TWI762253B - Semiconductor device - Google Patents
Semiconductor device Download PDFInfo
- Publication number
- TWI762253B TWI762253B TW110110894A TW110110894A TWI762253B TW I762253 B TWI762253 B TW I762253B TW 110110894 A TW110110894 A TW 110110894A TW 110110894 A TW110110894 A TW 110110894A TW I762253 B TWI762253 B TW I762253B
- Authority
- TW
- Taiwan
- Prior art keywords
- gate
- metal layer
- semiconductor device
- region
- substrate
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 77
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims description 83
- 238000002955 isolation Methods 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 9
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 230000005669 field effect Effects 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 102
- 230000015556 catabolic process Effects 0.000 description 17
- 230000005684 electric field Effects 0.000 description 12
- 125000006850 spacer group Chemical group 0.000 description 12
- 230000000694 effects Effects 0.000 description 6
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7831—Field effect transistors with field effect produced by an insulated gate with multiple gate structure
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
本發明是有關於一種裝置,且特別是有關於一種半導體裝置。The present invention relates to a device, and more particularly, to a semiconductor device.
一般而言,在半導體裝置中的崩潰電壓(breakdown voltage, BV)與閘極-汲極電荷(Qgd)之間會具有折衷(trade-off)關係,舉例而言,在半導體裝置中常會藉由縮小通道(channel)長度的設計以降低閘極-汲極電荷,提升切換(switch)速度,然而,在此設計下會導致崩潰電壓的下降,如此一來,對半導體裝置的整體可靠度與性能會產生不良影響。因此,如何改善崩潰電壓與閘極-汲極電荷之間的折衷問題,以提升半導體裝置的整體可靠度與性能實為亟欲解決的重要課題。Generally speaking, there is a trade-off relationship between the breakdown voltage (BV) and the gate-drain charge (Qgd) in a semiconductor device. The design of reducing the length of the channel reduces the gate-drain charge and increases the switching speed. However, this design will result in a drop in breakdown voltage, which will affect the overall reliability and performance of the semiconductor device. will have adverse effects. Therefore, how to improve the trade-off between the breakdown voltage and the gate-drain charge to improve the overall reliability and performance of the semiconductor device is an important issue to be solved urgently.
本發明提供一種半導體裝置,可以提升其整體可靠度與性能。The present invention provides a semiconductor device which can improve its overall reliability and performance.
本發明的一種半導體裝置,包括基底、源極區、汲極區以及閘極結構。源極區與汲極區分別位於基底內。閘極結構位於基底上且位於源極區與汲極區之間。閘極結構包括第一閘極以及至少一第二閘極。第二閘極位於第一閘極與汲極區之間。第一閘極與第二閘極分隔開,且第二閘極與源極區電性連接。A semiconductor device of the present invention includes a substrate, a source region, a drain region and a gate structure. The source region and the drain region are respectively located in the substrate. The gate structure is located on the substrate and between the source region and the drain region. The gate structure includes a first gate and at least one second gate. The second gate is located between the first gate and the drain region. The first gate is separated from the second gate, and the second gate is electrically connected to the source region.
在本發明的一實施例中,上述的第一閘極的材料與第二閘極的材料相同。In an embodiment of the present invention, the above-mentioned material of the first gate electrode is the same as that of the second gate electrode.
在本發明的一實施例中,上述的第一閘極的功能不同於第二閘極的功能。In an embodiment of the present invention, the function of the first gate is different from the function of the second gate.
在本發明的一實施例中,上述的半導體裝置更包括位於第二閘極上的第一金屬層。第一金屬層相對於第二閘極朝汲極區偏移第一距離,且第二閘極藉由第一金屬層與源極區電性連接。In an embodiment of the present invention, the above-mentioned semiconductor device further includes a first metal layer on the second gate electrode. The first metal layer is offset by a first distance relative to the second gate electrode toward the drain region, and the second gate electrode is electrically connected to the source region through the first metal layer.
在本發明的一實施例中,上述的第一金屬層的尺寸大於第二閘極。In an embodiment of the present invention, the size of the first metal layer is larger than that of the second gate electrode.
在本發明的一實施例中,上述的半導體裝置更包括位於第一金屬層上的第二金屬層。第二金屬層相對於第一金屬層朝汲極區偏移第二距離,且第二閘極藉由第一金屬層以及第二金屬層與源極區電性連接。In an embodiment of the present invention, the above-mentioned semiconductor device further includes a second metal layer on the first metal layer. The second metal layer is offset toward the drain region by a second distance relative to the first metal layer, and the second gate electrode is electrically connected to the source region through the first metal layer and the second metal layer.
在本發明的一實施例中,上述的半導體裝置包括橫向擴散金屬氧化物半導體場效電晶體。In an embodiment of the present invention, the above-mentioned semiconductor device includes a laterally diffused metal oxide semiconductor field effect transistor.
在本發明的一實施例中,上述的半導體裝置更包括位於基底上且位於源極區與所述汲極區之間的絕緣層。第二閘極位於絕緣層的頂面上。In an embodiment of the present invention, the above-mentioned semiconductor device further includes an insulating layer on the substrate and between the source region and the drain region. The second gate is located on the top surface of the insulating layer.
在本發明的一實施例中,上述的第一閘極與汲極區之間具有漂移區域,且第二閘極與漂移區域藉由絕緣層分隔開。In an embodiment of the present invention, there is a drift region between the first gate and the drain region, and the second gate and the drift region are separated by an insulating layer.
在本發明的一實施例中,上述的半導體裝置更包括位於所述基底內且位於所述源極區與所述汲極區之間的隔離結構。第二閘極位於隔離結構的頂面上。In an embodiment of the present invention, the above-mentioned semiconductor device further includes an isolation structure located in the substrate and between the source region and the drain region. The second gate is located on the top surface of the isolation structure.
基於上述,本發明的半導體裝置的閘極結構藉由分隔開第一閘極與第二閘極且第二閘極與源極區電性連接的設計,可以調整裝置內的電場分布達到修補作用,因此可以改善崩潰電壓與閘極-汲極電荷之間的折衷問題,進而可以提升半導體裝置的整體可靠度與性能。Based on the above, the gate structure of the semiconductor device of the present invention can adjust the electric field distribution in the device to achieve repair by separating the first gate and the second gate and electrically connecting the second gate and the source region. Therefore, the trade-off problem between the breakdown voltage and the gate-drain charge can be improved, thereby improving the overall reliability and performance of the semiconductor device.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more obvious and easy to understand, the following embodiments are given and described in detail with the accompanying drawings as follows.
本文所使用之方向用語(例如,上、下、右、左、前、後、頂部、底部)僅作為參看所繪圖式使用且不意欲暗示絕對定向。Directional terms (eg, up, down, right, left, front, back, top, bottom) as used herein are used for reference only to the drawings and are not intended to imply absolute orientation.
參照本實施例之圖式以更全面地闡述本發明。然而,本發明亦可以各種不同的形式體現,而不應限於本文中所述之實施例。圖式中的層或區域的厚度、尺寸或大小會為了清楚起見而放大。相同或相似之參考號碼表示相同或相似之元件,以下段落將不再一一贅述。The present invention is more fully described with reference to the drawings of this embodiment. However, the present invention may be embodied in various forms and should not be limited to the embodiments described herein. The thickness, size or size of layers or regions in the drawings may be exaggerated for clarity. The same or similar reference numerals denote the same or similar elements, and the repeated descriptions will not be repeated in the following paragraphs.
圖1A、圖2、圖3、圖4、圖5、圖6是依據本發明一些實施例之半導體裝置的部分剖面示意圖。圖1B是圖1A的半導體裝置的電流與電壓關係圖。應說明的是,圖式中僅繪示出半導體裝置的部分剖面示意圖,其他未繪示的區域可以視實際設計上的需求而定。1A , FIG. 2 , FIG. 3 , FIG. 4 , FIG. 5 , and FIG. 6 are partial cross-sectional views of semiconductor devices according to some embodiments of the present invention. FIG. 1B is a graph of current versus voltage for the semiconductor device of FIG. 1A . It should be noted that only a partial cross-sectional schematic diagram of the semiconductor device is shown in the drawings, and other regions not shown may be determined according to actual design requirements.
請參考圖1A與圖1B,本實施例的半導體裝置100包括基底110以及位於基底110內的多個摻雜區。舉例而言,基底110可以是P型基底,對基底110進行部分摻雜會形成N-型輕摻雜區域111,對N-型輕摻雜區域111進行部分摻雜從而形成之P+型高摻雜區域112,對P+型高摻雜區域112進行部分摻雜從而形成之N+型高摻雜區域(即源極區113),對N-型輕摻雜區域111進行部分摻雜從而形成之N+型高摻雜區域(即汲極區114),對P+型高摻雜區域112進行部分摻雜從而形成之P+型高摻雜區域115以及對該N-型輕摻雜區域111進行部分摻雜從而形成之N型摻雜區域116,而N型摻雜區域116圍繞汲極區114,其中該N-型輕摻雜區域111可以作為N型阱(N-well),P+型高摻雜區域112可以作為P型基區(p-Body)。應說明的是,本發明不限制於上述基底110內摻雜區的佈局方式,基底110內可以是實際設計上的需求進行摻雜區的佈局,只要基底110內至少具有源極區113與汲極區114皆屬於本發明的保護範圍。Please refer to FIG. 1A and FIG. 1B , the
在一些實施例中,P+型高摻雜區域115可緊靠源極區113,即P+型高摻雜區域115與源極區113之間無任何空隙,兩者相連接,此時,施加於P+型高摻雜區域115上之電壓與施加於源極區113上之源極電壓一致。然而,本發明不限於此,在未繪示的實施例中,P+型高摻雜區域115與源極區113之間也可存於一定之間隔,此時,施加於該P+型高摻雜區域115上之電壓可與施加於源極區113之源極電壓不一致。In some embodiments, the P+ type highly doped
在本實施例中,半導體裝置100還包括閘極結構120,其中閘極結構120位於基底110上且位於源極區113與汲極區114之間。進一步而言,閘極結構120可以包括第一閘極122以及至少一第二閘極124(圖1中示意地繪示出一個),其中第二閘極124位於第一閘極122與汲極區114之間,換句話說,第二閘極124較第一閘極122靠近汲極區114,反過來說,第一閘極122較第二閘極124靠近源極區113。In this embodiment, the
此外,第一閘極122與第二閘極124可以分隔開,換句話說,第一閘極122與第二閘極124之間可以具有一距離,且第二閘極124與源極區113電性連接,如圖1A中的電性連接路徑P1。據此,本實施例的半導體裝置100的閘極結構120藉由分隔開第一閘極122與第二閘極124且第二閘極124與源極區113電性連接的設計,可以調整裝置內的電場分布達到修補作用,因此可以改善崩潰電壓與閘極-汲極電荷之間的折衷問題,進而可以提升半導體裝置的整體可靠度與性能。進一步而言,在前述設計下會避免電場過度集中在角落處或閘極-汲極電荷聚集在同一環境下,如此一來,可以導致較高的崩潰電壓及較低的閘極-汲極電荷,換句話說,在上述設計下可以在崩潰電壓維持在較高水平的同時降低閘極-汲極電荷,因此可以改善崩潰電壓與閘極-汲極電荷之間的折衷問題,進而可以提升半導體裝置100的整體可靠度與性能。舉例而言,如圖1B所示,半導體裝置100相較於習知半導體裝置而言可以明顯地降低閘極-汲極電荷。在此,習知半導體裝置例如未設計有第二閘極的半導體裝置。In addition, the
此外,如下方表1所示,根據半導體裝置100與習知半導體裝置的性能參數可知,一方面半導體裝置100可以維持在較高的崩潰電壓,另一方面半導體裝置100可以降低約1/3的閘極-汲極電荷,因此本實施例的半導體裝置100可以改善崩潰電壓與閘極-汲極電荷之間的折衷問題,進而可以提升半導體裝置100的整體可靠度與性能。在此,實施例1至實施例4的操作條件分別為對應給定半導體裝置100的第二閘極124的電壓為0伏特(V)、5伏特、10伏特、20伏特,而比較例1為習知半導體裝置(不包括第二閘極)。In addition, as shown in Table 1 below, according to the performance parameters of the
表1
在一些實施例中,可以藉由切斷閘極的方式來形成分隔開的第一閘極122與第二閘極124,換句話說,第一閘極122與第二閘極124可以是於同一道製程所形成,因此第一閘極122的材料與第二閘極124的材料可以實質上相同,如皆為多晶矽,但本發明不限於此。In some embodiments, the separated
在一些實施例中,第一閘極122的功能可以不同於第二閘極124的功能,舉例而言,第一閘極122藉由閘介電層122a與基底110分隔開且與源極區113與汲極區114可以構成電晶體達到產生電場的功能,而第二閘極124可以與源極區113電性連接達到調整電場分布的功能。In some embodiments, the function of the
在一些實施例中,半導體裝置100可以包括橫向擴散金屬氧化物半導體場效電晶體(Laterally Diffused Metal Oxide Semiconductor, LDMOS),其中半導體裝置100中可以包括高壓元件、低壓元件或其組合,但本發明不限於此。In some embodiments, the
在一些實施例中,第二閘極124可以是塊狀結構,且可以為多個第二閘極124,但本發明不限於此,第二閘極124的數量可以視實際設計上的需求調整。In some embodiments, the
在一些實施例中,第二閘極124於基底110上的正投影可以位於第一閘極122於基底110上的正投影與汲極區114之間,換句話說,第一閘極122與第二閘極124可以由源極區113朝汲極區114的方向依序排列,但本發明不限於此。In some embodiments, the orthographic projection of the
在一些實施例中,閘極結構120可以更包括覆蓋第一閘極122的側壁以及第二閘極124的側壁的間隙壁126。進一步而言,間隙壁126可以是單層結構(如圖1A所示),且間隙壁126的材料例如是氮化矽,但本發明不限於此,在未繪示的實施例中,間隙壁126可以是多層結構,且間隙壁126的材料例如是氧化矽、氮化矽或其組合,但本發明不限於此。In some embodiments, the
在本實施例中,半導體裝置100可以更包括配置於基底110上且位於源極區113與汲極區114之間的絕緣層130,其中第二閘極124位於絕緣層130的頂面130t上,換句話說,第二閘極124與基底110之間被絕緣層130分隔開,第二閘極124不與基底110直接接觸,而絕緣層130與基底110直接接觸,但本發明不限於此。在此,絕緣層130可以是任何適宜的氧化物。In this embodiment, the
在一些實施例中,第一閘極122與汲極區114之間可以具有漂移區域(drift region),且第二閘極124與漂移區域藉由絕緣層130分隔開。另一方面,第一閘極122可以由基底110的頂面沿著絕緣層130向上延伸並形成於絕緣層130的頂面130t上,因此,第一閘極122還可以作為朝向源極區113延伸的一電場板(field plate),但本發明不限於此。In some embodiments, there may be a drift region between the
在一些實施例中,第一閘極122相對於基底110的高度與第二閘極124相對於基底110的高度可以相同,但本發明不限於此,在另一些實施例中,第一閘極122相對於基底110的高度與第二閘極124相對於基底110的高度可以不同。In some embodiments, the height of the
在一些實施例中,第二閘極124的尺寸可以小於絕緣層130的尺寸,換句話說,第二閘極124於基底110上的正投影面積小於絕緣層130於基底110上的正投影面積,但本發明不限於此。In some embodiments, the size of the
在一些實施例中,第二閘極124可以與絕緣層130直接接觸,換句話說,第二閘極124可以是直接形成於絕緣層130上,但本發明不限於此。In some embodiments, the
在一些實施例中,以剖面觀之,絕緣層130可以具有梯形輪廓,但本發明不限於此,絕緣層130可以依實際設計上的需求而有不同的剖面輪廓。In some embodiments, the insulating
在此必須說明的是,以下實施例沿用上述實施例的元件標號與部分內容,其中採用相同或近似的標號來表示相同或近似的元件,並且省略了相同技術內容的說明,關於省略部分的說明可參考前述實施例,下述實施例不再重複贅述。It must be noted here that the following embodiments use the element numbers and parts of the above-mentioned embodiments, wherein the same or similar numbers are used to represent the same or similar elements, and the description of the same technical content is omitted, and the description of the omitted part is omitted. Reference may be made to the foregoing embodiments, and detailed descriptions in the following embodiments will not be repeated.
請參考圖2,半導體裝置200與圖1A中的半導體裝置100相似,不同之處在於:半導體裝置200更包括位於第二閘極124上的第一金屬層240。進一步而言,第一金屬層240相對於第二閘極124朝汲極區114偏移第一距離d1,且第二閘極124藉由第一金屬層240與源極區113電性連接,如圖2中的電性連接路徑P2,因此藉由第二閘極124與第一金屬層240搭配的設計可以進一步提升調整電場分布的能力具有更佳的修補作用,但本發明不限於此。Referring to FIG. 2 , the
在一些實施例中,第一金屬層240相對於第二閘極124進行水平偏移,使部分第一金屬層240凸出於第二閘極124的邊緣124e以靠近汲極區114,換句話說,第一金屬層240於基底110上的正投影僅部分重疊於第二閘極124於基底110上的正投影,但本發明不限於此。In some embodiments, the
在一些實施例中,第一金屬層240的尺寸大於第二閘極124的尺寸,其中第一金屬層240的尺寸例如是第一金屬層240的寬度240w,而第二閘極124的尺寸例如是第二閘極124的寬度124w,但本發明不限於此。In some embodiments, the size of the
在一些實施例中,第一金屬層240與第二閘極124沒有直接接觸,舉例而言,第一金屬層240與第二閘極124之間可以藉由導電連接件242進行垂直電性連接,其中導電連接件242例如是接觸窗(contact),但本發明不限於此。In some embodiments, the
請參考圖3,半導體裝置300與圖2中的半導體裝置200相似,不同之處在於:半導體裝置300更包括位於第一金屬層240上的第二金屬層350。進一步而言,第二金屬層350相對於第一金屬層240朝汲極區114偏移第二距離d2,且第二閘極124藉由第一金屬層240以及第二金屬層350與源極區113電性連接,如圖3中的電性連接路徑P3,因此藉由第二閘極124、第一金屬層240與第二金屬層350搭配的設計可以進一步提升調整電場分布的能力具有更佳的修補作用,但本發明不限於此。Referring to FIG. 3 , the
在一些實施例中,第二金屬層350相對於第一金屬層240進行水平偏移,使部分第二金屬層350凸出於第一金屬層240的的邊緣124e以靠近汲極區114,換句話說,第二金屬層350與第一金屬層240可以呈現階梯狀,但本發明不限於此。In some embodiments, the
在一些實施例中,第二距離d2大於第一距離d1,但本發明不限於此,第二距離d2與第一距離d1可以依照實際設計上的需求而定。In some embodiments, the second distance d2 is greater than the first distance d1, but the invention is not limited thereto, and the second distance d2 and the first distance d1 may be determined according to actual design requirements.
在一些實施例中,第二金屬層350相對於第二閘極124朝汲極區114偏移的距離為第一距離d1與第二距離d2的總和,但本發明不限於此。In some embodiments, the offset distance of the
在一些實施例中,第二金屬層350與第一金屬層240沒有直接接觸,舉例而言,第二金屬層350與第一金屬層240之間可以藉由導電連接件352進行垂直電性連接,其中導電連接件352例如是接觸窗,但本發明不限於此。In some embodiments, the
請參考圖4,半導體裝置400與圖1中的半導體裝置100相似,不同之處在於:半導體裝置400的閘極結構420可以配置在不同於絕緣層130的絕緣結構上,且半導體裝置400的閘極結構420的類型不同於半導體裝置100的閘極結構120。進一步而言,在本實施例中,基底110內可以更包括位於源極區113與汲極區114之間的隔離結構430,且閘極結構420的部分第一閘極422與第二閘極424位於隔離結構430的頂面430t上,因此由於第二閘極424與源極區113電性連接,如圖4中的電性連接路徑P4可以調整電場分布的能力具有修補作用,進而可以提升半導體裝置400的整體可靠度與性能。但本發明不限於此。在此,隔離結構430可以是淺溝槽隔離結構(STI)或其他適宜的隔離結構。Referring to FIG. 4 , the
在一些實施例中,第一閘極422沒有向上延伸的結構,第一閘極422藉由閘介電層422a與基底110分隔開,而閘介電層422a可以與隔離結構430直接接觸。另一方面,第二閘極424沒有被抬升一高度,換句話說,第二閘極424與隔離結構430直接接觸,亦即沒有絕緣層隔開第二閘極424與漂移區域,但本發明不限於此。In some embodiments, the
在一些實施例中,閘極結構420可以更包括覆蓋第一閘極422的側壁以及第二閘極424的側壁的間隙壁426。進一步而言,間隙壁426可以是單層結構(如圖1A所示),且間隙壁426的材料例如是氮化矽,但本發明不限於此,在未繪示的實施例中,間隙壁426可以是多層結構,且間隙壁426的材料例如是氧化矽、氮化矽或其組合,但本發明不限於此。In some embodiments, the
請參考圖5,半導體裝置500與圖4中的半導體裝置400相似,不同之處在於:半導體裝置500更包括位於第二閘極424上的第一金屬層540。進一步而言,第一金屬層540相對於第二閘極424朝汲極區114偏移第一距離d11,且第二閘極424藉由第一金屬層540與源極區113電性連接,如圖5中的電性連接路徑P5,因此藉由第二閘極424與第一金屬層540搭配的設計可以進一步提升調整電場分布的能力具有更佳的修補作用,但本發明不限於此。Referring to FIG. 5 , the
在一些實施例中,第一金屬層540相對於第二閘極424進行水平偏移,使部分第一金屬層540凸出於第二閘極424的邊緣424e以靠近汲極區114,換句話說,第一金屬層540於基底110上的正投影僅部分重疊於第二閘極424於基底110上的正投影,但本發明不限於此。In some embodiments, the
在一些實施例中,第一金屬層540與第二閘極424沒有直接接觸,舉例而言,第一金屬層540與第二閘極424之間可以藉由導電連接件542進行垂直電性連接,其中導電連接件542例如是接觸窗,但本發明不限於此。In some embodiments, the
請參考圖6,半導體裝置600與圖5中的半導體裝置500相似,不同之處在於:半導體裝置600更包括位於第一金屬層540上的第二金屬層650。進一步而言,第二金屬層650相對於第一金屬層540朝汲極區114偏移第二距離d21,且第二閘極424藉由第一金屬層540以及第二金屬層650與源極區113電性連接,如圖6中的電性連接路徑P6,因此藉由第二閘極424、第一金屬層540與第二金屬層650搭配的設計可以進一步提升調整電場分布的能力具有更佳的修補作用,但本發明不限於此。Referring to FIG. 6 , the
在一些實施例中,第二金屬層650相對於第一金屬層540進行水平偏移,使部分第二金屬層650凸出於第一金屬層540的的邊緣524e以靠近汲極區114,換句話說,第二金屬層650與第一金屬層540可以呈現階梯狀,但本發明不限於此。In some embodiments, the
在一些實施例中,第二距離d21大於第一距離d11,但本發明不限於此,第二距離d21與第一距離d11可以依照實際設計上的需求而定。In some embodiments, the second distance d21 is greater than the first distance d11, but the invention is not limited thereto, and the second distance d21 and the first distance d11 may be determined according to actual design requirements.
在一些實施例中,第二金屬層650相對於第二閘極424朝汲極區114偏移的距離為第一距離d11與第二距離d21的總和,但本發明不限於此。In some embodiments, the offset distance of the
在一些實施例中,第二金屬層650與第一金屬層540沒有直接接觸,舉例而言,第二金屬層650與第一金屬層540之間可以藉由導電連接件652進行垂直電性連接,其中導電連接件652例如是接觸窗,但本發明不限於此。In some embodiments, the
應說明的是,本發明不限制金屬層的數量,且金屬層的配置為可選的,只要半導體裝置中設置有第二閘極皆屬於本發明的保護範圍。It should be noted that the present invention does not limit the number of metal layers, and the configuration of the metal layers is optional, as long as the semiconductor device is provided with a second gate, it falls within the protection scope of the present invention.
綜上所述,本發明的半導體裝置的閘極結構藉由分隔開第一閘極與第二閘極且第二閘極與源極區電性連接的設計,可以調整裝置內的電場分布達到修補作用,因此可以改善崩潰電壓與閘極-汲極電荷之間的折衷問題,進而可以提升半導體裝置的整體可靠度與性能。進一步而言,在前述設計下會避免電場過度集中在角落處或閘極-汲極電荷聚集在同一環境下,如此一來,可以導致較高的崩潰電壓及較低的閘極-汲極電荷,換句話說,在上述設計下可以在崩潰電壓維持在較高水平的同時降低閘極-汲極電荷,因此可以改善崩潰電壓與閘極-汲極電荷之間的折衷問題,進而可以提升半導體裝置的整體可靠度與性能。To sum up, the gate structure of the semiconductor device of the present invention can adjust the electric field distribution in the device by separating the first gate and the second gate, and the second gate and the source region are electrically connected The repairing effect is achieved, so the trade-off problem between the breakdown voltage and the gate-drain charge can be improved, thereby improving the overall reliability and performance of the semiconductor device. Furthermore, the above-mentioned design avoids excessive electric field concentration at corners or gate-drain charge accumulation in the same environment, which can result in higher breakdown voltage and lower gate-drain charge. , in other words, under the above design, the gate-drain charge can be reduced while the breakdown voltage is maintained at a high level, so the trade-off between the breakdown voltage and the gate-drain charge can be improved, and the semiconductor can be improved The overall reliability and performance of the device.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above by the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, The protection scope of the present invention shall be determined by the scope of the appended patent application.
100、200、300、400、500、600:半導體裝置
110:基底
111、112、115、116:摻雜區域
113:源極區
114:汲極區
120、420:閘極結構
122、422:第一閘極
122a、422a:閘介電層
124、424:第二閘極
124w、240w:寬度
126、426:間隙壁
130:絕緣層
130t:頂面
240、540:第一金屬層
242、352、542、652:導電連接件
350、650:第二金屬層
d1、d11:第一距離
d2、d21:第二距離
P1、P2、P3、P4、P5、P6:電性連接路徑
100, 200, 300, 400, 500, 600: Semiconductor devices
110:
圖1A、圖2、圖3、圖4、圖5、圖6是依據本發明一些實施例之半導體裝置的部分剖面示意圖。 圖1B是圖1A的半導體裝置的電荷與電壓關係圖。 1A , FIG. 2 , FIG. 3 , FIG. 4 , FIG. 5 , and FIG. 6 are partial cross-sectional views of semiconductor devices according to some embodiments of the present invention. FIG. 1B is a graph of charge versus voltage for the semiconductor device of FIG. 1A .
100:半導體裝置 100: Semiconductor Devices
110:基底 110: Base
111、112、115、116:摻雜區域 111, 112, 115, 116: doped regions
113:源極區 113: source region
114:汲極區 114: drain region
120:閘極結構 120: Gate structure
122:第一閘極 122: first gate
122a:閘介電層 122a: gate dielectric layer
124:第二閘極 124: The second gate
126:間隙壁 126: Spacer
130:絕緣層 130: Insulation layer
130t:頂面 130t: top surface
P1:電性連接路徑 P1: Electrical connection path
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110110894A TWI762253B (en) | 2021-03-25 | 2021-03-25 | Semiconductor device |
CN202110458050.4A CN115132821A (en) | 2021-03-25 | 2021-04-27 | Semiconductor device with a plurality of semiconductor chips |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110110894A TWI762253B (en) | 2021-03-25 | 2021-03-25 | Semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI762253B true TWI762253B (en) | 2022-04-21 |
TW202239002A TW202239002A (en) | 2022-10-01 |
Family
ID=82199020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110110894A TWI762253B (en) | 2021-03-25 | 2021-03-25 | Semiconductor device |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115132821A (en) |
TW (1) | TWI762253B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201322446A (en) * | 2011-11-30 | 2013-06-01 | Taiwan Semiconductor Mfg | Power MOSFET and methods for manufacturing the same |
US20170194491A1 (en) * | 2015-12-31 | 2017-07-06 | Globalfoundries Singapore Pte. Ltd. | High voltage device with low rdson |
TW201740564A (en) * | 2016-02-05 | 2017-11-16 | 台灣積體電路製造股份有限公司 | Semiconductor structure and associated fabricating method |
TW201941428A (en) * | 2018-03-21 | 2019-10-16 | 台灣積體電路製造股份有限公司 | Integrated chip and method of forming the same |
US20200212188A1 (en) * | 2017-09-29 | 2020-07-02 | Texas Instruments Incorporated | Ldmos with high-k drain sti dielectric |
-
2021
- 2021-03-25 TW TW110110894A patent/TWI762253B/en active
- 2021-04-27 CN CN202110458050.4A patent/CN115132821A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201322446A (en) * | 2011-11-30 | 2013-06-01 | Taiwan Semiconductor Mfg | Power MOSFET and methods for manufacturing the same |
US20170194491A1 (en) * | 2015-12-31 | 2017-07-06 | Globalfoundries Singapore Pte. Ltd. | High voltage device with low rdson |
TW201740564A (en) * | 2016-02-05 | 2017-11-16 | 台灣積體電路製造股份有限公司 | Semiconductor structure and associated fabricating method |
US20200212188A1 (en) * | 2017-09-29 | 2020-07-02 | Texas Instruments Incorporated | Ldmos with high-k drain sti dielectric |
TW201941428A (en) * | 2018-03-21 | 2019-10-16 | 台灣積體電路製造股份有限公司 | Integrated chip and method of forming the same |
Also Published As
Publication number | Publication date |
---|---|
TW202239002A (en) | 2022-10-01 |
CN115132821A (en) | 2022-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8921936B2 (en) | Ultra high voltage MOS transistor device | |
US9852993B2 (en) | Lateral high voltage integrated devices having trench insulation field plates and metal field plates | |
US9853146B2 (en) | Lateral double diffused MOS transistors | |
TWI752911B (en) | Lateral power integrated devices having low on-resistance | |
KR20190142881A (en) | Integrated circuit device | |
US20230010328A1 (en) | Shielded gate trench mosfet with multiple stepped epitaxial structures | |
TWI455311B (en) | Laterally diffused metal-oxide-semiconductor device | |
US11791386B2 (en) | Semiconductor device | |
TWI781285B (en) | High voltage semiconductor devices and methods of fabricating the same | |
JP7327672B2 (en) | semiconductor equipment | |
KR20180068178A (en) | Semiconductor device and method manufacturing the same | |
TW201719890A (en) | High voltage integrated circuits having improved on-resistance value and improved breakdown voltage | |
US11894458B2 (en) | Lateral double-diffused metal oxide semiconductor field effect transistor | |
US11990546B2 (en) | Semiconductor device | |
TWI762253B (en) | Semiconductor device | |
US20180277677A1 (en) | Transistor structure and manufacturing method of the same | |
TW202247462A (en) | Power device and manufacturing method thereof | |
US10374077B2 (en) | Semiconductor device having auxiliary electrode formed in field plate region | |
JP5309427B2 (en) | Semiconductor device | |
TWI497691B (en) | Ultra high voltage mos tarnsistor device | |
TWI802321B (en) | Laterally double diffused metal oxide semiconductor device | |
US20230012361A1 (en) | Power semiconductor device | |
US20240170548A1 (en) | Semiconductor device and method of manufacturing the same | |
KR20240077426A (en) | Semiconductor device | |
KR20240117301A (en) | High voltage semiconductor device and method of manufacturing the same |