TWI764351B - Thermal sensor - Google Patents

Thermal sensor

Info

Publication number
TWI764351B
TWI764351B TW109138127A TW109138127A TWI764351B TW I764351 B TWI764351 B TW I764351B TW 109138127 A TW109138127 A TW 109138127A TW 109138127 A TW109138127 A TW 109138127A TW I764351 B TWI764351 B TW I764351B
Authority
TW
Taiwan
Prior art keywords
thermal
sensing
information
unshielded
thermal sensing
Prior art date
Application number
TW109138127A
Other languages
Chinese (zh)
Other versions
TW202220430A (en
Inventor
丁后君
Original Assignee
丁后君
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 丁后君 filed Critical 丁后君
Priority to TW109138127A priority Critical patent/TWI764351B/en
Priority to CN202111056612.9A priority patent/CN114526820A/en
Priority to US17/486,959 priority patent/US20220136911A1/en
Application granted granted Critical
Publication of TWI764351B publication Critical patent/TWI764351B/en
Publication of TW202220430A publication Critical patent/TW202220430A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K15/00Testing or calibrating of thermometers
    • G01K15/005Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/80Calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J2005/065Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity by shielding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/06Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
    • G01J2005/066Differential arrangement, i.e. sensitive/not sensitive
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J2005/106Arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • G01J2005/123Thermoelectric array

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

A thermal sensor is provided. The thermal sensor includes a thermal sensing array and a calibration circuit. The thermal sensing array includes a plurality of thermal sensing cells. The thermal sensing cells include a first unmasked thermal sensing cell and a first masked thermal sensing cell. The first unmasked thermal sensing cell senses and obtains a first unmasked sensing data. The first masked thermal sensing cell is disposed adjacent to the first unmasked thermal sensing cell, and the first masked thermal sensing cell obtains a first masked sensing data. The calibration circuit is coupled to the first masked thermal sensing cell and the first unmasked thermal sensing cell. The calibration circuit calibrates the first unmasked sensing data obtained by the first unmasked thermal sensing cell according to the first masked sensing data obtained by the first masked thermal sensing cell which the first unmasked thermal sensing cell is adjacent to.

Description

熱感測器thermal sensor

本發明是有關於一種感測器,且特別是有關於一種熱感測器。 The present invention relates to a sensor, and particularly to a thermal sensor.

熱感測器通常可針對目標區域或目標物所發出的熱輻射進行感測,可據此產生對應的熱感測結果或熱影像。但熱感測器除了會接收到目標區域或目標物所發出的熱輻射之外,往往也會接收到其他介質透過熱傳導所提供的熱能,因而造成感測結果的誤差或是熱影像中的不均勻。 The thermal sensor can generally sense the thermal radiation emitted by the target area or the target, and can generate corresponding thermal sensing results or thermal images accordingly. However, in addition to receiving the thermal radiation emitted by the target area or object, the thermal sensor often also receives thermal energy provided by other media through thermal conduction, resulting in errors in sensing results or inconsistencies in thermal images. evenly.

為了校正熱傳導所產生的誤差,傳統的熱感測器通常會控制快門(shutter)的開關來阻隔射入熱感測器的熱輻射,僅針對熱傳導進行感測以進行校正。但首先,快門的開關需要設置額外的控制電路來操控,其會造成成本上升。再者,快門關閉時會阻隔所有熱輻射,造成感測結果或熱影像中的訊息遺漏。最後,機械式的快門更容易受到損壞,造成熱感測器無法執行校正功能。因此,傳統技術的熱感測器實有改善的必要。 In order to correct the error caused by heat conduction, the conventional thermal sensor usually controls the opening and closing of a shutter to block the thermal radiation injected into the thermal sensor, and only senses the thermal conduction for correction. But first, the opening and closing of the shutter needs to be controlled by an additional control circuit, which increases the cost. Furthermore, when the shutter is closed, all thermal radiation is blocked, resulting in missing information in sensing results or thermal images. Finally, mechanical shutters are more susceptible to damage, rendering the thermal sensor unable to perform its corrective function. Therefore, it is necessary to improve the thermal sensor of the conventional technology.

本發明提供一種熱感測器,其透過熱感測器中未遮蔽熱感測胞及遮蔽熱感測胞的感測結果來進行感測結果的校正。 The present invention provides a thermal sensor, which calibrates the sensing results through the sensing results of the unshielded thermal sensing cells and the shielded thermal sensing cells in the thermal sensor.

本發明的熱感測器包含熱感測陣列及校正電路。熱感測陣列包含多個熱感測胞。熱感測胞包含第一未遮蔽熱感測胞及第一遮蔽熱感測胞。第一未遮蔽熱感測胞獲得第一未遮蔽感測資訊。第一遮蔽熱感測胞相鄰於第一未遮蔽熱感測胞而設置,並獲得第一遮蔽感測資訊。校正電路耦接第一未遮蔽熱感測胞及第一遮蔽熱感測胞。校正電路依據第一遮蔽感測資訊,對相鄰的第一未遮蔽熱感測胞所獲得的第一未遮蔽感測資訊進行校正。 The thermal sensor of the present invention includes a thermal sensing array and a calibration circuit. The thermal sensing array includes a plurality of thermal sensing cells. The thermal sensing cells include a first unshielded thermal sensing cell and a first shielded thermal sensing cell. The first unshielded thermal sensing cell obtains first unshielded sensing information. The first shielded thermal sensing cells are disposed adjacent to the first unshielded thermal sensing cells, and obtain first shielded sensing information. The calibration circuit is coupled to the first unshielded thermal sensing cell and the first shielded thermal sensing cell. The calibration circuit calibrates the first unshielded sensing information obtained by the adjacent first unshielded thermal sensing cells according to the first shielded sensing information.

基於上述,熱感測器透過遮蔽熱感測胞所獲得的遮蔽感測資訊,來對遮蔽熱感測胞所相鄰的未遮蔽熱感測胞所獲得的未遮蔽感測資訊進行校正,以排除感測結果的誤差或不均勻等非理想因素。 Based on the above, the thermal sensor corrects the unshaded sensing information obtained by the unshaded thermal sensing cell adjacent to the shaded thermal sensing cell through the shaded sensing information obtained by the shaded thermal sensing cell, so as to Eliminate non-ideal factors such as errors or unevenness in the sensing results.

1、2:熱感測器 1, 2: Thermal sensor

10、10-1、10-2、10-3、10-4:熱感測陣列 10, 10-1, 10-2, 10-3, 10-4: Thermal Sensing Array

10m:遮蔽熱感測胞 10m: shielding thermal sensing cells

10u:未遮蔽熱感測胞 10u: Unshielded thermal sensing cell

11、21、21a、21b、21c:校正電路 11, 21, 21a, 21b, 21c: Correction circuit

12:鏡頭 12: Lens

23:運算電路 23: Operational circuit

210:類比減法器 210: Analog Subtractor

211、212:類比數位轉換器 211, 212: Analog-to-digital converters

213:數位減法器 213: Digit Subtractor

214:開關電路 214: switch circuit

CH:熱傳導 CH: heat conduction

RH:熱輻射 RH: heat radiation

圖1A為本發明實施例一熱感測器的示意圖。 FIG. 1A is a schematic diagram of a thermal sensor according to an embodiment of the present invention.

圖1B為圖1A所繪示的熱感測陣列的部分放大示意圖。 FIG. 1B is a partially enlarged schematic view of the thermal sensing array shown in FIG. 1A .

圖2A為本發明實施例一熱感測器的示意圖。 FIG. 2A is a schematic diagram of a thermal sensor according to an embodiment of the present invention.

圖2B為本發明實施例一校正電路的示意圖。 FIG. 2B is a schematic diagram of a calibration circuit according to an embodiment of the present invention.

圖2C為本發明實施例一校正電路的示意圖。 FIG. 2C is a schematic diagram of a calibration circuit according to an embodiment of the present invention.

圖2D為本發明實施例一校正電路的示意圖。 FIG. 2D is a schematic diagram of a calibration circuit according to an embodiment of the present invention.

圖3A~3D為本發明實施例多個熱感測陣列的示意圖。 3A-3D are schematic diagrams of a plurality of thermal sensing arrays according to embodiments of the present invention.

圖1A為本發明實施例一熱感測器1的示意圖。熱感測器1包含熱感測陣列10、校正電路11及鏡頭12。鏡頭12可接收來自目標物或目標區域所發出的熱輻射RH。熱感測陣列10可用來感測透過鏡頭12所傳入的熱輻射RH。熱感測陣列10包含多個熱感測胞,其中包含有未遮蔽熱感測胞10u及遮蔽熱感測胞10m。未遮蔽熱感測胞10u及遮蔽熱感測胞10m可進行感測,以分別獲得未遮蔽感測資訊及遮蔽感測資訊。校正電路11耦接未遮蔽熱感測胞10u及遮蔽熱感測胞10m,校正電路11可依據遮蔽感測資訊來校正未遮蔽感測資訊,進而產生目標區域或目標物的熱感測影像。 FIG. 1A is a schematic diagram of a thermal sensor 1 according to an embodiment of the present invention. The thermal sensor 1 includes a thermal sensing array 10 , a calibration circuit 11 and a lens 12 . The lens 12 can receive thermal radiation RH emitted from the target object or target area. The thermal sensing array 10 can be used to sense thermal radiation RH transmitted through the lens 12 . The thermal sensing array 10 includes a plurality of thermal sensing cells, including an unshielded thermal sensing cell 10u and a shielded thermal sensing cell 10m. The unshaded thermal sensing cells 10u and the shaded thermal sensing cells 10m can perform sensing to obtain unshaded sensing information and shaded sensing information, respectively. The calibration circuit 11 is coupled to the unshielded thermal sensing cell 10u and the shielded thermal sensing cell 10m. The calibration circuit 11 can correct the unshielded sensing information according to the shielded sensing information, thereby generating a thermal sensing image of the target area or object.

大致而言,在熱感測陣列10中,未遮蔽熱感測胞10u會相鄰於至少一個遮蔽熱感測胞10m。進一步,校正電路11可依據遮蔽熱感測胞10m所獲得的遮蔽感測資訊,對相鄰的未遮蔽熱感測胞10u所獲得的未遮蔽感測資訊進行校正。因此,熱感測器1所產生的熱感測影像中,熱感測影像的誤差或不均勻等非理想因素可較佳地被排除。 Generally speaking, in the thermal sensing array 10, the unshielded thermal sensing cell 10u is adjacent to at least one shielded thermal sensing cell 10m. Further, the calibration circuit 11 may calibrate the unshielded sensing information obtained by the adjacent unshielded thermal sensing cells 10u according to the shielded sensing information obtained by the shielded thermal sensing cells 10m. Therefore, in the thermal sensing image generated by the thermal sensor 1, non-ideal factors such as errors or unevenness of the thermal sensing image can be preferably eliminated.

詳細而言,針對熱感測器1的整體操作,熱感測器1的鏡頭12可接收目標區域或目標物所發出的熱輻射RH,熱輻射RH 通過鏡頭12後可射入至熱感測陣列10。 In detail, for the overall operation of the thermal sensor 1, the lens 12 of the thermal sensor 1 can receive the thermal radiation RH emitted by the target area or the target object, the thermal radiation RH After passing through the lens 12 , it can be injected into the thermal sensing array 10 .

熱感測陣列10中具有多個熱感測胞,熱感測胞包含有未遮蔽熱感測胞10u及遮蔽熱感測胞10m。熱感測胞可針對熱輻射RH進行感測以獲得感測資訊,並據以產生出熱感測影像。在此實施例中,未遮蔽熱感測胞10u及遮蔽熱感測胞10m在行方向上及列方向上互相交錯設置,也就是說,未遮蔽熱感測胞10u在行方向跟列方向上都相鄰於遮蔽熱感測胞10m。但本發明不以此排列方式為限,只要未遮蔽熱感測胞10u相鄰於至少一個遮蔽熱感測胞10m即可。對於熱感測陣列10的感測操作而言,除了會透過熱輻射方式由鏡頭12接收到目標區域或目標物所傳遞的熱輻射RH之外,熱感測器1本身更會透過熱傳導或其他方式,接收到由空氣、感測器支撐材料、操作者或其他來源的熱傳導CH,而並非目標區域或目標物所提供的熱能,進而造成熱感測影像的誤差或不均勻(non-uniformity)。因此,熱感測陣列10中設置有未遮蔽熱感測胞10u及遮蔽熱感測胞10m。未遮蔽熱感測胞10u可感測到穿透鏡頭12所射入的熱輻射RH及熱傳導CH,並獲得未遮蔽感測資訊。遮蔽熱感測胞10m為被遮蔽的熱感測胞,其可感測到熱傳導CH,並獲得遮蔽感測資訊。在一實施例中,遮蔽熱感測胞10m可透過在未熱感測胞10u上設置或塗設熱遮蔽材料來實現,本發明對遮蔽熱感測胞10m的實現方式並不限制。 The thermal sensing array 10 has a plurality of thermal sensing cells, and the thermal sensing cells include unshielded thermal sensing cells 10u and shielded thermal sensing cells 10m. The thermal sensing cells can sense the thermal radiation RH to obtain sensing information, and generate thermal sensing images accordingly. In this embodiment, the unshielded thermal sensing cells 10u and the shielded thermal sensing cells 10m are staggered in the row and column directions, that is, the unshielded thermal sensing cells 10u are arranged in both the row and column directions. 10m adjacent to the shielded thermal sensing cell. However, the present invention is not limited to this arrangement, as long as the unshielded thermal sensing cells 10u are adjacent to at least one shielded thermal sensing cell 10m. For the sensing operation of the thermal sensing array 10 , in addition to the thermal radiation RH transmitted from the target area or the target object received by the lens 12 through thermal radiation, the thermal sensor 1 itself can also be transmitted through thermal conduction or other In this way, the thermal conduction CH from the air, the sensor support material, the operator, or other sources is received, rather than the thermal energy provided by the target area or object, thereby causing errors or non-uniformity of the thermal sensing image. . Therefore, the thermal sensing array 10 is provided with unshielded thermal sensing cells 10u and shielded thermal sensing cells 10m. The unshielded thermal sensing cell 10u can sense the thermal radiation RH and thermal conduction CH injected by the penetrating lens 12, and obtain unshielded sensing information. The shielded thermal sensing cell 10m is a shielded thermal sensing cell, which can sense the heat conduction CH and obtain the shielding sensing information. In one embodiment, the shielding of the thermal sensing cells 10m can be achieved by disposing or coating a thermal shielding material on the non-thermal sensing cells 10u. The present invention does not limit the implementation of the shielding thermal sensing cells 10m.

校正電路11接收未遮蔽感測資訊及遮蔽感測資訊後,校正電路11可依據遮蔽熱感測胞10m所感測的遮蔽感測資訊,來校 正該遮蔽熱感測胞10m相鄰的未遮蔽熱感測胞10u所感測的未遮蔽感測資訊,如此一來,熱感測影像中的誤差或不均勻可被有效地消除。 After the calibration circuit 11 receives the unshaded sensing information and the shading sensing information, the calibration circuit 11 can calibrate the shading sensing information sensed by the shading thermal sensing cell 10m. The unshielded sensing information sensed by the unshielded thermal sensing cells 10u adjacent to the shielded thermal sensing cell 10m is shielded, so that errors or unevenness in the thermal sensing image can be effectively eliminated.

在一實施例中,校正電路11將未遮蔽熱感測胞10u所感測的未遮蔽感測資訊,扣除該未遮蔽熱感測胞10u相鄰的遮蔽熱感測胞10m所感測的遮蔽感測資訊,以產生出經校正的未遮蔽感測資訊。舉例而言,請參考圖1B,圖1B為圖1A所繪示的熱感測陣列10的部分放大示意圖,校正電路11依據遮蔽感測資訊校正未遮蔽感測資訊的操作,可參考下方的公式(1)~(3)。 In one embodiment, the calibration circuit 11 deducts the unshielded sensing information sensed by the unshielded thermal sensing cell 10u from the shielded sensing information sensed by the shielded thermal sensing cell 10m adjacent to the unshielded thermal sensing cell 10u. information to generate corrected unmasked sensing information. For example, please refer to FIG. 1B . FIG. 1B is a partially enlarged schematic diagram of the thermal sensing array 10 shown in FIG. 1A . The calibration circuit 11 corrects the unmasked sensing information according to the masked sensing information, and the following formula can be referred to. (1) to (3).

v(m+1,n)=r(m+1,n)+c(m+1,n) (1) v(m+1,n)=r(m+1,n)+c(m+1,n) (1)

v(m,n)=c(m,n) (2) v(m,n)=c(m,n) (2)

r’(m+1,n)=v(m+1,n)-v(m,n)=r(m+1,n)+[c(m+1,n)-c(m,n)] (3)其中,在公式(1)中,v(m+1,n)是設置在位置(m+1,n)的未遮蔽熱感測胞10u所感測的未遮蔽感測資訊,其包含了r(m+1,n)的熱輻射資訊以及c(m+1,n)的熱傳導資訊。在公式(2)中,v(m,n)是設置在位置(m,n)的遮蔽熱感測胞10m所感測的遮蔽感測資訊,其僅包含了c(m,n)的熱傳導資訊。 r'(m+1,n)=v(m+1,n)-v(m,n)=r(m+1,n)+[c(m+1,n)-c(m,n )] (3) wherein, in formula (1), v(m+1,n) is the unshielded sensing information sensed by the unshielded thermal sensing cell 10u disposed at the position (m+1,n), It contains the heat radiation information of r(m+1,n) and the heat conduction information of c(m+1,n). In formula (2), v(m,n) is the shading sensing information sensed by the shading thermal sensing cell 10m disposed at the position (m,n), which only includes the heat conduction information of c(m,n) .

在公式(3)中,校正電路11在取得v(m,n)及v(m+1,n)之後,可將v(m+1,n)扣除v(m,n)來產生經校正的未遮蔽感測資訊r’(m+1,n)。具體而言,由於c(m+1,n)及c(m,n)兩者是由相鄰的未遮蔽熱感測胞10u及遮蔽熱感測胞10m所獲得的,校正電路11可 以把c(m,n)用來近似於c(m+1,n),v(m+1,n)在扣除c(m,n)後,其中的熱傳導資訊c(m+1,n)可被較佳地消去,使得經校正的未遮蔽感測資訊r’(m+1,n)中僅保留下熱輻射資訊。 In formula (3), after obtaining v(m,n) and v(m+1,n), the correction circuit 11 can deduct v(m,n) from v(m+1,n) to generate a corrected The unmasked sensing information r'(m+1,n). Specifically, since both c(m+1,n) and c(m,n) are obtained from the adjacent unshielded thermal sensing cells 10u and shielded thermal sensing cells 10m, the correction circuit 11 can In order to use c(m,n) to approximate c(m+1,n), after deducting c(m,n) from v(m+1,n), the heat conduction information c(m+1,n) ) can preferably be eliminated so that only thermal radiation information remains in the corrected unmasked sensing information r'(m+1,n).

另外,在一實施例中,校正電路11可依據遮蔽感測資訊的平均來校正未遮蔽感測資訊。舉例而言,請參考圖1B,圖1B為圖1A所繪示的熱感測陣列10的部分放大示意圖,接下將以圖1B中熱感測陣列10的排列以及下方的公式(4)、(5)來說明校正電路11的操作。 In addition, in one embodiment, the correction circuit 11 may correct the unmasked sensing information according to the average of the masked sensing information. For example, please refer to FIG. 1B , which is a partially enlarged schematic diagram of the thermal sensing array 10 shown in FIG. 1A . Next, the arrangement of the thermal sensing array 10 in FIG. 1B and the following formulas (4), (5) The operation of the correction circuit 11 will be described.

c’(m+1,n)=(v(m+1,n-1)+v(m,n)+v(m+2,n)+v(m+1,n+1))/4 (4) c'(m+1,n)=(v(m+1,n-1)+v(m,n)+v(m+2,n)+v(m+1,n+1))/ 4 (4)

r’(m+1,n)=v(m+1,n)-c’(m+1,n) (5)其中,在公式(4)中,v(m+1,n-1)、v(m,n)、v(m+2,n)、v(m+1,n+1)分別為位置(m+1,n-1)、(m,n)、(m+2,n)、(m+1,n+1)上的遮蔽熱感測胞10m所獲得的遮蔽感測資訊,其僅包含有熱傳導資訊,而c’(m+1,n)即為該些未遮蔽感測資訊的平均。進一步,在公式(5)中,校正電路11可將在(m+1,n)上的未遮蔽熱感測胞10u所獲得的未遮蔽感測資訊v(m+1,n)扣除掉相鄰遮蔽熱感測胞10m所獲得的未遮蔽感測資訊的平均c’(m+1,n),以獲得經校正的未遮蔽感測資訊r’(m+1,n)。 r'(m+1,n)=v(m+1,n)-c'(m+1,n) (5) Wherein, in formula (4), v(m+1,n-1) , v(m,n), v(m+2,n), v(m+1,n+1) are positions (m+1,n-1), (m,n), (m+2 ,n), (m+1,n+1) The shading sensing information obtained by the shading thermal sensing cell 10m only contains the heat conduction information, and c'(m+1,n) is these Average of unmasked sensing information. Further, in formula (5), the correction circuit 11 can deduct the phase of the unshielded sensing information v(m+1,n) obtained by the unshielded thermal sensing cell 10u on (m+1,n) The average c'(m+1,n) of the unshaded sensing information obtained by the adjacent shaded thermal sensing cells 10m is obtained to obtain the corrected unshaded sensing information r'(m+1,n).

換言之,校正電路11可取得相鄰於位置(m+1,n)的多個遮蔽感測資訊,校正電路11可以把該些遮蔽感測資訊的平均c’(m+1,n)用來近似於位置(m+1,n)的熱傳導資訊c(m+1,n),透過 扣除c’(m+1,n)來消去未遮蔽感測資訊中的熱傳導資訊,使得經校正的未遮蔽感測資訊r’(m+1,n)中僅保留下熱輻射資訊。 In other words, the calibration circuit 11 can obtain a plurality of occlusion sensing information adjacent to the position (m+1,n), and the calibration circuit 11 can use the average c'(m+1,n) of the occlusion sensing information to be used for The thermal conduction information c(m+1,n) at position (m+1,n) is approximated by C'(m+1,n) is subtracted to eliminate the heat conduction information in the unmasked sensing information, so that only the thermal radiation information remains in the corrected unmasked sensing information r'(m+1,n).

因此,熱感測器1可透過在熱感測陣列10設置未遮蔽熱感測胞10u及遮蔽熱感測胞10m,使未遮蔽熱感測胞10u相鄰於至少一個遮蔽熱感測胞10m。如此一來,校正電路11即可利用遮蔽熱感測胞10m所獲得的遮蔽感測資訊來校正相鄰的未遮蔽熱感測胞10u所感測的未遮蔽感測資訊,排除熱感測影像中的誤差或不均勻等非理想因素。另一方面而言,熱感測器1可在不需中斷感測操作的情況下,即時地校正熱感測器的感測結果,避免熱影像的訊息遺漏,進而提升熱感測器1的操作便利性。 Therefore, the thermal sensor 1 can set the unshielded thermal sensing cell 10u and the shielded thermal sensing cell 10m in the thermal sensing array 10 so that the unshielded thermal sensing cell 10u is adjacent to at least one shielded thermal sensing cell 10m . In this way, the correction circuit 11 can use the shaded sensing information obtained by the shaded thermal sensing cells 10m to correct the unshaded sensing information sensed by the adjacent unshaded thermal sensing cells 10u, excluding the thermal sensing image. non-ideal factors such as error or unevenness. On the other hand, the thermal sensor 1 can correct the sensing result of the thermal sensor in real time without interrupting the sensing operation, so as to avoid the omission of information of the thermal image, thereby improving the performance of the thermal sensor 1 . Ease of operation.

在一實施例中,校正電路11除了可依據遮蔽感測資訊來對相鄰的未遮蔽熱感測胞10u所獲得的未遮蔽感測資訊進行校正之外,校正電路11還可依據未遮蔽感測資訊,來還原相鄰的遮蔽熱感測胞10m的感測結果,進而產生熱感測影像。接下來將以圖1B以及下方的公式(6)、(7)來說明校正電路11的操作。 In one embodiment, the calibration circuit 11 can not only calibrate the unshielded sensing information obtained by the adjacent unshielded thermal sensing cells 10u according to the shielding sensing information, the calibration circuit 11 can also calibrate the unshielded sensing information The sensing information is used to restore the sensing results of the adjacent shielded thermal sensing cells 10m, thereby generating a thermal sensing image. Next, the operation of the correction circuit 11 will be described with reference to FIG. 1B and the following equations (6), (7).

v’(m,n)=(v(m,n-1)+v(m-1,n)+v(m+1,n)+v(m,n+1))/4 (6) v'(m,n)=(v(m,n-1)+v(m-1,n)+v(m+1,n)+v(m,n+1))/4 (6)

r’(m,n)=v’(m,n)-v(m,n) (7)其中,在公式(6)中,v(m,n-1)、v(m-1,n)、v(m+1,n)、v(m,n+1)分別為位置(m,n-1)、(m-1,n)、(m+1,n)、(m,n+1)上的未遮蔽熱感測胞10u所獲得的未遮蔽感測資訊,v’(m,n)即為該些未遮蔽感測資訊的平均。在公式(7)中,v(m,n)即為位置上的遮蔽熱感測胞10m所獲得的遮蔽感測資訊,其僅包含熱傳導資訊。校正電路11 將未遮蔽感測資訊的平均v’(m,n)扣除遮蔽感測資訊v(m,n),進而產生經還原的遮蔽感測資訊。 r'(m,n)=v'(m,n)-v(m,n) (7) Among them, in formula (6), v(m,n-1), v(m-1,n ), v(m+1,n), v(m,n+1) are positions (m,n-1), (m-1,n), (m+1,n), (m,n respectively For the unshielded sensing information obtained by the unshielded thermal sensing cells 10u on +1), v'(m,n) is the average of the unshielded sensing information. In formula (7), v(m,n) is the shading sensing information obtained by the shading thermal sensing cell 10m at the position, which only includes heat conduction information. Correction circuit 11 The masked sensing information v(m,n) is subtracted from the average v'(m,n) of the unmasked sensing information, thereby generating restored masked sensing information.

換言之,校正電路11可以把該些未遮蔽感測資訊的平均v’(m,n)用來近似於位置(m,n)的未遮蔽感測資訊,透過扣除掉熱傳導資訊v(m,n)來消去熱傳導資訊,使得經還原的感測資訊中僅保留下熱輻射資訊。 In other words, the calibration circuit 11 can use the average v'(m,n) of the unmasked sensing information to approximate the unmasked sensing information of the position (m,n) by deducting the heat conduction information v(m,n ) to remove the heat conduction information, so that only the heat radiation information remains in the restored sensing information.

因此,熱感測器1可透過未遮蔽感測資訊來對相鄰的遮蔽熱感測胞的感測結果進行還原。如此一來,熱感測器1所產生的熱感測影像中不但可排除熱感測影像中的誤差或不均勻等非理想因素之外,熱感測器1更可還原遮蔽熱感測胞的感測結果,進而提升熱感測影像的畫質及解析度。 Therefore, the thermal sensor 1 can restore the sensing result of the adjacent shaded thermal sensing cells through the unshaded sensing information. In this way, the thermal sensing image generated by the thermal sensor 1 can not only eliminate non-ideal factors such as errors or non-uniformity in the thermal sensing image, but also restore the shielding of the thermal sensing cells. Sensing results, thereby improving the image quality and resolution of thermal sensing images.

圖2A為本發明實施例一熱感測器2的示意圖。圖2所繪示的熱感測器2相似於圖1所繪示的熱感測器1,只是在熱感測器2中,校正電路11被校正電路21所替代,且熱感測器2還包含有耦接於校正電路21的運算電路23。校正電路21可將經校正的感測資料轉換為數位資料,並提供至運算電路23。運算電路23可接收經校正的感測資料進行數位運算,並據此產生熱影像。大致而言,熱感測器2可透過校正電路21校正熱傳導CH所產生的誤差之外,熱感測器2還可透過運算電路23以數位運算的方式來消除熱感測器2的其他非理想因素,以較佳地產生熱影像。 FIG. 2A is a schematic diagram of a thermal sensor 2 according to an embodiment of the present invention. The thermal sensor 2 shown in FIG. 2 is similar to the thermal sensor 1 shown in FIG. 1 , except that in the thermal sensor 2 , the calibration circuit 11 is replaced by the calibration circuit 21 , and the thermal sensor 2 It also includes an arithmetic circuit 23 coupled to the correction circuit 21 . The correction circuit 21 can convert the corrected sensing data into digital data, and provide the digital data to the operation circuit 23 . The arithmetic circuit 23 can receive the corrected sensing data to perform digital operations, and generate thermal images accordingly. Roughly speaking, the thermal sensor 2 can correct the error caused by the heat conduction CH through the correction circuit 21 , and the thermal sensor 2 can also eliminate other non-existent faults of the thermal sensor 2 by means of digital operation through the operation circuit 23 . Ideal factor for better thermal image generation.

圖2B為本發明實施例一校正電路21a的示意圖。在此實施例中,校正電路21a中可包含類比減法器210及類比數位轉換 器(analog to digital converter,ADC)211。類比減法器210耦接於熱感測陣列10,用以接收遮蔽熱感測資訊v(m,n)及未遮蔽熱感測資訊v(m+1,n)。類比減法器210可用來將類比資料的未遮蔽熱感測資訊v(m+1,n)及相鄰的遮蔽熱感測資訊v(m,n)進行相減,以產生經校正的未遮蔽感測資訊r’(m+1,n)。類比數位轉換器211耦接於類比減法器210,用來將類比資料的經校正未遮蔽熱感測資訊r’(m+1,n)轉換為數位資料的經校正未遮蔽熱感測資訊R’(m+1,n),並提供至運算電路23,其中小寫的r’(m+1,n)及大寫的R’(m+1,n)分別代表類比及數位的經校正未遮蔽熱感測資訊。據此,運算電路23可接收數位資料的感測資料,並進行數位運算,並據此消除熱感測器2中,例如為製程不均勻或雜訊干擾等其他的非理想因素,以較佳地產生高畫質的熱影像。 FIG. 2B is a schematic diagram of a calibration circuit 21a according to an embodiment of the present invention. In this embodiment, the correction circuit 21a may include an analog subtractor 210 and an analog-to-digital conversion A converter (analog to digital converter, ADC) 211. The analog subtractor 210 is coupled to the thermal sensing array 10 for receiving the masked thermal sensing information v(m,n) and the unmasked thermal sensing information v(m+1,n). The analog subtractor 210 may be used to subtract the unmasked thermal sensing information v(m+1,n) of the analog data and the adjacent shaded thermal sensing information v(m,n) to generate a corrected unmasked thermal sensing information v(m,n) Sensing information r'(m+1,n). The analog-to-digital converter 211 is coupled to the analog subtractor 210 for converting the corrected unmasked thermal sensing information r'(m+1,n) of the analog data into the corrected unmasked thermal sensing information R of the digital data '(m+1,n), and supplied to the arithmetic circuit 23, where lowercase r'(m+1,n) and uppercase R'(m+1,n) represent the corrected unmasked analog and digital, respectively Thermal sensing information. Accordingly, the operation circuit 23 can receive the sensing data of the digital data, and perform digital operations, and accordingly eliminate other non-ideal factors in the thermal sensor 2, such as process unevenness or noise interference, for better produce high-quality thermal images.

圖2C為本發明實施例一校正電路21b的示意圖。在此實施例中,校正電路21b中可包含類比數位轉換器212及數位減法器213。在此實施例中,校正電路21b透過類比數位轉換器212先接收類比的遮蔽熱感測資訊v(m,n)及未遮蔽熱感測資訊v(m+1,n),並轉換為數位資料的遮蔽熱感測資訊V(m,n)及未遮蔽熱感測資訊V(m+1,n),再提供給數位減法器213進行相減,其中小寫的v(m+1,n)及V(m+1,n)分別代表類比及數位的未遮蔽熱感測資訊。在此實施例中,數位減法器213可為用來對數位資料的未遮蔽熱感測資訊V(m+1,n)及遮蔽熱感測資訊V(m,n)進行相減,以產生數位資料的經校正未遮蔽熱感測資訊R’(m+1,n)。運算電路23可據此進 行數位運算以產生熱影像。 FIG. 2C is a schematic diagram of a calibration circuit 21b according to an embodiment of the present invention. In this embodiment, the correction circuit 21b may include an analog-to-digital converter 212 and a digital subtractor 213 . In this embodiment, the calibration circuit 21b firstly receives the analog shaded thermal sensing information v(m,n) and the unmasked thermal sensing information v(m+1,n) through the analog-to-digital converter 212, and converts them into digital The masked thermal sensing information V(m,n) and the unmasked thermal sensing information V(m+1,n) of the data are then provided to the digital subtractor 213 for subtraction, where the lowercase v(m+1,n ) and V(m+1,n) represent the analog and digital unmasked thermal sensing information, respectively. In this embodiment, the digital subtractor 213 may be used to subtract the unmasked thermal sensing information V(m+1,n) and the masked thermal sensing information V(m,n) of the digital data to generate The corrected unmasked thermal sensing information R'(m+1,n) of the digital data. The arithmetic circuit 23 can proceed accordingly Perform digital operations to generate thermal images.

圖2D為本發明實施例一校正電路21c的示意圖。圖2D所繪示的校正電路21c相似於圖2B所繪示的校正電路21a,只是在校正電路21c還包含有開關電路214。校正電路21c包含有類比減法器210、類比數位轉換器211及開關電路214。關於類比減法器210及類比數位轉換器211的操作請參考前述圖2B的相關段落,於此不另贅述。 FIG. 2D is a schematic diagram of a calibration circuit 21c according to an embodiment of the present invention. The calibration circuit 21c shown in FIG. 2D is similar to the calibration circuit 21a shown in FIG. 2B , except that the calibration circuit 21c further includes a switch circuit 214 . The correction circuit 21 c includes an analog subtractor 210 , an analog-to-digital converter 211 and a switch circuit 214 . For the operations of the analog subtractor 210 and the analog-to-digital converter 211 , please refer to the relevant paragraphs of FIG. 2B above, and will not be repeated here.

詳細而言,在圖2D的校正電路21c中還可包含開關電路214接收熱感測資訊v(0,0)~v(x,y),開關電路214中選擇出欲進行運算的未遮蔽熱感測資訊v(m+1,n)及遮蔽熱感測資訊v(m,n),並分別提供至類比減法器210的正輸入端及負輸入端。如此一來,類比減法器210可依據開關電路214所提供的訊號,使未遮蔽熱感測資訊v(m+1,n)正確地扣除遮蔽熱感測資訊v(m,n),以利校正電路21c及運算電路23後續的運算。 In detail, the calibration circuit 21c of FIG. 2D may further include a switch circuit 214 to receive the thermal sensing information v(0,0)~v(x,y), and the switch circuit 214 selects the unshielded heat to be calculated. The sensing information v(m+1,n) and the shielding thermal sensing information v(m,n) are respectively provided to the positive input terminal and the negative input terminal of the analog subtractor 210 . In this way, the analog subtractor 210 can correctly deduct the masked thermal sensing information v(m,n) from the unmasked thermal sensing information v(m+1,n) according to the signal provided by the switch circuit 214, so as to facilitate the The correction circuit 21c and the operation circuit 23 perform subsequent operations.

進一步,運算電路23可例如是中央處理單元(Central Processing Unit,CPU),或是其他可程式化之一般用途或特殊用途的微控制單元(Micro Control Unit,MCU)、微處理器(Microprocessor)、數位信號處理器(Digital Signal Processor,DSP)、可程式化控制器、特殊應用積體電路(Application Specific Integrated Circuit,ASIC)、圖形處理器(Graphics Processing Unit,GPU)、算數邏輯單元(Arithmetic Logic Unit,ALU)、複雜可程式邏輯裝置(Complex Programmable Logic Device,CPLD)、現場可 程式化邏輯閘陣列(Field Programmable Gate Array,FPGA)或其他類似元件或上述元件的組合。或者,運算電路23可以是透過硬體描述語言(Hardware Description Language,HDL)或是其他任意本領域具通常知識者所熟知的數位電路的設計方式來進行設計,並透過現場可程式邏輯門陣列(Field Programmable Gate Array,FPGA)、複雜可程式邏輯裝置(Complex Programmable Logic Device,CPLD)或是特殊應用積體電路(Application-specific Integrated Circuit,ASIC)的方式來實現的硬體電路。只要運算電路23可接收校正電路21所提供的經校正感測資料,並對經校正感測資料進行數位運算皆屬於本發明的範疇。 Further, the arithmetic circuit 23 may be, for example, a central processing unit (Central Processing Unit, CPU), or other programmable general-purpose or special-purpose Micro Control Unit (Micro Control Unit, MCU), microprocessor (Microprocessor), Digital Signal Processor (DSP), Programmable Controller, Application Specific Integrated Circuit (ASIC), Graphics Processing Unit (GPU), Arithmetic Logic Unit , ALU), complex programmable logic device (Complex Programmable Logic Device, CPLD), field programmable Field Programmable Gate Array (FPGA) or other similar elements or a combination of the above elements. Alternatively, the operation circuit 23 can be designed through a hardware description language (HDL) or any other digital circuit design methods well known to those skilled in the art, and can be designed through a field programmable logic gate array ( Field Programmable Gate Array, FPGA), Complex Programmable Logic Device (Complex Programmable Logic Device, CPLD) or Application-specific Integrated Circuit (Application-specific Integrated Circuit, ASIC) way to realize the hardware circuit. As long as the operation circuit 23 can receive the corrected sensing data provided by the correction circuit 21 and perform digital operations on the corrected sensing data, it belongs to the scope of the present invention.

簡言之,熱感測器2透過校正電路21產生經校正的未遮蔽感測資訊並將其轉換為數位訊號的形式之後,熱感測器2還可進一步透過運算電路23以數位運算的方式來對感測資訊進行補償。因此,熱感測器2除了可消去熱傳導資訊以之外,還可進一步排除製程不均勻或雜訊干擾等其他的非理想因素,進而產生高畫質的熱影像。 In short, after the thermal sensor 2 generates the corrected unmasked sensing information through the correction circuit 21 and converts it into the form of digital signals, the thermal sensor 2 can further perform digital operations through the arithmetic circuit 23 . to compensate the sensing information. Therefore, in addition to eliminating heat conduction information, the thermal sensor 2 can further eliminate other non-ideal factors such as process unevenness or noise interference, thereby generating a high-quality thermal image.

圖2B~圖2D僅為熱感測器2中校正電路21的示例性實施例,本發明具通常知識者當然可依據不同的設計概念或使用需求來修改或組合。舉例而言,圖2B、2C中所繪示的校正電路21a、21b的結構可被修改以平行運算地方式來同時的產生多個經校正的未遮蔽感測資訊。或者,圖2D中所繪示的開關電路214亦可應用於圖2C所繪示的校正電路21b中,開關電路214可耦接於熱感 測陣列10與類比數位轉換器212之間,或者是開關電路214可耦接於類比數位轉換器212與數位減法器213之間。只要開關電路214耦接於數位減法器213之前,開關電路214可選擇正確的感測資訊以輸入至數位減法器213的正輸入端及負輸入端即可。 2B to 2D are only exemplary embodiments of the calibration circuit 21 in the thermal sensor 2, and those skilled in the present invention can certainly modify or combine them according to different design concepts or usage requirements. For example, the structures of the correction circuits 21a and 21b shown in FIGS. 2B and 2C can be modified to generate a plurality of corrected unmasked sensing information simultaneously in a parallel operation. Alternatively, the switch circuit 214 shown in FIG. 2D can also be applied to the calibration circuit 21b shown in FIG. 2C , and the switch circuit 214 can be coupled to the thermal sensor Between the measurement array 10 and the analog-to-digital converter 212 , or the switch circuit 214 can be coupled between the analog-to-digital converter 212 and the digital subtractor 213 . As long as the switch circuit 214 is coupled before the digital subtractor 213 , the switch circuit 214 can select correct sensing information to input to the positive input terminal and the negative input terminal of the digital subtractor 213 .

圖3A~3D為本發明實施例熱感測陣列10-1~10-4的示意圖。在圖3A所示的實施例中,熱感測陣列10-1中的未遮蔽熱感測胞10u可形成一矩形,以環繞方式與遮蔽熱感測胞10m相鄰設置。且每個未遮蔽熱感測胞10u所形成的矩形之間,可沿著熱感測陣列10-1的列方向及行方向來排列設置。 3A to 3D are schematic diagrams of thermal sensing arrays 10-1 to 10-4 according to embodiments of the present invention. In the embodiment shown in FIG. 3A , the unshielded thermal sensing cells 10u in the thermal sensing array 10-1 can be formed into a rectangle and disposed adjacent to the shielded thermal sensing cells 10m in a surrounding manner. And the rectangles formed by each unshielded thermal sensing cell 10u can be arranged along the column direction and the row direction of the thermal sensing array 10-1.

在圖3B所示的實施例中,熱感測陣列10-2相似於熱感測陣列10-1。同樣地,熱感測陣列10-2中的未遮蔽熱感測胞10u可形成一矩形,以環繞方式與遮蔽熱感測胞10m相鄰設置。不過在熱感測陣列10-2中,未遮蔽熱感測胞10u所形成的矩形,只有在列方向是對齊的,在行方向則為交錯設置的。 In the embodiment shown in Figure 3B, thermal sensing array 10-2 is similar to thermal sensing array 10-1. Likewise, the unshielded thermal sensing cells 10u in the thermal sensing array 10-2 may be formed into a rectangle and disposed adjacent to the shielded thermal sensing cells 10m in a surrounding manner. However, in the thermal sensing array 10 - 2 , the rectangles formed by the unshielded thermal sensing cells 10u are aligned only in the column direction, and staggered in the row direction.

在圖3C所示的實施例中,未遮蔽熱感測胞10u與遮蔽熱感測胞10m可分別設置為熱感測陣列10-3的多個行,且未遮蔽熱感測胞10u的多個行可與遮蔽熱感測胞10m的多個行互相交錯排列。 In the embodiment shown in FIG. 3C , the unshielded thermal sensing cells 10u and the shielded thermal sensing cells 10m can be respectively arranged in multiple rows of the thermal sensing array 10 - 3 , and many unshielded thermal sensing cells 10u Each row may be staggered with a plurality of rows shielding the thermal sensing cells 10m.

在圖3D所示的實施例中,未遮蔽熱感測胞10u與遮蔽熱感測胞10m可分別設置為熱感測陣列10-4的多個列,且未遮蔽熱感測胞10u的多個列可與遮蔽熱感測胞10m的多個列互相交錯排列。 In the embodiment shown in FIG. 3D , the unshielded thermal sensing cells 10u and the shielded thermal sensing cells 10m can be respectively arranged as multiple columns of the thermal sensing array 10-4, and many unshielded thermal sensing cells 10u The columns may be staggered with a plurality of columns shielding the thermal sensing cells 10m.

當然,本領域具通常知識者當然可依據不同設計概念或使用需求來修改或組合圖1A、1B、3A~3D中所繪示的熱感測陣列。舉例而言,在圖3A所繪示的熱感測陣列10-1中,每個遮蔽熱感測胞10m之間可由間隔一個未遮蔽熱感測胞10u變更為間隔兩個未遮蔽熱感測胞10u。或者,在圖3C所繪示的熱感測陣列10-3中,每個遮蔽熱感測胞10m所形成的多行之間可由間隔一行的未遮蔽熱感測胞10u變更為間隔兩行的未遮蔽熱感測胞10u。應注意的是,上述說明僅為示例性地說明熱感測陣列的排列方式,不應被用來限制熱感測陣列的實施態樣,只要未遮蔽熱感測胞10u相鄰於至少一個遮蔽熱感測胞10m,其皆屬於本發明的熱感測陣列的範疇。 Of course, those skilled in the art can of course modify or combine the thermal sensing arrays shown in FIGS. 1A , 1B, 3A to 3D according to different design concepts or usage requirements. For example, in the thermal sensing array 10-1 shown in FIG. 3A, the distance between each shielded thermal sensing cell 10m can be changed from one unshielded thermal sensing cell 10u to two unshielded thermal sensing cells 10u apart. Cell 10u. Alternatively, in the thermal sensing array 10 - 3 shown in FIG. 3C , the multiple rows formed by each shielded thermal sensing cell 10m can be changed from unshielded thermal sensing cells 10u separated by one row to two rows apart. The thermal sensing cell 10u is not shielded. It should be noted that the above descriptions are merely illustrative of the arrangement of the thermal sensing arrays, and should not be used to limit the implementation of the thermal sensing arrays, as long as the unshielded thermal sensing cells 10u are adjacent to at least one shielded array. The thermal sensing cells 10m all belong to the scope of the thermal sensing array of the present invention.

綜上所述,本發明的熱感測器可設置有未遮蔽熱感測胞及遮蔽熱感測胞,未遮蔽熱感測胞相鄰於至少一個遮蔽熱感測胞,如此一來,熱感測器中的校正電路即可依據遮蔽熱感測胞所獲得的感測資訊,來校正該遮蔽熱感測胞所相鄰的未遮蔽熱感測胞所獲得的感測資訊。據此,熱感測器可即時地校正熱感測器的感測結果,避免熱影像的訊息遺漏,進而提升熱感測器的操作便利性。另一方面,熱感測器還可還原遮蔽熱感測胞的感測結果,以提升熱影像的畫質。 To sum up, the thermal sensor of the present invention can be provided with an unshielded thermal sensing cell and a shielded thermal sensing cell, and the unshielded thermal sensing cell is adjacent to at least one shielded thermal sensing cell. The calibration circuit in the sensor can correct the sensing information obtained by the unshielded thermal sensing cell adjacent to the shielded thermal sensing cell according to the sensing information obtained by the shielded thermal sensing cell. Accordingly, the thermal sensor can correct the sensing result of the thermal sensor in real time, so as to avoid information omission of the thermal image, thereby improving the operational convenience of the thermal sensor. On the other hand, the thermal sensor can also restore the sensing result of the shielded thermal sensing cell, so as to improve the image quality of the thermal image.

1:熱感測器 1: Thermal sensor

10:熱感測陣列 10: Thermal Sensing Array

11:校正電路 11: Correction circuit

12:鏡頭 12: Lens

10m:遮蔽熱感測胞 10m: shielding thermal sensing cells

10u:未遮蔽熱感測胞 10u: Unshielded thermal sensing cell

CH:熱傳導 CH: heat conduction

RH:熱輻射 RH: heat radiation

Claims (12)

一種熱感測器,包括:一熱感測陣列,包括多個熱感測胞,該些熱感測胞包含:多個第一未遮蔽熱感測胞,獲得多個第一未遮蔽感測資訊;以及多個第一遮蔽熱感測胞,獲得多個第一遮蔽感測資訊,其中各該第一未遮蔽熱感測胞相鄰於該些第一遮蔽熱感測胞的至少一者;以及一校正電路,耦接各該第一未遮蔽熱感測胞及各該第一遮蔽熱感測胞,該校正電路依據該些第一遮蔽感測資訊,對相鄰的各該第一未遮蔽熱感測胞所獲得的各該第一未遮蔽感測資訊進行校正。 A thermal sensor, comprising: a thermal sensing array including a plurality of thermal sensing cells, the thermal sensing cells comprising: a plurality of first unshielded thermal sensing cells for obtaining a plurality of first unshielded sensing cells information; and a plurality of first shaded thermal sensing cells to obtain a plurality of first shaded sensing information, wherein each of the first unshaded thermal sensing cells is adjacent to at least one of the first shaded thermal sensing cells ; And a calibration circuit, coupled to each of the first unshielded thermal sensing cells and each of the first shielded thermal sensing cells, the calibration circuit based on the first shielded sensing information, the adjacent each of the first Each of the first unshielded sensing information obtained by the unshielded thermal sensing cells is corrected. 如請求項1所述的熱感測器,其中各該第一未遮蔽熱感測胞所感測的各該第一未遮蔽感測資訊包括熱輻射資訊及熱傳導資訊,各該第一遮蔽熱感測胞所感測的各該第一遮蔽感測資訊包括熱傳導資訊。 The thermal sensor of claim 1, wherein each of the first unshielded sensing information sensed by each of the first unshielded thermal sensing cells includes thermal radiation information and thermal conduction information, and each of the first shielded thermal sensing cells Each of the first shading sensing information sensed by the cell includes heat conduction information. 如請求項1所述的熱感測器,其中該校正電路將各該第一未遮蔽感測資訊扣除相鄰的該些第一遮蔽感測資訊的至少一者以產生經校正的各該第一未遮蔽感測資訊。 The thermal sensor of claim 1, wherein the calibration circuit deducts at least one of the adjacent first shadowed sensing information from each of the first unmasked sensing information to generate each of the corrected firsts An unmasked sensing information. 如請求項1所述的熱感測器,其中該些第一未遮蔽熱感測胞環繞該些第一遮蔽熱感測胞的至少一者,其中該校正電路依據該些第一遮蔽感測資訊的其中一者,對環繞的該些第一未遮蔽熱感測胞所獲得的該些第一未遮蔽感測資 訊進行校正。 The thermal sensor of claim 1, wherein the first unshielded thermal sensing cells surround at least one of the first shielded thermal sensing cells, wherein the calibration circuit is based on the first shielded thermal sensing cells One of the information, the first unshielded sensing data obtained for the surrounding first unshielded thermal sensing cells information for correction. 如請求項1所述的熱感測器,其中該些熱感測胞的多個未遮蔽熱感測胞沿著一第一方向設置,該些熱感測胞的多個遮蔽熱感測胞沿著該第一方向設置,該些未遮蔽熱感測胞分別相鄰於該些遮蔽熱感測胞。 The thermal sensor of claim 1, wherein a plurality of unshielded thermal sensing cells of the thermal sensing cells are disposed along a first direction, and a plurality of shielded thermal sensing cells of the thermal sensing cells Disposed along the first direction, the unshielded thermal sensing cells are respectively adjacent to the shielded thermal sensing cells. 如請求項1所述的熱感測器,其中該些熱感測胞包括:多個未遮蔽熱感測胞及多個遮蔽熱感測胞,該些未遮蔽熱感測胞在一第一方向及一第二方向與該些遮蔽熱感測胞互相交錯設置。 The thermal sensor of claim 1, wherein the thermal sensing cells include a plurality of unshielded thermal sensing cells and a plurality of shielded thermal sensing cells, the unshielded thermal sensing cells in a first The direction and a second direction are staggered with the shielded thermal sensing cells. 如請求項1所述的熱感測器,其中該校正電路還取得相鄰於各該第一未遮蔽熱感測胞的該些第一遮蔽熱感測胞的至少一者所獲得的至少一遮蔽感測資訊,該校正電路將各該第一未遮蔽感測資訊扣除該至少一遮蔽感測資訊的平均,以產生經校正的各該第一未遮蔽感測資訊。 The thermal sensor of claim 1, wherein the calibration circuit further obtains at least one obtained by at least one of the first shielded thermal sensing cells adjacent to each of the first unshielded thermal sensing cells For masked sensing information, the calibration circuit deducts the average of the at least one masked sensing information from each of the first unmasked sensing information to generate each of the corrected first unmasked sensing information. 如請求項1所述的熱感測器,其中該校正電路還依據各該第一未遮蔽感測資訊,來還原相鄰的各該第一遮蔽熱感測胞的至少一者所感測的各該第一遮蔽感測資訊。 The thermal sensor as claimed in claim 1, wherein the calibration circuit further restores each of the adjacent first shielded thermal sensing cells sensed by at least one of the adjacent first shielded thermal sensing cells according to each of the first unshielded sensing information. the first occlusion sensing information. 如請求項8所述的熱感測器,其中該校正電路取得相鄰於各該第一遮蔽熱感測胞的該些第一未遮蔽熱感測胞的至少一者所獲得的至少一未遮蔽感測資訊,該校正電路計算該至少一未遮蔽感測資訊的平均,並將該至少一未遮蔽感測資訊的平均扣除 相鄰的各該第一遮蔽感測資訊,以產生經還原的各該第一遮蔽感測資訊。 The thermal sensor of claim 8, wherein the calibration circuit obtains at least one unshielded thermal sensor obtained by at least one of the first unshielded thermal sensing cells adjacent to each of the first shielded thermal sensing cells masking sensing information, the calibration circuit calculates an average of the at least one unmasked sensing information, and deducts the average of the at least one unmasked sensing information each of the adjacent first occlusion sensing information to generate each of the restored first occlusion sensing information. 如請求項1所述的熱感測器,還包括:一運算電路,耦接於該校正電路,該運算電路依據經校正的各該第一未遮蔽感測資訊進行一數位運算,以產生一熱影像。 The thermal sensor of claim 1, further comprising: an operation circuit coupled to the calibration circuit, the operation circuit performing a digital operation according to each of the corrected first unmasked sensing information to generate a Thermal image. 如請求項10所述的熱感測器,其中該校正電路還包括:一類比減法器,耦接該些第一未遮蔽熱感測胞及該些第一遮蔽熱感測胞,該類比減法器將各該第一未遮蔽感測資訊扣除相鄰的該些第一遮蔽感測資訊的其中一者以產生經校正的各該第一未遮蔽感測資訊;以及一類比數位轉換器(analog to digital converter,ADC),耦接該減法器及該運算電路,該類比數位轉換器接收經校正的各該第一未遮蔽感測資訊,並將經校正的各該第一未遮蔽感測資訊由類比轉換為數位。 The thermal sensor of claim 10, wherein the calibration circuit further comprises: an analogous subtractor coupled to the first unshielded thermal sensing cells and the first shielded thermal sensing cells, the analogous subtraction The device deducts each of the first unmasked sensing information from one of the adjacent first masked sensing information to generate each of the corrected first unmasked sensing information; and an analog digitizer to digital converter, ADC), coupled to the subtractor and the operation circuit, the analog digital converter receives the corrected first unmasked sensing information, and converts the corrected first unmasked sensing information Convert from analog to digital. 如請求項10所述的熱感測器,其中該校正電路還包括:一類比數位轉換器,耦接該些第一未遮蔽熱感測胞及該些第一遮蔽熱感測胞,該類比數位轉換器將各該第一未遮蔽感測資訊及各該第一遮蔽感測資訊由類比轉換為數位;一數位減法器,耦接該類比數位轉換器及該運算電路,該數位減法器接收數位的各該第一未遮蔽感測資訊及各該第一遮蔽感 測資訊,並將各該第一未遮蔽資訊扣除相鄰的該些第一遮蔽資訊的其中一者以產生經校正的各該第一未遮蔽感測資訊。 The thermal sensor of claim 10, wherein the calibration circuit further comprises: an analog digital converter coupled to the first unshielded thermal sensing cells and the first shielded thermal sensing cells, the analog A digital converter converts each of the first unmasked sensing information and each of the first masked sensing information from analog to digital; a digital subtractor is coupled to the analog-to-digital converter and the operation circuit, and the digital subtractor receives Each of the first unmasked sensing information and each of the first shading senses of the digit detecting information, and subtracting one of the adjacent first masking information from each of the first unmasked information to generate each corrected first unmasked sensing information.
TW109138127A 2020-11-02 2020-11-02 Thermal sensor TWI764351B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW109138127A TWI764351B (en) 2020-11-02 2020-11-02 Thermal sensor
CN202111056612.9A CN114526820A (en) 2020-11-02 2021-09-09 Heat sensor
US17/486,959 US20220136911A1 (en) 2020-11-02 2021-09-28 Thermal sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109138127A TWI764351B (en) 2020-11-02 2020-11-02 Thermal sensor

Publications (2)

Publication Number Publication Date
TWI764351B true TWI764351B (en) 2022-05-11
TW202220430A TW202220430A (en) 2022-05-16

Family

ID=81380922

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109138127A TWI764351B (en) 2020-11-02 2020-11-02 Thermal sensor

Country Status (3)

Country Link
US (1) US20220136911A1 (en)
CN (1) CN114526820A (en)
TW (1) TWI764351B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200929133A (en) * 2007-10-29 2009-07-01 Toshiba Matsushita Display Tec Photodetector circuit
CN102564605A (en) * 2011-11-09 2012-07-11 魏建明 High-definition thermal imaging infrared detector
TW201404150A (en) * 2012-07-03 2014-01-16 Himax Imaging Ltd Image capture devices and image processing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583416B1 (en) * 1999-11-15 2003-06-24 Sarnoff Corporation Uncooled IR detector array having improved temperature stability and reduced fixed pattern noise
TWI455298B (en) * 2011-10-25 2014-10-01 Pixart Imaging Inc Photosensor device and method for determining incident light
CN103095963A (en) * 2011-12-17 2013-05-08 中国航空工业集团公司洛阳电光设备研究所 Infrared linear detector inhomogeneous correction method and infrared linear detector inhomogeneous correction device based on field programmable gate array (FPGA)
CN103528690B (en) * 2013-09-24 2016-03-02 电子科技大学 A kind of non-uniform correction method of thermal infrared imager
US20150226613A1 (en) * 2014-02-07 2015-08-13 Raytheon Company Imaging device with shutterless non-uniformity correction
CN109632110A (en) * 2018-12-21 2019-04-16 南京理工大学 Eliminate the device and its removing method of micro-metering bolometer infrared image grid line

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200929133A (en) * 2007-10-29 2009-07-01 Toshiba Matsushita Display Tec Photodetector circuit
CN102564605A (en) * 2011-11-09 2012-07-11 魏建明 High-definition thermal imaging infrared detector
TW201404150A (en) * 2012-07-03 2014-01-16 Himax Imaging Ltd Image capture devices and image processing method thereof

Also Published As

Publication number Publication date
TW202220430A (en) 2022-05-16
CN114526820A (en) 2022-05-24
US20220136911A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US9379156B2 (en) Per-channel image intensity correction
JP3666267B2 (en) Automatic charged particle beam scanning inspection system
US7142138B2 (en) Multi-step analog/digital converter and on-line calibration method thereof
JP4602413B2 (en) Solid-state imaging device and dark current component removal method
CN104363020B (en) A kind of production line analog-digital converter and its error calibrating method
KR100734272B1 (en) Complementary metal-oxide semiconductor image sensor having small size optical black area
US8275213B2 (en) Apparatus and method for gain correction
TW201733334A (en) Method and system for reducing noise in an image sensor using a parallel multi-ramps merged comparator analog-to-digital converter
US9936129B2 (en) Generating high resolution images
KR100748196B1 (en) Image signal processing unit and method
CN107741279A (en) A kind of two point correction method of non-refrigerated infrared detector
TWI764351B (en) Thermal sensor
US8547464B2 (en) Solid-state imaging device and frame data correcting method which determine a voltage value corresponding to a pixel portion in frame data
JP2013106225A (en) Imaging apparatus and imaging system
US11368641B2 (en) System and method for high dynamic range digital double sampling
Moroni et al. Interleaved readout of charge-coupled devices (CCDs) for correlated noise reduction
US8866939B2 (en) Black level adjustment control device and solid-state imaging device
KR20100057278A (en) Device and method for calibrating of input signal of each channel when to convert analog signal to digital signal in dsp or micro-controller
TWI543616B (en) Method and apparatus for reducing fixed pattern noise of image sensor in digital domain
Hung et al. Development of correction schemes for a small field of view gamma camera
Dai et al. A Nonlinear Piecewise Scheme for Non-uniformity Correction in IRFPA
CN115665567A (en) Real-time offset correction method, system, medium and device applied to detector
JP2001041832A (en) Stress distribution image measuring method
JP5507988B2 (en) Resistive infrared sensor output amplifier
Carter et al. The implementation and performance of a connected regions centroiding algorithm for imaging photon counting