TWI767850B - Anti-fuse device and manufacturing method thereof - Google Patents

Anti-fuse device and manufacturing method thereof Download PDF

Info

Publication number
TWI767850B
TWI767850B TW110137070A TW110137070A TWI767850B TW I767850 B TWI767850 B TW I767850B TW 110137070 A TW110137070 A TW 110137070A TW 110137070 A TW110137070 A TW 110137070A TW I767850 B TWI767850 B TW I767850B
Authority
TW
Taiwan
Prior art keywords
contact window
opening
layer
doped region
antifuse
Prior art date
Application number
TW110137070A
Other languages
Chinese (zh)
Other versions
TW202316439A (en
Inventor
魏宏諭
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW110137070A priority Critical patent/TWI767850B/en
Application granted granted Critical
Publication of TWI767850B publication Critical patent/TWI767850B/en
Publication of TW202316439A publication Critical patent/TW202316439A/en

Links

Images

Landscapes

  • Design And Manufacture Of Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Fuses (AREA)
  • Auxiliary Devices For And Details Of Packaging Control (AREA)

Abstract

An anti-fuse device including a substrate, a doped region, a dielectric layer, a first contact, an anti-fuse material layer, and a second contact is provided. The doped region is located in the substrate. The dielectric layer is located on the substrate and has a first opening and a second opening. The first opening and the second opening respectively expose the doped region. The first contact is located in the first opening. The anti-fuse material layer is located between the first contact and the doped region. The second contact is located in the second opening and is electrically connected to the doped region.

Description

反熔絲元件及其製造方法Antifuse element and method of making the same

本發明實施例是有關於一種半導體元件及其製造方法,且特別是有關於一種反熔絲(anti-fuse)元件及其製造方法。Embodiments of the present invention relate to a semiconductor device and a method for manufacturing the same, and more particularly, to an anti-fuse device and a method for fabricating the same.

目前發展出一種反熔絲元件,其具有反熔絲材料層。在初始狀態,反熔絲材料層具有高阻值,且反熔絲元件處於斷路狀態。在對反熔絲元件進行操作時,反熔絲材料層會產生崩潰(breakdown)而形成導電路徑,且反熔絲元件處於短路狀態。目前常見的反熔絲元件是藉由閘極來進行操作。然而,由於閘極與反熔絲材料層的接觸面積大,因此反熔絲材料層產生崩潰的位置的不確定性高。如此一來,在反熔絲材料層崩潰後,反熔絲元件的阻值的不確定性高,因此容易產生資料的誤判。An antifuse element has been developed that has a layer of antifuse material. In the initial state, the anti-fuse material layer has a high resistance value, and the anti-fuse element is in an open state. When the anti-fuse element is operated, the anti-fuse material layer breaks down to form a conductive path, and the anti-fuse element is in a short-circuit state. The current common anti-fuse element operates through the gate. However, since the contact area between the gate electrode and the antifuse material layer is large, the uncertainty of the position where the collapse of the antifuse material layer occurs is high. As a result, after the anti-fuse material layer collapses, the uncertainty of the resistance value of the anti-fuse element is high, so that misjudgment of data is likely to occur.

本發明提供一種反熔絲元件及其製造方法,其可防止資料的誤判。The present invention provides an anti-fuse element and a manufacturing method thereof, which can prevent misjudgment of data.

本發明提出一種反熔絲元件,包括基底、摻雜區、介電層、第一接觸窗、反熔絲材料層與第二接觸窗。摻雜區位在基底中。介電層位在基底上,且具有第一開口與第二開口。第一開口與第二開口分別暴露出摻雜區。第一接觸窗位在第一開口中。反熔絲材料層位在第一接觸窗與摻雜區之間。第二接觸窗位在第二開口中,且電性連接至摻雜區。The present invention provides an anti-fuse element, which includes a substrate, a doped region, a dielectric layer, a first contact window, an anti-fuse material layer and a second contact window. The doped regions are located in the substrate. The dielectric layer is located on the substrate and has a first opening and a second opening. The first opening and the second opening respectively expose the doped regions. The first contact window level is in the first opening. The antifuse material layer is located between the first contact window and the doped region. The second contact window level is in the second opening and is electrically connected to the doped region.

本發明提出一種反熔絲元件的製造方法,包括以下步驟。提供基底。在基底中形成摻雜區。在基底上形成介電層。在介電層中形成第一開口。第一開口暴露出摻雜區。在第一開口中形成反熔絲材料層。在第一開口中形成第一接觸窗。第一接觸窗位在反熔絲材料層上。在介電層中形成第二開口。第二開口暴露出摻雜區。在第二開口中形成第二接觸窗。第二接觸窗電性連接至摻雜區。The present invention provides a method for manufacturing an anti-fuse element, which includes the following steps. Provide a base. A doped region is formed in the substrate. A dielectric layer is formed on the substrate. A first opening is formed in the dielectric layer. The first opening exposes the doped region. A layer of antifuse material is formed in the first opening. A first contact window is formed in the first opening. The first contact window level is on the layer of antifuse material. A second opening is formed in the dielectric layer. The second opening exposes the doped region. A second contact window is formed in the second opening. The second contact window is electrically connected to the doped region.

基於上述,在本發明所提出的反熔絲元件及其製造方法中,由於第一接觸窗是形成在第一開口中,所以可藉由控制第一開口的尺寸來縮小第一接觸窗與反熔絲材料層的接觸面積。因此,在對反熔絲元件進行操作時,可使得反熔絲材料層的崩潰部分收斂且集中在較小的範圍,藉此可降低反熔絲元件的阻值的不確定性,以防止資料的誤判。此外,由於反熔絲元件是藉由在第一接觸窗與第二接觸窗施加電壓來進行操作,所以反熔絲元件可不具有閘極,藉此反熔絲元件可具有較小的元件面積,進而可提升元件密度。Based on the above, in the anti-fuse element and the manufacturing method thereof proposed by the present invention, since the first contact window is formed in the first opening, the size of the first opening can be controlled to reduce the size of the first contact window and the anti-fuse. The contact area of the fuse material layer. Therefore, when the anti-fuse element is operated, the collapsed portion of the anti-fuse material layer can be converged and concentrated in a small range, thereby reducing the uncertainty of the resistance value of the anti-fuse element, so as to prevent data misjudgment. In addition, since the anti-fuse element operates by applying a voltage to the first contact window and the second contact window, the anti-fuse element may not have a gate, whereby the anti-fuse element may have a smaller element area, Thus, the component density can be increased.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,幷配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.

圖1A至圖1I為根據本發明一實施例的反熔絲元件的製造流程上視圖。圖2A至圖2I為沿著圖1A至圖1I中的I-I’剖面線的剖面圖。請參照圖1A與圖2A,提供基底100。基底100可為半導體基底,如矽基底。此外,可在基底100中形成井區102。井區102的形成方法例如是離子植入法。另外,可在基底100中形成隔離結構104。隔離結構104例如是淺溝渠隔離結構。隔離結構104的材料例如是氧化物(如,氧化矽)。接著,在基底100中形成摻雜區106。隔離結構104可圍繞摻雜區106(圖1A)。在一些實施例中,摻雜區106可形成在井區102中。摻雜區106的形成方法例如是離子植入法。摻雜區106與井區102可具有不同導電型。舉例來說,摻雜區106與井區102可分別為N型導電型與P型導電型中的一者與另一者。1A to 1I are top views of a manufacturing process of an antifuse element according to an embodiment of the present invention. 2A to 2I are cross-sectional views along the line I-I' in FIGS. 1A to 1I . Referring to FIG. 1A and FIG. 2A , a substrate 100 is provided. The substrate 100 may be a semiconductor substrate, such as a silicon substrate. Additionally, well regions 102 may be formed in the substrate 100 . The formation method of the well region 102 is, for example, an ion implantation method. Additionally, isolation structures 104 may be formed in the substrate 100 . The isolation structure 104 is, for example, a shallow trench isolation structure. The material of the isolation structure 104 is, for example, oxide (eg, silicon oxide). Next, doped regions 106 are formed in the substrate 100 . Isolation structures 104 may surround doped regions 106 (FIG. 1A). In some embodiments, doped region 106 may be formed in well region 102 . The formation method of the doped region 106 is, for example, an ion implantation method. The doped region 106 and the well region 102 may have different conductivity types. For example, the doped region 106 and the well region 102 may be of one and the other of an N-type conductivity type and a P-type conductivity type, respectively.

請參照圖1B與圖2B,在基底100上形成介電層108。介電層108的材料例如是氧化物(如,氧化矽)。介電層108的形成方法例如是化學氣相沉積法。在一些實施例中,可對介電層108進行化學機械研磨製程,以使得介電層108的表面平坦化。Referring to FIG. 1B and FIG. 2B , a dielectric layer 108 is formed on the substrate 100 . The material of the dielectric layer 108 is, for example, oxide (eg, silicon oxide). The formation method of the dielectric layer 108 is, for example, a chemical vapor deposition method. In some embodiments, a chemical mechanical polishing process may be performed on the dielectric layer 108 to planarize the surface of the dielectric layer 108 .

請參照圖1C與圖2C,可在介電層108上形成圖案化硬罩幕層110。圖案化硬罩幕層110可暴露出部分介電層108。圖案化硬罩幕層110的材料例如是氮化物(如,氮化矽)。圖案化硬罩幕層110可藉由沉積製程、微影製程與蝕刻製程來形成。Referring to FIGS. 1C and 2C , a patterned hard mask layer 110 may be formed on the dielectric layer 108 . The patterned hard mask layer 110 may expose portions of the dielectric layer 108 . The material of the patterned hard mask layer 110 is, for example, nitride (eg, silicon nitride). The patterned hard mask layer 110 can be formed by a deposition process, a lithography process and an etching process.

接著,可藉由圖案化硬罩幕層110作為罩幕,移除由圖案化硬罩幕層110所暴露出的部分介電層108。藉此,可在介電層108中形成開口OP1。開口OP1暴露出摻雜區106。在本實施例中,可進行過蝕刻製程(over etching process),以移除部分摻雜區106,而使得開口OP1的底部的剖面形狀成為弧狀(圖2C)。在另一些實施例中,可不進行過蝕刻製程,且開口OP1的底部的剖面形狀可為平坦狀。由圖案化硬罩幕層110所暴露出的部分介電層108的移除方法例如是乾式蝕刻法。Next, a portion of the dielectric layer 108 exposed by the patterned hard mask layer 110 may be removed by using the patterned hard mask layer 110 as a mask. Thereby, the opening OP1 can be formed in the dielectric layer 108 . The opening OP1 exposes the doped region 106 . In this embodiment, an over etching process may be performed to remove part of the doped region 106 , so that the cross-sectional shape of the bottom of the opening OP1 becomes an arc shape ( FIG. 2C ). In other embodiments, the over-etching process may not be performed, and the cross-sectional shape of the bottom of the opening OP1 may be flat. The removal method of the portion of the dielectric layer 108 exposed by the patterned hard mask layer 110 is, for example, dry etching.

請參照圖1D與圖2D,在開口OP1中形成反熔絲材料層112。反熔絲材料層112可直接形成在摻雜區106上。反熔絲材料層112的材料例如是氧化物(如,氧化矽)。反熔絲材料層112的形成方法例如是熱氧化法或電漿氧化法。Referring to FIG. 1D and FIG. 2D, an anti-fuse material layer 112 is formed in the opening OP1. Antifuse material layer 112 may be formed directly on doped region 106 . The material of the antifuse material layer 112 is, for example, oxide (eg, silicon oxide). The formation method of the antifuse material layer 112 is, for example, a thermal oxidation method or a plasma oxidation method.

請參照圖1E與圖2E,可在圖案化硬罩幕層110上形成圖案化硬罩幕層114。圖案化硬罩幕層114可填入開口OP1中。圖案化硬罩幕層114的材料例如是氮化物(如,氮化矽)。圖案化硬罩幕層114可藉由沉積製程、微影製程與蝕刻製程來形成。在一些實施例中,可移除由圖案化硬罩幕層114所暴露出的部分圖案化硬罩幕層110,而暴露出部分介電層108。接著,可藉由圖案化硬罩幕層114與圖案化硬罩幕層110作為罩幕,移除由圖案化硬罩幕層114與圖案化硬罩幕層110所暴露出的部分介電層108。藉此,可在介電層108中形成開口OP2。開口OP2暴露出摻雜區106。在本實施例中,可進行過蝕刻製程,以移除部分摻雜區106,而使得開口OP2的底部的剖面形狀成為弧狀(圖2E)。在另一些實施例中,可不進行過蝕刻製程,且開口OP2的底部可為平坦狀。由圖案化硬罩幕層114與圖案化硬罩幕層110所暴露出的部分介電層108的移除方法例如是乾式蝕刻法。Referring to FIGS. 1E and 2E , a patterned hard mask layer 114 may be formed on the patterned hard mask layer 110 . The patterned hard mask layer 114 may fill the opening OP1. The material of the patterned hard mask layer 114 is, for example, nitride (eg, silicon nitride). The patterned hard mask layer 114 can be formed by a deposition process, a lithography process, and an etching process. In some embodiments, portions of the patterned hard mask layer 110 exposed by the patterned hard mask layer 114 may be removed to expose portions of the dielectric layer 108 . Next, the part of the dielectric layer exposed by the patterned hard mask layer 114 and the patterned hard mask layer 110 can be removed by using the patterned hard mask layer 114 and the patterned hard mask layer 110 as masks. 108. Thereby, the opening OP2 can be formed in the dielectric layer 108 . The opening OP2 exposes the doped region 106 . In this embodiment, an over-etching process may be performed to remove part of the doped region 106, so that the cross-sectional shape of the bottom of the opening OP2 becomes an arc shape (FIG. 2E). In other embodiments, the over-etching process may not be performed, and the bottom of the opening OP2 may be flat. The removal method of the portion of the dielectric layer 108 exposed by the patterned hard mask layer 114 and the patterned hard mask layer 110 is, for example, dry etching.

請參照圖1F與圖2F,可在開口OP2所暴露出的摻雜區106上直接形成金屬矽化物層116。金屬矽化物層116的材料例如是矽化鈷(CoSi)或矽化鎳(NiSi)。金屬矽化物層116的形成方法例如是進行自對準金屬矽化物製程。Referring to FIGS. 1F and 2F, a metal silicide layer 116 may be directly formed on the doped region 106 exposed by the opening OP2. The material of the metal silicide layer 116 is, for example, cobalt silicide (CoSi) or nickel silicide (NiSi). The formation method of the metal silicide layer 116 is, for example, a self-aligned metal silicide process.

請參照圖1G與圖2G,可移除圖案化硬罩幕層114與圖案化硬罩幕層110。圖案化硬罩幕層114與圖案化硬罩幕層110的移除方法例如是濕式蝕刻法。Referring to FIGS. 1G and 2G , the patterned hard mask layer 114 and the patterned hard mask layer 110 can be removed. The removal method of the patterned hard mask layer 114 and the patterned hard mask layer 110 is, for example, a wet etching method.

請參照圖1H與圖2H,在開口OP1中形成接觸窗118。接觸窗118位在反熔絲材料層112上。接觸窗118可直接接觸反熔絲材料層112。在本實施例中,由於開口OP1的底部的剖面形狀為弧狀,因此接觸窗118與反熔絲材料層112的界面的剖面形狀可為弧狀。在另一些實施例中,當開口OP1的底部的剖面形狀為平坦狀時,接觸窗118與反熔絲材料層112的界面的剖面形狀可為平坦狀。接觸窗118可為單層結構或多層結構。在本實施例中,接觸窗118是以包括導體層120與阻障層122的多層結構為例。導體層120位在開口OP1中。導體層120的材料例如是鎢或鋁。阻障層122位在導體層120與反熔絲材料層112之間且位在導體層120與介電層108之間。阻障層122的材料例如是鈦、氮化鈦或其組合。Referring to FIG. 1H and FIG. 2H , a contact window 118 is formed in the opening OP1 . Contacts 118 are located on layer 112 of antifuse material. The contact window 118 may directly contact the antifuse material layer 112 . In this embodiment, since the cross-sectional shape of the bottom of the opening OP1 is an arc shape, the cross-sectional shape of the interface between the contact window 118 and the anti-fuse material layer 112 can be an arc shape. In other embodiments, when the cross-sectional shape of the bottom of the opening OP1 is flat, the cross-sectional shape of the interface between the contact window 118 and the anti-fuse material layer 112 may be flat. The contact window 118 may be a single-layer structure or a multi-layer structure. In this embodiment, the contact window 118 is a multi-layer structure including the conductor layer 120 and the barrier layer 122 as an example. The conductor layer 120 is located in the opening OP1. The material of the conductor layer 120 is, for example, tungsten or aluminum. The barrier layer 122 is located between the conductor layer 120 and the antifuse material layer 112 and between the conductor layer 120 and the dielectric layer 108 . The material of the barrier layer 122 is, for example, titanium, titanium nitride, or a combination thereof.

此外,在開口OP2中形成接觸窗124。接觸窗124可形成在金屬矽化物層116上。接觸窗124可直接接觸金屬矽化物層116。接觸窗124電性連接至摻雜區106。在本實施例中,接觸窗124可藉由金屬矽化物層116來電性連接至摻雜區106。接觸窗118可為單層結構或多層結構。在本實施例中,接觸窗124是以包括導體層126與阻障層128的多層結構為例。導體層126位在開口OP2中。導體層126的材料例如是鎢。阻障層128位在導體層126與金屬矽化物層116之間且位在導體層126與介電層108之間。阻障層128的材料例如是鈦、氮化鈦或其組合。In addition, a contact window 124 is formed in the opening OP2. Contacts 124 may be formed on metal silicide layer 116 . The contact window 124 may directly contact the metal silicide layer 116 . The contact window 124 is electrically connected to the doped region 106 . In this embodiment, the contact window 124 can be electrically connected to the doped region 106 through the metal silicide layer 116 . The contact window 118 may be a single-layer structure or a multi-layer structure. In this embodiment, the contact window 124 is a multi-layer structure including the conductor layer 126 and the barrier layer 128 as an example. The conductor layer 126 is located in the opening OP2. The material of the conductor layer 126 is, for example, tungsten. The barrier layer 128 is located between the conductor layer 126 and the metal silicide layer 116 and between the conductor layer 126 and the dielectric layer 108 . The material of the barrier layer 128 is, for example, titanium, titanium nitride, or a combination thereof.

在本實施例中,接觸窗118與接觸窗124可由相同製程同時形成。在一些實施例中,接觸窗118與接觸窗124的形成方法例如是先形成填入開口OP1與開口OP2中的接觸窗材料層(未示出),再藉由化學機械研磨法移除位在開口OP1與開口OP2的外部的接觸窗材料層。In this embodiment, the contact windows 118 and the contact windows 124 can be formed simultaneously by the same process. In some embodiments, the contact window 118 and the contact window 124 are formed by, for example, firstly forming a contact window material layer (not shown) filled in the opening OP1 and the opening OP2, and then removing the contact window material layer (not shown) by chemical mechanical polishing. A contact window material layer on the outside of the opening OP1 and the opening OP2.

請參照圖1I與圖2I,可在介電層108上形成導線130與導線132。導線130與導線132分別電性連接至接觸窗118與接觸窗124。導線130與導線132可為單層結構或多層結構。在本實施例中,導線130與導線132是以多層結構為例。舉例來說,導線130可包括導體層134與阻障層136,且導線132可包括導體層138與阻障層140。導體層134位在介電層108與接觸窗118上。阻障層136位在導體層134與介電層108之間且位在導體層134與接觸窗118之間。導體層138位在介電層108與接觸窗124上。阻障層140位在導體層138與介電層108之間且位在導體層138與接觸窗124之間。導體層134與導體層138的材料例如是鎢或鋁。阻障層136與阻障層140的材料例如是鈦、氮化鈦或其組合。導線130與導線132可藉由沉積製程、微影製程與蝕刻製程來形成。Referring to FIG. 1I and FIG. 2I , wires 130 and wires 132 may be formed on the dielectric layer 108 . The wire 130 and the wire 132 are electrically connected to the contact window 118 and the contact window 124, respectively. The wire 130 and the wire 132 may be a single-layer structure or a multi-layer structure. In this embodiment, the wires 130 and the wires 132 are multi-layered structures as an example. For example, the wire 130 may include a conductor layer 134 and a barrier layer 136 , and the wire 132 may include a conductor layer 138 and a barrier layer 140 . The conductor layer 134 is located on the dielectric layer 108 and the contact window 118 . The barrier layer 136 is located between the conductor layer 134 and the dielectric layer 108 and between the conductor layer 134 and the contact window 118 . The conductor layer 138 is located on the dielectric layer 108 and the contact window 124 . The barrier layer 140 is located between the conductor layer 138 and the dielectric layer 108 and between the conductor layer 138 and the contact window 124 . The material of the conductor layer 134 and the conductor layer 138 is, for example, tungsten or aluminum. The material of the barrier layer 136 and the barrier layer 140 is, for example, titanium, titanium nitride or a combination thereof. The wires 130 and 132 can be formed by a deposition process, a lithography process and an etching process.

以下,藉由圖1I與圖2I來說明本實施例的反熔絲元件10a。此外,雖然反熔絲元件10a的形成方法是以上述方法為例來進行說明,但本發明並不以此為限。Hereinafter, the antifuse element 10a of this embodiment will be described with reference to FIG. 1I and FIG. 2I. In addition, although the method for forming the antifuse element 10a is described by taking the above method as an example, the present invention is not limited thereto.

請參照圖1I與圖2I,反熔絲元件10a包括基底100、摻雜區106、介電層108、接觸窗118、反熔絲材料層112與接觸窗124。在本實施例中,反熔絲元件10a可應用於一次可程式(one time programmable,OTP)記憶體。摻雜區106位在基底100中。介電層108位在基底100上,且具有開口OP1與開口OP2。開口OP1與開口OP2分別暴露出摻雜區106。接觸窗118位在開口OP1中。反熔絲材料層112位在接觸窗118與摻雜區106之間。反熔絲材料層112可直接位在摻雜區106上。接觸窗124位在開口OP2中,且電性連接至摻雜區106。接觸窗118的垂直投影與接觸窗124的垂直投影可均位在摻雜區106上。此外,反熔絲元件10a更可包括井區102、隔離結構104、金屬矽化物層116、導線130與導線132中的至少一者。井區102位在基底100中。摻雜區106可位在井區102中。摻雜區106與井區102可具有不同導電型。隔離結構104位在基底100中,且圍繞摻雜區106(圖1A)。金屬矽化物層116位在接觸窗124與摻雜區106之間。金屬矽化物層116可直接位在摻雜區106上。導線130與導線132分別電性連接至接觸窗118與接觸窗124。Referring to FIGS. 1I and 2I , the anti-fuse element 10 a includes a substrate 100 , a doped region 106 , a dielectric layer 108 , a contact window 118 , an anti-fuse material layer 112 and a contact window 124 . In this embodiment, the anti-fuse element 10a can be applied to a one time programmable (OTP) memory. The doped regions 106 are in the substrate 100 . The dielectric layer 108 is located on the substrate 100 and has an opening OP1 and an opening OP2. The openings OP1 and OP2 respectively expose the doped regions 106 . The contact window 118 is located in the opening OP1. A layer 112 of antifuse material is located between the contact window 118 and the doped region 106 . The antifuse material layer 112 may be directly on the doped region 106 . The contact window 124 is located in the opening OP2 and is electrically connected to the doped region 106 . The vertical projection of the contact window 118 and the vertical projection of the contact window 124 may be aligned on the doped region 106 . In addition, the antifuse element 10a may further include at least one of the well region 102 , the isolation structure 104 , the metal silicide layer 116 , the wires 130 and the wires 132 . The well region 102 is located in the substrate 100 . Doped region 106 may be located in well region 102 . The doped region 106 and the well region 102 may have different conductivity types. Isolation structures 104 are located in the substrate 100 and surround the doped regions 106 (FIG. 1A). The metal silicide layer 116 is located between the contact 124 and the doped region 106 . The metal silicide layer 116 may be directly on the doped region 106 . The wire 130 and the wire 132 are electrically connected to the contact window 118 and the contact window 124, respectively.

基於上述實施例可知,在反熔絲元件10a及其製造方法中,由於接觸窗118是形成在開口OP1中,所以可藉由控制開口OP1的尺寸來縮小接觸窗118與反熔絲材料層112的接觸面積。因此,在對反熔絲元件10a進行操作時,可使得反熔絲材料層112的崩潰部分收斂且集中在較小的範圍,藉此可降低反熔絲元件10a的阻值的不確定性,以防止資料的誤判。此外,由於反熔絲元件10a是藉由在接觸窗118與接觸窗124施加電壓來進行操作,所以反熔絲元件10a可不具有閘極,藉此反熔絲元件10a可具有較小的元件面積,進而可提升元件密度。在一些實施例中,當接觸窗118與反熔絲材料層112的界面的剖面形狀為弧狀時,電場可更加集中,藉此可使得反熔絲材料層112的崩潰部分更加收斂與集中。Based on the above embodiments, in the anti-fuse element 10a and the manufacturing method thereof, since the contact window 118 is formed in the opening OP1, the contact window 118 and the anti-fuse material layer 112 can be reduced by controlling the size of the opening OP1 contact area. Therefore, when the anti-fuse element 10a is operated, the collapsed portion of the anti-fuse material layer 112 can be converged and concentrated in a small range, thereby reducing the uncertainty of the resistance value of the anti-fuse element 10a, To prevent misjudgment of data. In addition, since the anti-fuse element 10a operates by applying a voltage to the contact window 118 and the contact window 124, the anti-fuse element 10a may not have a gate, whereby the anti-fuse element 10a may have a smaller device area , thereby increasing the component density. In some embodiments, when the cross-sectional shape of the interface between the contact window 118 and the antifuse material layer 112 is arc-shaped, the electric field can be more concentrated, thereby making the collapsed part of the antifuse material layer 112 more convergent and concentrated.

圖3為根據本發明另一實施例的反熔絲元件的的剖面圖。請參照圖2I與圖3,圖3的反熔絲元件10b與圖2I的反熔絲元件10a的差異說明如下。在圖2A至圖2I的實施例中,先形成開口OP1與反熔絲材料層112,再形成開口OP2與金屬矽化物層116。在圖3的實施例中,先形成開口OP1與金屬矽化物層116,再形成開口OP2與反熔絲材料層112。此外,圖3的反熔絲元件10b與圖2I的反熔絲元件10a中的相同構件以相同的符號表示,並省略其說明。3 is a cross-sectional view of an antifuse element according to another embodiment of the present invention. 2I and FIG. 3, the difference between the anti-fuse element 10b of FIG. 3 and the anti-fuse element 10a of FIG. 2I is described as follows. In the embodiment of FIGS. 2A to 2I , the opening OP1 and the anti-fuse material layer 112 are formed first, and then the opening OP2 and the metal silicide layer 116 are formed. In the embodiment of FIG. 3 , the opening OP1 and the metal silicide layer 116 are formed first, and then the opening OP2 and the anti-fuse material layer 112 are formed. In addition, the same components in the antifuse element 10b of FIG. 3 and the antifuse element 10a of FIG. 2I are denoted by the same symbols, and the description thereof will be omitted.

圖4A至圖4E為根據本發明另一實施例的反熔絲元件的製造流程上視圖。圖4A至圖4E為接續圖1D的步驟之後的製作流程剖面圖。圖5A至圖5E為沿著圖4A至圖4E中的II-II’剖面線的剖面圖。圖5A至圖5E為接續圖2D的步驟之後的製作流程剖面圖。4A to 4E are top views of a manufacturing process of an antifuse element according to another embodiment of the present invention. 4A to 4E are cross-sectional views of the manufacturing process following the steps of FIG. 1D . 5A to 5E are cross-sectional views along the line II-II' in FIGS. 4A to 4E . 5A to 5E are cross-sectional views of the manufacturing process following the steps of FIG. 2D .

請參照圖1D、圖2D、圖4A與圖5A,在形成反熔絲材料層112(圖1D與圖2D)之後,可移除圖案化硬罩幕層110(圖1D與圖2D)。圖案化硬罩幕層110的移除方法例如是濕式蝕刻法。接著,在開口OP1中形成接觸窗202。接觸窗202位在反熔絲材料層112上。接觸窗202可直接接觸反熔絲材料層112。在本實施例中,接觸窗202可包括導體層204與阻障層206。此外,關於接觸窗202的詳細內容可參考上述實施例中的接觸窗118(圖2H)的說明,於此不再說明。Referring to FIGS. 1D , 2D, 4A and 5A, after forming the antifuse material layer 112 ( FIGS. 1D and 2D ), the patterned hard mask layer 110 ( FIGS. 1D and 2D ) may be removed. The removal method of the patterned hard mask layer 110 is, for example, a wet etching method. Next, the contact window 202 is formed in the opening OP1. Contact window 202 is located on layer 112 of antifuse material. The contact window 202 may directly contact the antifuse material layer 112 . In this embodiment, the contact window 202 may include a conductor layer 204 and a barrier layer 206 . In addition, for the details of the contact window 202 , reference may be made to the description of the contact window 118 ( FIG. 2H ) in the above-mentioned embodiment, which will not be described herein again.

請參照圖4B與圖5B,可在介電層108上形成圖案化硬罩幕層208。圖案化硬罩幕層208可暴露出部分介電層108。圖案化硬罩幕層208的材料例如是氮化物(如,氮化矽)。圖案化硬罩幕層208可藉由沉積製程、微影製程與蝕刻製程來形成。Referring to FIGS. 4B and 5B , a patterned hard mask layer 208 may be formed on the dielectric layer 108 . The patterned hard mask layer 208 may expose portions of the dielectric layer 108 . The material of the patterned hard mask layer 208 is, for example, nitride (eg, silicon nitride). The patterned hard mask layer 208 can be formed by a deposition process, a lithography process, and an etching process.

接著,可藉由圖案化硬罩幕層208作為罩幕,移除由圖案化硬罩幕層208所暴露出的部分介電層108。藉此,可在介電層108中形成開口OP2。開口OP2暴露出摻雜區106。由圖案化硬罩幕層208所暴露出的部分介電層108的移除方法例如是乾式蝕刻法。Next, a portion of the dielectric layer 108 exposed by the patterned hard mask layer 208 may be removed by using the patterned hard mask layer 208 as a mask. Thereby, the opening OP2 can be formed in the dielectric layer 108 . The opening OP2 exposes the doped region 106 . The removal method of the portion of the dielectric layer 108 exposed by the patterned hard mask layer 208 is, for example, dry etching.

請參照圖4C與圖5C,可在開口OP2所暴露出的摻雜區106上直接形成金屬矽化物層210。金屬矽化物層210的材料例如是矽化鈷或矽化鎳。金屬矽化物層210的形成方法例如是進行自對準金屬矽化物製程。Referring to FIG. 4C and FIG. 5C , a metal silicide layer 210 may be directly formed on the doped region 106 exposed by the opening OP2 . The material of the metal silicide layer 210 is, for example, cobalt silicide or nickel silicide. The formation method of the metal silicide layer 210 is, for example, a self-aligned metal silicide process.

請參照圖4D與圖5D,可移除圖案化硬罩幕層208。圖案化硬罩幕層208的移除方法例如是濕式蝕刻法。Referring to FIGS. 4D and 5D , the patterned hard mask layer 208 can be removed. The removal method of the patterned hard mask layer 208 is, for example, a wet etching method.

接著,在開口OP2中形成接觸窗212。在本實施例中,接觸窗202與接觸窗212由不同製程分別形成。接觸窗212可形成在金屬矽化物層210上。接觸窗212可直接接觸金屬矽化物層210。接觸窗212電性連接至摻雜區106。在本實施例中,接觸窗212可藉由金屬矽化物層210來電性連接至摻雜區106。在本實施例中,接觸窗212可包括導體層214與阻障層216,。此外,關於接觸窗212的詳細內容可參考上述實施例中的接觸窗124(圖2H)的說明,於此不再說明。Next, a contact window 212 is formed in the opening OP2. In this embodiment, the contact window 202 and the contact window 212 are formed by different processes respectively. Contacts 212 may be formed on the metal silicide layer 210 . The contact window 212 can directly contact the metal silicide layer 210 . The contact window 212 is electrically connected to the doped region 106 . In this embodiment, the contact window 212 can be electrically connected to the doped region 106 through the metal silicide layer 210 . In this embodiment, the contact window 212 may include a conductor layer 214 and a barrier layer 216'. In addition, for the details of the contact window 212, reference may be made to the description of the contact window 124 (FIG. 2H) in the above-mentioned embodiment, which will not be described herein again.

請參照圖4E與圖5E,可在介電層108上形成導線218與導線220。導線218與導線220分別電性連接至接觸窗202與接觸窗212。在本實施例中,導線218可包括導體層222與阻障層224,且導線220可包括導體層226與阻障層228。此外,關於導線218與導線220的詳細內容可參考上述實施例中的導線130與導線132(圖2I)的說明,於此不再說明。Referring to FIGS. 4E and 5E , wires 218 and wires 220 may be formed on the dielectric layer 108 . The wire 218 and the wire 220 are electrically connected to the contact window 202 and the contact window 212, respectively. In this embodiment, the wire 218 may include a conductor layer 222 and a barrier layer 224 , and the wire 220 may include a conductor layer 226 and a barrier layer 228 . In addition, for the details of the wires 218 and 220, reference may be made to the descriptions of the wires 130 and 132 (FIG. 2I) in the above-mentioned embodiment, which will not be described herein again.

圖6為根據本發明另一實施例的反熔絲元件的的剖面圖。請參照圖5E與圖6,圖6的反熔絲元件30a與圖5E的反熔絲元件20a的差異說明如下。在圖6中,反熔絲元件30a更可包括接觸窗300。接觸窗300位在反熔絲材料層112與摻雜區106之間。反熔絲材料層112可直接位在接觸窗300上。此外,反熔絲元件30a的製造方法更可包括以下步驟。在形成反熔絲材料層112之前,可在開口OP1中形成接觸窗300。接觸窗300的材料例如是摻雜多晶矽等含矽材料。在接觸窗300的材料為摻雜多晶矽等含矽材料的情況下,由於含矽材料的電阻較金屬大,所以反熔絲元件30a的操作電流較小。因此,在相同偏壓下,反熔絲元件30a的功率損耗減少。接觸窗300的形成方法例如是在開口OP1中形成接觸窗材料層(未示出),再對接觸窗材料層進行回蝕刻製程。反熔絲材料層112可直接形成在接觸窗300上。在本實施例中,接觸窗202與反熔絲材料層112的界面的剖面形狀可為平坦狀。另外,依據製程需求,接觸窗300的高度可大於或小於接觸窗202的高度。在本實施例中,接觸窗300的高度可小於接觸窗202的高度。此外,圖6的反熔絲元件30a與圖5E的反熔絲元件20a中的相同構件以相同的符號表示,並省略其說明。6 is a cross-sectional view of an antifuse element according to another embodiment of the present invention. Referring to FIGS. 5E and 6 , the difference between the anti-fuse element 30 a of FIG. 6 and the anti-fuse element 20 a of FIG. 5E is described as follows. In FIG. 6 , the anti-fuse element 30 a may further include a contact window 300 . The contact window 300 is located between the antifuse material layer 112 and the doped region 106 . The antifuse material layer 112 may be located directly on the contact window 300 . In addition, the manufacturing method of the anti-fuse element 30a may further include the following steps. The contact window 300 may be formed in the opening OP1 before forming the antifuse material layer 112 . The material of the contact window 300 is, for example, a silicon-containing material such as doped polysilicon. In the case where the material of the contact window 300 is a silicon-containing material such as doped polysilicon, since the resistance of the silicon-containing material is higher than that of metal, the operating current of the anti-fuse element 30a is small. Therefore, under the same bias voltage, the power loss of the antifuse element 30a is reduced. A method for forming the contact window 300 is, for example, forming a contact window material layer (not shown) in the opening OP1, and then performing an etch-back process on the contact window material layer. The antifuse material layer 112 may be formed directly on the contact window 300 . In this embodiment, the cross-sectional shape of the interface between the contact window 202 and the anti-fuse material layer 112 may be flat. In addition, the height of the contact window 300 may be greater or less than the height of the contact window 202 according to process requirements. In this embodiment, the height of the contact window 300 may be smaller than the height of the contact window 202 . In addition, the same components in the antifuse element 30a of FIG. 6 and the antifuse element 20a of FIG. 5E are denoted by the same symbols, and the description thereof is omitted.

圖7為根據本發明另一實施例的反熔絲元件的的剖面圖。請參照圖6與圖7,圖7的反熔絲元件30b與圖6的反熔絲元件30a的差異說明如下。在圖6的實施例中,先形成開口OP1與反熔絲材料層112,再形成開口OP2與金屬矽化物層210。在圖7的實施例中,先形成開口OP1與金屬矽化物層210,再形成開口OP2與反熔絲材料層112。在反熔絲元件30b中,金屬矽化物層210位在接觸窗202與接觸窗300之間。金屬矽化物層210可直接位在接觸窗300上。此外,在反熔絲元件30b的製程中,在接觸窗300上直接形成金屬矽化物層210。接觸窗202可形成在金屬矽化物層210上。另外,圖7的反熔絲元件30b與圖6的反熔絲元件30a中的相同構件以相同的符號表示,並省略其說明。7 is a cross-sectional view of an antifuse element according to another embodiment of the present invention. Please refer to FIG. 6 and FIG. 7 , the difference between the anti-fuse element 30 b of FIG. 7 and the anti-fuse element 30 a of FIG. 6 is described as follows. In the embodiment of FIG. 6 , the opening OP1 and the anti-fuse material layer 112 are formed first, and then the opening OP2 and the metal silicide layer 210 are formed. In the embodiment of FIG. 7 , the opening OP1 and the metal silicide layer 210 are formed first, and then the opening OP2 and the anti-fuse material layer 112 are formed. In the antifuse element 30b, the metal silicide layer 210 is located between the contact window 202 and the contact window 300. As shown in FIG. The metal silicide layer 210 may be directly on the contact window 300 . In addition, in the process of the anti-fuse element 30b, the metal silicide layer 210 is directly formed on the contact window 300. As shown in FIG. Contacts 202 may be formed on metal silicide layer 210 . In addition, the same components in the antifuse element 30b of FIG. 7 and the antifuse element 30a of FIG. 6 are denoted by the same symbols, and the description thereof is omitted.

綜上所述,在上述實施例的反熔絲元件及其製造方法中,可藉由控制開口的尺寸來縮小接觸窗與反熔絲材料層的接觸面積,因此可降低反熔絲元件的阻值的不確定性,以防止資料的誤判。此外,反熔絲元件可具有較小的元件面積,進而可提升元件密度。To sum up, in the anti-fuse element and the manufacturing method thereof of the above-mentioned embodiments, the contact area between the contact window and the anti-fuse material layer can be reduced by controlling the size of the opening, so that the resistance of the anti-fuse element can be reduced. value uncertainty to prevent misjudgment of data. In addition, the anti-fuse element can have a smaller element area, thereby increasing element density.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the appended patent application.

10a,10b,20a,30a,30b:反熔絲元件 100:基底 102:井區 104:隔離結構 106:摻雜區 108:介電層 110,114,208:圖案化硬罩幕層 112:反熔絲材料層 116,210:金屬矽化物層 118,124,202,212,300:接觸窗 120,126,134,138,204,214,222,226:導體層 122,128,136,140,206,216,224,228:阻障層 130,132,218,220:導線 OP1,OP2:開口10a, 10b, 20a, 30a, 30b: Antifuse elements 100: base 102: Well District 104: Isolation Structure 106: Doping region 108: Dielectric layer 110, 114, 208: Patterned hard mask layer 112: anti-fuse material layer 116,210: Metal silicide layer 118, 124, 202, 212, 300: Contact windows 120, 126, 134, 138, 204, 214, 222, 226: Conductor layer 122, 128, 136, 140, 206, 216, 224, 228: Barrier 130, 132, 218, 220: Wire OP1, OP2: Opening

圖1A至圖1I為根據本發明一實施例的反熔絲元件的製造流程上視圖。 圖2A至圖2I為沿著圖1A至圖1I中的I-I’剖面線的剖面圖。 圖3為根據本發明另一實施例的反熔絲元件的的剖面圖。 圖4A至圖4E為根據本發明另一實施例的反熔絲元件的製造流程上視圖。 圖5A至圖5E為沿著圖4A至圖4E中的II-II’剖面線的剖面圖。 圖6與圖7為根據本發明另一些實施例的反熔絲元件的的剖面圖。 1A to 1I are top views of a manufacturing process of an antifuse element according to an embodiment of the present invention. 2A to 2I are cross-sectional views along the line I-I' in FIGS. 1A to 1I . 3 is a cross-sectional view of an antifuse element according to another embodiment of the present invention. 4A to 4E are top views of a manufacturing process of an antifuse element according to another embodiment of the present invention. 5A to 5E are cross-sectional views along the line II-II' in FIGS. 4A to 4E . 6 and 7 are cross-sectional views of antifuse elements according to other embodiments of the present invention.

10a:反熔絲元件 10a: Antifuse element

100:基底 100: base

102:井區 102: Well District

104:隔離結構 104: Isolation Structure

106:摻雜區 106: Doping region

108:介電層 108: Dielectric layer

112:反熔絲材料層 112: anti-fuse material layer

116:金屬矽化物層 116: metal silicide layer

118,124:接觸窗 118,124: Contact window

120,126,134,138:導體層 120, 126, 134, 138: Conductor layer

122,128,136,140:阻障層 122, 128, 136, 140: Barrier Layers

130,132:導線 130, 132: Wire

OP1,OP2:開口 OP1, OP2: Opening

Claims (15)

一種反熔絲元件,包括: 基底; 摻雜區,位在所述基底中; 介電層,位在所述基底上,且具有第一開口與第二開口,其中所述第一開口與所述第二開口分別暴露出所述摻雜區; 第一接觸窗,位在所述第一開口中; 反熔絲材料層,位在所述第一接觸窗與所述摻雜區之間;以及 第二接觸窗,位在所述第二開口中,且電性連接至所述摻雜區。 An anti-fuse element comprising: base; a doped region in the substrate; a dielectric layer located on the substrate and having a first opening and a second opening, wherein the first opening and the second opening respectively expose the doped region; a first contact window located in the first opening; a layer of antifuse material between the first contact and the doped region; and A second contact window is located in the second opening and is electrically connected to the doped region. 如請求項1所述的反熔絲元件,其中所述第一接觸窗直接接觸所述反熔絲材料層。The antifuse element of claim 1, wherein the first contact window directly contacts the layer of antifuse material. 如請求項1所述的反熔絲元件,其中所述第一接觸窗與所述反熔絲材料層的界面的剖面形狀包括弧狀。The antifuse element according to claim 1, wherein a cross-sectional shape of the interface between the first contact window and the antifuse material layer includes an arc shape. 如請求項1所述的反熔絲元件,其中所述反熔絲材料層的材料包括氧化物。The antifuse element of claim 1, wherein the material of the antifuse material layer includes an oxide. 如請求項1所述的反熔絲元件,更包括: 金屬矽化物層,位在所述第二接觸窗與所述摻雜區之間,其中所述金屬矽化物層直接位在所述摻雜區上。 The anti-fuse element according to claim 1, further comprising: A metal silicide layer is located between the second contact window and the doped region, wherein the metal silicide layer is directly located on the doped region. 如請求項1所述的反熔絲元件,更包括: 第三接觸窗,位在所述反熔絲材料層與所述摻雜區之間,其中所述第三接觸窗的材料包括含矽材料。 The anti-fuse element according to claim 1, further comprising: A third contact window is located between the anti-fuse material layer and the doped region, wherein the material of the third contact window includes a silicon-containing material. 如請求項1所述的反熔絲元件,其中所述第一接觸窗的垂直投影與所述第二接觸窗的垂直投影均位在所述摻雜區上。The antifuse element of claim 1, wherein a vertical projection of the first contact window and a vertical projection of the second contact window are both positioned on the doped region. 如請求項1所述的反熔絲元件,更包括: 第三接觸窗,位在所述第二接觸窗與所述摻雜區之間;以及 金屬矽化物層,位在所述第二接觸窗與所述第三接觸窗之間,其中所述金屬矽化物層直接位在所述第三接觸窗上。 The anti-fuse element according to claim 1, further comprising: a third contact window, located between the second contact window and the doped region; and A metal silicide layer is located between the second contact window and the third contact window, wherein the metal silicide layer is directly located on the third contact window. 如請求項1所述的反熔絲元件,更包括: 隔離結構,位在所述基底中,且圍繞所述摻雜區;以及 井區,位在所述基底中,其中所述摻雜區位在所述井區中,且所述摻雜區與所述井區具有不同導電型。 The anti-fuse element according to claim 1, further comprising: an isolation structure in the substrate and surrounding the doped region; and A well region is located in the substrate, wherein the doped region is located in the well region, and the doped region and the well region have different conductivity types. 一種反熔絲元件的製造方法,包括: 提供基底; 在所述基底中形成摻雜區; 在所述基底上形成介電層; 在所述介電層中形成第一開口,其中所述第一開口暴露出所述摻雜區; 在所述第一開口中形成反熔絲材料層; 在所述第一開口中形成第一接觸窗,其中所述第一接觸窗位在所述反熔絲材料層上; 在所述介電層中形成第二開口,其中所述第二開口暴露出所述摻雜區;以及 在所述第二開口中形成第二接觸窗,其中所述第二接觸窗電性連接至所述摻雜區。 A method of manufacturing an anti-fuse element, comprising: provide a base; forming a doped region in the substrate; forming a dielectric layer on the substrate; forming a first opening in the dielectric layer, wherein the first opening exposes the doped region; forming a layer of antifuse material in the first opening; forming a first contact window in the first opening, wherein the first contact window is located on the antifuse material layer; forming a second opening in the dielectric layer, wherein the second opening exposes the doped region; and A second contact window is formed in the second opening, wherein the second contact window is electrically connected to the doped region. 如請求項10所述的反熔絲元件的製造方法,其中先形成所述第一開口與所述反熔絲材料層,再形成所述第二開口。The method for manufacturing an antifuse element according to claim 10, wherein the first opening and the antifuse material layer are formed first, and then the second opening is formed. 如請求項10所述的反熔絲元件的製造方法,其中先形成所述第二開口,再形成所述第一開口與所述反熔絲材料層。The method for manufacturing an antifuse element according to claim 10, wherein the second opening is formed first, and then the first opening and the antifuse material layer are formed. 如請求項10所述的反熔絲元件的製造方法,其中所述反熔絲材料層的形成方法包括熱氧化法或電漿氧化法。The method for manufacturing an antifuse element according to claim 10, wherein the method for forming the antifuse material layer includes a thermal oxidation method or a plasma oxidation method. 如請求項10所述的反熔絲元件的製造方法,其中所述第一接觸窗與所述第二接觸窗由相同製程同時形成。The method for manufacturing an antifuse element according to claim 10, wherein the first contact window and the second contact window are simultaneously formed by the same process. 如請求項10所述的反熔絲元件的製造方法,其中所述第一接觸窗與所述第二接觸窗由不同製程分別形成。The method for manufacturing an antifuse element according to claim 10, wherein the first contact window and the second contact window are formed by different processes.
TW110137070A 2021-10-05 2021-10-05 Anti-fuse device and manufacturing method thereof TWI767850B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110137070A TWI767850B (en) 2021-10-05 2021-10-05 Anti-fuse device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110137070A TWI767850B (en) 2021-10-05 2021-10-05 Anti-fuse device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI767850B true TWI767850B (en) 2022-06-11
TW202316439A TW202316439A (en) 2023-04-16

Family

ID=83103922

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110137070A TWI767850B (en) 2021-10-05 2021-10-05 Anti-fuse device and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI767850B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179709B2 (en) * 2007-08-24 2012-05-15 Elpida Memory, Inc. Semiconductor device including antifuse element
US8278732B1 (en) * 2011-04-28 2012-10-02 Nanya Technology Corporation Antifuse element for integrated circuit device
US8542517B2 (en) * 2011-06-13 2013-09-24 International Business Machines Corporation Low voltage programmable mosfet antifuse with body contact for diffusion heating
US10770159B2 (en) * 2017-08-16 2020-09-08 United Microelectronics Corp. Antifuse device and method of operating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179709B2 (en) * 2007-08-24 2012-05-15 Elpida Memory, Inc. Semiconductor device including antifuse element
US8278732B1 (en) * 2011-04-28 2012-10-02 Nanya Technology Corporation Antifuse element for integrated circuit device
US8542517B2 (en) * 2011-06-13 2013-09-24 International Business Machines Corporation Low voltage programmable mosfet antifuse with body contact for diffusion heating
US10770159B2 (en) * 2017-08-16 2020-09-08 United Microelectronics Corp. Antifuse device and method of operating the same

Also Published As

Publication number Publication date
TW202316439A (en) 2023-04-16

Similar Documents

Publication Publication Date Title
TWI630683B (en) Semiconductor devices resulted by using confined epitaxial growth techniques
US7656005B2 (en) Electrically programmable π-shaped fuse structures and methods of fabrication thereof
TWI449146B (en) Fuse structure
US7825490B2 (en) Electrical fuse having a cavity thereupon
US20070096212A1 (en) Semiconductor device and method for fabricating the same
US20060102964A1 (en) Passive device and method for forming the same
JP5190205B2 (en) Manufacturing method of semiconductor device
US20130134519A1 (en) Semiconductor device
TWI449156B (en) Semiconductor device and methods of forming the same
US20160020215A1 (en) Semiconductor structure
TWI619283B (en) Resistive memory device method for fabricating the same and applications thereof
JP5712875B2 (en) Semiconductor device and manufacturing method thereof
TWI767850B (en) Anti-fuse device and manufacturing method thereof
US20220223600A1 (en) Manufacturing method for memory structure
US11916016B2 (en) Anti-fuse device and manufacturing method thereof
US11107730B1 (en) Method of manufacturing semiconductor device with anti-fuse structures
US20210384202A1 (en) Semiconductor structure and method of forming the same
CN104064548A (en) Electrical programmable fuse device structure and manufacturing method thereof
CN115968197A (en) Anti-fuse device and method of manufacturing the same
CN102034734A (en) Method for manufacturing self-alignment metal interconnection wire
CN108987362B (en) Interconnect structure, method of fabricating the same and semiconductor structure
TWI795770B (en) Contact structures for reducing electrical shorts and methods of forming the same
TWI779462B (en) Method of manufacturing semiconductor structure
TWI441225B (en) Electrical fuse structure
TWI803204B (en) Memory device having merged active area and method for manufacturing the same