evaporator with low heat utilization efficiency, and the heat utilization efficiency decreases. On the other hand, according to the steam generator described in the above (2), feed water is obtained from the evaporator on the most downstream side in the flow direction of the heat medium flow path, that is, from the carbon economizer further downstream than the first evaporator, and preliminarily flash Therefore, the flash steam can be obtained without reducing the amount of steam generated by the evaporator, so the heat of the heat medium can be effectively utilized without reducing the heat utilization efficiency, and the effect of improving the plant efficiency is particularly large. Also, when the feed water obtained from the carbon economizer is used for purposes other than flash steam generation, if the first evaporator is located on the most downstream side in the flow direction of the heat medium flow path, it is not necessary to reduce the consumption of other evaporators. Obtaining feed water under evaporation can achieve particularly large plant efficiency improvement effects.
(4)若干個實施方式中,上述(2)或(3)所述之蒸氣產生裝置中,進一步具備:以將由前述第2節碳器加熱後之水供給至前述第1閃蒸槽之方式所構成的第3給水管線(63);及自用以將水供給至前述第1節碳器的給水管線分歧,而以將水供給至前述第1閃蒸槽之方式所構成的第4給水管線(E,F,G,H)之至少一者。 (4) In some embodiments, the steam generator described in the above (2) or (3) further includes: a method of supplying the water heated by the second carbonizer to the first flash tank The 3rd water supply line (63) formed; and the 4th water supply line formed so as to supply water to the above-mentioned first flash tank from branching from the water supply line for supplying water to the above-mentioned No. 1 carbon tank At least one of (E, F, G, H).
根據上述(4)所述之蒸氣產生裝置,藉由將包含第2給水管線至少自2個給水管線取得之給水供給至第1閃蒸槽,可調節第2節碳器的流量,可以適度尺寸的節碳器獲得高效率。又,對於第1蒸發器的蒸發量造成影響,特別是使重要之第2節碳器的出口之給水溫度保持為高(使第1蒸發器的逼近溫度差接近0),且可使第1節碳器中之排氣氣體與給水的溫度差保持於較第1節碳器的給水出口為大之一定值。此處,排氣氣體與給水的溫度差,為一定的情況下由於就相較尺寸而言其熱交換量最大,因此可在將第1節碳器的尺寸合理地小型化下,僅使性能上特別重要 之第2節碳器的大型化而提高效率。 According to the steam generator described in the above (4), by supplying the feed water obtained from at least two feed water lines including the second feed water line to the first flash tank, the flow rate of the second carbon section can be adjusted, and the size of the carbon block can be adjusted appropriately. The carbon economizer obtains high efficiency. In addition, it affects the evaporation amount of the first evaporator, especially the temperature of the feed water at the outlet of the second carbon section, which is important, is kept high (the approach temperature difference of the first evaporator is kept close to 0), and the first The temperature difference between the exhaust gas and the water supply in the carbon economizer is maintained at a certain value larger than the water supply outlet of the first carbon economizer. Here, when the temperature difference between the exhaust gas and the feed water is constant, since the heat exchange amount is the largest in terms of size, it is possible to reduce the size of the first carbon device reasonably, and only the performance can be improved. especially important The efficiency of the second section of the carbon device is increased due to the larger size.
(5)若干個實施方式中,於上述(2)至(4)之任一項所述之蒸氣產生裝置中,進一步具備:用以將由前述第1閃蒸槽所產生之蒸氣,供給至利用該蒸氣之設備(100)的第1蒸氣管線(57,93,94,95);及設於前述第1蒸氣管線,用以將由前述第1閃蒸槽所產生之蒸氣予以過熱的過熱器(69,89,90,91)。 (5) In some embodiments, the steam generator according to any one of the above (2) to (4) further includes: for supplying the steam generated in the first flash tank to a utilization The first steam lines (57, 93, 94, 95) of the steam equipment (100); and a superheater ( 69,89,90,91).
根據上述(5)所述之蒸氣產生裝置,藉由利用高溫的給水使第1蒸氣管線中流動之蒸氣以過熱器過熱,與不過熱之情況相較可利用高溫的蒸氣,提高熱利用效率。又,藉由使蒸氣形成過熱狀態,可抑制蒸氣管線等的配管內之冷凝,可抑制排放水所導致之配管的阻塞等的麻煩。 According to the steam generator described in the above (5), the steam flowing in the first steam line is superheated by the superheater by using the high-temperature feed water, and the high-temperature steam can be used compared with the case where the steam is not overheated, thereby improving the heat utilization efficiency. In addition, by making the steam into a superheated state, condensation in the piping such as the steam line can be suppressed, and troubles such as clogging of the piping due to drain water can be suppressed.
(6)若干個實施方式中,上述(2)至(5)中任一項所述之蒸氣產生裝置中,前述蒸氣產生裝置具備包含前述第1閃蒸槽之複數個閃蒸槽(8a~8d);前述複數個閃蒸槽的壓力係被設定為彼此不同之壓力。 (6) In some embodiments, in the steam generator according to any one of the above (2) to (5), the steam generator includes a plurality of flash tanks (8a to 8a) including the first flash tank. 8d); the pressures of the plurality of flash tanks are set to different pressures from each other.
根據上述(6)所述之蒸氣產生裝置,藉由將閃蒸槽的飽和水依序送至溫度及壓力低之閃蒸槽使其蒸發,可將熱配合溫度回收,提高熱利用效率。 According to the steam generator described in the above (6), by sequentially sending the saturated water in the flash tank to the flash tank with low temperature and pressure to evaporate, the heat matching temperature can be recovered and the heat utilization efficiency can be improved.
(7)若干個實施方式中,於上述(6)所述之蒸氣產生裝置中,進一步具備: 串聯連接於前述複數個閃蒸槽,供自前述閃蒸槽各自所排出之排放水流動的排放水管線(71);及將由前述第1節碳器或前述第2節碳器加熱後之水供給至前述排放水管線之第5給水管線(75,77);前述第5給水管線的水的溫度,係較對應於前述複數個閃蒸槽中在前述排放水管線的流動方向位於比前述排放水管線與前述第5給水管線連接之位置更上游側之閃蒸槽的壓力之飽和溫度更低,較對應於前述複數個閃蒸槽中在前述排放水管線的流動方向位於比前述排放水管線與前述第5給水管線連接之位置更下游側之閃蒸槽的壓力之飽和溫度更高。 (7) In some embodiments, the steam generator described in (6) above further includes: A drain water pipeline (71) connected in series to the plurality of flash tanks for the flow of the drain water discharged from each of the flash tanks; and the water heated by the first carbon device or the second carbon device The fifth water supply line (75, 77) supplied to the above-mentioned discharge water line; the temperature of the water in the above-mentioned fifth water supply line is located in the flow direction of the above-mentioned discharge water line in the plurality of flash tanks corresponding to the above-mentioned discharge water. The pressure saturation temperature of the flash tank on the upstream side of the position where the water line is connected to the fifth water supply line is lower than that in the flow direction of the discharge water line corresponding to the plurality of flash tanks. The pressure saturation temperature of the flash tank on the downstream side of the position connected to the fifth feed water line is higher.
根據上述(7)所述之蒸氣產生裝置,由於設有彼此壓力不同之複數個閃蒸槽,複數個處所的給水可因應其溫度投入排放水管線的適切之溫度的處所,可提高熱利用效率。 According to the steam generator described in the above (7), since a plurality of flash tanks with different pressures are provided, the feed water of the plurality of places can be fed into the place of the appropriate temperature of the discharge water line according to the temperature, and the heat utilization efficiency can be improved. .
(8)若干個實施方式中,於上述(2)至(7)中任一項所述之蒸氣產生裝置中,前述蒸氣產生裝置,係於前述熱媒體流路中之前述熱媒體的流動方向中較前述第1蒸發器更下游側,包含含有前述第1節碳器及前述第2節碳器的複數個節碳器;以將自前述複數個節碳器中之至少1個節碳器的出口所出之水的一部分作為熱源來利用之方式所構成。 (8) In some embodiments, in the steam generating device described in any one of (2) to (7) above, the steam generating device is set in the flow direction of the heat medium in the heat medium flow path The downstream side of the first evaporator includes a plurality of carbon economizers including the first carbon economizer and the second carbon economizer; at least one carbon economizer from the plurality of carbon economizers A part of the water from the outlet is used as a heat source.
根據上述(8)所述之蒸氣產生裝置,藉由將自複數個節碳器中之至少1個節碳器的出口所出之水的一 部分作為熱源利用,可提高亦考慮蒸氣產生裝置的外部構成之熱利用效率。 According to the steam generator described in the above (8), one of the water discharged from the outlet of at least one carbon economizer among the plurality of carbon economizers is Part of it is used as a heat source, and the heat utilization efficiency can be improved considering the external structure of the steam generator.
(9)若干個實施方式中,於上述(2)至(8)中任一項所述之蒸氣產生裝置中,前述蒸氣產生裝置,係於前述熱媒體流路中之前述熱媒體的流動方向中較前述第1蒸發器更下游側,包含含有前述第1節碳器及前述第2節碳器的複數個節碳器;以將與前述複數個節碳器中之至少1個節碳器的入口連接之給水管線中流動之水的一部分作為冷卻媒體來利用,而回收排熱之方式所構成。 (9) In some embodiments, in the steam generating device described in any one of (2) to (8) above, the steam generating device is set in the flow direction of the heat medium in the heat medium flow path The downstream side of the first evaporator includes a plurality of carbon economizers including the first carbon economizer and the second carbon economizer; so as to be connected with at least one carbon economizer in the plurality of carbon economizers A part of the water flowing in the water supply pipeline connected to the inlet of the device is used as a cooling medium, and the heat is recovered and exhausted.
根據上述(9)所述之蒸氣產生裝置,藉由將對複數個節碳器中之至少1個節碳器的入口供給水之管線中流動之水的一部分作為冷卻媒體利用而回收排熱,可提高亦考慮蒸氣產生裝置的外部構成之熱利用效率。 According to the steam generator described in the above (9), the exhaust heat is recovered by utilizing a part of the water flowing in the line for supplying water to the inlet of at least one carbon economizer among the plurality of carbon economizers as a cooling medium, It is possible to improve the heat utilization efficiency considering the external structure of the steam generating device.
(10)本發明的一個實施方式相關之蒸氣產生裝置,係具備:供熱媒體流動的熱媒體流路(18);設置於前述熱媒體流路的節碳器(96,25);於前述熱媒體流路中,於前述熱媒體的流動方向設置於前述節碳器的上游側的第1蒸發器(26);用以產生閃蒸蒸氣的第1閃蒸槽(8);用以自前述節碳器對前述第1蒸發器供給水的第1給水管線(52,54),自前述第1給水管線分歧而連接於前述第1閃蒸槽的第 2給水管線(53,73),設於前述第2給水管線,藉由前述第2給水管線中流動之水將由前述第1閃蒸槽所產生之蒸氣予以過熱的過熱器(69,88)。 (10) A steam generator according to an embodiment of the present invention is provided with: a heat medium flow path (18) through which a heat medium flows; carbon economizers (96, 25) provided in the heat medium flow path; In the heat medium flow path, a first evaporator (26) arranged on the upstream side of the carbon economizer in the flow direction of the heat medium; a first flash tank (8) for generating flash steam; The first water supply lines (52, 54) through which the carbon economizer supplies water to the first evaporator are branched from the first water supply line and connected to the first water supply line of the first flash tank. 2. Water supply lines (53, 73) are provided in the second water supply lines, and superheaters (69, 88) are used to superheat the steam generated in the first flash tank by the water flowing in the second water supply lines.
(11)若干個實施方式中,於上述(2)至(10)中任一項所述之蒸氣產生裝置中,前述蒸氣產生裝置藉由調整設於前述第2給水管線之閥(84,205,206)的開度,而調整供給至前述第1閃蒸槽之給水的流量。 (11) In some embodiments, in the steam generator described in any one of the above (2) to (10), the steam generator is configured by adjusting the valve (84, 205, 206) of the second water supply line. The opening degree was adjusted, and the flow rate of the feed water supplied to the said 1st flash tank was adjusted.
根據上述(11)所述之蒸氣產生裝置,由於可調整節碳器的流量,故可維持較高之熱利用效率,且可減小節碳器的尺寸。 According to the steam generator described in (11) above, since the flow rate of the carbon economizer can be adjusted, high heat utilization efficiency can be maintained, and the size of the carbon economizer can be reduced.
(12)若干個實施方式中,於上述(2)至(11)任一項所述之蒸氣產生裝置中,前述蒸氣產生裝置藉由調整供前述第1閃蒸槽的排放水流動之管線(71)上所設之閥(85,86,87)的開度,或是供前述第1閃蒸槽的排放水流動之管線上所設之泵(61)的流量中至少一者,而調整前述第1閃蒸槽的液位。 (12) In some embodiments, in the steam generator described in any one of the above (2) to (11), the steam generator adjusts the pipeline ( 71) The opening of the valve (85, 86, 87), or at least one of the flow rate of the pump (61) provided on the pipeline for the flow of the discharge water from the first flash tank, is adjusted. The liquid level of the aforementioned first flash tank.
根據上述(12)所述之蒸氣產生裝置,藉由適切地調整閥的開度或泵的流量的中之至少一者,可將第1閃蒸槽的液位調整於一定。 According to the steam generator described in the above (12), by appropriately adjusting at least one of the opening degree of the valve and the flow rate of the pump, the liquid level of the first flash tank can be adjusted to be constant.
(13)若干個實施方式中,於上述(1)所述之蒸氣產生裝置中,前述熱利用設備係將被加熱媒體與由前述第1節碳器
加熱後之水熱交換,或是將被加熱媒體與由前述第1節碳器加熱後之水混合,而加熱前述被加熱媒體。
(13) In some embodiments, in the steam generator described in the above (1), the heat utilization equipment is a connection between the medium to be heated and the first carbonizer.
The heated water is exchanged for heat, or the heated medium is mixed with the water heated by the carbon device in
根據上述(13)所述之蒸氣產生裝置,若使用較蒸發器的入口給水溫度為低脂第1節碳器的出口的加熱水來加熱被加熱媒體,可在無大幅損及熱的利用價值下,提升熱利用效率。 According to the steam generator described in the above (13), if the heated medium is heated by using the heating water whose temperature is lower than that of the inlet feedwater of the evaporator and the outlet of the carbonizer of the first section, the utility value of heat can be greatly reduced. to improve heat utilization efficiency.
(14)若干個實施方式中,於上述(13)所述之蒸氣產生裝置中,前述被加熱媒體係100℃以下。 (14) In some embodiments, in the steam generator described in the above (13), the heated medium is 100° C. or lower.
根據上述(14)所述之蒸氣產生裝置,若使用較蒸發器的入口給水溫度為低脂第1節碳器的出口的加熱水來加熱100℃以下的被加熱媒體,可在無大幅損及熱的利用價值下,提升熱利用效率。 According to the steam generator described in the above (14), if the heated medium below 100°C is heated with the heating water whose temperature is lower than that of the feed water at the inlet of the evaporator, the temperature of the feed water at the outlet of the low-fat first-stage carbonizer is 100° C. Under the utilization value of heat, improve the heat utilization efficiency.
(15)若干個實施方式中,上述(1)所述之蒸氣產生裝置中,前述熱利用設備係將被冷卻媒體與由前述第1節碳器加熱後之水熱交換,而將前述被冷卻媒體冷卻,且將由前述第1節碳器加熱後之水進一步加熱。
(15) In some embodiments, in the steam generator described in the above (1), the heat utilization device exchanges heat with the water heated by the cooling medium and the water heated by the first carbon device, so as to cool the cooled The media is cooled and the water heated by the carbonizer in
根據上述(15)所述之蒸氣產生裝置,即使是有必要將冷卻媒體冷卻至較第1蒸發器的蒸氣壓力下之飽和溫度為低之溫度的情況,也能將排熱回收於適度的溫度的給水,可將排熱效率良好地回收。 According to the steam generator described in the above (15), even when it is necessary to cool the cooling medium to a temperature lower than the saturation temperature under the steam pressure of the first evaporator, the exhaust heat can be recovered at an appropriate temperature The feed water can be recovered efficiently.
(16)若干個實施方式中,上述(15)所述之蒸氣產生裝置中,
前述熱利用設備係將由前述第1節碳器加熱後之水加熱至較100℃更高之溫度。
(16) In some embodiments, in the steam generator described in (15) above,
The above-mentioned heat utilization equipment heats the water heated by the above-mentioned
超過100℃之溫度的熱可產生常壓的水蒸氣,超過100℃之溫度的熱與100℃以下的熱,其利用價值不同。因此,若如上述(16)所述之蒸氣產生裝置般,將被冷卻媒體之減溫的排熱有效地活用,來將未達100℃之節碳器出口的水加熱至較100℃為高溫,則可回收利用價值高的熱,尤其可提高熱利用效率。 Heat at a temperature of more than 100°C can generate water vapor at normal pressure. Heat at a temperature of more than 100°C and heat below 100°C have different utilization values. Therefore, as in the steam generator described in the above (16), the exhaust heat from the desuperheating of the cooling medium is effectively utilized to heat the water at the outlet of the carbon economizer below 100°C to a higher temperature than 100°C , the heat with high value can be recycled, especially the heat utilization efficiency can be improved.
(17)若干個實施方式中,上述(15)或(16)所述之蒸氣產生裝置中,前述蒸氣產生裝置於前述熱媒體流路中之前述熱媒體的流動方向較前述第1蒸發器更下游側,包含含有前述第1節碳器及前述第2節碳器之複數個節碳器;前述複數個節碳器中於前述熱媒體流路之前述熱媒體的流動方向中設置於最上游之節碳器,係將經加熱之給水供給至前述第1蒸發器;前述熱利用設備係將被冷卻媒體冷卻成對應前述第1蒸發器中之蒸氣壓力之飽和溫度以下的溫度。 (17) In some embodiments, in the steam generating device described in (15) or (16), the flow direction of the heat medium in the heat medium flow path of the steam generating device is more advanced than that of the first evaporator. The downstream side includes a plurality of carbon economizers including the first carbon economizer and the second carbon economizer; the plurality of carbon economizers are arranged most upstream in the flow direction of the heat medium in the heat medium flow path The carbon economizer supplies the heated feed water to the first evaporator; the heat utilization equipment cools the cooling medium to a temperature below the saturation temperature corresponding to the vapor pressure in the first evaporator.
根據上述(17)所述之蒸氣產生裝置,藉由自複數個節碳器的中途取得給水而利用於熱回收,即使是將被冷卻媒體冷卻至對應第1蒸發器的蒸氣壓力之飽和溫度以下的情況,也仍能將排熱回收於適度溫度的給水,可將排熱效率良好地回收。 According to the steam generator described in the above (17), even if the cooling medium is cooled to below the saturation temperature corresponding to the steam pressure of the first evaporator, the feed water is obtained from the middle of the plurality of carbon economizers and used for heat recovery. Even in the case of a suitable temperature, the exhaust heat can still be recovered in the feed water of moderate temperature, and the exhaust heat can be recovered with good efficiency.
(18)本發明的一個實施方式相關之蒸氣產生裝置(6),係具備:
供熱媒體流動的熱媒體流路(18);設置於前述熱媒體流路的第1節碳器(24);於前述熱媒體流路中,於前述熱媒體的流動方向設置於前述第1節碳器的上游側的第2節碳器(25);於前述熱媒體流路中,於前述熱媒體的流動方向設置於前述第2節碳器的上游側的第1蒸發器第1蒸發器(26);以將經前述第1節碳器加熱後之水供給至前述第2節碳器之方式所構成的第1給水管線(52,27);及以將由前述第2節碳器加熱後之水,不與前述熱媒體熱交換而供給至前述第1蒸發器之方式所構成的第6給水管線(54);流至前述第2節碳器之給水,其質量流量較流至前述第1節碳器之給水更少。
(18) The steam generator (6) according to an embodiment of the present invention is provided with:
A heat medium flow path (18) for supplying the heat medium to flow; a first carbon block (24) arranged in the heat medium flow path; The second carbon economizer (25) on the upstream side of the carbon economizer; in the heat medium flow path, the first evaporator provided on the upstream side of the second carbon economizer in the flow direction of the heat medium, the first evaporator (26); a first water supply pipeline (52, 27) formed in such a way as to supply the water heated by the
根據上述(18)所述之蒸氣產生裝置,可將排氣氣體與給水的溫度差保持於接近一定之適度的溫度差,可將較高之熱利用效率以尺寸小的節碳器實現。 According to the steam generator described in the above (18), the temperature difference between the exhaust gas and the feed water can be maintained at an appropriate temperature difference close to a certain value, and a high heat utilization efficiency can be realized with a small-sized carbon economizer.
(19)若干個實施方式中,上述(18)所述之蒸氣產生裝置中,前述蒸氣產生裝置,於前述熱媒體流路中之前述熱媒體的流動方向較前述第2節碳器更下游側,包含第3節碳器(22),流至前述第2節碳器之給水的質量流量,較流過前述第3節碳器之給水的質量流量少。 (19) In some embodiments, in the steam generating device described in (18), the steam generating device has a flow direction of the heat medium in the heat medium flow path further downstream than the second carbon separator. , including the 3rd stage carbon device (22), the mass flow rate of the feed water flowing to the aforementioned 2nd stage charcoal device is less than the mass flow rate of the feed water flowing through the aforementioned 3rd stage charcoal device.
根據上述(19)所述之蒸氣產生裝置,自熱媒體觀之至下游側,可將排氣氣體與給水的溫度差保持於接 近一定之適度的溫度差,可以尺寸更小之節碳器,獲得高熱利用效率。 According to the steam generator described in the above (19), the temperature difference between the exhaust gas and the feed water can be kept in contact with the downstream side as viewed from the heat medium. Near a certain moderate temperature difference, a smaller carbon economizer can be used to obtain high heat utilization efficiency.
(20)若干個實施方式中,於上述(18)或(19)所述之蒸氣產生裝置中,前述蒸氣產生裝置於前述熱媒體流路中之前述熱媒體的流動方向較前述第1蒸發器更下游側,包含含有前述第1節碳器及前述第2節碳器的複數個節碳器;且具備取得自前述複數個節碳器中之1個節碳器的出口所出之水的一部分的給水取得管線(E,K,G,I,M,77)。 (20) In some embodiments, in the steam generating device described in (18) or (19), the flow direction of the heat medium in the heat medium flow path of the steam generating device is higher than that of the first evaporator The further downstream side includes a plurality of carbon savers including the first carbon saver and the second carbon saver; A portion of the feed water is taken from the lines (E, K, G, I, M, 77).
根據上述(20)所述之蒸氣產生裝置,藉由取得給水來調整前後節碳器的給水流量,可實現良好的TQ線圖的斜率,可將較高的熱利用效率以尺寸小的節碳器實現。 According to the steam generator described in the above (20), by obtaining the feed water to adjust the feed water flow rate of the front and rear carbon economizers, a good slope of the TQ diagram can be achieved, and a high heat utilization efficiency can be achieved with a small carbon saving. implement.
(21)若干個實施方式中,上述(20)所述之蒸氣產生裝置中,前述蒸氣產生裝置具備分別取得自不同之前述節碳器的出口所出之水的一部分之2個以上的前述給水取得管線。 (21) In some embodiments, in the steam generator described in the above (20), the steam generator includes two or more feed waters each obtained from a part of the water discharged from the outlets of the different carbon economizers. Get the pipeline.
根據上述(21)所述之蒸氣產生裝置,可自適於使用給水之熱利用設備之利用的適度溫度之處所取得給水,可提高熱利用效率,提升工廠的效率。 According to the steam generator described in the above (21), the feed water can be obtained from a place with an appropriate temperature suitable for the utilization of the heat utilization equipment using the feed water, the heat utilization efficiency can be improved, and the efficiency of the factory can be improved.
(22)若干個實施方式中,上述(18)或(19)所述之蒸氣產生裝置中,前述蒸氣產生裝置,係於前述熱媒體流路中之前述熱 媒體的流動方向較前述第1蒸發器更下游側,包含含有前述第1節碳器及前述第2節碳器的複數個節碳器,且具備對前述複數個節碳器中之1個節碳器的入口供給給水的給水供給管線。 (22) In some embodiments, in the steam generating device described in (18) or (19), the steam generating device is connected to the heat in the heat medium flow path. The flow direction of the medium is further downstream than the first evaporator, and includes a plurality of carbon savers including the first carbon saver and the second carbon saver, and is provided with a carbon saver for one of the plurality of carbon savers. The inlet of the carbonizer supplies the feed water supply line with feed water.
根據上述(22)所述之蒸氣產生裝置,藉由供給給水,來調整前後節碳器之給水流量,可實現上述般良好之TQ線圖的斜率,可以尺寸小之節碳器,實現較高熱利用效率之節碳器。 According to the steam generator described in the above (22), by supplying feed water to adjust the feed water flow rate of the front and rear carbon economizers, the slope of the TQ diagram as well as the above can be achieved, and the carbon economizers with small size can achieve higher heat Use the carbon saver of efficiency.
(23)若干個實施方式中,上述(20)或(21)所述之蒸氣產生裝置中,前述蒸氣產生裝置具備對前述複數個節碳器中之1個節碳器的入口供給給水的給水供給管線(F,H)。 (23) In some embodiments, in the steam generator described in (20) or (21), the steam generator includes feed water for supplying feed water to the inlet of one carbon economizer among the plurality of carbon economizers Supply lines (F,H).
根據上述(23)所述之蒸氣產生裝置,具備上述給水取得管線及給水供給管線兩者,可更有效果的提高熱利用效率,提升工廠的效率。 According to the steam generator described in the above (23), including both the feed water acquisition line and the feed water supply line, the heat utilization efficiency can be more effectively improved, and the efficiency of the plant can be improved.
(24)若干個實施方式中,於上述(22)或(23)記載的蒸氣產生裝置中,前述蒸氣產生裝置具備分別對不同之前述節碳器的入口供給給水之2個以上的前述給水供給管線。 (24) In some embodiments, in the steam generator according to the above (22) or (23), the steam generator includes two or more feed water supplies for supplying feed water to different inlets of the carbon economizers, respectively. pipeline.
根據上述(24)所述之蒸氣產生裝置,可對適於使用給水之熱利用設備之利用的接近溫度之處所供給給水,可提高熱利用效率,提升工廠的效率。 According to the steam generator described in the above (24), the feed water can be supplied to a place close to the temperature suitable for the utilization of the heat utilization equipment using the feed water, the heat utilization efficiency can be improved, and the efficiency of the factory can be improved.
(25)若干個實施方式中,於上述(22)至(24)中任一項所述之蒸氣產生裝置中, 前述給水供給管線,供給溫度較其給水對象之前述節碳器的給水出口更低的給水,且供給溫度較於前述熱媒體的流動方向設置於比其給水的供給對象之前述節碳器還下游之前述節碳器的給水入口更高的給水。 (25) In several embodiments, in the steam generating apparatus described in any one of (22) to (24) above, The feed water supply line supplies feed water with a lower temperature than the feed water outlet of the carbon economizer to which the water is supplied, and the supply temperature is set further downstream than the carbon economizer to which the feed water is supplied relative to the flow direction of the heat medium. The feed water inlet of the aforementioned carbon economizer has higher feed water.
根據上述(25)所述之蒸氣產生裝置,可降低混合之處所的給水與被供給的給水之溫度差。因之,可降低對其入口供給給水之節碳器的給水入口溫度、與於熱媒體(排氣氣體)的流動方向在下游側(於給水的流動方向為上游側)連接給水管線而設置之節碳器的給水出口溫度之溫度差。藉此,可以尺寸小的節碳器,獲得高熱利用效率。 According to the steam generator described in the above (25), the temperature difference between the feed water at the mixing place and the feed water to be supplied can be reduced. Therefore, the feed water inlet temperature of the carbon economizer for supplying feed water to the inlet can be lowered, and the feed water line can be connected to the downstream side in the flow direction of the heat medium (exhaust gas) (the upstream side in the flow direction of the feed water) and installed. The temperature difference between the feed water outlet temperature of the carbon economizer. Thereby, a small-sized carbon economizer can be obtained, and high heat utilization efficiency can be obtained.
(26)若干個實施方式中,於上述(20)、(21)及(23)中任一項所述之蒸氣產生裝置中,前述蒸氣產生裝置進一步具備動力產生裝置(8,106),將自前述給水取得管線中之至少1個取得的給水送至動力產生裝置,前述動力產生裝置使用接受之給水而產生動力。 (26) In some embodiments, in the steam generating device according to any one of (20), (21) and (23) above, the steam generating device further includes a power generating device (8, 106), The feed water obtained from at least one of the feed water obtaining lines is sent to a power generation device, and the power generation device generates power using the received feed water.
根據上述(26)所述之蒸氣產生裝置,可將給水的熱有效地活用而取出動力,工廠的效率提高。 According to the steam generator described in the above (26), the heat of the feed water can be effectively utilized to extract power, and the efficiency of the plant can be improved.
(27)若干個實施方式中,於上述(18)至(26)任一項所述之蒸氣產生裝置中,前述蒸氣產生裝置,將由前述第2節碳器加熱後之水的全量,送至前述第1蒸發器、或是送至加熱至較對應前述第1蒸發器的蒸氣壓力之飽和溫度更高的溫度之高溫熱交換器(30,31)中之至少一者。 (27) In some embodiments, in the steam generator described in any one of the above (18) to (26), the steam generator sends the whole amount of the water heated by the second carbon device to the The first evaporator or at least one of the high temperature heat exchangers (30, 31) heated to a temperature higher than the saturation temperature corresponding to the vapor pressure of the first evaporator.
根據上述(27)所述之蒸氣產生裝置,由對第1蒸發器直接送出給水之第2節碳器所加熱的給水,不會送至用於較低溫熱利用之各種熱利用設備,而是送至第1蒸發器或加熱至較對應第1蒸發器的蒸氣壓力之飽和溫度為高溫度之高溫熱交換器中之至少一者,藉而可減少第2節碳器所加熱之給水的流量。藉此,可使節碳器中流動之給水的溫度分布接近較佳之溫度分布,使TQ線圖上相當於第2節碳器的給水之線的斜率增大,使供給至第1蒸發器之給水的溫度接近對應第1蒸發器的蒸氣壓力之飽和溫度,可提高熱利用效率。 According to the steam generator described in the above (27), the feed water heated by the second carbonizer that directly sends the feed water to the first evaporator is not sent to various heat utilization equipment for utilization of lower-temperature heat, but It is sent to at least one of the first evaporator or a high temperature heat exchanger heated to a higher temperature than the saturation temperature of the vapor pressure corresponding to the first evaporator, thereby reducing the amount of feed water heated by the second section carbonizer traffic. In this way, the temperature distribution of the feed water flowing in the carbon economizer can be made close to a better temperature distribution, the slope of the line corresponding to the feed water of the second carbon economizer on the TQ diagram increases, and the feed water supplied to the first evaporator can be increased. The temperature is close to the saturation temperature corresponding to the vapor pressure of the first evaporator, which can improve the heat utilization efficiency.
(28)本發明的一個實施方式相關之排熱回收廠(200),係具備:上述(1)至(27)中任一項所記載之蒸氣產生裝置(6);及利用前述蒸氣產生裝置所產生之蒸氣之蒸氣利用設備(100)。 (28) An exhaust heat recovery plant (200) according to an embodiment of the present invention includes: the steam generator (6) according to any one of the above (1) to (27); and the steam generator using the above-mentioned steam generator The steam utilization device (100) of the generated steam.
根據上述(28)所述之排熱回收廠,由於具備上述(1)至(27)之任一者的蒸氣產生裝置,因此可抑制節碳器的尺寸(第1節碳器的尺寸與第2節碳器的尺寸的合計)之大型化,且可利用閃蒸槽提高熱媒體的熱利用的效率。藉此,可抑制排熱回收廠的大型化,且可提高排熱回收廠之熱利用效率。 According to the exhaust heat recovery plant described in the above (28), since the steam generator of any one of the above (1) to (27) is provided, the size of the carbon economizer (the size of the first carbon economizer and the size of the carbon economizer) can be suppressed. The total size of the two carbon sections) can be increased in size, and the efficiency of heat utilization of the heat medium can be improved by using the flash tank. Thereby, the enlargement of the exhaust heat recovery plant can be suppressed, and the heat utilization efficiency of the exhaust heat recovery plant can be improved.
(29)本發明的一個實施方式相關之複合工廠(2),係具備: 上述(28)中所述之排熱回收廠、及原動機(4)、鍋爐或燃料電池;前述蒸氣利用設備包含蒸氣渦輪機(102,104,106);前述熱媒體為前述原動機的排氣氣體、前述鍋爐的排氣氣體或前述燃料電池的排氣氣體。 (29) The compound factory (2) related to one embodiment of the present invention is provided with: The exhaust heat recovery plant described in the above (28), and the prime mover (4), the boiler or the fuel cell; the aforementioned steam utilization equipment includes steam turbines (102, 104, 106); the aforementioned heat medium is the exhaust gas of the aforementioned prime mover, the aforementioned exhaust gas of the aforementioned boiler gas or the exhaust gas of the aforementioned fuel cell.
根據上述(29)所述之蒸氣產生裝置,可將原動機的排氣氣體、鍋爐的排氣氣體或燃料電池的排氣氣體之熱能以排熱回收廠高效率地回收。又,除可降低蒸氣渦輪機的下游段之潤濕度,抑制渦輪機翼的腐蝕之外,還可提高蒸氣渦輪機的效率。 According to the steam generator described in the above (29), the heat energy of the exhaust gas of the prime mover, the exhaust gas of the boiler, or the exhaust gas of the fuel cell can be efficiently recovered by the exhaust heat recovery plant. In addition, the wettability of the downstream section of the steam turbine can be reduced, and the corrosion of the turbine airfoil can be suppressed, and the efficiency of the steam turbine can be improved.
(30)本發明的一個實施方式相關之汽電共生工廠(2),係具備:上述(28)所述之排熱回收廠、及原動機(4)、鍋爐或燃料電池;前述蒸氣利用設備係以將前述蒸氣作為熱源來利用之方式所構成,前述熱媒體為前述原動機的排氣氣體、前述鍋爐的排氣氣體或前述燃料電池的排氣氣體。 (30) A steam-electricity cogeneration plant (2) according to an embodiment of the present invention includes the exhaust heat recovery plant described in (28) above, a prime mover (4), a boiler or a fuel cell; the steam utilization facility is The steam is used as a heat source, and the heat medium is the exhaust gas of the prime mover, the exhaust gas of the boiler, or the exhaust gas of the fuel cell.
根據上述(30)所述之蒸氣產生裝置,可將原動機的排氣氣體、鍋爐的排氣氣體或燃料電池的排氣氣體之熱能以排熱回收廠高效率地回收。又,藉由將蒸氣產生裝置所產生之蒸氣作為熱源利用,可實現熱利用效率高的汽電共生工廠。 According to the steam generator described in the above (30), the heat energy of the exhaust gas of the prime mover, the exhaust gas of the boiler, or the exhaust gas of the fuel cell can be efficiently recovered by the exhaust heat recovery plant. Furthermore, by utilizing the steam generated by the steam generator as a heat source, a steam-electricity cogeneration plant with high heat utilization efficiency can be realized.
(31)本發明的一個實施方式相關之排熱回收 廠的改造方法,具有將配置於熱媒體流路(18)中之第1蒸發器(26)的下游側之節碳器(22,24,25)的數目增加至2個以上之步驟,及連接給水管線(52,27)與閃蒸槽(8)之步驟,該給水管線將前述2個以上的節碳器中相鄰之一對節碳器予以連接。 (31) Exhaust heat recovery related to one embodiment of the present invention A method for remodeling a plant, comprising the steps of increasing the number of carbon economizers (22, 24, 25) disposed on the downstream side of the first evaporator (26) in the heat medium flow path (18) to two or more, and The step of connecting the water supply pipeline (52, 27) and the flash tank (8), the water supply pipeline connects the adjacent one of the above two or more carbon economizers to the carbon economizer.
根據上述(31)所述之排熱回收廠的改造方法,與以1個節碳器將給水的溫度接近飽和蒸氣溫度的情況比較,可抑制節碳器的尺寸(第1節碳器的尺寸與第2節碳器的尺寸的合計)的大型化,且可使用閃蒸槽提高熱媒體的熱利用效率。 According to the modification method of the exhaust heat recovery plant described in the above (31), the size of the carbon economizer can be suppressed compared with the case where the temperature of the feed water is close to the saturated steam temperature with one economizer (the size of the first economizer). The size of the carbon device in the second section) can be increased, and the heat utilization efficiency of the heat medium can be improved by using a flash tank.
(32)本發明的一個實施方式相關之蒸氣產生方法,係具有:將由熱媒體流路(18)中所設之第1節碳器(22)加熱後的水,供給至於前述熱媒體流路的熱媒體的流動方向中設於前述第1節碳器的上游側的第2節碳器(24)之步驟;將由前述第2節碳器加熱後的水,供給至於前述熱媒體流路的熱媒體的流動方向中設於前述第2節碳器的上游側的第1蒸發器(26)之步驟,及將由前述第1節碳器加熱後的水,藉由自連接前述第1節碳器與前述第2節碳器之第1給水管線(52,27)分歧的第2給水管線(53,75,77)供給至熱利用設備(8,51,61,120,122,129,130,132)之步驟。 (32) A steam generating method according to an embodiment of the present invention, comprising: supplying the water heated by the first carbon block (22) provided in the heat medium flow path (18) to the heat medium flow path The step of providing the second carbon block (24) on the upstream side of the first carbon block in the flow direction of the heat medium; the water heated by the second carbon block is supplied to the heat medium flow path. In the flow direction of the heat medium, the first evaporator (26) is provided on the upstream side of the second carbon section, and the water heated by the first carbon section is connected to the first section carbon device by self-connection. The second water supply pipeline (53, 75, 77) branched from the first water supply pipeline (52, 27) of the carbon device in the second section above is supplied to the heat utilization equipment (8, 51, 61, 120, 122, 129, 130, 132).
根據上述(32)所述之蒸氣產生方法,由第1 節碳器加熱後之水,係藉由自連接第1節碳器與第2節碳器的第1給水管線分歧之第2給水管線而供給至熱利用設備,第2節碳器的流量較第1節碳器的流量變少。因此,即使因應供給至熱利用設備之給水的流量第1節碳器的給水流量增多,仍可以較小之第2節碳器使給水的溫度高效率地接近飽和蒸氣溫度。因此,與以1個節碳器使給水的溫度接近飽和蒸氣溫度之情況比較,可抑制節碳器的尺寸(第1節碳器的尺寸與第2節碳器的尺寸的合計)之大型化,可使用熱利用設備提高熱媒體的熱利用效率。 According to the steam generating method described in the above (32), from the first The water heated by the carbon economizer is supplied to the heat utilization equipment through the second water supply pipeline that is branched from the first water supply pipeline connecting the first carbon device and the second carbon device. The flow rate of the second carbon device is higher than The flow rate of the 1st carbon device is reduced. Therefore, even if the feed water flow rate of the first stage carbonizer increases according to the flow rate of the feedwater supplied to the heat utilization equipment, the temperature of the feed water can be efficiently approached to the saturated steam temperature with the smaller second stage carbonizer. Therefore, the size of the carbon economizer (the sum of the size of the 1st economizer and the size of the 2nd economizer) can be suppressed from increasing in size compared with the case where the temperature of the feed water is made closer to the saturated steam temperature by one economizer , you can use heat utilization equipment to improve the heat utilization efficiency of the heat medium.
2(2A):複合工廠 2(2A): Compound Factory
4:燃氣渦輪機 4: Gas Turbine
5:排熱回收鍋爐 5: Exhaust heat recovery boiler
6(6A):蒸氣產生裝置 6(6A): Steam generating device
8:閃蒸槽 8: Flash tank
9:煙囪 9: Chimney
12:壓縮機 12: Compressor
14:燃燒器 14: Burner
16:渦輪機 16: Turbine
18:排氣氣體流路 18: Exhaust gas flow path
19:發電機 19: Generator
20:熱交換器 20: Heat Exchanger
22:第1低壓節碳器 22: 1st low pressure carbon saver
24:第2低壓節碳器 24: 2nd low pressure carbon saver
26:低壓蒸發器 26: Low pressure evaporator
28:低壓過熱器 28: Low pressure superheater
30:第1高壓節碳器 30: 1st high pressure carbon saver
32:中壓蒸發器 32: Medium pressure evaporator
34:中壓過熱器 34: Medium pressure superheater
36:第2高壓節碳器 36: 2nd high pressure carbon saver
38:高壓蒸發器 38: High pressure evaporator
40:第1高壓過熱器 40: 1st high pressure superheater
42:第1再熱器 42: 1st reheater
44:第2高壓過熱器 44: 2nd high pressure superheater
46:第2再熱器 46: 2nd reheater
48,52,53,54,60:給水管線 48, 52, 53, 54, 60: Water supply lines
50:冷凝水泵 50: Condensate pump
51:冷凝水管線 51: Condensate line
55,65,77:給水閥 55, 65, 77: Feed valve
56,57,58:蒸氣管線 56, 57, 58: Vapor Lines
59:減壓閥 59: Pressure reducing valve
61:給水泵 61: Feed water pump
62:中壓給水泵 62: Medium pressure feed pump
64,70,74,76:給水管線 64,70,74,76: Water supply lines
72:高壓給水泵 72: High pressure feed pump
78,80:蒸氣管線 78,80: Vapor Lines
81,83:減溫器 81,83: Desuperheater
82:再熱蒸氣管線 82: Reheat steam line
97:蒸氣管線 97: Vapor Line
98:再熱蒸氣管線 98: Reheat steam line
100:蒸氣渦輪機系統 100: Steam Turbine Systems
102:高壓蒸氣渦輪機 102: High Pressure Steam Turbines
104:中壓蒸氣渦輪機 104: Intermediate pressure steam turbines
106:低壓蒸氣渦輪機 106: Low Pressure Steam Turbines
108:冷凝器 108: Condenser
110:中壓排氣管線 110: Medium pressure exhaust line
112:低壓排氣管線 112: Low pressure exhaust line
114:高壓排氣管線 114: High pressure exhaust line
200:排熱回收廠 200: Exhaust heat recovery plant
205,206:流量調整閥 205, 206: Flow adjustment valve
Claims (28)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-214824 | 2019-11-28 | ||
JP2019214824A JP7465650B2 (en) | 2019-11-28 | 2019-11-28 | Steam generators and waste heat recovery plants |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202136685A TW202136685A (en) | 2021-10-01 |
TWI768565B true TWI768565B (en) | 2022-06-21 |
Family
ID=76088002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109141524A TWI768565B (en) | 2019-11-28 | 2020-11-26 | Steam generator, exhaust heat recovery plant, compound plant, steam-electricity cogeneration plant |
Country Status (5)
Country | Link |
---|---|
US (1) | US11834968B2 (en) |
EP (1) | EP4067738B1 (en) |
JP (1) | JP7465650B2 (en) |
TW (1) | TWI768565B (en) |
WO (1) | WO2021106986A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12031457B2 (en) * | 2022-10-25 | 2024-07-09 | Ge Infrastructure Technology Llc | Combined cycle power plant having reduced parasitic pumping losses |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105673210A (en) * | 2016-02-26 | 2016-06-15 | 中国人民解放军总后勤部建筑工程研究所 | Electricity-heat-cold united supply unit for micro gas turbine |
JP2019044678A (en) * | 2017-08-31 | 2019-03-22 | 三菱重工業株式会社 | Steam turbine system and combined cycle plant |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06146815A (en) | 1992-11-09 | 1994-05-27 | Mitsubishi Heavy Ind Ltd | Gas turbine composite power generator |
JP3913328B2 (en) * | 1997-08-26 | 2007-05-09 | 株式会社東芝 | Operation method of combined cycle power plant and combined cycle power plant |
JP2004027886A (en) | 2002-06-24 | 2004-01-29 | Toshiba Corp | Method for starting multi-axis combined cycle plant |
US20100031933A1 (en) | 2008-08-05 | 2010-02-11 | Prakash Narayan | System and assemblies for hot water extraction to pre-heat fuel in a combined cycle power plant |
US20100305768A1 (en) * | 2009-06-01 | 2010-12-02 | General Electric Company | Control for improved thermal performance of a steam turbine at partial load |
US8813471B2 (en) | 2011-06-29 | 2014-08-26 | General Electric Company | System for fuel gas moisturization and heating |
US9429044B2 (en) * | 2012-01-13 | 2016-08-30 | Alstom Technology Ltd | Supercritical heat recovery steam generator reheater and supercritical evaporator arrangement |
US20150240667A1 (en) * | 2014-02-26 | 2015-08-27 | General Electric Company | Exhaust plenum for radial diffuser |
JP6267028B2 (en) * | 2014-03-24 | 2018-01-24 | 三菱日立パワーシステムズ株式会社 | Exhaust heat recovery device, gas turbine plant equipped with the same, and exhaust heat recovery method |
JP6516993B2 (en) * | 2014-09-26 | 2019-05-22 | 三菱日立パワーシステムズ株式会社 | Combined cycle plant and boiler steam cooling method |
JP2017040201A (en) | 2015-08-19 | 2017-02-23 | 株式会社東芝 | Power generation system and operation method for same |
EP3486440B1 (en) | 2017-11-21 | 2022-11-09 | Siemens Energy Global GmbH & Co. KG | Heat recovery steam generator, method for generating steam for a steam turbine and system comprising a steam turbine and a heat recovery steam generator |
-
2019
- 2019-11-28 JP JP2019214824A patent/JP7465650B2/en active Active
-
2020
- 2020-11-26 EP EP20891564.5A patent/EP4067738B1/en active Active
- 2020-11-26 WO PCT/JP2020/043958 patent/WO2021106986A1/en unknown
- 2020-11-26 US US17/778,982 patent/US11834968B2/en active Active
- 2020-11-26 TW TW109141524A patent/TWI768565B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105673210A (en) * | 2016-02-26 | 2016-06-15 | 中国人民解放军总后勤部建筑工程研究所 | Electricity-heat-cold united supply unit for micro gas turbine |
JP2019044678A (en) * | 2017-08-31 | 2019-03-22 | 三菱重工業株式会社 | Steam turbine system and combined cycle plant |
Also Published As
Publication number | Publication date |
---|---|
EP4067738B1 (en) | 2024-03-13 |
US11834968B2 (en) | 2023-12-05 |
US20230022466A1 (en) | 2023-01-26 |
WO2021106986A1 (en) | 2021-06-03 |
TW202136685A (en) | 2021-10-01 |
JP2021085608A (en) | 2021-06-03 |
JP7465650B2 (en) | 2024-04-11 |
EP4067738A4 (en) | 2023-01-18 |
EP4067738A1 (en) | 2022-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7874162B2 (en) | Supercritical steam combined cycle and method | |
US11274575B2 (en) | Gas turbine plant and operation method therefor | |
US20140033676A1 (en) | Unique method of solar integration in combined cycle power plant | |
UA61957C2 (en) | Method for obtaining energy from the exhaust gas of gas turbine, method and system of regeneration of energy of the exhaust gas heat | |
JP2012149541A (en) | Exhaust heat recovery power generating apparatus and marine vessel | |
US11300010B2 (en) | Cooling equipment, combined cycle plant comprising same, and cooling method | |
US20110099972A1 (en) | Method of increasing power output of a combined cycle power plant during select operating periods | |
US20170002695A1 (en) | Organic rankine binary cycle power generation system | |
US9279347B2 (en) | High temperature ORC system | |
US11708773B2 (en) | Plant and operation method therefor | |
WO2002040916A2 (en) | Gas pipeline compressor stations with kalina cycles® | |
JP4794229B2 (en) | Gas turbine power generator and gas turbine combined power generation system | |
US20190323384A1 (en) | Boilor plant and method for operating the same | |
US10900418B2 (en) | Fuel preheating system for a combustion turbine engine | |
TWI768565B (en) | Steam generator, exhaust heat recovery plant, compound plant, steam-electricity cogeneration plant | |
JP4999992B2 (en) | Gas turbine combined power generation system | |
KR20190052118A (en) | Heat exchange systems, cooling systems and cooling methods for gas turbines and gas turbine systems | |
CN105765179A (en) | Selective pressure kettle boiler for rotor air cooling applications | |
US11629618B2 (en) | Combined cycle power plant having serial heat exchangers | |
KR20190032841A (en) | Rankine cycle-based heat engine using ejector for waste heat recovery and method for operating the same heat engine | |
JP7121185B2 (en) | Power plant including natural gas regasification | |
KR20140085003A (en) | Energy saving system for using waste heat of ship | |
JP2001214758A (en) | Gas turbine combined power generation plant facility | |
CN117803911A (en) | Heating system for realizing deep decoupling of machine furnace and operation method | |
JP2020176557A (en) | Power generation plant and heat exchange system |