TWI765807B - 濾光片 - Google Patents

濾光片 Download PDF

Info

Publication number
TWI765807B
TWI765807B TW110130306A TW110130306A TWI765807B TW I765807 B TWI765807 B TW I765807B TW 110130306 A TW110130306 A TW 110130306A TW 110130306 A TW110130306 A TW 110130306A TW I765807 B TWI765807 B TW I765807B
Authority
TW
Taiwan
Prior art keywords
layer
dielectric
filter
electro
conductive layer
Prior art date
Application number
TW110130306A
Other languages
English (en)
Other versions
TW202309557A (zh
Inventor
葉晉斌
吳鍇
Original Assignee
統新光訊股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 統新光訊股份有限公司 filed Critical 統新光訊股份有限公司
Priority to TW110130306A priority Critical patent/TWI765807B/zh
Application granted granted Critical
Publication of TWI765807B publication Critical patent/TWI765807B/zh
Publication of TW202309557A publication Critical patent/TW202309557A/zh

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本發明有關於一種濾光片。此濾光片包含電光聚合物層、導電層,以及包含至少一介電層之介電複合層,且介電層包含第一介電子層及第二介電子層。電光聚合物層、第一介電子層及第二介電子層的光學厚度與從濾光片穿透之光線於最大穿透率的波長具有特定關係,以產生法布立-培若干涉。電光聚合物層的材料為有機非線性光學材料,並且第一介電子層及第二介電子層之折射率具有特定比值,故可容易地切換此濾光片之頻譜通道,並提升頻譜的分辨率。

Description

濾光片
本發明係有關於一種濾光片,且特別是有關於一種容易切換頻譜通道且具有高分辨率之濾光片。
在光通訊發展的過程中,要求帶通濾光片的帶寬愈窄,且要求相鄰頻譜通道的分辨率愈高。現今,對於頻譜通道的切換也愈趨嚴苛。
傳統上,濾光片在固定的入射角只具備固定的頻譜通道之特性,故需要使用複數個濾光片來切換頻譜通道。於執行前述之切換時,亦需要移動元件來移動此些濾光片。惟,移動元件佔據空間且移動此些濾光片需要一些時間,故含有傳統濾光片之系統遭遇到佔據空間及浪費時間之問題。
有鑑於此,亟需發展一種新的濾光片,以改善習知濾光片之上述缺點。
有鑑於上述之問題,本發明之一態樣是在提供一種 濾光片。濾光片包含電光聚合物層、導電層,以及包含至少一介電層之介電複合層,且介電層包含第一介電子層及第二介電子層。電光聚合物層、第一介電子層及第二介電子層的光學厚度與從濾光片穿透出之光線的波長具有特定關係,以產生法布立-培若干涉(Fabry-Perot interference)。電光聚合物層的材料為有機非線性光學材料,並且第一介電子層及第二介電子層之介電質折射率具有特定比值,故可容易地切換濾光片之頻譜通道,並提升頻譜的分辨率。
根據本發明之一態樣,提出一種濾光片。此濾光片包含第一導電層、第二導電層、電光聚合物層、第一介電複合層及第二介電複合層。電光聚合物層相鄰且設置於第一導電層與第二導電層之間,且電光聚合物層具有第一折射率。第一介電複合層相鄰於第一導電層,且第一導電層設置於第一介電複合層與電光聚合物層之間。第二介電複合層相鄰於第二導電層,且第二導電層設置於第二介電複合層與電光聚合物層之間。第一介電複合層係相同於第二介電複合層,並以電光聚合物層做為對稱層,且第一介電複合層與第二介電複合層均包含至少一介電層。至少一介電層之每一者包含具有第一介電質折射率之第一介電子層及具有第二介電質折射率之第二介電子層。第一介電質折射率與第二介電質折射率的比值為0.25至0.75或1.3至4,其中第一介電子層及第二介電子層係交錯配置,且第一介電子層設置於第二介電子層與電光聚合物層之間。電光 聚合物層之第一光學厚度為n(λtr/2),第一介電子層之第二光學厚度與第二介電子層之第三光學厚度均為m(λtr/4),n與m分別為正整數,m為奇數,且λtr為從濾光片穿透之穿透光線於最大穿透率的波長。第一折射率依照施加於第一導電層及第二導電層之電壓而產生第一變化值,且波長(λtr)對應於第一變化值產生第二變化值。
依據本發明之一實施例,第一折射率為1.3至3.0。
依據本發明之又一實施例,電光聚合物層之第一空間厚度為0.005微米至100微米。
依據本發明之又一實施例,第一導電層之消光係數及第二導電層之消光係數均為0至0.015。
依據本發明之又一實施例,第一介電質折射率為1.7至3.6。
依據本發明之又一實施例,第一介電複合層與第二介電複合層之總空間厚度為0.005微米至100微米。
依據本發明之又一實施例,當電壓為1伏特至500伏特時,第二變化值為0.01奈米至50奈米。
依據本發明之又一實施例,在施加電壓於第一導電層及第二導電層之前與之後,穿透光線於最大穿透率之穿透率變化值小於5%。
依據本發明之又一實施例,在施加電壓於第一導電層及第二導電層之前與之後,從濾光片反射之反射光線於最大反射率之反射率變化值小於5%。
依據本發明之又一實施例,第一介電複合層選擇性包含第三介電子層,且第二介電複合層選擇性包含第四介電子層,第一介電複合層之至少一介電層設置於第一導電層與第三介電子層之間,且第二介電複合層之至少一介電層設置於第二導電層與第四介電子層之間。第三介電子層之第四光學厚度與第四介電子層之第五光學厚度均為m(λtr/4)。
應用本發明之濾光片,其中濾光片包含電光聚合物層、導電層,以及包含至少一介電層之介電複合層,且介電層包含第一介電子層及第二介電子層。電光聚合物層、第一介電子層及第二介電子層的光學厚度與從濾光片穿透出之穿透光線於最大穿透率的波長具有特定關係,以產生法布立-培若干涉。電光聚合物層的材料為有機非線性光學材料,並且第一介電子層及第二介電子層之介電質折射率具有特定比值,故可容易地切換濾光片的頻譜通道,並提升頻譜的分辨率。
100,200,300:濾光片
110,210,310:電光聚合物層
121,122,221,222,321,322:導電層
131,132,231,232,331,332:介電複合層
131A,131B,132A,132B,231A,231B,232A,232B,331A,331B,331C,332A,332B,332C:介電子層
141,142,241,242,341,342:基材
為了對本發明之實施例及其優點有更完整之理解,現請參照以下之說明並配合相應之圖式。必須強調的是,各種特徵並非依比例描繪且僅係為了圖解目的。相關圖式內容說明如下:[圖1]係繪示根據本發明之一實施例的濾光片之示意圖。
[圖2]係繪示根據本發明之另一實施例的濾光片之示意圖。
[圖3]係繪示根據本發明之又一實施例的濾光片之示意圖。
[圖4]係繪示在施加電壓於導電層之前與之後,從本發明之一實施例的濾光片穿透出之光線的穿透率之變化。
以下仔細討論本發明實施例之製造和使用。然而,可以理解的是,實施例提供許多可應用的發明概念,其可實施於各式各樣的特定內容中。所討論之特定實施例僅供說明,並非用以限定本發明之範圍。
本發明此處之「第一」、「第二」及「第三」等用語僅用來區分一個元件(或性質)(例如:層、折射率、厚度及變化值)與另一者,故被描述之元件(或性質)不應該被這些用語所限制。
其次,此處之空間相關的用語(例如:「之下」及「之上」)係方便說明圖式中之元件(例如:層)與另一者的關係。因此,除了圖式所繪示的方位之外,空間相關的用語也可包含使用或操作中裝置(例如:濾光片)之不同方位。
再者,當元件(例如:層)被指稱在兩個元件「之間」時,其可為於兩個元件之間的唯一的元件或唯一的層,或者亦可存在一個或多個中間的元件。
本發明之濾光片包含電光聚合物層、第一導電層、第二導電層(前述二者可統稱為導電層)、第一介電複合層及第二介電複合層,其中第一介電複合層與第二介電複合層均包含至少一介電層。
控制電光聚合物層及至少一介電層之光學厚度(optical thickness),以使光線產生法布立-培若干涉。第一介電複合層及第二介電複合層做為反射層,以過濾掉具有不要的波長之光線。至少一介電層之每一者包含具有第一折射率之第一介電子層,以及具有第二折射率之第二介電子層,其中第一介電子層及第二介電子層係交錯配置。第一折射率與第二折射率具有特定比值,從而提升濾光片之頻譜分辨率。
此外,透過導電層施加電壓於電光聚合物層,以改變電光聚合物層的折射率,從而容易地切換頻譜通道,故不需要使用移動元件,而免除佔據空間及浪費時間之問題。
本發明所稱之「光線」係指波長為奈米級及微米級之電磁波。舉例而言,但非用於限定,光線可包含可見光區域及非可見光區域之波長的電磁波,以及波長為微米級之輻射線。具體而言,光線可包含但不限於紫外光、可見光、紅外光、微波及雷達波。
本發明所稱之「光學厚度」係指空間厚度與折射率的乘積,其中光學厚度與空間厚度之單位為本發明技術領域中具有通常知識者所慣用之厚度單位。
請參閱圖1,濾光片100包含一層電光聚合物層110、第一導電層121、第二導電層122、第一介電複合層131及第二介電複合層132。
電光聚合物層110之材料為有機非線性光學材料(organic nonlinear optical material),其分子結 構具有發色基團(chromophoric group)(其為推電子基團)、共軛橋(conjugated bridge)及拉電子基團,而形成一電偶極。
當施加電場於有機非線性光學材料時,發色團將依照電場方向排列。當發色團的排列方向呈現一致性時,電光聚合物層110的折射率(n1)可被降低。故,藉由改變所施加之電場,電光聚合物層110的折射率(n1)可被調控。在一些具體例中,所施加之電場愈強,電光聚合物層110的折射率(n1)變化愈大。
此外,有機非線性光學材料對電場之響應時間很短(可小於10-6秒),其遠小於液晶材料對電場之響應時間(約10-3秒),故使用有機非線性光學材料可更快速切換濾光片100之頻譜通道。
在一些實施例中,發色基團可為但不限於-OH、-NR2(R為烷基)及-NH2,共軛橋可為但不限於-C=C-、-N=N-及-N=O,拉電子基團可為但不限於-NO2及>C=O。在一些具體例中,有機非線性光學材料可為但不限於4-二甲基氨基-4'-硝基茋(4-dimethylamino-4’-nitrostilbene,DANS)及4'-硝基-4-二甲氨基偶氮苯(4'-Nitro-4-dimethylaminoazobenzene)。
在一些實施例中,電光聚合物層110之折射率(n1)可為1.3至3.0,且較佳為1.6至1.8。當折射率(n1)為前述之範圍時,電光聚合物層110的材料容易取得,且可容易地藉由調控電壓來切換濾光片100的頻譜通道。
在一些實施例中,電光聚合物層110之折射率(n1)於施加電壓前後之變化量(以△n1表示)可經由下式(I)計算求得。
Figure 110130306-A0305-02-0010-5
於式(I)中,r33表示有機非線性光學材料的電光係數張量(EO coefficient tensor element),V表示施加於電光聚合物層110之電壓,d1表示正極與負極(分別為第一導電層121及第二導電層122)之間的距離,也就是電光聚合物層110之空間厚度。
由上式(I)可知,電光聚合物層110的空間厚度(d1)會影響其折射率變化量(△n1)。在一些實施例中,電光聚合物層110的空間厚度(d1)可為0.005微米至100微米,較佳可為0.1微米至1微米,且更佳可為0.1微米至0.5微米。當電光聚合物層110的空間厚度(d1)為前述之範圍時,電光聚合物層110的折射率變化量(△n1)較大,從而提升濾光片100之頻譜分辨率。
在一些實施例中,電光聚合物層110之空間厚度(d1)可例如為0.005微米至100微米。當d1為前述之範圍時,可增加從濾光片100穿透出之光線的穿透率(transmittance),進而提升濾光片100之頻譜分辨率。
依據電光聚合物層110之光學厚度(n1d1)與從濾光片100穿透出之光線於最大穿透率的波長(λtr)之關係,光線可從第一導電層121進入電光聚合物層110中,並於電光聚合物層110中產生共振。然後,此光線可從電 光聚合物層110折射進入至第二導電層122。電光聚合物層110之光學厚度(n1d1)與從濾光片100穿透出之光線於最大穿透率的波長(λtr)滿足關係式:n1d1=n(λtr/2),n為正整數。當光學厚度(n1d1)不滿足前述之關係時,光線不能發生共振現象,且不能從電光聚合物層110折射進入第二導電層122。較佳地,n可為1至20之正整數。
在一些實施例中,電光聚合物層110之有機非線性光學材料的電光係數張量(r33)可為不小於1pm/(volt/m)。根據上式(I),電光聚合物層110的折射率變化量(△n1)與電光係數張量(r33)成正比,故電光係數張量(r33)愈大,可增加折射率變化量(△n1),而提升濾光片100之頻譜分辨率。在一些具體例中,電光係數張量(r33)較佳可為1至700pm/(volt/m),且更佳可為100至700pm/(volt/m),以取得容易設置於導電層上之有機非線性光學材料,進而簡化電光聚合物層110之製程。
請再參閱圖1,電光聚合物層110係相鄰且設置於第一導電層121與第二導電層122之間。第一導電層121與第二導電層122分別做為正極與負極,以被施加電壓,從而使電光聚合物層110的折射率產生變化。
在一些實施例中,第一導電層121之消光係數及第二導電層122之消光係數(extinction coefficient)均為0至0.015,且較佳為0至0.013。當第一導電層121及第二導電層122之消光係數為前述之範圍時,可使光線實質上不被第一導電層121及第二導電層122所吸 收。
在一些實施例中,第一導電層121及第二導電層122之空間厚度(d2)可不大於後述之第一介電子層131A及第二介電子層131B之厚度(分別以di1及di2表示),而可降低第一導電層121及第二導電層122對光線產生吸收之作用。
在一些實施例中,第一導電層121及第二導電層122之材料可包含金屬、氧化錫、氧化銦、氧化銦錫及其它金屬之氧化合物。
請再參閱圖1,第一介電複合層131係相同於第二介電複合層132,且以電光聚合物層110做為對稱層(或稱對稱面),即,第一介電複合層131與第二介電複合層132具有對稱結構。由於第一介電複合層131與第二介電複合層132係對稱的,故後述之內容僅以第一介電複合層131做為例示說明。
第一介電複合層131可包含至少一介電層,且每一個介電層均包含第一介電子層131A及第二介電子層131B。於每一個介電層中,第一介電子層131A設置於第二介電子層131B與電光聚合物層110之間。在一些實施例中,當第一介電複合層131包含一個介電層時,介電層之第一介電子層131A係相鄰於第一導電層121(如圖1所示)。此外,關於第一介電複合層131包含多個介電層之實施例將於後續內容詳述之。
在一些實施例中,第一介電子層131A及第二介 電子層131B之材料可包含氧化物、氟化物及硫化物。
申言之,氧化物的具體例可為但不限於五氧化二鉭(Ta2O5)、二氧化鈦(TiO2)、五氧化二鈮(Nb2O5)及二氧化矽(SiO2)。氟化物的具體例可為但不限於氟化鎂(MgF2)、氟鋁酸鈉(Na3AlF6)、氟化鋁(AlF3)及氟化鈣(CaF2)。硫化物的具體例可為但不限於硫化鋅(ZnS)。
在另一些具體例中,此些層的材料可包含半導體材料及導電氧化物。申言之,半導體材料的具體例可為但不限於非晶矽(α-Si)、鍺(Ge)、砷化鎵(GaAs)及磷化銦(InP)。此些層的材料之導電氧化物的具體例可為但不限於氧化銦錫(In2-xSnxO3-y,X為大於0且小於2,Y=-1至0)及氧化鋅(ZnO)。前述之材料可以單一種類或混合複數種使用。
第一介電子層131A具有第一折射率(ni1),且第二介電子層131B具有第二折射率(ni2)。在一些實施例中,ni1可為1.7至3.6。當ni1為前述之範圍時,第一介電子層131A對於光線不具有強烈的吸收能力,從而提升濾光片100的穿透率。較佳地,ni1可為3.3至3.6。
在一些實施例中,在濾光片100中,電光聚合物層110之折射率(n1)大於第一導電層121之折射率(n2),且n2小於ni1,以增強光線所產生之法布立-培若干涉的效果,從而提升濾光片100之頻譜分辨率。
ni1與ni2的比值為0.25至0.75或1.3至4。當ni1與ni2的比值不在前述範圍內時,降低濾光片100 的頻譜分辨率。較佳地,ni1與ni2的比值可為0.25至0.5或2至4,以提高穿透光線波形的清晰度因素(sharpness factor),從而提升濾光片100的頻譜分辨率。
第一介電子層131A及第二介電子層131B之光學厚度(分別以ni1di1及ni2di2表示)與從濾光片100穿透出之光線於最大穿透率的波長(λtr)滿足關係式:ni1di1=ni2di2=m(λtr/4),m為奇數的正整數,以使第一介電複合層131做為反射層,進而過濾掉具有不要的波長之光線。m較佳可為1至9中之奇數的正整數。當此些介電子層131A及131B之光學厚度不符合前述之關係式時,則第一介電複合層131不能濾掉具有不要的波長之光線。
在一些實施例中,第一介電複合層131與第二介電複合層132之總空間厚度(di)可為0.005微米至100微米,較佳可為1微米至10微米。總空間厚度(di)為前述之範圍時,可提升濾光片100的頻譜分辨率。
請再參閱圖1,在一些實施例中,濾光片100選擇性包含第一基材141及第二基材142,其可分別設置於濾光片100之最外側。在一些具體例中,第一基材141及第二基材142之材料可使用與前述之第一介電子層131A相同的材料,以使第一基材141及第二基材142之折射率、空間厚度及光學厚度相同或近似於第一介電子層131A,故可達成前述之法布立-培若干涉的效果。
舉例而言,第一基材141及第二基材142之折射 率可為但不限於3.3至3.6。當第一基材141及第二基材142之折射率為前述之範圍時,可使濾光片100以電光聚合物層110做為對稱層,而呈現對稱結構,進而容易達成前述之法布立-培若干涉的效果。較佳地,第一基材141及第二基材142之折射率與第二介電子層131B之折射率(ni2)的比值均為0.2至0.6。當前述之比值均為0.2至0.6時,可使濾光片100容易達成前述之法布立-培若干涉的效果。
在另一些實施例中,濾光片100選擇性包含第一基材141或第二基材142,即只有一個基材,在此以第一基材141做示例。第一基材141做為基板,以於其上設置其他層。舉例而言,以第一基材141做為基板,並於其上依序蒸鍍第一介電複合層131、第一導電層121、電光聚合物層110、第二導電層122及第二介電複合層132,以完成製造濾光片100。相同地,第一基材141之材料、折射率、空間厚度及光學厚度相同或近似於第一介電子層131A,以達成前述之法布立-培若干涉的效果。此外,在一些具體例中,第一基材141之材料可為高硬度的玻璃,且其厚度可為公厘等級,以利於前述蒸鍍製程之操作及保護後續設置的其他層。
在前述實施例中,由於濾光片100的入射光線的環境媒質及穿透光線的環境媒質不同,以及/或者僅使用一個基材(第一基材141或第二基材142),所以濾光片100於第一介電複合層131及第二介電複合層132鄰近環境媒 質之一側分別設置一修飾層,或者於第一介電複合層131及第二介電複合層132之一者鄰近環境媒質之一側設置一修飾層,以使光線順利穿射濾光片100並進入到環境媒質中。此修飾層的材料、折射率、空間厚度、光學厚度及層數沒有特別限制,惟以能夠達成前述使光線順利穿射濾光片100並進入到環境媒質為目的。
請參閱圖2,如前所述,在一些實施例中,濾光片200之第一介電複合層231可包含多個介電層,此些介電層之每一者包含第一介電子層231A與第二介電子層231B。此些第一介電子層231A與第二介電子層231B係交錯設置。在相鄰於第一導電層221之介電層中,第一介電子層231A之一側係相鄰於第一導電層221,且第一介電子層231A之另一側係相鄰於第二介電子層231B。
請參閱圖3,在另一些實施例中,第一介電複合層331更包含第三介電子層331C,且第二介電複合層332更包含第四介電子層332C,第一介電複合層331之第一介電子層331A及第二介電子層331B設置於第一導電層321與第三介電子層331C之間,且第二介電複合層332之第一介電子層332A及第二介電子層332B設置於第二導電層322與第四介電子層332C之間。
如前所述,濾光片300以電光聚合物層310為對稱層而呈現對稱結構,所以第三介電子層331C及第四介電子層332C之材料、折射率、空間厚度及光學厚度均相同於或相似於第一介電子層331A,以達成前述之法布立- 培若干涉的效果。
第三介電子層331C及第四介電子層332C之光學厚度(以ni3di3表示)與從濾光片300穿透之光線於最大穿透率的波長(λtr)滿足關係式:ni3di3=m(λtr/4),m為奇數的正整數,以使第一介電複合層331做為反射層,進而過濾掉具有不要的波長之光線。m較佳可為1至9中之奇數的正整數。
在一些應用例中,入射光線先從第一基材341入射到第一介電複合層331。入射光線的波長(λin)與第一介電複合層331中之每一層介電層(在此以第一介電子層331A、第二介電子層331B及第三介電子層331C做示例)的光學厚度滿足關係式(一):m(λin/4)=ni1di1=ni2di2=ni3di3,且m為奇數的正整數,以使入射光線通過第一介電複合層331,並接著通過低消光係數之第一導電層321到達電光聚合物層310。m較佳可為1至9中之奇數的正整數。其中,入射光線於第一介電複合層331中之每一層(即第一介電子層331A、第二介電子層331B及第三介電子層331C)的界面均會發生干涉,而造成光線頻譜強度變化。
申言之,若入射光線的波長(λin)不滿足前述關係式(一)時,其將被反射,而無法通過第一介電複合層331,即其係被濾光片300過濾掉。此被反射之光線稱作反射光線,即具有不要的波長之光線。若光線的波長(λin)與電光聚合物層310之光學厚度(n1d1)滿足關係式(二): n(λin/2)=n1d1,且n為正整數時,此光線於電光聚合物層310產生共振現象,並於共振後,具有滿足關係式(一)及關係式(二)之光線得以穿透濾光片300。n較佳可為1至20中之正整數。
詳述之,由於濾光片300的結構為光學上對稱性,所以光線以相反於前述入射光線進入第一介電複合層331的方式,通過第二介電複合層332及第二基材342,而從濾光片300穿透出,此時的光線稱作穿透光線,即具有想要的波長之光線。
此穿透光線於最大穿透率的波長(λtr)、第一介電複合層331中之每一層介電層的光學厚度(ni1di1、ni2di2及ni3di3)、第二介電複合層332中之每一層介電層的光學厚度(ni1di1、ni2di2及ni3di3),以及電光聚合物層310之光學厚度(n1d1)係滿足前述關係式(一)及(二)。換句話說,電光聚合物層310、第一介電複合層331中之每一層介電層及第二介電複合層332中之每一層介電層之光學厚度必須符合前述之與穿透光線於最大穿透率的波長(λtr)之關係式(一)及(二),濾光片300才能濾出具有想要波長的光線。
電光聚合物層310之材料為有機非線性光學材料,在施予電壓於第一導電層321及第二導電層322後,電光聚合物層310受到電壓影響,折射率(n1)變小,而使電光聚合物層310之光學厚度(n1d1)變小,進而縮短穿透光線於最大穿透率的波長(λtr)。故,濾光片300之頻譜通 道可由調整電壓來做切換。
在一些應用例中,在施加1伏特至500伏特的電壓於電光聚合物層310之前與之後,從濾光片300穿透出之穿透光線於最大穿透率的波長(λtr)之變化值為0.01奈米至50奈米,最大穿透率仍維持大於80%,且最大穿透率之變化值小於5%。
較佳地,施加於電光聚合物層310之電壓可為1伏特至10伏特,且更佳可為1伏特至5伏特。較佳地,波長(λtr)之變化值可為0.1奈米至10奈米,且更佳可為0.5奈米至2奈米。較佳地,最大穿透率仍維持大於90%,且最大穿透率之變化值小於3%。當穿透光線於最大穿透率的波長(λtr)之變化值及/或最大穿透率變化值為前述之範圍時,可提升濾光片300的頻譜分辨率,從而提升濾光片300於光通訊的應用性。
在另一些應用例中,不同於前述濾光片300用於濾掉不要波長光線之情況,從濾光片300反射之反射光線為想要的光線。在施加1伏特至500伏特的電壓於電光聚合物層310之前與之後,從濾光片300反射之反射光線之最大反射率仍維持大於80%,且較佳地,仍維持大於90%,其中反射光線之最大反射率的反射率變化值小於5%,且較佳可小於3%。前述施加之電壓可為1伏特至10伏特,且更佳可為1伏特至5伏特。當反射光線於最大反射率的波長(λre)之反射率變化值為前述之範圍時,可提升濾光片300的頻譜分辨率,從而提升濾光片300於光通訊 的應用性。
以下利用實施例以說明本發明之應用,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。
濾光片之製備
實施例1
實施例1的濾光片係依照表1所示之多層結構製造。以4-二甲基氨基-4'-硝基茋(電光係數張量為300pm/(volt/m))做為電光聚合物層之材料,以氧化銦錫(消光係數為0.01294)做為導電層之材料,以α-Si(非晶矽)及二氧化矽做為介電複合層之材料,以α-Si及二氧化矽層做為修飾層,且以玻璃(折射率為1.50361,厚度為0.1至5mm)做為基材。做為基材的玻璃設至於修飾層1鄰近於環境媒質的一側。α-Si、二氧化矽及玻璃在波長1305nm至1315nm之消光係數為0。
先於玻璃層上蒸鍍α-Si層,然後再依序蒸鍍其他各層,以製得實施例1的濾光片。蒸鍍條件為100℃至300℃的基材溫度,10-4托至10-1托的腔體壓力,以及1000秒至10000秒的蒸鍍時間。
評價方式
穿透率試驗
穿透率試驗係在施加3伏特的電壓於濾光片中之氧化銦錫層之前與之後,以本發明所屬領域中具有通常知識者所慣用之穿透率的量測方法及儀器量測濾光片之穿透 波與入射波的功率,並計算出二者之比值,此即穿透率,結果如圖4所示。
分辨率試驗
分辨率試驗係以前述穿透率試驗所測得之電壓施加之前與之後穿透光線的最大穿透率,並根據下式(III)及(IV)計算出調製率(modulation rate)及動態靈敏度(dynamic sensitivity)來評估濾光片的分辨率。當動態靈敏度大於15dB,此濾光片具備高分辨率。
Figure 110130306-A0305-02-0021-1
D=M+T%3v (IV)
於式(III)中,M表示調製率,T%ov表示未施加電壓時之穿透光線之最大穿透率,T%3v表示施加3伏特的電壓後之穿透光線之最大穿透率,且D表示動態靈敏度。
Figure 110130306-A0305-02-0022-3
請參閱表1,在施加3伏特的電壓於導電層之後,電光聚合物層的折射率從1.73降至1.724,差值為 0.006,此造成電光聚合物層的光學厚度從2.00000 QWOT(Quarter-Wave Optical Thickness)降至1.99306 QWOT。其次,請參閱圖4,穿透過實施例1的濾光片的穿透光線之最大穿透率之波長從1310.00奈米移至1309.19奈米,其差值為0.81奈米,未施加電壓時之穿透光線之最大穿透率為95%,施加電壓後之穿透光線之最大穿透率為95%,二者之差值為0%。據此,僅改變施予電光聚合物層的電壓就能夠切換濾光片之頻譜通道,並且於切換後仍然可維持穿透光線的高穿透率。
進一步,於施加電壓前後,在波長1310.00nm之穿透光線的強度分別為95%及4.5%,依照前述式(III)及式(IV)計算出調製率為13.2dB,且動態靈敏度為17.7dB。由此可知,即使是在波長變動很小(0.81奈米)的情況下,實施例1的濾光片仍具有很高的分辨率。
綜上所述,於本發明之濾光片中,電光聚合物層之光學厚度及每一個介電子層的光學厚度與穿透光線於最大穿透率的波長分別具有特定關係,以產生法布立-培若干涉。電光聚合物層的材料為有機非線性光學材料,並且第一介電子層與第二介電子層之折射率具有特定比值,故此濾光片可容易地切換頻譜通道,並提升頻譜的分辨率。
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍 所界定者為準。
100:濾光片
110:電光聚合物層
121,122:導電層
131,132:介電複合層
131A,131B,132A,132B:介電子層
141,142:基材

Claims (10)

  1. 一種濾光片,包含:一第一導電層;一第二導電層;一電光聚合物層,相鄰且設置於該第一導電層與該第二導電層之間,且該電光聚合物層具有一第一折射率;一第一介電複合層,相鄰於該第一導電層,且該第一導電層設置於該第一介電複合層與該電光聚合物層之間;以及一第二介電複合層,相鄰於該第二導電層,且該第二導電層設置於該第二介電複合層與該電光聚合物層之間;其中該第一介電複合層係相同於該第二介電複合層,並以該電光聚合物層做為一對稱層,且該第一介電複合層與該第二介電複合層均包含至少一介電層,且該至少一介電層之每一者包含:一第一介電子層,具有一第一介電質折射率;以及一第二介電子層,具有一第二介電質折射率,且該第一介電質折射率與該第二介電質折射率的一比值為0.25至0.75或1.3至4.0,其中該第一介電子層及該第二介電子層係交錯配置,且該第一介電子層設置於該第二介電子層與該電光聚合物層之間;其中該電光聚合物層之一第一光學厚度為n(λtr/2),該第一介電子層之一第二光學厚度與該第二介電子層之一第三光學厚度均為m(λtr/4),該n與該m分別為正整數, 該m為奇數,且該λtr為從該濾光片穿透之一穿透光線於一最大穿透率的一波長;其中該第一折射率依照施加於該第一導電層及該第二導電層之一電壓而產生一第一變化值,且該波長對應於該第一變化值產生一第二變化值。
  2. 如請求項1所述之濾光片,其中該第一折射率為1.3至3.0。
  3. 如請求項1所述之濾光片,其中該電光聚合物層之一第一空間厚度為0.1微米至1微米。
  4. 如請求項1所述之濾光片,其中該第一導電層之一消光係數及該第二導電層之一消光係數均為0至0.015。
  5. 如請求項1所述之濾光片,其中該第一介電質折射率為1.7至3.6。
  6. 如請求項1所述之濾光片,其中該第一介電複合層與該第二介電複合層之一總空間厚度為1微米至3微米。
  7. 如請求項1所述之濾光片,其中當該電壓為1 伏特至500伏特時,該第二變化值為0.01奈米至50奈米。
  8. 如請求項1所述之濾光片,其中在施加該電壓於該第一導電層及該第二導電層之前與之後,該穿透光線於該最大穿透率之一穿透率變化值小於5%。
  9. 如請求項1所述之濾光片,其中在施加該電壓於該第一導電層及該第二導電層之前與之後,從該濾光片反射之一反射光線於一最大反射率之一反射率變化值小於5%。
  10. 如請求項1所述之濾光片,其中該第一介電複合層更包含一第三介電子層,且該第二介電複合層更包含一第四介電子層;其中該第一介電複合層之該至少一介電層設置於該第一導電層與該第三介電子層之間,且該第二介電複合層之該至少一介電層設置於該第二導電層與該第四介電子層之間;且該第三介電子層之一第四光學厚度與該第四介電子層之一第五光學厚度均為m(λtr/4)。
TW110130306A 2021-08-17 2021-08-17 濾光片 TWI765807B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110130306A TWI765807B (zh) 2021-08-17 2021-08-17 濾光片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110130306A TWI765807B (zh) 2021-08-17 2021-08-17 濾光片

Publications (2)

Publication Number Publication Date
TWI765807B true TWI765807B (zh) 2022-05-21
TW202309557A TW202309557A (zh) 2023-03-01

Family

ID=82594550

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110130306A TWI765807B (zh) 2021-08-17 2021-08-17 濾光片

Country Status (1)

Country Link
TW (1) TWI765807B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958050B2 (en) * 2011-11-17 2015-02-17 Samsung Electronics Co., Ltd. Tunable terahertz metamaterial filter
TW201512710A (zh) * 2013-09-05 2015-04-01 Apple Inc 用於電子裝置之不透光色彩堆疊
WO2017148937A1 (en) * 2016-03-02 2017-09-08 University Of Copenhagen Waveguide-integrated tuneable optical filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8958050B2 (en) * 2011-11-17 2015-02-17 Samsung Electronics Co., Ltd. Tunable terahertz metamaterial filter
TW201512710A (zh) * 2013-09-05 2015-04-01 Apple Inc 用於電子裝置之不透光色彩堆疊
WO2017148937A1 (en) * 2016-03-02 2017-09-08 University Of Copenhagen Waveguide-integrated tuneable optical filter

Also Published As

Publication number Publication date
TW202309557A (zh) 2023-03-01

Similar Documents

Publication Publication Date Title
US7215457B1 (en) Apparatus and methods for modulating refractive index
EP3622345B1 (en) Field-effect tunable epsilon-near-zero absorber
US6611305B2 (en) Liquid crystal display device and electronic apparatus
CN108594502B (zh) 液晶调谐等离激元诱导透明与法布里腔杂化模式的滤波器
Kitao et al. An investigation into second harmonic generation by Si-rich SiNx thin films deposited by RF sputtering over a wide range of Si concentrations
JP2001209038A (ja) 液晶表示素子用基板
TWI765807B (zh) 濾光片
Elrashidi et al. Broadband absorber using ultra-thin plasmonic metamaterials nanostructure in the visible and near-infrared regions
JP7203759B2 (ja) スイッチャブル層および少なくとも1つの光学層を有する光学デバイス
CN111983827B (zh) 一种基于石墨烯吸收增强的近红外宽波段光开关
CN110673249A (zh) 一种反射滤光片
CN114895396B (zh) 基于硅与锗锑碲复合纳米柱阵列可调谐的红外窄带滤光片
JPH11174427A (ja) 液晶表示デバイスと液晶プロジェクタ
Kriegel et al. Light-induced switching in pDTE–FICO 1D photonic structures
Hasan et al. Design of an antireflection coating for mid-wave infrared regions in the range (3000–5000) nm
Gulia et al. Electro-optic effect in c-axis oriented ZnO thin films prepared by rf magnetron sputtering
Gunyakov et al. Synchronously controlled optical modes in the transmittance and reflectance spectra of multilayer photonic structure with dual-frequency nematic liquid crystal
JPH03217825A (ja) 空間光変調素子
CN114236684B (zh) 一种硅基倾斜微腔片上芯片及其开关和传感应用方法
Dewan et al. Epsilon near zero metamaterial-based Optical Filter
Spenato et al. Ta/NiO subwavelength bilayer for wide gamut, strong interference structural color
Liang et al. Broadband polarization-sensitive metamaterial absorber based on ladder network construction in the infrared region
CN117008223A (zh) 盖板装置
Banerjee et al. Omnidirectional structural color
Blinov et al. Electro-Optic Effect in Thin Films of a Dielectric and a Ferroelectric with Subwavelength Aluminum Grating