TWI767421B - 熱傳輸系統 - Google Patents

熱傳輸系統 Download PDF

Info

Publication number
TWI767421B
TWI767421B TW109141212A TW109141212A TWI767421B TW I767421 B TWI767421 B TW I767421B TW 109141212 A TW109141212 A TW 109141212A TW 109141212 A TW109141212 A TW 109141212A TW I767421 B TWI767421 B TW I767421B
Authority
TW
Taiwan
Prior art keywords
section
working fluid
heat
heat exchanger
opening
Prior art date
Application number
TW109141212A
Other languages
English (en)
Other versions
TW202221276A (zh
Inventor
劉宗鑫
曾柏翰
施威宏
吳文傑
劉文鈞
楊勝仲
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW109141212A priority Critical patent/TWI767421B/zh
Publication of TW202221276A publication Critical patent/TW202221276A/zh
Application granted granted Critical
Publication of TWI767421B publication Critical patent/TWI767421B/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

一種熱傳輸系統,其包含迴路式熱管以及熱交換器。迴路式熱管包含蒸氣傳送段、冷凝段、以及相變化工作流體儲存段。冷凝段接合在蒸氣傳送段與相變化工作流體儲存段之間。熱交換器與迴路式熱管流體連通。熱交換器之相對二側分別具有彼此錯開且形成有一位差的第一開口與第二開口。第一開口與第二開口分別與蒸氣傳送段以及相變化工作流體儲存段接合。蒸氣傳送段之內管徑與冷凝段之內管徑均大於第一開口。

Description

熱傳輸系統
本揭露是有關於一種熱傳輸技術,且特別是有關於一種迴路式熱管結合熱交換器之熱傳輸系統。
一般之熱管熱交換器的工作原理係利用相變化工作流體在熱交換器熱端受熱為氣態的工作流體,而往熱交換器之冷端流動。氣態的工作流體將熱量傳給熱交換器冷端後冷凝。冷凝後之工作流體循熱管內壁之微多孔結構而以毛細力回流至熱端。藉由工作流體的不斷循環不停,熱量可持續由高溫處傳遞至低溫處。
熱管熱交換器的關鍵技術之一為如何提高熱交換器區域內的熱交換效率。由於工作流體之氣液態流動方向相反,因此蒸汽相和液相之工作流體之間會有黏性。蒸汽相和液相之工作流體之間的黏性相互作用,再加上工作流體流經毛細結構之壓力損失,會使得熱管之熱傳輸能力大幅下降。此外,重力造成的壓降也會影響熱管熱傳效率。
另外,若需要熱導至熱交換器外界,通常需要再以另一個管路以氣體或液體形式將熱帶走。而如此會增加一個界面熱阻,導致整個系統的熱傳效率下降。
因此,本揭露之一目的就是在提供一種熱傳輸系統,其將迴路式熱管與熱交換器整合成單一系統,且利用工作流體在氣態與液態的相變過程產生的壓力與密度差,並利用重力的效應,以及機構設計來導引工作流體流動方向,熱交換器內部之流道小且具有粗糙表面,藉此不僅可避免逆流情況,更可提高熱交換效率。
根據本揭露之上述目的,提出一種熱傳輸系統。此熱傳輸系統包含迴路式熱管以及熱交換器。迴路式熱管包含蒸氣傳送段、冷凝段、以及相變化工作流體儲存段。冷凝段接合在蒸氣傳送段與相變化工作流體儲存段之間。熱交換器與迴路式熱管流體連通。熱交換器之相對二側分別具有彼此錯開且形成有一位差的第一開口與第二開口。第一開口與第二開口分別與蒸氣傳送段以及相變化工作流體儲存段接合。蒸氣傳送段之內管徑與冷凝段之內管徑均大於第一開口。
依據本揭露之一實施例,上述之冷凝段位於蒸氣傳送段與熱交換器之上方。
依據本揭露之一實施例,上述之蒸氣傳送段具有平滑內側面及平滑外側面。
依據本揭露之一實施例,上述之迴路式熱管更包含液態工作流體傳送段,液態工作流體傳送段接合在冷凝段與相變化工作流體儲存段之間且高於熱交換器。
依據本揭露之一實施例,上述之冷凝段高於液態工作流體傳送段,且液態工作流體傳送段高於相變化工作流體儲存段。
依據本揭露之一實施例,上述之液態工作流體傳送段之內管徑小於冷凝段之內管徑,且小於相變化工作流體儲存段之內管徑。
依據本揭露之一實施例,上述之液態工作流體傳送段具有粗糙內側面與粗糙外側面。
依據本揭露之一實施例,上述之熱交換器包含數個流道,且每個流道具有粗糙表面。
依據本揭露之一實施例,上述之熱傳輸系統更包含至少一另一迴路式熱管與迴路式熱管流體連通,其中此另一迴路式熱管與迴路式熱管具有相同架構。
依據本揭露之一實施例,上述之熱傳輸系統更包含至少一另一熱交換器,此另一熱交換器之相對二側分別具有彼此錯開且形成有位差的第三開口與第四開口,第三開口與第四開口分別與蒸氣傳送段以及相變化工作流體儲存段接合,且蒸氣傳送段之內管徑與冷凝段之內管徑均大於第三開口。
本揭露之熱傳輸系統可透過工作流體相變化的壓力與密度差異自行循環,不需要泵浦,因此系統結構較為單純,並可避免機械泵浦之後續維修替換,不僅可提高系統的可靠度,更可降低運轉成本。其次,本揭露透過變化迴路式熱管之內管徑,來改變熱管內之局部氣壓,使得受熱區的氣壓高,蒸氣通道的氣壓低,因此只要工作流體受熱蒸發,就能啟動自循環。再者,熱交換器之工作流體的入口與出口彼此錯開而不在同一軸線上,因此可確保整個熱傳輸系統擺放時,液態與氣態之工作流體之間仍有高低差來確保流通以進行自循環,因此可大大地降低熱交換系統對傾斜角度的敏感度。
此外,本揭露使冷凝區的位置高於蒸發區,且將冷凝段下游之液態工作流體傳送段的內管徑縮小,藉此可使冷凝為液體之工作流體的液面高度提升,而可與蒸發區液面保持一液壓差,因此可防止蒸發區氣壓增加時將蒸發區液面壓低至蒸發區外。本揭露之迴路式熱管的管路可彎可直,因此可配合場域熱源與導熱目標進行管路設計,場域可用性佳。
請參照圖1,其係繪示依照本揭露之一實施方式的一種熱傳輸系統的側視示意圖。熱傳輸系統100主要包含迴路式熱管200與熱交換器300。迴路式熱管200為中空之管路,可供工作流體WF於其內流動。本實施方式將迴路式熱管200與熱交換器300整合在一起,即迴路式熱管200與熱交換器300之間流體連通,工作流體WF可在迴路式熱管200與熱交換器300中循環。
藉由將迴路式熱管200與熱交換器300整合為一體,可提高熱傳效率,並可縮小整個熱傳輸系統100之設備的體積。再透過迴路式熱管200之管路設計,可提高熱傳輸系統100於各實施場域的可用性。此外,可減省習知熱傳輸系統結合獨立熱管與熱交換器所需之額外連結件,因此可減少料件,而可降低維修難度,進而可提高產業應用之效益。
本實施方式之迴路式熱管200為截面積變化管路,在不同區域具有不同截面積。也就是說,迴路式熱管200之內管徑並非定值,隨區段不同而具有不同內管徑。在一些例子中,迴路式熱管200主要包含蒸氣傳送段210、冷凝段220、以及相變化工作流體儲存段230。
蒸氣傳送段210與熱交換器300及冷凝段220流體連通。蒸氣傳送段210具有相對之第一端212與第二端214。蒸氣傳送段210之第一端212與熱交換器300連接,第二端214則與冷凝區220連接。在一些例子中,蒸氣傳送段210可包含互相連接之第一部分216與第二部分218,其中第一端212位於第一部分216,第二端214位於第二部分218。第二部分218為蒸氣傳送段210的主要部分。舉例而言,第二部分218遠比第一部分216長,第二部分218之長度可為第一部分216之長度的數倍。第一部分216之內管徑自熱交換器300朝第二部分218漸增,第二部分218之內管徑可為固定值。藉此設計,可使從熱交換器300流出之工作流體WF更平穩順暢的流入蒸氣傳送段210中。
蒸氣傳送段210具有內側面210a與外側面210b。在一些示範例子中,內側面210a為平滑表面,以利自熱交換器300流出之工作流體WF更順暢的流動。外側面210b亦可為平滑表面,以減少蒸氣傳送段210的熱散溢。
冷凝段220通常對應於此熱傳輸系統100欲傳熱對象,例如製程材料之預熱區與恆溫槽等等。冷凝段220接合在蒸氣傳送段210與相變化工作流體儲存段230之間,且與蒸氣傳送段210及相變化工作流體儲存段230流體連通。在一些示範例子中,如圖1所示,冷凝段220位於蒸氣傳送段210與熱交換器300之上方,即冷凝段220高於蒸氣傳送段210與熱交換器300。
冷凝段220具有相對之第一端222與第二端224。冷凝段220之第一端222與蒸氣傳送段210之第二端214連接,第二端224則可直接或間接與相變化工作流體儲存段230連接。舉例而言,迴路式熱管200可選擇性地更包含液態工作流體傳送段240,液態工作流體傳送段240接合在冷凝段220與相變化工作流體儲存段230之間。此時,冷凝段220之第二端224透過液態工作流體傳送段240而與相變化工作流體儲存段230間接連接。在迴路式熱管200並未包含液態工作流體傳送段240的例子中,冷凝段220之第二端224可直接與相變化工作流體儲存段230連接。
在一些例子中,冷凝段220可包含互相連接之第一部分226與第二部分228,其中第一端222位於第一部分226,第二端224位於第二部分228。第一部分226為冷凝段220的主要部分。第一部分226可例如遠比第二部分228長,第一部分226之長度可為第二部分228之長度的數倍。第一部分226之內管徑可為固定值,第二部分228之內管徑則自第一部分226朝液態工作流體傳送段240的方向漸減。藉此設計,可使從冷凝段220流出之工作流體WF更穩定的流入液態工作流體傳送段240中。第一部分226之內管徑可例如與蒸氣傳送段210之第二部分218的內管徑相同。第一部分226之內管徑亦可大於或小於蒸氣傳送段210之第二部分218的內管徑。
液態工作流體傳送段240與冷凝段220及相變化工作流體儲存段230流體連通。在一些例子中,冷凝段220高於液態工作流體傳送段240,液態工作流體傳送段240則高於相變化工作流體儲存段230。在一些示範例子中,液態工作流體傳送段240高於熱交換器300。液態工作流體傳送段240具有相對之第一端242與第二端244。液態工作流體傳送段240之第一端242與冷凝段220之第二端224連接,第二端244與相變化工作流體儲存段230連接。
液態工作流體傳送段240之內管徑可例如為固定值,液態工作流體傳送段240之內管徑亦可根據系統設計需求而變化。液態工作流體傳送段240之內管徑小於冷凝段220之內管徑。液態工作流體傳送段240具有內側面240a與外側面240b。在一些示範例子中,液態工作流體傳送段240之內側面240a與外側面240b可均為粗糙表面。藉由縮減液態工作流體傳送段240之內管徑與使內側面240a及外側面240b粗糙化的設計,不僅可提高氣態之工作流體WF的冷凝效果,更可提高液態工作流體傳送段240與熱交換器300之內部液面差而產生靜壓差,進而可防止熱交換器300內之工作流體WF逆流。
相變化工作流體儲存段230可配置以儲存用以承受熱衝擊的相變化工作流體WF,藉以防止突然大於工作範圍的熱進入熱傳輸系統100而使熱傳輸系統100失效。相變化工作流體儲存段230連接在液態工作流體傳送段240與熱交換器300之間,且與液態工作流體傳送段240及熱交換器300流體連通。在一些示範例子中,冷凝區220與液態工作流體傳送段240均高於相變化工作流體儲存段230與熱交換器300,藉此冷凝之液態工作流體WF可藉由重力而沿液態工作流體傳送段240之管路流入相變化工作流體儲存段230。
相變化工作流體儲存段230具有相對之第一端232與第二端234。相變化工作流體儲存段230之第一端232與液態工作流體傳送段240之第二端244相接,第二端234可直接或間接與熱交換器300連接。舉例而言,迴路式熱管200可選擇性地更包含工作流體連通段250,其中工作流體連通段250接合在相變化工作流體儲存段230與熱交換器300之間。在這樣的例子中,相變化工作流體儲存段230之第二端234經由工作流體連通段250而與熱交換器300間接連接。在無工作流體連通段250的例子中,相變化工作流體儲存段230之第二端234可直接與熱交換器300連接。
在一些例子中,如圖1所示,相變化工作流體儲存段230可包含依序連接之第一部分236、第二部分238、與第三部分239,其中第一端232位於第一部分236,第二端234位於第三部分239。第二部分238為相變化工作流體儲存段230的主要部分。第二部分238可例如比第一部分236與第三部分239長。第一部分236之內管徑自液態工作流體傳送段240朝第二部分238的方向漸增,第二部分238之內管徑可為固定值,第三部分229之內管徑則自第二部分238朝工作流體連通段250的方向漸減。藉此設計,可使從工作流體WF更順暢地流入與流出相變化工作流體儲存段230。在一些示範例子中,液態工作流體傳送段240之內管徑小於相變化工作流體儲存段230之內管徑。
工作流體連通段250流體連通相變化工作流體儲存段230與熱交換器300。工作流體連通段250具有相對之第一端252與第二端254。工作流體連通段250之第一端252與相變化工作流體儲存段230之第二端234相接,第二端254與熱交換器300連接。工作流體連通段250之內管徑可例如為固定值,或者可根據系統設計需求而變化。
熱交換器300可作為熱傳輸系統100的蒸發區。在一些例子中,熱交換器300可為氣液熱交換器,即工作流體WF在熱交換器300中可產生液態與氣態之間的相變化。舉例而言,液態的相變化工作流體WF可從工作流體連通段250流入後熱交換器300,並從外部高溫氣體吸熱後相變化為氣態工作流體WF後流出熱交換器300。
在一些例子中,熱交換器300包含許多流道330。圖1所示之熱交換器300的流道330配置僅用以舉例說明,並非用以限制本實施方式。熱交換器300內部可根據實際應用需求而有不同的流道設計。每個流道300具有寬度330w。寬度330w可例如遠小於蒸氣傳送段210之內管徑與冷凝區220之內管徑。在一些示範例子中,每個流道300可具有粗糙表面。由於流道330之寬度330w小,且具有粗糙表面,因此可提高熱交換器300之熱交換面積與熱交換效率。
熱交換器300具有相對二側300a與300b。熱交換器300包含第一開口310與第二開口320分別設於此二側300a與300b上。第一開口310與蒸氣傳送段210之第一端212相接。第二開口320與工作流體連通段250之第二端254相接。在迴路式熱管200不具有工作流體連通段250的例子中,第二開口320直接與相變化工作流體儲存段230之第二端234相接。在一種運作型態中,第一開口310為工作流體WF之出口,第二開口320為工作流體WF之入口。舉例而言,液態之工作流體WF可從工作流體連通段250而經由第二開口320流入熱交換器300中,液態之工作流體WF於熱交換器300中受熱相變化成氣態之工作流體WF,而從第一開口310流出熱交換器300後流入蒸氣傳送段210。蒸氣傳送段210之內管徑與冷凝段220之內管徑均大於熱交換器300之第一開口310。
在一些示範例子中,第一開口310與第二開口320在此二側300a與300b上彼此錯開,即相變化工作流體入口與出口不在同一軸線上,藉此在第一開口310與第二開口320之間形成一位差。由於熱交換器300之工作流體入口與出口不在同一軸線上,因此可確保整個熱傳輸系統100擺放時可保有高低差來進行自循環。舉例而言,當熱傳輸系統100正常擺放時,即冷凝段220高於蒸氣傳送段210與熱交換器300時,工作流體WF離開熱交換器300的第一開口310高於工作流體WF進入熱交換器300的第二開口320。而當熱傳輸系統100因例如外力影響而倒下時,因第一開口310與第二開口320不在同一軸線的設計使得第一開口310與第二開口320之間在這樣的情況下仍存有高低差,即根據不同傾倒方向第一開口310可能高於第二開口320或低於第二開口320。故,藉由將第一開口310與第二開口320錯開而不在同一軸線上以形成位差的設計,可降低熱傳輸系統100對於傾斜角度的敏感度。
請繼續參照圖1,工作流體WF於熱交換器300內受熱後,相變化為氣態工作流體WF而經由第一開口310流入蒸氣傳送段210。蒸氣傳送段210之內管徑大於熱交換器300之第一開口310,使得熱交換器300內的氣壓高而蒸氣傳送段210的氣壓低,因此可建立蒸氣傳送段210與熱交換器300內部之間的壓差。蒸氣傳送段210位於熱交換器300之上方,氣態之工作流體WF密度較低,蒸氣傳送段210與熱交換器300之間的壓差可更容易驅動氣態之工作流體WF流向上方的蒸氣傳送段210。蒸氣傳送段210具有平滑之內側面210a的例子中,可進一步提升工作流體WF在蒸氣傳送段210的流動順暢度。
氣態之工作流體WF接著從蒸氣傳送段210流入冷凝段220,並於冷凝段220釋放熱而局部或全部冷凝為液態的工作流體WF。工作流體WF再從冷凝段220流入液態工作流體傳送段240。由於液態工作流體傳送段240之內管徑小於冷凝段220之內管徑,且液態工作流體傳送段240具有粗糙之內側面240a與外側面240b,因此可提高工作流體WF之冷凝效果。冷凝段220高於液態工作流體傳送段240,而液態工作流體傳送段240高於相變化工作流體儲存段230,因此液態工作流體WF可藉由重力而順利地流到相變化工作流體儲存段230中。液態工作流體WF可再經由工作流體連通段250而從第二開口320循環到熱交換器300。
在一實施例中,熱傳輸系統100之熱交換量可達153.5W,熱阻為0.094℃/W。因此,相較於一般迴路式熱管之約0.297℃/W的熱阻,本揭露之熱傳輸系統100之熱阻明顯降低。
請參照圖2,其係繪示依照本揭露之另一實施方式的一種熱傳輸系統的局部側視示意圖。在此實施方式中,熱傳輸系統400之裝置與架構大致與熱傳輸系統100類似,二者之間的差異在於,熱傳輸系統400包含數個迴路式熱管200與一個熱交換器500,各迴路式熱管200的相互間隔距離可以不等距,藉此可將特定區域的熱量送到不同距離的位置重新再利用。熱傳輸系統400之迴路式熱管200與熱傳輸系統100之迴路式熱管200相同,而熱交換器500為大型熱交換器。熱傳輸系統400可應用於有一個熱供應量大之熱源供應端,以及多個需求端,這些需求端位置分散且對於熱需求小的情況。熱交換器500即作為熱源供應端。
熱交換器500同樣具有相對二側500a與500b。熱交換器500包含第一開口510與第二開口520分別設於此二側500a與500b上。第一開口510與第二開口520在此二側500a與500b上彼此錯開且形成有一位差,即相變化工作流體入口與出口不在同一軸線上。第一開口510可透分流管路530而分別與這些迴路式熱管200之蒸氣傳送段210相接。藉此,在熱交換器500中受熱而相變化成氣態之工作流體WF可從第一開口510流入分流管路530,再經由分流管路530而流入各迴路式熱管200之蒸氣傳送段210。第二開口520則可透過匯流管路540與各迴路式熱管200之工作流體連通段250相接。
請參照圖3,其係繪示依照本揭露之又一實施方式的一種熱傳輸系統的局部側視示意圖。在此實施方式中,熱傳輸系統600之裝置與架構大致與熱傳輸系統100類似,二者之間的差異在於,熱傳輸系統600包含數個熱交換器700與一個迴路式熱管200。熱傳輸系統600之迴路式熱管200與熱傳輸系統100之迴路式熱管200相同,而每個熱交換器700可為小型熱交換器。熱傳輸系統600可應用於有一大型熱需求,而有數個熱源供應端,且這些熱源供應端之位置分散且熱供應量小的情況。
每個熱交換器700同樣具有相對二側700a與500b。每個熱交換器700包含第一開口710與第二開口720分別設於此二側700a與700b上。每個熱交換器700之第一開口710與第二開口720彼此錯開且形成有一位差,藉以使相變化工作流體入口與出口不在同一軸線上,另各熱交換器700的相互間隔距離可以不等距,藉此可將不同距離的熱量匯集後再將熱量送到特定區域重新再利用。這些第一開口710可透匯流管路730而與迴路式熱管200之蒸氣傳送段210相接。藉此,每個熱交換器700中受熱而相變化成氣態之工作流體WF可從各別之第一開口710流入匯流管路730,再經由匯流管路730而流入迴路式熱管200之蒸氣傳送段210。蒸氣傳送段210之內管徑與冷凝段220之內管徑均大於第一開口710。迴路式熱管200之工作流體連通段250可透過分流管路740分別與這些第二開口720相接。
由上述之實施方式可知,本揭露之一優點就是因為本揭露之熱傳輸系統可透過工作流體相變化的壓力與密度差異自行循環,不需要泵浦,因此系統結構較為單純,並可避免機械泵浦之後續維修替換,不僅可提高系統的可靠度,更可降低運轉成本。
本揭露之另一優點就是因為本揭露透過變化迴路式熱管之內管徑,來改變熱管內之局部氣壓,使得受熱區的氣壓高,蒸氣通道的氣壓低,因此只要工作流體受熱蒸發,就能啟動自循環。
本揭露之又一優點就是因為熱交換器之工作流體的入口與出口彼此錯開而不在同一軸線上,因此可確保整個熱傳輸系統擺放時,液態與氣態之工作流體之間仍有高低差來確保流通以進行自循環,因此可大大地降低熱交換系統對傾斜角度的敏感度。
本揭露之再一優點就是因為迴路式熱管之冷凝區的位置高於蒸發區,且將冷凝段下游之液態工作流體傳送段的內管徑縮小,藉此可使冷凝為液體之工作流體的液面高度提升,而可與蒸發區液面保持一液壓差,因此可防止蒸發區氣壓增加時將蒸發區液面壓低至蒸發區外。
本揭露之再一優點就是因為本揭露之迴路式熱管的管路可彎可直,因此可配合場域熱源與導熱目標進行管路設計,場域可用性佳。
雖然本揭露已以實施例揭示如上,然其並非用以限定本揭露,任何在此技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。
100:熱傳輸系統 200:迴路式熱管 210:蒸氣傳送段 210a:內側面 210b:外側面 212:第一端 214:第二端 216:第一部分 218:第二部分 220:冷凝段 222:第一端 224:第二端 226:第一部分 228:第二部分 230:相變化工作流體儲存段 232:第一端 234:第二端 236:第一部分 238:第二部分 239:第三部分 240:液態工作流體傳送段 240a:內側面 240b:外側面 242:第一端 244:第二端 250:工作流體連通段 252:第一端 254:第二端 300: 熱交換器 300a:側 300b:側 310:第一開口 320:第二開口 330:流道 330w:寬度 400:熱傳輸系統 500:熱交換器 500a:側 500b:側 510:第一開口 520:第二開口 530:分流管路 540:匯流管路 600:熱傳輸系統 700:熱交換器 700a:側 700b:側 710:第一開口 720:第二開口 730:匯流管路 740:分流管路 WF:工作流體
為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: [圖1]係繪示依照本揭露之一實施方式的一種熱傳輸系統的側視示意圖; [圖2]係繪示依照本揭露之另一實施方式的一種熱傳輸系統的局部側視示意圖;以及 [圖3]係繪示依照本揭露之又一實施方式的一種熱傳輸系統的局部側視示意圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
100:熱傳輸系統 200:迴路式熱管 210:蒸氣傳送段 210a:內側面 210b:外側面 212:第一端 214:第二端 216:第一部分 218:第二部分 220:冷凝段 222:第一端 224:第二端 226:第一部分 228:第二部分 230:相變化工作流體儲存段 232:第一端 234:第二端 236:第一部分 238:第二部分 239:第三部分 240:液態工作流體傳送段 240a:內側面 240b:外側面 242:第一端 244:第二端 250:工作流體連通段 252:第一端 254:第二端 300: 熱交換器 300a:側 300b:側 310:第一開口 320:第二開口 330:流道 330w:寬度 WF:工作流體

Claims (8)

  1. 一種熱傳輸系統,包含:一迴路式熱管,包含一蒸氣傳送段、一冷凝段、一液態工作流體傳送段、以及一相變化工作流體儲存段,其中該冷凝段接合在該蒸氣傳送段與該相變化工作流體儲存段之間,該液態工作流體傳送段接合在該冷凝段與該相變化工作流體儲存段之間,其中該液態工作流體傳送段之一內管徑小於該冷凝段之該內管徑,且小於該相變化工作流體儲存段之一內管徑;以及一熱交換器,與該迴路式熱管流體連通,該熱交換器之相對二側分別具有彼此錯開且形成有一位差的一第一開口與一第二開口,該第一開口與該第二開口分別與該蒸氣傳送段以及該相變化工作流體儲存段接合,且該蒸氣傳送段之一內管徑與該冷凝段之一內管徑均大於該第一開口,其中該相變化工作流體儲存段具有相對之一第一端與一第二端,該第一端與該液態工作流體傳送段相接,該第二端與該熱交換器連接,且其中該液態工作流體傳送段高於該熱交換器。
  2. 如請求項1所述之熱傳輸系統,其中該冷凝段位於該蒸氣傳送段與該熱交換器之上方。
  3. 如請求項1所述之熱傳輸系統,其中該蒸氣傳送段具有一平滑內側面及一平滑外側面。
  4. 如請求項1所述之熱傳輸系統,其中該冷凝段高於該液態工作流體傳送段,且該液態工作流體傳送段高於該相變化工作流體儲存段。
  5. 如請求項1所述之熱傳輸系統,其中該液態工作流體傳送段具有一粗糙內側面與一粗糙外側面。
  6. 如請求項1所述之熱傳輸系統,其中該熱交換器包含複數個流道,且每一該些流道具有一粗糙表面。
  7. 如請求項1所述之熱傳輸系統,更包含至少一另一迴路式熱管與該迴路式熱管流體連通,其中該至少一另一迴路式熱管與該迴路式熱管具有相同架構。
  8. 如請求項1所述之熱傳輸系統,更包含至少一另一熱交換器,該至少一另一熱交換器之相對二側分別具有彼此錯開且形成有另一位差的一第三開口與一第四開口,該第三開口與該第四開口分別與該蒸氣傳送段以及該相變化工作流體儲存段接合,且該蒸氣傳送段之該內管徑與該冷凝段之該內管徑均大於該第三開口。
TW109141212A 2020-11-24 2020-11-24 熱傳輸系統 TWI767421B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109141212A TWI767421B (zh) 2020-11-24 2020-11-24 熱傳輸系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109141212A TWI767421B (zh) 2020-11-24 2020-11-24 熱傳輸系統

Publications (2)

Publication Number Publication Date
TW202221276A TW202221276A (zh) 2022-06-01
TWI767421B true TWI767421B (zh) 2022-06-11

Family

ID=83062167

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109141212A TWI767421B (zh) 2020-11-24 2020-11-24 熱傳輸系統

Country Status (1)

Country Link
TW (1) TWI767421B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826088B (zh) * 2022-11-01 2023-12-11 宏碁股份有限公司 電子裝置的散熱系統

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115881320B (zh) * 2022-11-08 2024-04-19 中国核动力研究设计院 一种用于缓冲蓄能的高密度相变储热系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944092A (en) * 1995-06-14 1999-08-31 S.A.B.C.A. Capillary pumped heat transfer loop
US8333235B2 (en) * 2007-05-16 2012-12-18 Industrial Technology Research Institute Heat dissipation system with a plate evaporator
CN204705254U (zh) * 2015-03-16 2015-10-14 上海龙阳精密复合铜管有限公司 一种外置金属泡沫的换热管
CN106288901A (zh) * 2016-08-12 2017-01-04 上海极率热能科技有限公司 环路热管系统及其用不锈钢毛细管无塌陷焊接工艺方法
CN110741215A (zh) * 2017-04-18 2020-01-31 欧热管公司 具有优化汽化界面的蒸发器
CN211240642U (zh) * 2020-01-20 2020-08-11 深圳兴奇宏科技有限公司 热虹吸散热装置的连通强化结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944092A (en) * 1995-06-14 1999-08-31 S.A.B.C.A. Capillary pumped heat transfer loop
US5944092C1 (en) * 1995-06-14 2001-06-12 B C A Sa Capillary pumped heat transfer loop
US8333235B2 (en) * 2007-05-16 2012-12-18 Industrial Technology Research Institute Heat dissipation system with a plate evaporator
CN204705254U (zh) * 2015-03-16 2015-10-14 上海龙阳精密复合铜管有限公司 一种外置金属泡沫的换热管
CN106288901A (zh) * 2016-08-12 2017-01-04 上海极率热能科技有限公司 环路热管系统及其用不锈钢毛细管无塌陷焊接工艺方法
CN110741215A (zh) * 2017-04-18 2020-01-31 欧热管公司 具有优化汽化界面的蒸发器
CN211240642U (zh) * 2020-01-20 2020-08-11 深圳兴奇宏科技有限公司 热虹吸散热装置的连通强化结构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI826088B (zh) * 2022-11-01 2023-12-11 宏碁股份有限公司 電子裝置的散熱系統

Also Published As

Publication number Publication date
TW202221276A (zh) 2022-06-01

Similar Documents

Publication Publication Date Title
TWI767421B (zh) 熱傳輸系統
CN100370890C (zh) 一种平板式回路热管装置
US20020195230A1 (en) Heat exchange structure of loop type heat pipe
JP2018071967A (ja) 蒸発器および空調方法
CN105283718A (zh) 空调装置
CN109737783B (zh) 一种超薄热管
KR20040104460A (ko) 히트 파이프
CN108369031A (zh) 使用减少量的制冷剂流体的热力学热水器
JP2013024543A (ja) 熱交換器及びそれを用いたヒートポンプ式加熱装置
JP2008088892A (ja) 非共沸混合媒体サイクルシステム
CN109579585A (zh) 一种多蒸发器回路热管
CN100443850C (zh) 热管式固相粉末换热系统
TWM606229U (zh) 氣液冷凝系統
JPS62131199A (ja) 分離型ヒ−トパイプ式空気予熱器
KR100666871B1 (ko) 열교환기
CN114630560A (zh) 散热系统及电子产品
JP2008275292A (ja) 排熱回収装置
CN209689445U (zh) 多蒸发器回路热管
CN208333158U (zh) 利用天然气余冷的立式直接接触换热设备
JP2009168383A (ja) 熱交換器及びそれを用いたヒートポンプ式給湯機
JP2008057908A (ja) 熱交換器
JP7471844B2 (ja) 蒸発器
JPS59109778A (ja) 凝縮熱交換器
WO2023035574A1 (zh) 基于环路热管的散热装置
WO2017082127A1 (ja) 電子機器の冷却装置