TWI764475B - Enhancement Mode Gallium Nitride Device with P-type Doping Layer Electrode Offset - Google Patents

Enhancement Mode Gallium Nitride Device with P-type Doping Layer Electrode Offset

Info

Publication number
TWI764475B
TWI764475B TW109146377A TW109146377A TWI764475B TW I764475 B TWI764475 B TW I764475B TW 109146377 A TW109146377 A TW 109146377A TW 109146377 A TW109146377 A TW 109146377A TW I764475 B TWI764475 B TW I764475B
Authority
TW
Taiwan
Prior art keywords
gallium nitride
layer
type
doped layer
gate metal
Prior art date
Application number
TW109146377A
Other languages
Chinese (zh)
Other versions
TW202226595A (en
Inventor
林家慶
吳肇欣
何竽曆
張雅淳
張國仁
陳志典
Original Assignee
國家中山科學研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國家中山科學研究院 filed Critical 國家中山科學研究院
Priority to TW109146377A priority Critical patent/TWI764475B/en
Application granted granted Critical
Publication of TWI764475B publication Critical patent/TWI764475B/en
Publication of TW202226595A publication Critical patent/TW202226595A/en

Links

Images

Abstract

本發明係提供一種P型摻雜層電極偏移之增強型氮化鎵元件包括:一氮化鋁鎵層,及一P型氮化鎵摻雜層,係形成於該氮化鋁鎵層上;以及一閘極金屬,係對該P型氮化鎵摻雜層做平行位移,使部分的該閘極金屬鍍在該P型氮化鎵摻雜層上,部分的該閘極金屬鍍在該氮化鋁鎵層上,達到降低閘極漏流以及提高輸出電流之效果。 The present invention provides an enhancement mode gallium nitride device with electrode offset of P-type doped layer, comprising: an aluminum gallium nitride layer, and a p-type gallium nitride doped layer formed on the aluminum gallium nitride layer ; And a gate metal, the P-type gallium nitride doped layer is displaced in parallel, so that part of the gate metal is plated on the P-type gallium nitride doped layer, and part of the gate metal is plated on the p-type gallium nitride doped layer. On the aluminum gallium nitride layer, the effects of reducing the gate leakage current and increasing the output current are achieved.

Description

P型摻雜層電極偏移之增強型氮化鎵元件 Enhancement mode gallium nitride device with offset electrode of P-type doped layer

本發明係關於一種P型摻雜層電極偏移之增強型氮化鎵元件,特別是關於使部分的閘極鍍在摻雜層、部分閘極鍍在氮化鋁鎵層上之P型摻雜層電極偏移之增強型氮化鎵元件。 The present invention relates to an enhancement mode gallium nitride device with offset electrodes of P-type doped layers, in particular to a P-type doped gallium nitride device in which part of the gate electrode is plated on the doped layer and part of the gate electrode is plated on the aluminum gallium nitride layer Enhancement mode gallium nitride device with offset electrode.

氮化鋁鎵/氮化鎵增強型高電子遷移率電晶體近幾年來廣受注目。大量應用於高電壓高電子元件及高效率電源轉換系統,其異質接面所產生的大量二維電子氣提供元件大電流、低阻抗之元件特性,與其優越的材料特性,還有較高的崩潰電壓,讓電晶體滿足在高頻與高功率的操作需求。然而,在考量元件的可靠度與簡化電路設計的需求後,增強型氮化鎵元件是目前逐漸取代空乏型元件,為了達成臨界電壓大於零的需求,有許多方法已被實現,包括閘極注入電晶體(gate injection transistor),在能障層上方長一層鎂離子摻雜的P型摻雜層,這一層摻雜層會將閘極下方通道區的能帶提升至費米能階以上,導致通道區域無法被電子佔據而形成常關式的狀態,為了解決電流崩潰(current collapse)的問題,在汲極旁邊再加入一層P型摻雜層並且與汲極導通,如第二圖 所示,成功將電流崩潰電壓提升至850V。 Aluminum gallium nitride/gallium nitride enhancement mode high electron mobility transistors have attracted much attention in recent years. It is widely used in high-voltage, high-electronic components and high-efficiency power conversion systems. The large amount of two-dimensional electron gas generated by the heterojunction provides the component characteristics of high current and low impedance, and its superior material characteristics, as well as high breakdown. voltage, allowing the transistor to meet the needs of high frequency and high power operation. However, after considering the reliability of components and the need to simplify circuit design, enhancement-mode gallium nitride components are gradually replacing depletion-type components. In order to achieve the requirement of a threshold voltage greater than zero, many methods have been implemented, including gate injection. A transistor (gate injection transistor), a P-type doped layer doped with magnesium ions is grown above the energy barrier layer. This doped layer will raise the energy band of the channel region under the gate to above the Fermi level, resulting in The channel region cannot be occupied by electrons and forms a normally-off state. In order to solve the problem of current collapse, a P-type doped layer is added next to the drain electrode and conducts with the drain electrode, as shown in the second figure As shown, the current collapse voltage was successfully raised to 850V.

另一種達成增強型元件的方法為將能障層蝕刻一部份,簡化極化效應使二維電子氣濃度減弱,達成增強型元件,並為了減低閘極漏流的影響,在閘極下方增加一層介電層,如第三圖所示。 Another method to achieve an enhancement type device is to etch a part of the energy barrier layer to simplify the polarization effect and reduce the concentration of the two-dimensional electron gas to achieve an enhancement type device. In order to reduce the influence of gate leakage, increase A dielectric layer, as shown in the third figure.

其他增強型元件製作方法,像是氟離子摻雜或是利用N2O電漿選擇性地將能障層氧化等方法,都已被提出。 Other enhancement-mode device fabrication methods, such as fluoride ion doping or selective oxidation of the barrier layer by N 2 O plasma, have been proposed.

習知技術利用在能障層上方成長一層鎂離子摻雜的P型氮化鎵,形成增強型氮化鎵元件,雖然可以成功達成臨界電壓大於零的指標,但因為其原理為空乏掉P型氮化鎵下方的電子氣濃度,因此會造成輸出電流大幅下降,對於功率元件來說會造成輸出功率下降。此外,在高功率元件的應用上仍有閘極漏流過大的問題,正向閘極漏流會降低閘極電壓擺幅及造成驅動損失,同時,閘極與p型氮化鎵摻雜層之間的蕭特基接面,在閘極施加正偏壓時,會形成逆偏的狀態,因此逆向閘極漏流會造成關閉時的能量損耗,也會降低崩潰電壓。 The conventional technology uses a layer of magnesium ion-doped P-type gallium nitride on the energy barrier layer to form an enhancement-mode gallium nitride element. Although it can successfully achieve the target that the threshold voltage is greater than zero, the principle is to deplete the P-type gallium nitride. The concentration of electron gas under GaN will therefore cause a significant drop in output current and, for power components, a drop in output power. In addition, in the application of high-power components, there is still the problem of excessive gate leakage. The forward gate leakage will reduce the gate voltage swing and cause driving losses. At the same time, the gate and p-type gallium nitride doping layer The Schottky junction between the gates will form a reverse biased state when a positive bias is applied to the gate, so the reverse gate leakage will cause energy loss when closing, and will also reduce the breakdown voltage.

一般利用P型摻雜層作為增強型氮化鎵元件的結構大多為只在閘極下方殘留P型摻雜層,如第四圖所示,P型摻雜層與氮化鋁鎵接面可視為兩個p對p連接的p-i-n二極體,在開啟元件時,若給予閘極過大的偏壓,接面的空乏區會縮減並產生閘極漏流,降低電流輸出效益,另外,P型摻雜 層造成的二維電子氣被過度空乏,輸出電流下降之問題。 Generally, the structure of using the P-type doped layer as the enhancement mode gallium nitride element is mostly only the residual P-type doped layer under the gate electrode. As shown in the fourth figure, the junction between the P-type doped layer and the aluminum gallium nitride can be seen. It is a p-i-n diode with two p-to-p connections. When the element is turned on, if the gate is given an excessive bias voltage, the depletion area of the junction will be reduced and the gate leakage will be generated, reducing the current output efficiency. In addition, the P-type doping The two-dimensional electron gas caused by the layer is excessively depleted, and the output current decreases.

緣是,發明人有鑑於此,秉持多年該相關行業之豐富設計開發及實際製作經驗,針對現有之結構及缺失予以研究改良,提供一種P型摻雜層電極偏移之增強型氮化鎵元件,以期達到更佳實用價值性之目的者。 The reason is that, in view of this, the inventor, adhering to years of rich experience in design, development and actual production in the related industry, researches and improves the existing structure and defects, and provides an enhancement mode gallium nitride device with a P-type doped layer electrode offset. , in order to achieve the purpose of better practical value.

鑒於上述悉知技術之缺點,本發明之主要目的在於提供一種P型摻雜層電極偏移之增強型氮化鎵元件,此氮化鎵元件為一個新的結構,可以有效降低閘極漏流以及提高輸出電流,提升輸出功率效率、高功率放大器的線性度以及降低雜訊。。 In view of the above-mentioned shortcomings of the known technology, the main purpose of the present invention is to provide an enhancement mode gallium nitride device with offset P-type doping layer electrodes. The gallium nitride device is a new structure, which can effectively reduce the gate leakage current. As well as increasing output current, improving output power efficiency, high power amplifier linearity and reducing noise. .

為了達到上述目的,根據本發明所提出之一方案,提供一種P型摻雜層電極偏移之增強型氮化鎵元件,其包括:一氮化鋁鎵層、一P型氮化鎵摻雜層及一閘極金屬,其中P型氮化鎵摻雜層,係形成於該氮化鋁鎵層上;以及閘極金屬,係對該P型氮化鎵摻雜層做平行位移,使部分的該閘極金屬鍍在該P型氮化鎵摻雜層上,部分的該閘極金屬鍍在該氮化鋁鎵層上。 In order to achieve the above object, according to a solution proposed by the present invention, an enhancement mode gallium nitride element with offset electrodes of a P-type doped layer is provided, which comprises: an aluminum gallium nitride layer, a p-type gallium nitride doped layer layer and a gate metal, wherein the p-type gallium nitride doped layer is formed on the aluminum gallium nitride layer; and the gate metal is parallel to the p-type gallium nitride doped layer, so that part of the The gate metal is plated on the P-type gallium nitride doped layer, and part of the gate metal is plated on the aluminum gallium nitride layer.

較佳地,該閘極金屬與該P型氮化鎵摻雜層之間可加入一介電層。 Preferably, a dielectric layer may be added between the gate metal and the P-type gallium nitride doped layer.

較佳地,該閘極金屬可直接與該氮化鋁鎵層接 觸。 Preferably, the gate metal can be directly connected to the aluminum gallium nitride layer touch.

較佳地,該閘極金屬係可透過光罩設計來對該P型氮化鎵摻雜層做平行位移。 Preferably, the gate metal system can be used for parallel displacement of the P-type GaN doped layer through mask design.

較佳地,該閘極金屬係50%的部分鍍在該P型氮化鎵摻雜層上,以及該閘極金屬係50%的部分鍍在該氮化鋁鎵層上。 Preferably, 50% of the gate metal system is plated on the P-type gallium nitride doped layer, and 50% of the gate metal system is plated on the aluminum gallium nitride layer.

較佳地,該P型氮化鎵摻雜層係可摻雜鎂離子。 Preferably, the P-type gallium nitride doped layer can be doped with magnesium ions.

以上之概述與接下來的詳細說明及附圖,皆是為了能進一步說明本發明達到預定目的所採取的方式、手段及功效。而有關本發明的其他目的及優點,將在後續的說明及圖式中加以闡述。 The above summary, the following detailed description and the accompanying drawings are all for the purpose of further illustrating the manner, means and effect adopted by the present invention to achieve the predetermined object. The other objects and advantages of the present invention will be explained in the following descriptions and drawings.

1:氮化鎵層 1: GaN layer

2:二維電子氣 2: Two-dimensional electron gas

3:氮化鋁鎵層 3: Aluminum gallium nitride layer

4:P型氮化鎵摻雜層 4: P-type gallium nitride doped layer

5:源極 5: Source

6:汲極 6: Drain pole

7:閘極 7: Gate

8:介電層 8: Dielectric layer

第一圖係為本發明之P型摻雜層電極偏移之增強型氮化鎵元件結構示意圖。 The first figure is a schematic diagram of the structure of the enhancement mode gallium nitride device with offset electrodes of the P-type doped layer of the present invention.

第二圖係為習知混和汲極閘極注入電晶體示意圖。 The second figure is a schematic diagram of a conventional hybrid drain-gate injection transistor.

第三圖係為習知氮化鎵增強型元件示意圖。 The third figure is a schematic diagram of a conventional GaN enhancement mode device.

第四圖係為習知增強型氮化鎵元件結構示意圖。 The fourth figure is a schematic diagram of the structure of a conventional enhancement mode gallium nitride device.

以下係藉由特定的具體實例說明本發明之實施方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地 了解本創作之優點及功效。 The following describes the embodiments of the present invention with specific examples, and those skilled in the art can easily understand the contents disclosed in this specification. Learn about the benefits and efficacy of this creation.

請參閱第一圖,本發明之P型摻雜層電極偏移之增強型氮化鎵元件結構示意圖,本發明在於提供一種P型摻雜層偏移之增強型氮化鎵元件設計,其包括:氮化鎵層1(GaN)、二維電子氣2(2DEG)、氮化鋁鎵層3(AlGaN)、P型氮化鎵摻雜層4(P-GaN)、源極5(S)、汲極6(D)、閘極金屬7(G)及介電層8,其中二維電子氣2係形成於氮化鎵層1上,氮化鋁鎵層3係形成於二維電子氣2上,而源極5、汲極6及P型氮化鎵摻雜層4係形成於氮化鋁鎵層3上,本發明之P型氮化鎵摻雜層4係摻雜鎂離子,以及閘極金屬7係對P型氮化鎵摻雜層4做平行位移,使部分的閘極金屬7鍍在P型氮化鎵摻雜層4上,部分的閘極金屬7鍍在氮化鋁鎵層3上。 Please refer to the first figure, which is a schematic diagram of the enhancement mode gallium nitride device with offset P-type doped layer electrodes of the present invention. The present invention provides an enhancement mode GaN device design with offset P-type doped layers, which includes: : Gallium nitride layer 1 (GaN), two-dimensional electron gas 2 (2DEG), aluminum gallium nitride layer 3 (AlGaN), P-type gallium nitride doped layer 4 (P-GaN), source electrode 5 (S) , drain 6 (D), gate metal 7 (G) and dielectric layer 8, wherein the two-dimensional electron gas 2 is formed on the gallium nitride layer 1, and the aluminum gallium nitride layer 3 is formed on the two-dimensional electron gas 2, and the source electrode 5, the drain electrode 6 and the p-type gallium nitride doped layer 4 are formed on the aluminum gallium nitride layer 3, the p-type gallium nitride doped layer 4 of the present invention is doped with magnesium ions, And the gate metal 7 is parallelly displaced to the P-type gallium nitride doped layer 4, so that part of the gate metal 7 is plated on the P-type gallium nitride doped layer 4, and part of the gate metal 7 is plated on the nitride on the aluminum gallium layer 3.

以上,相較於傳統p型氮化鎵增強型元件,都將閘極金屬7全部設計在P型氮化鎵摻雜層4上,本發明係設計將閘極金屬7對P型氮化鎵摻雜層4做平行位移,使部分的閘極金屬7在P型氮化鎵摻雜層4,部分閘極金屬7鍍在氮化鋁鎵層3上,以減少p-i-n接面造成的閘極漏電流路徑,有效減低閘極漏流造成的能量損耗之功效。 In the above, compared with the traditional p-type gallium nitride enhancement mode element, the gate metal 7 is all designed on the p-type gallium nitride doped layer 4. The present invention designs the gate metal 7 to the p-type gallium nitride. The doping layer 4 is displaced in parallel, so that part of the gate metal 7 is on the p-type gallium nitride doped layer 4, and part of the gate metal 7 is plated on the aluminum gallium nitride layer 3, so as to reduce the gate caused by the p-i-n junction The leakage current path effectively reduces the energy loss caused by the gate leakage current.

在本實施方式中,閘極金屬7與P型氮化鎵摻雜層4之間可加入介電層8,以減少閘極漏流。 In this embodiment, a dielectric layer 8 may be added between the gate metal 7 and the P-type gallium nitride doped layer 4 to reduce the gate leakage current.

在本實施方式中,閘極金屬7直接與氮化鋁鎵層3接觸,使閘極金屬7可以直接控制通道,具有產生更大的電 流之功效。 In this embodiment, the gate metal 7 is in direct contact with the aluminum gallium nitride layer 3, so that the gate metal 7 can directly control the channel, and has the ability to generate more electricity. The effect of flow.

在本實施方式中,閘極金屬7係透過光罩設計來對P型氮化鎵摻雜層4做平行位移。 In this embodiment, the gate metal 7 is designed to perform parallel displacement to the P-type gallium nitride doped layer 4 through the mask design.

在本實施方式中,閘極金屬7係50%的部分鍍在P型氮化鎵摻雜層4上,以及閘極金屬7係50%的部分鍍在氮化鋁鎵層4上,可同時保有控制元件開關的特性,以及減少閘極漏流之功效。 In this embodiment, 50% of the gate metal 7 series is plated on the P-type gallium nitride doped layer 4, and 50% of the gate metal 7 series is plated on the aluminum gallium nitride layer 4, which can be simultaneously It maintains the characteristics of the control element switching, and the effect of reducing the gate leakage current.

綜上所述,氮化鋁鎵/氮化鎵高電子遷移率場效電晶體因具高電流密度、高崩潰電壓等優勢,大量應用在車用電子、電源供應器、軍用通訊系統,以及在未來5G行動通訊、互聯網時代更會扮演重要角色。本發明提出之氮化鎵優化結構,可以有效降低閘極漏流以及提高輸出電流,提升輸出功率效率、高功率放大器的線性度以及降低雜訊之功效。 In summary, AlGaN/GaN high electron mobility field effect transistors are widely used in automotive electronics, power supplies, military communication systems, and in automotive electronics due to their high current density and high breakdown voltage. In the future, 5G mobile communication and the Internet era will play an important role. The gallium nitride optimized structure proposed by the present invention can effectively reduce the gate leakage current and increase the output current, improve the output power efficiency, the linearity of the high power amplifier and the effect of reducing noise.

近年來由於高科技快速發展,在高頻通訊、高功率元件等領域的規格與需求皆大幅地提升。其中以氮化鎵為材料的高電子遷移率電晶體更是因為其優異的材料性能,被視為下一代取代金屬氧化物半導體的角色。但應用在高功率元件的氮化鎵電晶體,輸出電流的大小勢必是一個指標,同時,閘極漏流也是一個必須克服的因素,閘極漏流會影響元件的表現及可靠度。本發明利用偏移閘極金屬7位置及加入介電層8,有效改善閘極漏流與增加輸出電流密度,對於高功率元件的應用,除了可以減少在元件關閉時的能量損耗,同 時也可以提高閘極電壓擺幅,進而增加功率的承受能力。閘極漏流的大小是對於功率元件好壞很重要的一個指標,與輸出功率效率、高功率放大器的線性度以及降低雜訊的能力都高度相關。 In recent years, due to the rapid development of high technology, the specifications and demands in the fields of high-frequency communication and high-power components have been greatly increased. Among them, the high electron mobility transistor made of gallium nitride is regarded as the next generation to replace the role of metal oxide semiconductor because of its excellent material properties. However, for GaN transistors used in high-power components, the magnitude of the output current is bound to be an indicator. At the same time, the gate leakage current is also a factor that must be overcome. The gate leakage current will affect the performance and reliability of the components. The present invention utilizes offsetting the gate metal 7 and adding the dielectric layer 8 to effectively improve the gate leakage and increase the output current density. For the application of high-power components, in addition to reducing the energy loss when the components are turned off, the same It can also increase the gate voltage swing, thereby increasing the power tolerance. The magnitude of the gate leakage current is an important indicator for the quality of the power components, and is highly related to the output power efficiency, the linearity of the high power amplifier and the ability to reduce noise.

上述之實施例僅為例示性說明本創作之特點及功效,非用以限制本發明之實質技術內容的範圍。任何熟悉此技藝之人士均可在不違背創作之精神及範疇下,對上述實施例進行修飾與變化。因此,本發明之權利保護範圍,應如後述之申請專利範圍所列。 The above-mentioned embodiments are merely illustrative to illustrate the features and effects of the present invention, and are not intended to limit the scope of the substantial technical content of the present invention. Anyone skilled in the art can modify and change the above-mentioned embodiments without departing from the spirit and scope of creation. Therefore, the protection scope of the present invention should be as listed in the patent application scope described later.

1:氮化鎵層 1: GaN layer

2:二維電子氣 2: Two-dimensional electron gas

3:氮化鋁鎵層 3: Aluminum gallium nitride layer

4:P型氮化鎵摻雜層 4: P-type gallium nitride doped layer

5:源極 5: Source

6:汲極 6: Drain pole

7:閘極 7: Gate

8:介電層 8: Dielectric layer

Claims (5)

一種P型摻雜層電極偏移之增強型氮化鎵元件,其包括:一氮化鋁鎵層;一P型氮化鎵摻雜層,係形成於該氮化鋁鎵層上;以及一閘極金屬,係對該P型氮化鎵摻雜層做平行位移,使部分的該閘極金屬鍍在該P型氮化鎵摻雜層上,部分的該閘極金屬鍍在該氮化鋁鎵層上,其中該閘極金屬係50%的部分鍍在該P型氮化鎵摻雜層上,以及該閘極金屬係50%的部分鍍在該氮化鋁鎵層上。 An enhancement mode gallium nitride device with offset electrodes of a P-type doped layer, comprising: an aluminum gallium nitride layer; a p-type gallium nitride doped layer formed on the aluminum gallium nitride layer; and a The gate metal is shifted in parallel to the P-type gallium nitride doped layer, so that part of the gate metal is plated on the P-type gallium nitride doped layer, and part of the gate metal is plated on the nitride On the aluminum gallium layer, 50% of the gate metal system is plated on the P-type gallium nitride doped layer, and 50% of the gate metal system is plated on the aluminum gallium nitride layer. 如申請專利範圍第1項所述之P型摻雜層電極偏移之增強型氮化鎵元件,其中該閘極金屬與該P型氮化鎵摻雜層之間加入一介電層。 The enhancement mode gallium nitride device with offset P-type doped layer electrodes as described in item 1 of the claimed scope, wherein a dielectric layer is added between the gate metal and the P-type gallium nitride doped layer. 如申請專利範圍第1項所述之P型摻雜層電極偏移之增強型氮化鎵元件,其中該閘極金屬直接與該氮化鋁鎵層接觸。 The enhancement mode gallium nitride device with offset P-type doped layer electrodes as described in item 1 of the claimed scope, wherein the gate metal is in direct contact with the aluminum gallium nitride layer. 如申請專利範圍第1項所述之P型摻雜層電極偏移之增強型氮化鎵元件,其中該閘極金屬係透過光罩設計來對該P型氮化鎵摻雜層做平行位移。 The enhancement mode gallium nitride device with electrode offset of P-type doped layer as described in item 1 of the patent application scope, wherein the gate metal is designed to perform parallel displacement of the P-type gallium nitride doped layer through a mask design . 如申請專利範圍第1項所述之P型摻雜層電極偏移之增強型氮化鎵元件,其中該P型氮化鎵摻雜層係摻雜鎂離子。 The enhancement mode gallium nitride device with offset electrodes of the P-type doped layer as described in item 1 of the claimed scope, wherein the P-type gallium nitride doped layer is doped with magnesium ions.
TW109146377A 2020-12-28 2020-12-28 Enhancement Mode Gallium Nitride Device with P-type Doping Layer Electrode Offset TWI764475B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109146377A TWI764475B (en) 2020-12-28 2020-12-28 Enhancement Mode Gallium Nitride Device with P-type Doping Layer Electrode Offset

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109146377A TWI764475B (en) 2020-12-28 2020-12-28 Enhancement Mode Gallium Nitride Device with P-type Doping Layer Electrode Offset

Publications (2)

Publication Number Publication Date
TWI764475B true TWI764475B (en) 2022-05-11
TW202226595A TW202226595A (en) 2022-07-01

Family

ID=82594127

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109146377A TWI764475B (en) 2020-12-28 2020-12-28 Enhancement Mode Gallium Nitride Device with P-type Doping Layer Electrode Offset

Country Status (1)

Country Link
TW (1) TWI764475B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200903858A (en) * 2007-03-09 2009-01-16 Univ California Method to fabricate III-N field effect transistors using ion implantation with reduced dopant activation and damage recovery temperature
EP2533292A2 (en) * 2011-06-10 2012-12-12 International Rectifier Corporation Enhancement mode group III-V high electron mobility transistor (HEMT) and method for fabrication
US20150021667A1 (en) * 2013-02-22 2015-01-22 Taiwan Semiconductor Manufacturing Company, Ltd. High Electron Mobility Transistor and Method of Forming the Same
TW201709514A (en) * 2015-08-26 2017-03-01 環球晶圓股份有限公司 Enhancement-mode high-electron-mobility transistor structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200903858A (en) * 2007-03-09 2009-01-16 Univ California Method to fabricate III-N field effect transistors using ion implantation with reduced dopant activation and damage recovery temperature
EP2533292A2 (en) * 2011-06-10 2012-12-12 International Rectifier Corporation Enhancement mode group III-V high electron mobility transistor (HEMT) and method for fabrication
US20150021667A1 (en) * 2013-02-22 2015-01-22 Taiwan Semiconductor Manufacturing Company, Ltd. High Electron Mobility Transistor and Method of Forming the Same
TW201709514A (en) * 2015-08-26 2017-03-01 環球晶圓股份有限公司 Enhancement-mode high-electron-mobility transistor structure

Also Published As

Publication number Publication date
TW202226595A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
CN110047910B (en) Heterojunction semiconductor device with high voltage endurance capability
US9190506B2 (en) Field-effect transistor
JP2008288474A (en) Hetero junction field effect transistor
US11335799B2 (en) Group-III nitride semiconductor device and method for fabricating the same
US10651303B2 (en) High-electron-mobility transistor devices
TWI706566B (en) A high power semiconductor device
CN104167445B (en) GaN-based enhancement/depletion mode heterojunction field effect transistor with buried gate structure
CN105336789A (en) GaN-based field effect transistor with high quality MIS structure and preparation method of GaN-based field effect transistor
CN104269433B (en) Gallium-nitride-based enhancement type heterojunction field effect transistor with composite channel layer
CN105118830A (en) Enhanced HEMT of integrated SBD
CN109659355A (en) Normally-off gallium oxide field-effect transistor structure and preparation method
CN102194819A (en) Enhanced GaN heterojunction field effect transistor based on metal oxide semiconductor (MOS) control
CN110310981B (en) Nitrogen face enhanced composite barrier layer gallium nitride based heterojunction field effect transistor
Lu et al. GaN power electronics
CN111490101B (en) GaN-based HEMT device
TWI764475B (en) Enhancement Mode Gallium Nitride Device with P-type Doping Layer Electrode Offset
CN114520262A (en) Enhanced MIS-GaN device
WO2021106236A1 (en) Diode, method for producing diode, and electronic device
CN113782588A (en) Gallium nitride power device with high-voltage-resistance low-leakage grid electrode
CN105448976A (en) Enhanced AlGaN/GaN high-electron-mobility transistor (HEMT) and fabrication method thereof
WO2023236523A1 (en) Enhanced integrated structure of n-channel and p-channel gan devices
CN112687733B (en) Enhanced power device and manufacturing method thereof
CN220358098U (en) Concave gate MIS double barrier layer HEMT device
Wang et al. An E-mode $\beta $-Ga 2 O 3 metal-heterojunction composite field effect transistor with a record high P-FOM of 0.73 GW/cm 2
TWI784460B (en) Normally closed transistor and its manufacturing method