TWI762382B - 液體種類判別感測器 - Google Patents

液體種類判別感測器 Download PDF

Info

Publication number
TWI762382B
TWI762382B TW110125811A TW110125811A TWI762382B TW I762382 B TWI762382 B TW I762382B TW 110125811 A TW110125811 A TW 110125811A TW 110125811 A TW110125811 A TW 110125811A TW I762382 B TWI762382 B TW I762382B
Authority
TW
Taiwan
Prior art keywords
light
plano
convex lens
optical fiber
liquid
Prior art date
Application number
TW110125811A
Other languages
English (en)
Other versions
TW202229847A (zh
Inventor
平川清
李丞祐
Original Assignee
日商東橫化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東橫化學股份有限公司 filed Critical 日商東橫化學股份有限公司
Application granted granted Critical
Publication of TWI762382B publication Critical patent/TWI762382B/zh
Publication of TW202229847A publication Critical patent/TW202229847A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/38Investigating fluid-tightness of structures by using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/43Refractivity; Phase-affecting properties, e.g. optical path length by measuring critical angle
    • G01N21/431Dip refractometers, e.g. using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Hydrology & Water Resources (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一種液體種類判別感測器1,具備:平凸透鏡10;透鏡保持具11,在平凸透鏡10之邊緣10a支承平凸透鏡10;出射用光纖12,與平凸透鏡10之平面10b抵接,射出光;受光用光纖13,與平凸透鏡10之平面10b抵接,接受光;發光部,與出射用光纖12連接;以及光量測量部,與受光用光纖13連接,測量光量。出射用光纖12,以出射用光纖12之端面12a位於平凸透鏡10之邊緣10a上,且較佳為出射用光纖12之端面12a中之中心軸A1貫穿平凸透鏡10之平面10b之方式被設置。

Description

液體種類判別感測器
本發明係關於一種液體種類判別感測器。
作為可調查化學反應槽中之反應的進行程度之裝置,以下裝置被提出,亦即,該裝置使平凸透鏡之凸面與化學反應槽內之液體接觸,以光纖使光入射至該平凸透鏡之平面,以平凸透鏡之凸面來反復進行全反射,接受從平凸透鏡之平面射出之光,分析該接受之光之波長,藉此,來確定由全反射吸收之波長,根據該波長來調查化學反應槽中之反應的進行程度(專利文獻1)。
[先前技術文獻]
[專利文獻]
[專利文獻1]日本特開2014-238333號公報
根據上述裝置,於將液體作為分析對象之情形,可將液體之種類確定為某種程度。然而,為了確定液體之種類,需要進行從平凸透鏡射出之光之分光分析。
對此,本發明係以在利用平凸透鏡與液體之界面之全反射來確定液體之種類之裝置中,更簡便且高精度地確定液體之種類為課題。
本發明者發現以下內容而完成本發明,亦即,在使液體與平凸透鏡之凸面接觸,以出射用光纖使光入射至平凸透鏡之平面,以受光用光纖接受以平凸透鏡之凸面反復進行全反射之光之情形,(a)受光用光纖中之受光光量,相對於在液體不與平凸透鏡之凸面接觸時之受光光量減少,由於該減少量與液體之折射率和顏色有關,因此,當調查預計預先成為分析對象之液體的顏色和折射率與受光光量之關係時,則可不進行分光分析而簡便地確定液體之種類,又(b)當在平凸透鏡形成邊緣時,則可輕易地將平凸透鏡穩定地保持,(c1)當將出射用光纖之端面、尤其是芯(core)配置在平凸透鏡之邊緣上時,則可使平凸透鏡之凸面整體作為感應區(反復進行全反射之區域)發揮功能,而可提高與凸面接觸之液體之分析精度,(c2)尤其是當使出射用光纖之端面中之中心軸貫穿平凸透鏡之平面時,則可提高在入射至平凸透鏡內之光中,與平凸透鏡之平面垂直之方向上的光的比例,藉此,在液體與平凸透鏡之凸面接觸時之受光用光纖中之受光光量、與在液體不與凸面接觸時之受光用光纖中之受光光量之差變大,而提高與凸面接觸之液體之分析精度。
亦即,本發明係一種液體種類判別感測器,具備:平凸透鏡;透鏡保持具,在平凸透鏡之邊緣支承平凸透鏡;出射用光纖,與平凸透鏡之平面抵接,射出光;受光用光纖,與平凸透鏡之平面抵接,接受光;發光部,與出射用光纖連接;以及光量測量部,與受光用光纖連接,測量光量;出射用光纖,以出射用光纖之端面位於平凸透鏡之邊緣上之方式被設置。
又,本發明係一種液體種類判別感測器,具備:平凸透鏡;透鏡保持具,在平凸透鏡之邊緣支承平凸透鏡;出射用光纖,與平凸透鏡之平面抵接,射出光;受光用光纖,與平凸透鏡之平面抵接,接受光;發光部,與出射用光纖連接;以及光量測量部,與受光用光纖連接,測量光量;出射用光纖,以出射用 光纖之端面位於平凸透鏡之邊緣上,且出射用光纖之前述端面中之中心軸貫穿平凸透鏡之平面之方式被設置。
根據本發明,由於出射用光纖以出射用光纖之端面、尤其是芯位於平凸透鏡之邊緣上之方式被設置,因此,可使平凸透鏡之凸面整體作為反復進行全反射之區域亦即感應區而發揮功能。因此,能夠提高基於以平凸透鏡之凸面反復進行全反射,以受光用光纖受光之光的光量來判別平凸透鏡所接觸之液體之種類時之判別精度。
又,本發明之較佳態樣中,由於出射用光纖係以出射用光纖之端面位於平凸透鏡之邊緣上,且其端面上的出射用光纖之中心軸貫穿平凸透鏡之平面之方式被設置,因此,能夠提高在從出射用光纖入射至平凸透鏡之光中,光纖的中心軸方向上的強度大的光的比例。因此,能夠提高基於以平凸透鏡之凸面反復進行全反射,以受光用光纖受光之光的光量來判別平凸透鏡所接觸之液體之種類時之判別精度。
又,根據本發明,由於可基於以受光用光纖受光之光的光量來判別液體之種類,因此使裝置構成變簡單,可降低裝置之製造成本。例如,本發明之液體種類判別感測器,與習知用於液體之判別的電荷耦合元件(Charge Couple Device,CCD)分光光度計、使用了錘和荷重元(load cell)之製程用比重計等相比,可使製造成本降為1/5以下。
1:液體種類判別感測器
2:檢測部
3:控制部
10:平凸透鏡
10a:邊緣
10b:平面
10c:凸面
11:透鏡保持具
11a:面
12:出射用光纖
12a:端面
13:受光用光纖
13a:端面
14:遮光零件
15:襯套
16:托架
17:反射板
18:流路
19:斜面
30:殼體
31:出射用光連接器
32:受光用光連接器
33:級別顯示部
34:警告燈
35:旋轉式DIP開關
36:敏感度調整用微調器
37:孔部
38:切口部
40:配管
41:接頭部分
42:配管
43:液體槽
A1、A2:中心軸
D:感應區
G:綠色燈
h:距離
P:設置面
R:紅色燈
w:雨水(水)
x:液體(化學液)
Y:黃色燈
y:液體
[圖1]係實施例之液體種類判別感測器之概略構成圖。
[圖2]係實施例之液體種類判別感測器之檢測部之前視圖。
[圖3A]係實施例之液體種類判別感測器之檢測部之剖視圖。
[圖3B]係實施例之液體種類判別感測器之檢測部之剖視圖。
[圖3C]係實施例之液體種類判別感測器之檢測部之剖視圖。
[圖3D]係設有反射板之狀態下的實施例之液體種類判別感測器之檢測部之剖視圖。
[圖4]係實施例之液體種類判別感測器之檢測部之分解圖。
[圖5A]係在平凸透鏡不與液體接觸之狀態下,從出射用光纖入射至平凸透鏡之光的傳播狀態之說明圖。
[圖5B]係在平凸透鏡與液體接觸之狀態下,從出射用光纖入射至平凸透鏡之光的傳播狀態之說明圖。
[圖6]係在比較例之檢測部之平凸透鏡與液體接觸之狀態下,從出射用光纖入射至平凸透鏡之光的傳播狀態之說明圖。
[圖7A]係級別顯示部與警告燈之點亮狀態之說明圖。
[圖7B]係級別顯示部與警告燈之點亮狀態之說明圖。
[圖7C]係級別顯示部與警告燈之點亮狀態之說明圖。
[圖7D]係級別顯示部與警告燈之點亮狀態之說明圖。
[圖8]係與受光光量對應之檢測電壓和液體之折射率之關係圖。
[圖9]係級別顯示部與警告燈之燈的閾值的設定例。
[圖10A]係液體種類判別感測器之作為漏液感測器之用途的說明圖。
[圖10B]係液體種類判別感測器之作為漏液感測器之用途的說明圖。
[圖11]係液體種類判別感測器之作為配管內的液體種類判別感測器之用途的說明圖。
[圖12]係液體種類判別感測器之作為液面感測器之用途的說明圖。
[圖13]係液體種類判別感測器之作為槽內管理感測器之用途的說明圖。
[圖14]係在實施例試驗之、出射用光纖與受光用光纖之平凸透鏡中之抵接位置的說明圖。
[圖15]係在實施例測量之、出射用光纖與受光用光纖之節距和液體非接觸時之電壓的關係圖、以及相同的節距和折射率不同之液體的電壓差的關係圖。
以下,一邊參照圖式一邊對本發明進行詳細地說明。另外,在各圖中,相同符號表示相同或同等的構成要素。
(整體構成)
圖1係本發明之一實施例之液體種類判別感測器1之概略構成圖。該液體種類判別感測器1具有:檢測部2,具備與待檢測或判別之液體接觸之平凸透鏡;以及控制部3。圖2係檢測部2之前視圖,圖3A~3D係檢測部2之剖視圖,圖4係檢測部2之分解圖。
檢測部2具有:平凸透鏡10;透鏡保持具11,在該透鏡之邊緣10a支承平凸透鏡10;出射用光纖12,與平凸透鏡之平面10b抵接,射出光;以及受光用光纖13,與平凸透鏡之平面10b抵接,接受光(圖3A~3D)。另一方面,控制部3具有:出射用光連接器31,與出射用光纖12連接;發光部,與該連接器31連接;受光用光連接器32,與受光用光纖13連接;光量測量部,與該連接器32連接,測量以受光用光纖13受光之光的光量;以及測量的光量的級別顯示部33等(圖1)。
(檢測部)
如圖3A等所示在檢測部2中,透鏡保持具11係以耐化學性樹脂形成為在底部具有開口部之有底筒狀,在該開口部嵌入平凸透鏡10,開口部之內壁全周按壓邊緣10a之全周。如此透鏡保持具11在邊緣10a支承平凸透鏡10,藉此,透鏡保持具 11中之平凸透鏡10之支承狀態穩定,可維持其等密合之狀態。又,由於可提高透鏡保持具11內的氣密性,確保防水防塵,因此,檢測部2亦適合設置在戶外。並且,由於平凸透鏡10與透鏡保持具11成為真空密合之狀態,因此,僅將平凸透鏡10嵌入透鏡保持具11便被固定而難以脫落。又,可藉由使透鏡保持具11之折射率與出射用光纖12之包層之折射率吻合,來使從出射用光纖12之芯入射至平凸透鏡10之光,在平凸透鏡10之邊緣10a與透鏡保持具11之界面有效率地全反射。
此處,作為透鏡保持具11之形成材料,較佳為使用全氟烷氧基烷烴(PFA)、聚四氟乙烯(PTFE)等的氟系樹脂,聚丙烯(PP)、聚乙烯(PE)等的耐化學性樹脂。又,作為平凸透鏡10,可使用由合成石英、合成樹脂、高折射率玻璃等形成之、曲率半徑3~4mm、透鏡直徑4~6mm、邊緣厚1~3mm之透鏡。
在透鏡保持具11內,在由該透鏡保持具11支承之平凸透鏡10上設置遮光零件14,在其上設置與透鏡保持具11同樣地由耐化學性樹脂形成之襯套15。在透鏡保持具11之內面,圍繞平凸透鏡10之部分係與平凸透鏡10之平面10b成為同一水平面的面11a。
出射用光纖12被壓入襯套15內,通過遮光零件14,出射用光纖12之端面12a抵接於平凸透鏡之平面10b和透鏡保持具11之內側之面11a。此時端面12a、尤其是芯位於平凸透鏡之邊緣10a上(圖3A~3C)。又,雖出射用光纖12之端面12a中之中心軸A1亦可從邊緣10a向透鏡保持具11側偏移(圖3A、3B),但較佳為貫穿平凸透鏡之平面10b(圖3C)。
受光用光纖13亦被壓入襯套15內,通過遮光零件14,受光用光纖13之端面13a抵接於平凸透鏡之平面10b及透鏡保持具11之內側之面11a。此時端面13a、尤其是芯位於平凸透鏡之邊緣10a上(圖3A~3C)。而且,受光用光纖13之端面13a中之中心軸A2亦可從邊緣10a向透鏡保持具11側偏移(圖3A),亦可貫穿平凸透鏡之平面10b(圖3B、3C)。較佳為,受光用光纖13之端面13a設於以平 凸透鏡10之平面10b之中心為對稱中心而與出射用光纖12之端面12a對稱之位置(圖3A、3C)。
藉由將出射用光纖12與受光用光纖13設於上述位置,在該檢測部2中,如圖5A所示,在從出射用光纖12入射至平凸透鏡10之光中,其中心軸A1方向上的高強度的光的比例變高。進而,作為從出射用光纖12射出之光在平凸透鏡之凸面10c反復進行全反射之感應區D,可廣泛利用該凸面10c之全徑。
如圖5B所示,當平凸透鏡10之凸面10c與液體x接觸時,則從出射用光纖12射出之光在凸面10c反復進行全反射,或在檢測部2之設置面P反射而由受光用光纖13受光。該受光光量與平凸透鏡10之凸面10c不與液體x接觸之情形相比降低,由於降低量取決於液體x之折射率與顏色,因此,可從受光光量判別液體種類。據此,如同上述擴大平凸透鏡10之凸面10c中之感應區D,在入射至平凸透鏡10之光中,出射用光纖12之中心軸A1方向上的高強度的光的比例變高,藉此,可提高液體種類之判別精度。
相對於此,如圖6所示,當分別將出射用光纖12之端面12a與受光用光纖13之端面13a完全地配置在平凸透鏡10之平面10b內時,則由於入射至平凸透鏡10之光的強度與方向之偏差變大,感應區D亦變得狹小,因此,液體x之種類之判別精度下降。
另一方面,嵌於透鏡保持具11之襯套15,與由聚氯乙烯(PVC)、聚醚醚酮(PEEK)、聚四氟乙烯(PTFE)、全氟烷氧基烷烴(PFA)、聚丙烯(PP)、聚乙烯(PE)等耐化學性樹脂形成之托架16卡合(圖3A~3C)。較佳為,藉由該卡合,平凸透鏡10之凸面10c、和與該凸面10c對向之檢測部2之設置面P之距離h被保持為0.4~0.6mm。藉由設為這樣的距離h,在平凸透鏡10之凸面10c和檢測部2之設置面P之間液體浸透,平凸透鏡10之凸面10c變得容易由液體浸濕。相對於此,若距離h過大,則為了以液體x來浸濕平凸透鏡10之感應區D,而將感應區D 保持在凸面10c與設置面P之間所需的液體不必要地變多。相反地,若距離h過窄,則難以設定組裝公差。
於因在檢測部2之設置面P存在凹凸,而從出射用光纖12射出之光之中,在設置面P反射之光難以由受光用光纖13受光之情形,或設置面P因由石、混凝土等形成,而在設置檢測部2時,恐有損傷平凸透鏡10之凸面10c之虞的情形等中,如圖3D所示,亦可以與平凸透鏡10之凸面10c對向之方式將反射板17設於檢測部2之設置面P。於該情形,較佳為設為上述距離h被保持在平凸透鏡10之凸面10c與反射板17之間。
於托架16,以可利用螺絲等將檢測部2固定在既定的設置位置之方式,設置孔部37與切口部38(圖1)。又,形成有將降至托架16之上面的液體向平凸透鏡10之凸面10c之下引導的流路18或斜面19(圖2)。藉此,即便於僅有少量液體降至檢測部2之設置處之情形,亦可判別該液體之種類。
另外,由於在該檢測部2中,如上述係使用光纖12、13與平凸透鏡10來判別液體種類,因此,即便待判別之液體是汽油等可燃物而有着火之危險者,即便檢測部2之設置處為防爆區,亦可安全地使用。
(控制部)
控制部3,在其殼體30之表面具有:出射用光連接器31,與出射用光纖12連接;以及受光用光連接器32,與受光用光纖13連接。出射用光連接器31與內裝於殼體30內之發光部連接,受光用光連接器32與內裝於殼體30內之光量測量部連接(圖1)。
發光部係由發光二極體(light emitting diode,以下稱為LED)光源等所構成,將既定波長的光送至出射用光連接器31。發光部可使用市售的LED燈、光纖放大器等。亦可將送至出射用光連接器31之光的波長設為可變。於使用紅光作為送至出射用光連接器31之光的情形,若與平凸透鏡10接觸之液體為容 易吸收紅光之藍色系液體,則在紅光射出至平凸透鏡10之後到由受光用光纖13受光為止之間,由於紅光容易被液體吸收,平凸透鏡10與液體接觸所導致的受光光量的減少量變多,因此,液體之判別精度提高。又,由於紅光為可見光,因此,可由肉眼來確認光射出至平凸透鏡10,在通常被認為是表示危險之顏色之點上亦較佳。另外,由於紫外線會使形成透鏡保持具11之樹脂惡化因此不佳,又,由於在將檢測部2設於戶外之情形時,恐有誤偵測太陽光之虞,因此在必須將檢測部遮光之點上亦不佳。
另一方面,光量測量部係由光二極體等受光元件所構成,受光用光纖13受光之光的光量作為電壓而被測量。控制部3,在其殼體30之表面具有:顯示受光量的級別之級別顯示部33、警告燈34、閾值設定用的旋轉式DIP開關35、敏感度調整用微調器36。在級別顯示部33中排列有複數個LED燈,與由光量測量部測量出之光量對應之數量的LED燈點亮。較佳為作為LED燈具備有發光顏色不同者。例如,於由光量測量部測量出之光量,相當於平凸透鏡10不與液體接觸之狀態的情形,如圖7A所示,使綠色燈G的一部分點亮,使其他燈熄滅。於由光量測量部測量出之光量,相當於平凸透鏡10與水接觸之狀態的情形,如圖7B所示,使綠色燈G及黃色燈Y的一部分點亮,使其他燈熄滅。同樣地,於相當於和既定的第1液體(例如,乙醇)接觸之情形,如圖7C所示,使綠色燈G、黃色燈Y及紅色燈R的一部分點亮,使其他燈熄滅。同樣地,於相當於和既定的第2液體(例如,2-丙醇)接觸之情形,如圖7D所示,使綠色燈G、黃色燈Y及紅色燈R點亮。
又,亦可根據需要使警告燈34點亮。警告燈34亦可由發光顏色不同之LED燈所構成,亦可按照警告的級別,將點亮之燈的顏色從例如綠色變為黃色或紅色。進而,亦可設為,於檢測出之液體表示檢測部2之設置處有異常的漏液之虞的情形,向設置處之管理系統發出警告訊號。
關於如何根據受光光量來使級別顯示部33之LED燈或警告燈34 點亮,例如,只要預先使用由各種濃度的蔗糖水溶液所構成之折射率標準液(以下,稱為標準液),來測量由光量測量部測量出之電壓與液體之折射率之關係,從而設定使各個LED燈點亮之閾值即可。例如,於在標準液之折射率與由光量測量部測量出之電壓存在圖8之關係的情形時,如圖9所示,設定使級別顯示部33之綠色燈G、黃色燈Y及紅色燈R、以及警告燈34之黃色燈Y及紅色燈R點亮之電壓之閾值(1)~(5),使與檢測出之電壓低於閾值之情形對應之燈點亮。較佳為設該閾值(1)~(5)可適當地變更。在本實施例中將閾值(1)設定為800mV用以與平凸透鏡10和水接觸之狀態對應,於檢測電壓超過800mV之情形,在級別顯示部33綠色燈G1或G2點亮,若為800mV以下,則設為除了燈G1、G2之外,黃色燈Y3亦點亮,警告燈34亦點亮為黃色。將閾值(2)~(5)設定為圖9所示之閾值,從而例如若檢測電壓為610mV以下,則除了綠色燈G1、G2,黃色燈Y3、Y4之外,紅色燈R5亦點亮,警告燈34亦點亮為紅色。閾值(2)~(5)可由閾值設定用的旋轉式DIP開關35來變更。
另外,雖僅憑和受光光量對應之電壓、與折射率之關係,無法進行平凸透鏡10接觸之液體的種類的判別,但由於檢測之液體之種類係根據設置檢測部2之各個場所而被限定,因此,較佳為在每個設置檢測部2之場所,根據待檢測之液體之種類來規定警告燈34之點亮之閾值。例如,雖於在汽油的戶外配管的接頭附近設置檢測部2之情形,成為判別對象之液體係汽油和雨水,但由於汽油和雨水折射率不同,因此,可判別檢測出之該液體是雨水還是汽油,抑或是它們的混合液,由於在檢測出是汽油或汽油的混合液之情形時,接頭存在漏液的問題,因此設定為警告燈34點亮,發出警告訊號。
另外,本發明中由光量測量部所進行的測量結果的顯示方法,不限於利用LED燈的發光顏色與已發光的LED燈的個數來顯示光量之方法。例如,亦可將測量結果以數值來顯示。
(用途)
‧漏液感測器
本發明之液體種類判別感測器,可設於存在漏液之危險性之處而作為偵測是否有漏液之漏液感測器來使用。於該情形,不僅偵測液體,而可始終進行漏液成為問題之既定種類之液體的檢測。例如,如圖10A所示,在設於戶外之配管40之接頭部分41之下設置檢測部2,預先調查通過該配管40之液體之折射率,藉此,於檢測部2和雨水w接觸之情形,使警告燈34點亮黃色燈,如圖10B所示,於檢測部2和從接頭部分41漏出之液體x接觸之情形時,即便於液體x被雨水w稀釋之情形,亦可使警告燈34點亮紅色燈。進而,藉由針對異常的漏液之警告的發送功能,可24小時始終監測是否有漏液。同樣地,亦可始終監測由配管的常年老化或腐蝕等所導致的漏液、來自各種裝置的漏液。於該情形,以耐化學性樹脂來形成透鏡保持具11或襯套15,藉此,即便是漏液成為問題之液體為酸性或鹼性,或為腐蝕性,亦可使檢測部2與洩漏之液體接觸。
‧配管內的液體種類之判別感測器
如圖11所示,可藉由在不同的液體x或液體y所通過的配管42設置檢測部2,來判別在檢測部2的設置處,液體x或液體y中的何者流經配管42內。
‧液面感測器
如圖12所示,可藉由在液體槽43之既定液面的高度設置檢測部2,而在液體槽43內,將檢測部2作為液面感測器來使用。又,於將該液體槽43作為液體進行既定反應的反應槽來使用之情形,可將安裝於該液體槽43之檢測部2,使用於在槽內進行的反應經過的檢查。
‧槽內管理感測器
如圖13所示,可藉由將檢測部2設置在利用水w將儲存過化學液x之液體槽43洗淨之情形的配管42,而作為將在液體槽43內殘留化學液x之狀態,與洗淨完畢 而在液體槽43內僅存在水w之情形進行區別之槽內管理感測器來使用。藉此,可省略不必要地重複洗淨,而可有效率地洗淨槽內。除此之外,本發明之液體種類判別感測器可在各種場合使用。
[實施例]
以下,基於實施例對本發明進行具體說明。
使出射用光纖與受光用光纖抵接於平凸透鏡時,為了調查它們的合適的位置,在如圖3C、3D所示之檢測部2中,使出射用光纖12之中心軸A1與受光用光纖13之中心軸A2之距離(節距)相對於平凸透鏡10如圖14所示那樣改變。而且在各個節距中,求得出射用光纖12之芯及受光用光纖13之芯與平凸透鏡10之平面10b抵接之部分的面積、與這些芯的剖面積的比例(%)。將結果顯示於圖14。於該情形,平凸透鏡10之規格如下。
平凸透鏡之規格
透鏡材料:合成石英
平面10b之直徑:5.0mm
凸面10c之曲率半徑:3.69mm
邊緣10a之厚度:1.5mm
在各個節距中,求得液體不與平凸透鏡10接觸時的光量測量部中之電壓。將結果顯示於圖15(同圖的右縱軸)。又,在使平凸透鏡10之凸面10c浸漬於折射率1.33之液體(水)之狀態、與浸漬於折射率1.44之液體(汽油)之狀態之各個中,利用光量測量部來測量電壓,求得它們之差。該電壓差亦顯示於圖15(同圖的左縱軸)。
根據圖15,可知當出射用光纖12之芯與受光用光纖13之芯被配置於平凸透鏡10之邊緣10a上時,則於改變與平凸透鏡10接觸之液體的折射率之情形,可在各節距中利用光量測量部來測量電壓之差,並可知於該情形測量之電壓 之差較大,係出射用光纖和受光用光纖之各個芯的與平凸透鏡抵接之部分的面積,相對於芯的剖面積之面積為95~73%之情形(亦即,出射用光纖和受光用光纖之節距為4.2~4.6mm之情形),而非光纖端面之整面與平凸透鏡抵接之情形。
又,於出射用光纖和受光用光纖之節距為4.2~4.6mm之情形,可知平凸透鏡不與液體接觸時的電壓為最大者係為節距4.6mm,因此,在該測量系統中為了提高液體種類之判別精度,較佳為將節距設為4.6mm。
1:液體種類判別感測器
2:檢測部
3:控制部
10:平凸透鏡
11:透鏡保持具
12:出射用光纖
13:受光用光纖
15:襯套
16:托架
18:流路
19:斜面
30:殼體
31:出射用光連接器
32:受光用光連接器
33:級別顯示部
34:警告燈
35:旋轉式DIP開關
36:敏感度調整用微調器
37:孔部
38:切口部

Claims (8)

  1. 一種液體種類判別感測器,具備:平凸透鏡;透鏡保持具,在前述平凸透鏡之邊緣支承前述平凸透鏡;出射用光纖,與前述平凸透鏡之平面抵接,射出光;受光用光纖,與前述平凸透鏡之平面抵接,接受光;發光部,與前述出射用光纖連接;以及光量測量部,與前述受光用光纖連接,測量光量;前述出射用光纖,以前述出射用光纖之端面位於前述平凸透鏡之邊緣上,且前述出射用光纖之端面中之中心軸貫穿前述平凸透鏡之平面之方式被設置。
  2. 如請求項1所述之液體種類判別感測器,其中,前述受光用光纖之端面位於前述平凸透鏡之邊緣上,前述受光用光纖之端面中之中心軸貫穿前述平凸透鏡之平面。
  3. 如請求項1或2所述之液體種類判別感測器,其具有:托架,安裝前述透鏡保持具;前述托架具有將降至前述托架之上面的液體向前述平凸透鏡之凸面之下引導之流路或斜面。
  4. 如請求項1或2所述之液體種類判別感測器,其中,包含前述平凸透鏡、前述透鏡保持具、前述出射用光纖及前述受光用光纖的檢測部之設置面與前述平凸透鏡之凸面之距離被保持為0.4~0.6mm。
  5. 如請求項1或2所述之液體種類判別感測器,其具備:反射板,與前述平凸透鏡之凸面對向而設置;前述反射板與前述平凸透鏡之凸面之距離被保持為0.4~0.6mm。
  6. 如請求項1或2所述之液體種類判別感測器,其中, 前述光量測量部,具有:級別顯示部,根據光量而使不同顏色之光發光。
  7. 如請求項1或2所述之液體種類判別感測器,其中,前述光量測量部,具有:警告燈,根據光量而使既定之燈發光。
  8. 如請求項1或2所述之液體種類判別感測器,其中,前述發光部發出紅色光。
TW110125811A 2020-12-24 2021-07-14 液體種類判別感測器 TWI762382B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020214874A JP6868928B1 (ja) 2020-12-24 2020-12-24 液体種別判別センサ
JPJP2020-214874 2020-12-24

Publications (2)

Publication Number Publication Date
TWI762382B true TWI762382B (zh) 2022-04-21
TW202229847A TW202229847A (zh) 2022-08-01

Family

ID=75801808

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110125811A TWI762382B (zh) 2020-12-24 2021-07-14 液體種類判別感測器

Country Status (7)

Country Link
US (1) US11892398B2 (zh)
EP (1) EP4269986A1 (zh)
JP (2) JP6868928B1 (zh)
KR (1) KR20230123523A (zh)
CN (1) CN114981641A (zh)
TW (1) TWI762382B (zh)
WO (1) WO2022137590A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2616457A (en) * 2022-03-09 2023-09-13 Draexlmaier Lisa Gmbh Optical liquid detection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2067830U (zh) * 1990-02-07 1990-12-19 杨淑雯 液体浓度检测传感器
US5946084A (en) * 1998-01-26 1999-08-31 Innovative Sensor Solutions, Ltd. Hemispherical double reflection optical sensor
US6466323B1 (en) * 1999-11-23 2002-10-15 Westinghouse Savannah River Company, L.L.C. Surface plasmon resonance spectroscopy sensor and methods for using same
JP2016170077A (ja) * 2015-03-13 2016-09-23 横河電機株式会社 液浸透過測定に用いる光学素子、透過プローブ、サンプル容器、光学装置および液浸透過測定方法
JP2018128277A (ja) * 2017-02-06 2018-08-16 西進商事株式会社 プローブ及び光学測定器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350044U (zh) * 1986-09-19 1988-04-05
JPH01282448A (ja) * 1988-05-09 1989-11-14 Mitsubishi Rayon Co Ltd 屈折率検出計
JPH0792006A (ja) * 1993-08-17 1995-04-07 Showa Electric Wire & Cable Co Ltd 液体センサの劣化検出方法
EP0846259A1 (en) * 1995-08-21 1998-06-10 Foss Electric A/S A method and an apparatus for determining the number of particles or cells in a liquid sample
GB9908170D0 (en) * 1999-04-09 1999-06-02 Central Research Lab Ltd System and method for analysing a material
US20040129884A1 (en) * 2003-01-07 2004-07-08 Boyle Frederick P. Apparatus for on-line monitoring quality/condition of fluids
JP6270830B2 (ja) * 2013-05-21 2018-01-31 オリンパス株式会社 光走査ユニット、光走査型観察装置、および光ファイバ走査装置
JP2014238333A (ja) 2013-06-07 2014-12-18 西進商事株式会社 液浸プローブ及び赤外分光光度計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2067830U (zh) * 1990-02-07 1990-12-19 杨淑雯 液体浓度检测传感器
US5946084A (en) * 1998-01-26 1999-08-31 Innovative Sensor Solutions, Ltd. Hemispherical double reflection optical sensor
US6466323B1 (en) * 1999-11-23 2002-10-15 Westinghouse Savannah River Company, L.L.C. Surface plasmon resonance spectroscopy sensor and methods for using same
JP2016170077A (ja) * 2015-03-13 2016-09-23 横河電機株式会社 液浸透過測定に用いる光学素子、透過プローブ、サンプル容器、光学装置および液浸透過測定方法
JP2018128277A (ja) * 2017-02-06 2018-08-16 西進商事株式会社 プローブ及び光学測定器

Also Published As

Publication number Publication date
US20220397516A1 (en) 2022-12-15
EP4269986A1 (en) 2023-11-01
TW202229847A (zh) 2022-08-01
JP7112143B1 (ja) 2022-08-03
US11892398B2 (en) 2024-02-06
KR20230123523A (ko) 2023-08-24
JPWO2022137590A1 (zh) 2022-06-30
CN114981641A (zh) 2022-08-30
JP2022100725A (ja) 2022-07-06
WO2022137590A1 (ja) 2022-06-30
JP6868928B1 (ja) 2021-05-12

Similar Documents

Publication Publication Date Title
DK2356432T3 (en) SENSOR DEVICE
JP4381370B2 (ja) 濁度センサー
US9846070B2 (en) Multiparameter device for measuring by optical means the filling level of tanks and reservoirs of liquids and liquefied products, the index of refraction, and for image analysis, without moving parts
TWI762382B (zh) 液體種類判別感測器
US9182342B2 (en) Apparatus, system and method for using an LED to identify a presence of a material in a gas and/or a fluid and/or determine properties of the material
US9116029B2 (en) Optical liquid level sensor having a plurality of optical fibers
US6172377B1 (en) Fluorescent optical liquid level sensor
CN101561517A (zh) 一种非接触式管内液体检测器及其检测方法
AU2002310007B2 (en) Optical turbidimeter with a lens tube
CN103645161A (zh) 一种浊度检测装置
WO2013054118A1 (en) Fluorescence gas and liquid sensor
US20120161034A1 (en) Sensor system for fluid detection and discrimination
KR200417571Y1 (ko) 컬러센서
KR102029359B1 (ko) 액체 누설감지 장치의 센싱방법
CN102853879A (zh) 液体传感器
US8084731B2 (en) Sensor system for liquid detection with lens component having an apex
JP5904578B2 (ja) 光学式液漏れ検知装置および方法
CN212058989U (zh) 一种多段液位高度测量装置及水箱
JP2011064533A (ja) 燃料判別装置
KR20200082725A (ko) 광섬유 센서
KR101133893B1 (ko) 수중 오일 분석기용 비접촉식 셀
CN217605655U (zh) 无线探针式液体浓度测量装置
JP2010002203A (ja) 光学式液体検出装置
JP2004198141A (ja) 光透過性容器の中の液体の有無を検知する装置
SE2230143A1 (en) Water quality measurement device