TWI762195B - Using methods for image sensor - Google Patents

Using methods for image sensor Download PDF

Info

Publication number
TWI762195B
TWI762195B TW110105261A TW110105261A TWI762195B TW I762195 B TWI762195 B TW I762195B TW 110105261 A TW110105261 A TW 110105261A TW 110105261 A TW110105261 A TW 110105261A TW I762195 B TWI762195 B TW I762195B
Authority
TW
Taiwan
Prior art keywords
image
partial
determining
image sensor
scene
Prior art date
Application number
TW110105261A
Other languages
Chinese (zh)
Other versions
TW202132813A (en
Inventor
曹培炎
劉雨潤
Original Assignee
大陸商深圳幀觀德芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳幀觀德芯科技有限公司 filed Critical 大陸商深圳幀觀德芯科技有限公司
Publication of TW202132813A publication Critical patent/TW202132813A/en
Application granted granted Critical
Publication of TWI762195B publication Critical patent/TWI762195B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4266Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a plurality of detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • A61B6/5241Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • G06T3/4038Image mosaicing, e.g. composing plane images from plane sub-images
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/30Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/48Increasing resolution by shifting the sensor relative to the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Medical Informatics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Image Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Image Analysis (AREA)

Abstract

Disclosed herein is a method of using an image sensor comprising N sensing areas for capturing images of a scene, the N sensing areas being physically separate from each other, the method comprising: for i=1,…,P, and j=1,…,Q(i), positioning the image sensor at a location (i,j) and capturing a partial image (i,j) of the scene using the image sensor while the image sensor is at the location (i,j), thereby capturing in total R partial images, wherein R is the sum of Q(i), i=1,…,P, wherein P>1, wherein Q(i), i=1,…,P are positive integers and are not all 1, wherein for i=1,…,P, a location group (i) comprises the locations (i,j), j=1,…,Q(i), and wherein a minimum distance between 2 locations of 2 different location groups is substantially larger than a maximum distance between two locations of a same location group; and determining a combined image of the scene based on the R partial images.

Description

影像感測器的使用方法How to use the image sensor

本發明的公開涉及影像感測器的使用方法。The disclosure of the present invention relates to a method of using an image sensor.

輻射檢測器是一種測量輻射的特性的裝置。所述特性的示例可包括輻射的強度、相位和偏振的空間分佈。所述輻射可以是與對象相互作用的輻射。例如,由輻射檢測器測量的輻射可以是已經從對象穿透或從對象反射的輻射。所述輻射可以是電磁輻射,比如紅外光、可見光、紫外光、X射線或γ射線。所述輻射可以是其他類型,比如α射線和β射線。一個影像感測器可以包括多個輻射檢測器。輻射可包括輻射粒子,例如光子(電磁波)和亞原子粒子。A radiation detector is a device that measures the properties of radiation. Examples of such properties may include the spatial distribution of the intensity, phase and polarization of the radiation. The radiation may be radiation interacting with the object. For example, the radiation measured by the radiation detector may be radiation that has penetrated or reflected from the object. The radiation may be electromagnetic radiation, such as infrared light, visible light, ultraviolet light, X-rays or gamma rays. The radiation may be of other types, such as alpha rays and beta rays. An image sensor may include multiple radiation detectors. Radiation may include radiating particles such as photons (electromagnetic waves) and subatomic particles.

本發明公開一種使用影像感測器的方法,所述影像感測器包括用於捕獲場景影像的N個感測區域,N為正整數,所述N個感測區域在物理上彼此分離,所述方法包括:對於i = 1,…,P,和j = 1,…,Q(i),將所述影像感測器放置在相對於所述場景的位置(i,j),並在所述影像感測器位於所述位置(i,j)時使用所述影像感測器捕獲所述場景的部分影像(i,j),從而捕獲總共R個部分影像,其中R是Q(i),i = 1,…,P,的和,其中P是大於1的整數,其中Q(i),i = 1,…,P,是正整數並且並非全部為1,其中對於i = 1,...,P,位置組(i)包括所述位置(i,j),j = 1,...,Q(i),並且其中在所述位置組(i),i = 1,…,P,中一個位置組中的一個位置與所述位置組(i),i = 1,…,P,中另一個位置組中的另一個位置之間的最小距離實質上大於在所述位置組(i),i = 1,…,P,中同一個位置組的兩個位置之間的最大距離;並且基於所述R個部分影像確定所述場景的組合影像。The present invention discloses a method of using an image sensor. The image sensor includes N sensing areas for capturing scene images, where N is a positive integer, and the N sensing areas are physically separated from each other, so The method includes: for i = 1,...,P, and j = 1,...,Q(i), placing the image sensor at position (i,j) relative to the scene, and using the image sensor to capture a partial image (i, j) of the scene when the image sensor is at the position (i, j), thereby capturing a total of R partial images, where R is Q(i) , the sum of i = 1, ..., P, where P is an integer greater than 1, where Q(i), i = 1, ..., P, are positive integers and not all 1, where for i = 1, .. .,P, the position group(i) includes the positions(i,j), j = 1,...,Q(i), and where in the position group(i), i = 1,...,P , the minimum distance between one position in one position group and another position in the other position group in the position group (i), i = 1, ..., P, is substantially greater than that in the position group ( i), i = 1, . . . , P, the maximum distance between two positions in the same position group; and the combined image of the scene is determined based on the R partial images.

根據實施例,N大於1。According to an embodiment, N is greater than one.

根據實施例,所述的將所述影像感測器放置在對於i = 1,…,P,和j = 1,…,Q(i),的位置(i,j)是一個一個地執行的。According to an embodiment, said placing the image sensor at position (i,j) for i = 1,...,P, and j = 1,...,Q(i), is performed one by one .

根據實施例,Q(i),i = 1,…,P,相同且大於1。According to an embodiment, Q(i), i = 1, . . . , P, are the same and greater than 1.

根據實施例,所述的最小距離接近並小於所述N個感測區域中的感測區域的大小。According to an embodiment, the minimum distance is close to and smaller than the size of the sensing areas in the N sensing areas.

根據實施例,所述的最小距離大於所述的最大距離的100倍。According to an embodiment, the minimum distance is greater than 100 times the maximum distance.

根據實施例,所述的最大距離小於所述N個感測區域的感測元件的大小的10倍。According to an embodiment, the maximum distance is less than 10 times the size of the sensing elements of the N sensing regions.

根據實施例,所述的將所述影像感測器放置在對於i = 1,…,P,和j = 1,…,Q(i),的所述的位置(i,j)包括將所述影像感測器從所述位置組(i),i = 1,...,P,中的一個位置組的一個位置直接移到所述位置組(i),i = 1,...,P,中的另一個位置組的另一個位置,並且不包括將所述影像感測器從所述位置組(i),i = 1,…,P,中的一個位置組的一個位置直接移到所述同一位置組的另一個位置。According to an embodiment, said placing said image sensor at said position (i,j) for i = 1,...,P, and j = 1,...,Q(i), includes placing all The image sensor is directly moved from a position of a position group in the position group (i), i = 1, . . . , P, to the position group (i), i = 1, . . . , P, another position in another position group, and does not include moving the image sensor directly from a position in one position group in the position group (i), i = 1, . . . , P, Move to another location in the same location group.

根據實施例,所述的確定所述組合影像包括拼接所述部分影像(i,1),i = 1,…,P,以形成所述場景的拼接影像。According to an embodiment, the determining of the combined image includes stitching the partial images (i, 1), i = 1, . . . , P, to form a stitched image of the scene.

根據實施例,所述的確定所述組合影像進一步包括對於i = 1,…,P,基於所述部分影像(i,j),j = 1,…,Q(i),確定增強部分影像(i)。According to an embodiment, the determining the combined image further comprises, for i = 1, . . . , P, determining an enhanced partial image ( i).

根據實施例,所述的確定所述組合影像進一步包括對於i = 1,…,P,使用所述增強部分影像(i)來代替所述拼接影像的所述部分影像(i,1)。According to an embodiment, the determining the combined image further comprises for i = 1, . . . , P, using the enhanced partial image (i) to replace the partial image (i, 1) of the stitched image.

根據實施例,所述的確定所述組合影像進一步包括在執行所述的使用之後,均衡所述拼接影像的不同區域的分辨率。According to an embodiment, the determining the combined image further comprises, after performing the using, equalizing the resolutions of different regions of the stitched image.

根據實施例,所述的確定所述組合影像進一步包括對於i = 1,…,P,如果所述增強部分影像(i)的分辨率高於所述部分影像(i,1)的分辨率,則使用所述增強部分影像(i)代替所述拼接影像的所述部分影像(i,1)。According to an embodiment, the determining the combined image further comprises for i = 1, . . . , P, if the resolution of the enhanced partial image (i) is higher than the resolution of the partial image (i, 1), The enhanced partial image (i) is then used to replace the partial image (i, 1) of the stitched image.

根據實施例,所述的確定所述增強部分影像(i)包括確定所述位置(i,j),j = 1,...,Q(i),相對於彼此的位置。According to an embodiment, said determining said enhanced partial image (i) comprises determining said positions (i, j), j = 1, . . . , Q(i), relative to each other.

根據實施例,所述的確定所述位置(i,j),j = 1,…,Q(i),相對於彼此的所述位置包括使用相對於所述場景靜止的標記。According to an embodiment, said determining said positions (i, j), j = 1, . . . , Q(i), said positions relative to each other comprises using markers that are stationary relative to said scene.

根據實施例,所述的確定所述位置(i,j),j = 1,…,Q(i),相對於彼此的所述位置包括:對所述部分影像(i,j),j = 1,…,Q(i),進行上採樣,從而分別對部分影像(i,j),j = 1,…,Q(i),進行上採樣;並且將所述上採樣的部分影像(i,j),j = 1,…,Q(i),相關聯,以確定所述位置(i,j),j = 1,…,Q(i),相對於彼此的位置。According to an embodiment, said determining said positions (i, j), j = 1, . 1,...,Q(i), upsamples the partial images (i,j), respectively; , j), j = 1, ..., Q(i), are associated to determine the positions of (i, j), j = 1, ..., Q(i), relative to each other.

根據實施例,所述的確定所述組合影像包括:對於i = 1,…,P,基於所述部分影像(i,j),j = 1,…,Q(i),確定增強部分影像(i)。According to an embodiment, the determining of the combined image comprises: for i = 1, . . . , P, based on the partial images (i, j), j = 1, . i).

根據實施例,所述的確定所述組合影像進一步包括拼接所述增強部分影像(i),i = 1,…,P,以形成所述場景的拼接影像。According to an embodiment, the determining the combined image further comprises stitching the enhanced partial images (i), i = 1, . . . , P, to form a stitched image of the scene.

根據實施例,所述的確定所述組合影像進一步包括均衡所述拼接影像的不同區域的分辨率。According to an embodiment, the determining the combined image further comprises equalizing the resolutions of different regions of the stitched image.

圖1示意示出作為示例的輻射檢測器100。所述輻射檢測器100可以包括感測元件150(也稱為像素150)的陣列。該陣列可以是矩形陣列(如圖1所示)、蜂窩陣列、六邊形陣列或任何其他合適的陣列。在圖1示例中的所述輻射檢測器100具有排列成4行7列的28個感測元件150。然而,通常所述輻射檢測器100可以具有以任意方式排列的任意數量的感測元件150。Figure 1 schematically shows a radiation detector 100 as an example. The radiation detector 100 may include an array of sensing elements 150 (also referred to as pixels 150). The array may be a rectangular array (as shown in Figure 1), a cellular array, a hexagonal array, or any other suitable array. The radiation detector 100 in the example of FIG. 1 has 28 sensing elements 150 arranged in 4 rows and 7 columns. In general, however, the radiation detector 100 may have any number of sensing elements 150 arranged in any manner.

每個感測元件150可以被配置為檢測來自輻射源(圖中未顯示)的入射在其上的輻射,並且可以被配置為測量所述輻射的特性(例如,粒子的能量、波長、輻射通量和頻率)。輻射可以包括諸如光子(電磁波)和亞原子粒子等粒子。每個感測元件150可以被配置為在一段時間內對入射在其上的其能量落入多個能量箱中的輻射粒子的數量進行計數。所有所述感測元件150均可以被配置為對在相同時間段內的多個能量箱內入射在其上的輻射粒子的數量進行計數。當所述入射輻射粒子具有相似的能量時,所述感測元件150可以簡單地被配置為對一段時間內入射在其上的輻射粒子的數量進行計數,而無需測量各個輻射粒子的能量。Each sensing element 150 may be configured to detect radiation incident thereon from a radiation source (not shown), and may be configured to measure a characteristic of the radiation (eg, particle energy, wavelength, radiant flux) amount and frequency). Radiation can include particles such as photons (electromagnetic waves) and subatomic particles. Each sensing element 150 may be configured to count the number of radiation particles incident thereon whose energy falls into the plurality of energy bins over a period of time. All of the sensing elements 150 may be configured to count the number of radiation particles incident thereon within the plurality of energy boxes within the same time period. When the incident radiation particles have similar energies, the sensing element 150 may simply be configured to count the number of radiation particles incident thereon over a period of time without measuring the energy of the individual radiation particles.

每個感測元件150可以具有其自己的類比數位轉換器(ADC),該類比數位轉換器被配置為將表示入射輻射粒子能量的類比信號數位化為數位信號,或者將表示多個入射輻射粒子總能量的類比信號數位化為數位信號。所述感測元件150可以被配置為並行操作。例如,當一個感測元件150測量入射的輻射粒子時,另一個感測元件150可能正在等待輻射粒子到達。所述感測元件150可以不必是單獨可尋址的。Each sensing element 150 may have its own analog-to-digital converter (ADC) configured to digitize an analog signal representing incident radiation particle energy into a digital signal, or to digitize a plurality of incident radiation particles The analog signal of the total energy is digitized into a digital signal. The sensing elements 150 may be configured to operate in parallel. For example, while one sensing element 150 measures an incident radiation particle, another sensing element 150 may be waiting for the radiation particle to arrive. The sensing elements 150 may not necessarily be individually addressable.

在此描述的輻射檢測器100可以具有諸如X射線望遠鏡、乳腺X射線照相、工業X射線缺陷檢測、X射線顯微鏡或顯微照相、X射線鑄件檢驗,X射線無損試驗、X射線焊接檢驗、X射線數位減影血管造影等應用。也可以將所述輻射檢測器100用於代替照相底片、照相膠片、光激發磷光板、X射線影像增強器、閃爍體或X射線檢測器。The radiation detector 100 described herein may have features such as X-ray telescopes, mammography, industrial X-ray defect detection, X-ray microscopy or photomicrography, X-ray casting inspection, X-ray nondestructive testing, X-ray welding inspection, X-ray Radiographic digital subtraction angiography and other applications. The radiation detector 100 can also be used in place of a photographic negative, photographic film, photoexcitable phosphor plate, X-ray image intensifier, scintillator or X-ray detector.

圖2A示意示出根據實施例的圖1中沿2A-2A線的輻射檢測器100的簡化橫截面圖。更具體地講,所述輻射檢測器100可包括輻射吸收層110和電子層120(例如,專用集成電路),其用於處理或分析在所述輻射吸收層110中產生的入射輻射的電信號。所述輻射檢測器100可包括也可不包括閃爍體(圖中未顯示)。所述輻射吸收層110可包括半導體材料,諸如矽、鍺、砷化鎵、碲化鎘、鎘鋅碲或其組合。所述半導體材料對於感興趣的輻射可具有高的質量衰減係數。2A schematically illustrates a simplified cross-sectional view of the radiation detector 100 of FIG. 1 along line 2A-2A, according to an embodiment. More specifically, the radiation detector 100 may include a radiation absorbing layer 110 and an electronic layer 120 (eg, an application specific integrated circuit) for processing or analyzing electrical signals of incident radiation generated in the radiation absorbing layer 110 . The radiation detector 100 may or may not include a scintillator (not shown in the figure). The radiation absorbing layer 110 may comprise a semiconductor material such as silicon, germanium, gallium arsenide, cadmium telluride, cadmium zinc telluride, or combinations thereof. The semiconductor material may have a high mass decay coefficient for the radiation of interest.

圖2B示意示出作為示例的圖1中沿2A-2A線的輻射檢測器100的詳細橫截面圖。更具體地講,所述輻射吸收層110可包括由第一摻雜區111、第二摻雜區113的一個或多個離散區114 組成的一個或多個二極體(例如,p-i-n或p-n)。所述第二摻雜區113可通過可選的本徵區112而與所述第一摻雜區111分離。所述離散區114通過所述第一摻雜區111或所述本徵區112而彼此分離。所述第一摻雜區111和所述第二摻雜區113具有相反類型的摻雜(例如,區域111是p型並且區域113是n型,或者區域111是n型並且區域113是p型)。在圖2B中的示例中,所述第二摻雜區113的每個離散區114與所述第一摻雜區111和所述可選的本徵區112一起組成一個二極體。即,在圖2B的示例中,所述輻射吸收層110包括多個二極體(更具體地講,7個二極體對應於圖1的所述陣列中的一行的7個感測元件150)。所述多個二極體具有電觸點119A作為共享(共用)電極。所述第一摻雜區111還可具有離散部分。FIG. 2B schematically shows a detailed cross-sectional view of the radiation detector 100 along line 2A-2A of FIG. 1 as an example. More specifically, the radiation absorbing layer 110 may include one or more diodes (eg, p-i-n or p-n) consisting of a first doped region 111, one or more discrete regions 114 of a second doped region 113 ). The second doped region 113 may be separated from the first doped region 111 by an optional intrinsic region 112 . The discrete regions 114 are separated from each other by the first doped region 111 or the intrinsic region 112 . The first doped region 111 and the second doped region 113 have opposite types of doping (eg, region 111 is p-type and region 113 is n-type, or region 111 is n-type and region 113 is p-type ). In the example in FIG. 2B , each discrete region 114 of the second doped region 113 together with the first doped region 111 and the optional intrinsic region 112 forms a diode. That is, in the example of FIG. 2B , the radiation absorbing layer 110 includes a plurality of diodes (more specifically, 7 diodes correspond to the 7 sense elements 150 of a row in the array of FIG. 1 ) ). The plurality of diodes have electrical contacts 119A as shared (common) electrodes. The first doped region 111 may also have discrete portions.

所述電子層120可包括電子系統121,其適用於處理或解釋由入射在所述輻射吸收層110上的輻射所產生的信號。所述電子系統121可包括類比電路比如濾波器網絡、放大器、積分器、比較器,或數位電路比如微處理器和儲存器。所述電子系統121可包括一個或多個類比數位轉換器。所述電子系統121可包括由所述感測元件150共用的組件或專用於單個感測元件150的組件。例如,所述電子系統121可包括專用於每個感測元件150的放大器和在所有感測元件150間共用的微處理器。所述電子系統121可通過通孔131電連接到所述感測元件150。所述通孔之間的空間可用填充材料130填充,其可增加所述電子層120到所述輻射吸收層110連接的機械穩定性。其他鍵合技術有可能在不使用所述通孔131的情況下將所述電子系統121連接到所述感測元件150。The electronic layer 120 may include an electronic system 121 suitable for processing or interpreting signals generated by radiation incident on the radiation absorbing layer 110 . The electronic system 121 may include analog circuits such as filter networks, amplifiers, integrators, comparators, or digital circuits such as microprocessors and memory. The electronic system 121 may include one or more analog-to-digital converters. The electronic system 121 may include components common to the sensing elements 150 or components dedicated to a single sensing element 150 . For example, the electronic system 121 may include an amplifier dedicated to each sensing element 150 and a microprocessor shared among all the sensing elements 150 . The electronic system 121 may be electrically connected to the sensing element 150 through the via 131 . The spaces between the vias can be filled with a filling material 130 which can increase the mechanical stability of the connection of the electronic layer 120 to the radiation absorbing layer 110 . Other bonding techniques are possible to connect the electronic system 121 to the sensing element 150 without using the vias 131 .

當來自所述輻射源(圖中未顯示)的輻射撞擊包括二極體的所述輻射吸收層110時,所述輻射粒子可被吸收並通過若干機制產生一個或多個載流子(例如,電子,空穴)。所述載流子可在電場下向其中一個所述二極體的電極漂移。所述電場可以是外部電場。所述電觸點119B可包括離散部分,其中的每個離散部分與所述離散區114電接觸。術語“電接觸”可與詞語“電極”互換使用。在實施例中,所述載流子可向不同方向漂移,使得由單個輻射粒子產生的所述載流子大致未被兩個不同的離散區114共用(“大致未被共用”在這裡意指這些載流子中的不到2%、不到0.5%、不到0.1%、或不到0.01%流向與餘下載流子不同的一個所述離散區114)。由入射在所述離散區114之一的足跡周圍的輻射粒子所產生的載流子大致未被另一所述離散區114共用。與一個離散區114相關聯的一個感測元件150可以是所述離散區114周圍的區,由入射在其中的一個輻射粒子所產生的載流子大致全部(超過98%、超過99.5%、超過99.9%或超過99.99%)流向其中。即,所述載流子中的不到2%、不到1%、不到0.1%、或不到0.01%流到所述感測元件150之外。When radiation from the radiation source (not shown) strikes the radiation absorbing layer 110 comprising a diode, the radiation particles can be absorbed and generate one or more charge carriers through several mechanisms (eg, electrons, holes). The charge carriers can drift towards the electrodes of one of the diodes under an electric field. The electric field may be an external electric field. The electrical contacts 119B may include discrete portions, each of which is in electrical contact with the discrete regions 114 . The term "electrical contact" is used interchangeably with the word "electrode". In embodiments, the charge carriers may drift in different directions such that the charge carriers generated by a single radiation particle are not substantially shared by the two different discrete regions 114 ("substantially not shared" means herein Less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these carriers flow to a different one of the discrete regions 114) than the rest of the carriers. Carriers generated by radiation particles incident around the footprint of one of the discrete regions 114 are substantially not shared by the other of the discrete regions 114 . A sensing element 150 associated with a discrete region 114 may be the region surrounding said discrete region 114 in which substantially all (over 98%, over 99.5%, over 98%, over 99.5%, over 99.9% or more) into it. That is, less than 2%, less than 1%, less than 0.1%, or less than 0.01% of the carriers flow out of the sensing element 150 .

圖2C示意示出根據實施例的圖1沿2A-2A線的所述輻射檢測器100的替代詳細橫截面圖。更具體地講,所述輻射吸收層110可包括半導體材料,比如矽、鍺、砷化鎵、碲化鎘、鎘鋅碲或其組合,的電阻器,但不包括二極體。所述半導體材料對於感興趣的輻射可具有高的質量衰減係數。在實施例中,圖2C中的所述電子層120在結構和功能方面類似於圖2B中的所述電子層120。2C schematically illustrates an alternative detailed cross-sectional view of the radiation detector 100 of FIG. 1 along line 2A-2A, according to an embodiment. More specifically, the radiation absorbing layer 110 may include a semiconductor material, such as a resistor of silicon, germanium, gallium arsenide, cadmium telluride, cadmium zinc telluride, or combinations thereof, but not a diode. The semiconductor material may have a high mass decay coefficient for the radiation of interest. In an embodiment, the electronic layer 120 in Figure 2C is similar in structure and function to the electronic layer 120 in Figure 2B.

當所述輻射撞擊包括所述電阻器但不包括二極體的所述輻射吸收層110時,該輻射可被吸收並通過若干機制產生一個或多個載流子。一個輻射粒子可產生10到100000個載流子。所述載流子可在電場下向電觸點119A和電觸點119B漂移。所述電場可以是外部電場。所述電觸點119B包括離散部分。在實施例中,所述載流子可向不同方向漂移,使得由單個輻射粒子產生的所述載流子大致未被所述電觸點119B兩個不同的離散部分共用(“大致未被共用”在這裡意指這些載流子中不到2%、不到0.5%、不到0.1%或不到0.01%流向與餘下載流子不同組的離散部分)。由入射在所述電觸點119B離散部分之一的足跡周圍的輻射粒子所產生的載流子大致未被另一所述電觸點119B離散部分共用。與所述電觸點119B離散部分之一相關聯的一個感測元件150可以是所述離散部分周圍的區,由入射在其中的輻射粒子所產生的載流子大致全部(超過98%、超過99.5%、超過99.9%或超過99.99%)流向其中。即,所述載流子中的不到2%、不到0.5%、不到0.1%、或不到0.01%流到與所述電觸點119B離散部分之一相關聯的所述感測元件之外。When the radiation strikes the radiation absorbing layer 110 including the resistor but not the diode, the radiation can be absorbed and generate one or more charge carriers through several mechanisms. One radiating particle can generate 10 to 100,000 charge carriers. The charge carriers can drift toward electrical contacts 119A and 119B under the electric field. The electric field may be an external electric field. The electrical contacts 119B include discrete portions. In embodiments, the charge carriers may drift in different directions such that the charge carriers generated by a single radiation particle are not substantially shared by the two different discrete portions of the electrical contact 119B ("substantially not shared" "Here it is meant that less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these carriers flow to a different set of discrete parts than the rest of the carriers). Carriers generated by radiation particles incident around the footprint of one of the discrete portions of the electrical contact 119B are substantially not shared by the other discrete portion of the electrical contact 119B. A sensing element 150 associated with one of the discrete portions of the electrical contact 119B may be the region around the discrete portion in which substantially all (over 98%, over 98%, more than 99.5%, over 99.9%, or over 99.99%) into it. That is, less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of the charge carriers flow to the sensing element associated with one of the discrete portions of the electrical contact 119B outside.

圖3示意示出根據實施例的包括了所述輻射檢測器100和印刷電路板400的封裝200的俯視圖。本發明中所用術語“印刷電路板”不限於特定材料。例如,印刷電路板可包括半導體。所述輻射檢測器100被安裝到所述印刷電路板400。為了清楚起見,未示出所述輻射檢測器100和所述印刷電路板400之間的連線。所述印刷電路板400可以有一個或多個輻射檢測器100。所述印刷電路板400可具有未被所述輻射檢測器100覆蓋的區405(例如,用於容納鍵合線410的區)。所述輻射檢測器100可具有感測區域190,該感測區域190是所述感測元件150(如圖1)所在的位置。所述輻射檢測器100可在其邊緣附近具有周邊區域195。所述周邊區域195沒有感測元件,並且所述輻射檢測器100未檢測到入射在周邊區域195的輻射粒子。FIG. 3 schematically illustrates a top view of a package 200 including the radiation detector 100 and a printed circuit board 400 according to an embodiment. The term "printed circuit board" used in the present invention is not limited to a specific material. For example, printed circuit boards may include semiconductors. The radiation detector 100 is mounted to the printed circuit board 400 . For clarity, the wiring between the radiation detector 100 and the printed circuit board 400 is not shown. The printed circuit board 400 may have one or more radiation detectors 100 . The printed circuit board 400 may have areas 405 not covered by the radiation detector 100 (eg, areas for accommodating bond wires 410). The radiation detector 100 may have a sensing area 190 where the sensing element 150 ( FIG. 1 ) is located. The radiation detector 100 may have a peripheral region 195 near its edges. The peripheral area 195 has no sensing elements, and the radiation detector 100 does not detect radiation particles incident on the peripheral area 195 .

圖4示意示出根據實施例的影像感測器490的截面圖。所述影像感測器490可包括安裝到系統印刷電路板450的圖3的多個封裝200。圖4示出所述影像感測器490可以包括兩個封裝200作為示例。所述印刷電路板 400和所述系統印刷電路板450之間的電連接可通過鍵合線410實現。為了將所述鍵合線410容納在所述印刷電路板400上,所述印刷電路板400具有未被所述輻射檢測器100覆蓋的區域405。為了在所述系統印刷電路板450上容納所述鍵合線410,所述封裝件200之間具有間隙。所述間隙可以是大約1mm或更大。入射在所述周邊區域195上、所述區域405上或所述間隙上的輻射粒子無法通過所述系統印刷電路板 450上的所述封裝200進行檢測。FIG. 4 schematically illustrates a cross-sectional view of an image sensor 490 according to an embodiment. The image sensor 490 may include the plurality of packages 200 of FIG. 3 mounted to a system printed circuit board 450 . FIG. 4 shows that the image sensor 490 may include two packages 200 as an example. The electrical connection between the printed circuit board 400 and the system printed circuit board 450 may be achieved by bonding wires 410. In order to accommodate the bond wires 410 on the printed circuit board 400 , the printed circuit board 400 has an area 405 not covered by the radiation detector 100 . In order to accommodate the bonding wires 410 on the system printed circuit board 450 , there are gaps between the packages 200 . The gap may be about 1 mm or more. Radiation particles incident on the peripheral area 195, on the area 405 or on the gap cannot be detected by the package 200 on the system printed circuit board 450.

輻射檢測器(例如,所述輻射檢測器100)的盲區是指入射的輻射粒子無法被所述輻射檢測器檢測到的所述輻射檢測器的輻射接收表面的區域。封裝(例如,所述封裝200)的盲區是指入射的輻射粒子無法被所述輻射檢測器或所述封裝中的輻射檢測器檢測到的所述封裝的所述輻射接收表面的區域。在圖3和圖4所示的示例中,所述封裝200的所述盲區包括所述周邊區域195和所述區域405。影像感測器(例如,影像感測器490)的盲區(例如,盲區488)具有一組封裝(例如,安裝在相同印刷電路板上的封裝,佈置在相同層中的封裝)包括該組中的所述封裝的所述盲區和所述封裝之間的間隙的組合。A dead zone of a radiation detector (eg, the radiation detector 100 ) refers to an area of the radiation receiving surface of the radiation detector where incident radiation particles cannot be detected by the radiation detector. A dead zone of a package (eg, the package 200 ) refers to an area of the radiation receiving surface of the package where incident radiation particles cannot be detected by the radiation detector or radiation detectors in the package. In the example shown in FIGS. 3 and 4 , the dead area of the package 200 includes the peripheral area 195 and the area 405 . A dead zone (eg, dead zone 488 ) of an image sensor (eg, image sensor 490 ) has a group of packages (eg, packages mounted on the same printed circuit board, packages arranged in the same layer) included in the group The combination of the dead area of the package and the gap between the packages.

在實施例中,包括所述輻射檢測器100的所述影像感測器490可具有不能檢測入射輻射的所述盲區488。然而,在實施例中,具有感測區域190的所述影像感測器490可捕獲對象或場景(圖中未示出)的部分影像,然後這些被捕獲的部分影像可被拼接以形成整個所述對象或場景的完整影像。In embodiments, the image sensor 490 including the radiation detector 100 may have the dead zone 488 that cannot detect incident radiation. However, in embodiments, the image sensor 490 with the sensing area 190 may capture partial images of an object or scene (not shown), and these captured partial images may then be stitched to form the entire object or scene. A complete image of the object or scene described.

圖5A-圖5D示意示出根據實施例的處於操作中的所述影像感測器的俯視圖。為簡單起見,僅示出了所述影像感測器490的兩個感測區域190a和190b以及所述盲區488(即,所述影像感測器490的其他部分,例如周邊區域195(圖4),未示出)。在實施例中,包圍金屬劍512的紙板箱510可以位於所述影像感測器490和在頁面之前的輻射源(未示出)之間。所述紙板箱510在所述影像感測器490和觀察者的眼睛之間。在下文中,為了概括起見,包圍所述金屬劍512的所述紙板箱510可以被稱為對象/場景510 +512。5A-5D schematically illustrate top views of the image sensor in operation according to an embodiment. For simplicity, only two sensing areas 190a and 190b of the image sensor 490 and the blind area 488 (ie, other parts of the image sensor 490, such as the peripheral area 195 (Fig. 4), not shown). In an embodiment, the carton 510 surrounding the metal sword 512 may be located between the image sensor 490 and a radiation source (not shown) in front of the page. The carton 510 is between the image sensor 490 and the viewer's eye. In the following, for the sake of generality, the cardboard box 510 enclosing the metal sword 512 may be referred to as object/scene 510+512.

在實施例中,所述影像感測器490在捕獲所述對象/場景510 + 512的影像中的操作可以如下。首先,如圖5A所示,所述對象/場景510 + 512可以是靜止的,並且所述影像感測器490可以相對於所述對象/場景510 + 512移動到第一影像捕獲位置。然後,當所述影像感測器490處於所述第一影像捕獲位置時,所述影像感測器490可以用於捕獲所述對象/場景510 + 512的第一部分影像520.1。In an embodiment, the operation of the image sensor 490 in capturing the image of the object/scene 510+512 may be as follows. First, as shown in FIG. 5A, the object/scene 510+512 may be stationary, and the image sensor 490 may be moved to a first image capture position relative to the object/scene 510+512. Then, when the image sensor 490 is in the first image capture position, the image sensor 490 can be used to capture a first partial image 520.1 of the object/scene 510+512.

接下來,在實施例中,如圖5B所示,所述影像感測器490可以相對於所述對象/場景510 + 512移動到第二影像捕獲位置。然後,當所述影像感測器490處於所述第二影像捕獲位置時,所述影像感測器490可以用於捕獲所述對象/場景510 + 512的第二部分影像520.2。Next, in an embodiment, as shown in Figure 5B, the image sensor 490 may be moved to a second image capture position relative to the object/scene 510+512. Then, when the image sensor 490 is in the second image capture position, the image sensor 490 can be used to capture a second partial image 520.2 of the object/scene 510+512.

接下來,在實施例中,如圖5C所示,所述影像感測器490可以相對於所述對象/場景510 + 512移動到第三影像捕獲位置。然後,當所述影像感測器490處於所述第三影像捕獲位置時,所述影像感測器490可以用於捕獲所述對象/場景510 + 512的第三部分影像520.3。Next, in an embodiment, as shown in Figure 5C, the image sensor 490 may be moved to a third image capture position relative to the object/scene 510+512. Then, when the image sensor 490 is in the third image capture position, the image sensor 490 can be used to capture a third partial image 520.3 of the object/scene 510+512.

在實施例中,所述感測區域190a和190b的大小和形狀以及所述第一影像捕獲位置、第二影像捕獲位置和第三影像捕獲位置的位置可以使得所述部分影像520.1、520.2和520.3的任何部分影像與所述部分影像520.1、520.2和520.3中的至少另一個部分影像重疊。例如,所述第一影像捕獲位置和所述第二影像捕獲位置之間的距離492可以接近並小於所述感測區域190a的寬度190w;因此,所述第一部分影像520.1與所述第二部分影像520.2重疊。In an embodiment, the size and shape of the sensing regions 190a and 190b and the positions of the first, second and third image capturing locations may be such that the partial images 520.1, 520.2 and 520.3 Any partial image of 520.1, 520.2 and 520.3 overlaps with at least another partial image of said partial images 520.1, 520.2 and 520.3. For example, the distance 492 between the first image capturing location and the second image capturing location may be close to and less than the width 190w of the sensing area 190a; thus, the first portion of the image 520.1 and the second portion Image 520.2 overlay.

在實施例中,在所述部分影像520.1、520.2和520.3的任何部分影像與所述部分影像520.1、520.2和520.3中的至少另一個部分影像重疊的情況下,可以拼接所述部分影像520.1、520.2和520.3 從而形成所述對象/場景510 + 512的更完整的影像520(圖5D)。在實施例中,所述感測區域190a和190b的大小和形狀以及所述第一影像捕獲位置、第二影像捕獲位置和第三影像捕獲位置的位置可以使得所述拼接影像520覆蓋所述整個對象/場景510 + 512,如圖5D所示。In an embodiment, the partial images 520.1, 520.2 may be stitched where any of the partial images 520.1, 520.2 and 520.3 overlap with at least another of the partial images 520.1, 520.2 and 520.3 and 520.3 to form a more complete image 520 of the object/scene 510+512 (FIG. 5D). In an embodiment, the size and shape of the sensing regions 190a and 190b and the positions of the first, second and third image capturing locations may be such that the stitched image 520 covers the entire Object/Scene 510 + 512, as shown in Figure 5D.

圖6A-圖6D示意示出根據替代實施例的處於操作中的所述影像感測器490的俯視圖。在實施例中,就所述部分影像520.1、520.2和520.3的所述捕獲而言,圖6A-圖6D中的所述影像感測器490的操作可類似於圖5A-圖5D中的所述影像感測器490的操作。在實施例中,除了如上所述部分影像520.1、520.2和520.3的所述捕獲之外,圖6A-圖6D中的所述影像感測器490的操作還可包括以下內容。6A-6D schematically illustrate top views of the image sensor 490 in operation according to an alternative embodiment. In an embodiment, the operation of the image sensor 490 in FIGS. 6A-6D may be similar to the operation of the image sensor 490 in FIGS. 5A-5D with respect to the capture of the partial images 520.1, 520.2 and 520.3 Operation of image sensor 490 . In an embodiment, the operation of the image sensor 490 in FIGS. 6A-6D may include the following in addition to the capture of the partial images 520.1, 520.2 and 520.3 as described above.

在實施例中,在捕獲所述第三部分影像520.3之後,所述影像感測器490可以被移動到所述第一影像捕獲位置(圖6A中的實線矩形影像感測器490)處或其附近的第四影像捕獲位置(圖6A中的虛線矩形影像感測器490)。然後,當所述影像感測器490在所述第四影像捕獲位置處時,所述影像感測器490可以用於捕獲所述對象/場景510 + 512的第四部分影像520.4。所述第一影像捕獲位置和所述第四影像捕獲位置可以被認為屬於第一位置組。所述第一部分影像和所述第四部分影像可以被認為屬於第一部分影像組。In an embodiment, after capturing the third partial image 520.3, the image sensor 490 may be moved to the first image capture position (solid rectangular image sensor 490 in FIG. 6A) or A fourth image capture location in its vicinity (dotted rectangular image sensor 490 in FIG. 6A ). Then, when the image sensor 490 is at the fourth image capture location, the image sensor 490 may be used to capture a fourth partial image 520.4 of the object/scene 510+512. The first image capturing location and the fourth image capturing location may be considered to belong to a first location group. The first partial picture and the fourth partial picture may be considered to belong to the first partial picture group.

在實施例中,在捕獲所述第四部分影像520.4之後,所述影像感測器490可以被移動到所述第二影像捕獲位置(圖6B中的實線矩形影像感測器490)處或其附近的第五影像捕獲位置(圖6B中的虛線矩形影像感測器490)。然後,當所述影像感測器490在所述第五影像捕獲位置處時,所述影像感測器490可以用於捕獲所述對象/場景510 + 512的第五部分影像520.5。所述第二影像捕獲位置和所述第五影像捕獲位置可以被認為屬於第二位置組。所述第二部分影像和所述第五部分影像可以被認為屬於第二部分影像組。In an embodiment, after capturing the fourth partial image 520.4, the image sensor 490 may be moved to the second image capture position (solid rectangular image sensor 490 in FIG. 6B) or A fifth image capture position in its vicinity (dotted rectangular image sensor 490 in FIG. 6B ). Then, when the image sensor 490 is at the fifth image capture position, the image sensor 490 may be used to capture a fifth partial image 520.5 of the object/scene 510+512. The second image capturing location and the fifth image capturing location may be considered to belong to a second location group. The second partial picture and the fifth partial picture may be considered to belong to the second partial picture group.

在實施例中,在捕獲所述第五部分影像520.5之後,所述影像感測器490可以被移動到所述第三影像捕獲位置(圖6C中的實線矩形影像感測器490)處或其附近的第六影像捕獲位置(圖6C中的虛線矩形影像感測器490)。然後,當所述影像感測器490在所述第六影像捕獲位置處時,所述影像感測器490可以用於捕獲所述對象/場景510 + 512的第六部分影像520.6。所述第三影像捕獲位置和所述第六影像捕獲位置可以被認為屬於第三位置組。所述第三部分影像和所述第六部分影像可以被認為屬於第三部分影像組。In an embodiment, after capturing the fifth partial image 520.5, the image sensor 490 may be moved to the third image capture position (solid rectangular image sensor 490 in FIG. 6C) or A sixth image capture location in its vicinity (dotted rectangular image sensor 490 in FIG. 6C ). Then, when the image sensor 490 is at the sixth image capture location, the image sensor 490 may be used to capture a sixth partial image 520.6 of the object/scene 510+512. The third image capturing position and the sixth image capturing position may be considered to belong to a third position group. The third partial picture and the sixth partial picture may be considered to belong to the third partial picture group.

在實施例中,所述六個影像捕獲位置的位置可以使得所述第一位置組、所述第二位置組和所述第三位置組的一個位置組的影像捕獲位置與所述第一位置組、所述第二位置組和所述第三位置組的另一個位置組的另一個影像捕獲位置的最大距離實質上大於(例如,大於10倍、大於20倍、大於50倍或大於100倍)所述第一位置組、所述第二位置組和所述第三位置組的一個位置組的兩個影像捕獲位置之間的最大距離。換句話說,兩個不同位置組的兩個影像捕獲位置之間的最小距離實質上大於相同組的兩個影像捕獲位置之間的最大距離。In an embodiment, the positions of the six image capturing positions may be such that the image capturing positions of one position group of the first position group, the second position group and the third position group are the same as the first position The maximum distance of another image capture location of another location group of the group, the second group of locations, and the third group of locations is substantially greater (eg, greater than 10 times, greater than 20 times, greater than 50 times, or greater than 100 times) ) the maximum distance between two image capture positions of one of the first position group, the second position group and the third position group. In other words, the minimum distance between two image capturing positions of two different position groups is substantially greater than the maximum distance between two image capturing positions of the same group.

在實施例中,所述最小距離可以接近並小於所述感測區域190a的寬度190w(圖5A)。例如,所述最小距離可以在寬度190w的80%至99.99%的範圍內。在實施例中,所述最小距離可以大於所述最大距離的100倍。在實施例中,所述最大距離可以小於感測元件150的大小的10倍。In embodiments, the minimum distance may be close to and less than the width 190w of the sensing region 190a (FIG. 5A). For example, the minimum distance may be in the range of 80% to 99.99% of the width 190w. In an embodiment, the minimum distance may be greater than 100 times the maximum distance. In an embodiment, the maximum distance may be less than 10 times the size of the sensing element 150 .

在實施例中,所述影像感測器490可以僅從位置組的影像捕獲位置直接移動到另一位置組的另一影像捕獲位置。這意味著在該實施例中,所述影像感測器490可以不從位置組的影像捕獲位置直接移動到所述相同位置組的另一影像捕獲位置。例如,在該實施例中,所述影像感測器490可以從所述第三影像捕獲位置直接移動到所述第五影像捕獲位置,因為所述第三影像捕獲位置和所述第五影像捕獲位置屬於兩個不同的位置組(即,分別是第三位置組和第二位置組)。然而,在該實施例中,因為所述第三影像捕獲位置和所述第六影像捕獲位置屬於相同的位置組(即,所述第三位置組),所以所述影像感測器490可以不從所述第三影像捕獲位置直接移動到所述第六影像捕獲位置。In an embodiment, the image sensor 490 may only be moved directly from an image capture position of a position group to another image capture position of another position group. This means that in this embodiment, the image sensor 490 may not directly move from an image capture position of a position group to another image capture position of the same position group. For example, in this embodiment, the image sensor 490 can be moved directly from the third image capturing position to the fifth image capturing position because the third image capturing position and the fifth image capturing position The locations belong to two different location groups (ie, a third location group and a second location group, respectively). However, in this embodiment, since the third image capturing position and the sixth image capturing position belong to the same position group (ie, the third position group), the image sensor 490 may not Move directly from the third image capturing position to the sixth image capturing position.

接下來,在實施例中,在捕獲了所述六個部分影像520.1-6之後,可以基於所述六個部分影像520.1-6確定所述對象/場景510 + 512的組合影像620(圖6D)如下。具體地講,在實施例中,可以拼接所述部分影像520.1、520.2和520.3,以形成所述對象/場景510 + 512的拼接影像。Next, in an embodiment, after capturing the six partial images 520.1-6, a combined image 620 of the object/scene 510+512 may be determined based on the six partial images 520.1-6 (FIG. 6D) as follows. Specifically, in embodiments, the partial images 520.1, 520.2, and 520.3 may be stitched to form a stitched image of the object/scene 510+512.

接下來,在實施例中,可以基於所述第一部分影像組的所述部分影像520.1和所述部分影像520.4為所述第一部分影像組確定第一增強部分影像,然後將其用於代替所述拼接影像的所述部分影像520.1。換句話說,所述部分影像520.4用於增強所述拼接影像的所述部分影像520.1。更具體地講,在實施例中,可以如下確定所述第一增強部分影像。首先,可以通過(A)測量使用標記或(B)影像間相關估計來確定所述第一影像捕獲位置和所述第四影像捕獲位置相對於彼此的位置。Next, in an embodiment, a first enhanced partial picture may be determined for the first partial picture group based on the partial picture 520.1 and the partial picture 520.4 of the first partial picture group, and then used in place of the The partial image 520.1 of the stitched image. In other words, the partial image 520.4 is used to enhance the partial image 520.1 of the stitched image. More specifically, in an embodiment, the first enhanced partial image may be determined as follows. First, the positions of the first image capture location and the fourth image capture location relative to each other can be determined by (A) measurement using markers or (B) inter-image correlation estimation.

在方法(A)中,在實施例中,可以在相對於所述對象/場景510 + 512的固定位置添加標記,以使所述標記中的至少一個存在於所述第一部分影像組的每個所述部分影像520.1和520.4中。例如,標記630(圖6A)被示出用於說明(為了簡單起見,未示出其他標記),並且其影像在所述部分影像520.1和520.4中。在實施例中,所述標記可以具有十字形(例如標記630)的形狀。在實施例中,所述標記可以包括諸如鋁的金屬。在已知相對於所述對象/場景510 + 512的所述標記的位置的情況下,可以測量所述第一影像捕獲位置和所述第四影像捕獲位置相對於彼此的位置。In method (A), in an embodiment, markers may be added at fixed positions relative to said object/scene 510+512, such that at least one of said markers is present in each of said first partial photo group The partial images 520.1 and 520.4. For example, marker 630 (FIG. 6A) is shown for illustration (other markers are not shown for simplicity) and its images are in the partial images 520.1 and 520.4. In an embodiment, the indicia may have the shape of a cross (eg, indicia 630). In an embodiment, the indicia may comprise a metal such as aluminum. Given the position of the marker relative to the object/scene 510+512, the position of the first image capture position and the fourth image capture position can be measured relative to each other.

在實施例中,方法(B)可以涉及使兩個部分影像520.1和520.4相關聯,以確定第一影像捕獲位置和第四影像捕獲位置相對於彼此的位置。具體地講,在實施例中,可以將所述第一部分影像組的兩個部分影像520.1和520.4的兩個部分進行比較以確定相關係數。在實施例中,如果所述確定的相關係數超過預定閾值,則來自兩個部分影像520.1和520.4的所述兩個部分可以被認為是相同的,從而可以估計出所述第一影像捕獲位置和所述第四影像捕獲位置(分別為520.4和520.4)相對於彼此的位置。在實施例中,如果所述確定的相關係數不超過預定閾值,則來自所述兩個部分影像520.1和520.4的所述兩個部分可以被認為是不同的,並且所述第一部分影像組的所述兩個部分影像520.1和520.4的另外兩個部分可以被比較,依此類推。In an embodiment, method (B) may involve correlating the two partial images 520.1 and 520.4 to determine the positions of the first image capture location and the fourth image capture location relative to each other. Specifically, in an embodiment, the two parts of the two partial pictures 520.1 and 520.4 of the first partial picture group may be compared to determine the correlation coefficient. In an embodiment, if the determined correlation coefficient exceeds a predetermined threshold, the two parts from the two partial images 520.1 and 520.4 may be considered to be the same, so that the first image capture location and The positions of the fourth image capture locations (520.4 and 520.4 respectively) relative to each other. In an embodiment, the two parts from the two partial pictures 520.1 and 520.4 may be considered to be different if the determined correlation coefficient does not exceed a predetermined threshold, and all of the first partial picture set The other two parts of the two partial images 520.1 and 520.4 can be compared, and so on.

在實施例中,在執行上述相關處理之前,所述第一部分影像組的兩個部分影像520.1和520.4的分辨率可以增加(上採樣)。在實施例中,可以使用插值來執行所述上採樣處理。In an embodiment, the resolution of the two partial pictures 520.1 and 520.4 of the first partial picture group may be increased (upsampled) before the above-described correlation processing is performed. In an embodiment, the upsampling process may be performed using interpolation.

在實施例中,在如上所述確定了所述第一影像捕獲位置和所述第四影像捕獲位置相對於彼此的位置的情況下,可以將分辨率增強算法(也稱為超分辨率算法)應用於所述第一部分影像組的所述兩個部分影像520.1和520.4以形成所述第一增強部分影像。在實施例中,所述第一增強部分影像可以用於代替在所述拼接影像中的所述第一部分影像520.1。In an embodiment, where the positions of the first image capture position and the fourth image capture position relative to each other are determined as described above, a resolution enhancement algorithm (also referred to as a super-resolution algorithm) may be The two partial images 520.1 and 520.4 are applied to the first set of partial images to form the first enhanced partial image. In an embodiment, the first enhanced partial image may be used to replace the first partial image 520.1 in the stitched image.

在實施例中,以類似的方式,可以基於所述第二部分影像組的兩個部分影像520.2和520.5為該組確定第二增強部分影像,然後可以將其用於代替所述拼接影像中的所述部分影像520.2。類似地,可以基於所述第三部分影像組的兩個部分影像520.3和520.6為該組確定第三增強部分影像,然後可以將其用於代替所述拼接影像中的所述部分影像520.3。在實施例中,在如上所述的3次代替之後,如果所述拼接影像的不同區域具有不同的分辨率,則可以執行算法以使整個所述整個拼接影像具有相同的分辨率,從而產生所述組合影像620(圖6D)。In an embodiment, in a similar manner, a second enhanced partial picture may be determined for this group based on the two partial pictures 520.2 and 520.5 of the second partial picture group, which may then be used in place of the stitched pictures in the stitched picture. The partial image 520.2. Similarly, a third enhanced partial picture can be determined for this group based on the two partial pictures 520.3 and 520.6 of the third partial picture group, which can then be used to replace the partial picture 520.3 in the stitched picture. In an embodiment, after 3 replacements as described above, if different regions of the stitched image have different resolutions, an algorithm may be executed to make the entire stitched image have the same resolution, resulting in the The combined image 620 (FIG. 6D) is described.

圖7示出了流程圖700,該流程圖總結了根據圖6A-圖6D的所述影像感測器490的操作。具體地講,在步驟710中,所述影像感測器490從不同的影像捕獲位置移動通過並且在處於這些影像捕獲位置時捕獲部分影像。在步驟720,拼接一部分所述的捕獲的部分影像(例如,來自每個部分影像組的一個部分影像)以形成所述場景的拼接影像。在步驟730中,對於每個部分影像組,基於所述部分影像組的所述部分影像來確定增強部分影像,並且所得的增強部分影像用於代替所述拼接影像的對應的部分影像(即,以增強所述拼接影像)。在步驟740,如果需要(即,如果拼接影像的不同區域具有不同的分辨率),則對所述拼接影像執行分辨率均衡,從而得到所述對象/場景510 + 512(圖6D)的所述組合影像620。Figure 7 shows a flowchart 700 summarizing the operation of the image sensor 490 in accordance with Figures 6A-6D. Specifically, in step 710, the image sensor 490 moves through different image capture positions and captures partial images while in these image capture positions. At step 720, a portion of the captured partial images (eg, one partial image from each partial image group) are stitched to form a stitched image of the scene. In step 730, for each partial picture group, an enhanced partial picture is determined based on the partial picture of the partial picture group, and the resulting enhanced partial picture is used to replace the corresponding partial picture of the stitched picture (ie, to enhance the stitched image). At step 740, if required (ie, if different regions of the stitched image have different resolutions), resolution equalization is performed on the stitched image, resulting in the described object/scene 510+512 (FIG. 6D) Composite image 620 .

圖8示出根據實施例的總結和概括所述影像感測器490的操作的流程圖800。在步驟810中,所述影像感測器490可以被佈置在不同的位置,並且相同場景的不同的部分影像可以在這些不同的位置被所述影像感測器490捕獲,其中兩個不同位置組的兩個位置之間的最小距離基本上是大於同一位置組中兩個位置之間的最大距離。在實施例中,所述影像感測器490可以一個一個地佈置在這些不同的位置(即,一個位置接一個位置),以捕獲那些部分影像。在步驟820,可以基於所述捕獲的部分影像來確定所述場景的組合影像。FIG. 8 shows a flowchart 800 summarizing and summarizing the operation of the image sensor 490 according to an embodiment. In step 810, the image sensors 490 may be arranged at different locations, and different partial images of the same scene may be captured by the image sensors 490 at these different locations, wherein two different location groups The minimum distance between two locations is basically greater than the maximum distance between two locations in the same location group. In an embodiment, the image sensors 490 may be arranged one by one at these different locations (ie, one location after another) to capture those partial images. At step 820, a combined image of the scene may be determined based on the captured partial imagery.

在上述實施例中,參考圖4和圖5A-圖5D,所述影像感測器490包括兩個感測區域190a和190b,它們通過所述盲區488彼此物理隔離,並且具有矩形的形狀。通常,所述影像感測器490可以包括N個感測區域190(N是正整數),其可以通過盲區(例如,盲區488)在物理上彼此分開,可以具有任何大小或形狀,並且可以以任何方式佈置。In the above embodiment, referring to FIGS. 4 and 5A-5D, the image sensor 490 includes two sensing regions 190a and 190b, which are physically separated from each other by the dead zone 488 and have a rectangular shape. In general, the image sensor 490 may include N sensing regions 190 (N being a positive integer), which may be physically separated from each other by dead zones (eg, dead zones 488 ), may be of any size or shape, and may be in any way to arrange.

在上述實施例中,包圍所述金屬劍512的所述紙板箱510用作被檢查的所述對象或場景的示例。通常,可以使用所述影像感測器490來檢查任何對象或場景。In the above-described embodiment, the cardboard box 510 surrounding the metal sword 512 is used as an example of the object or scene being examined. In general, the image sensor 490 can be used to inspect any object or scene.

在上述實施例中,所述影像感測器490包括兩個感測區域190,並且從兩個影像捕獲位置的三個位置組移動通過。通常,所述影像感測器490可以包括N個感測區域(N是正整數)並且從P個位置組(P是大於1的整數)移動通過,其中每個位置組可以具有任意數量的影像捕獲位置。因此,所述位置組的影像捕獲位置的所述數量不必相同。In the above-described embodiment, the image sensor 490 includes two sensing regions 190 and moves through three position groups of two image capture positions. Typically, the image sensor 490 may include N sensing regions (N is a positive integer) and move through P groups of locations (P is an integer greater than 1), where each group of locations may have any number of image captures Location. Therefore, the number of image capturing positions of the position group need not be the same.

在上述實施例中,所述影像感測器490在所述六個影像捕獲位置之間以第一、第二、第三、第四、第五、然後第六影像捕獲位置的順序移動。通常,所述影像感測器490可以以任何順序在所述六個影像捕獲位置(或任何數量的影像捕獲位置)之間移動。例如,所述影像感測器490可以按照第一、第二、第三、第五、第六,然後第四影像捕獲位置的順序在所述六個影像捕獲位置之間移動。In the above-described embodiment, the image sensor 490 is moved between the six image capture positions in the order of first, second, third, fourth, fifth, and then sixth image capture positions. In general, the image sensor 490 can be moved between the six image capture positions (or any number of image capture positions) in any order. For example, the image sensor 490 may move among the six image capture positions in the order of first, second, third, fifth, sixth, and then fourth image capture positions.

在上述實施例中,所述對象/場景510 + 512保持靜止,並且所述影像感測器490相對於所述對象/場景510 + 512移動。通常,只要所述影像感測器490相對於所述物體/場景510 + 512移動,任何移動的佈置都是可能的。例如,所述影像感測器490可以保持靜止,並且所述對象/場景510 + 512可以相對於所述影像感測器490移動。In the above embodiment, the object/scene 510+512 remains stationary and the image sensor 490 moves relative to the object/scene 510+512. In general, any moving arrangement is possible as long as the image sensor 490 moves relative to the object/scene 510+512. For example, the image sensor 490 may remain stationary and the object/scene 510 + 512 may move relative to the image sensor 490 .

在上述實施例中,所述部分影像520.1、520.2和520.3被拼接以形成所述對象/場景510 + 512的拼接影像。通常,部分影像與每個部分影像組的一個部分影像的組合可以被拼接以形成所述對象/場景510 + 512的拼接影像。例如,可以拼接所述部分影像520.1、520.5和520.6,以形成所述對象/場景510 + 512的拼接影像。In the above embodiment, the partial images 520.1, 520.2 and 520.3 are stitched to form a stitched image of the object/scene 510+512. Typically, a combination of partial images and one partial image of each partial image group may be stitched to form a stitched image of the object/scene 510+512. For example, the partial images 520.1, 520.5, and 520.6 may be stitched to form a stitched image of the object/scene 510+512.

在上述實施例中,拼接被執行,然後增強部分影像被確定並且被用於增強所述拼接影像。或者,在拼接執行之前增強部分影像被確定。例如,所述第一、第二和第三增強部分影像可以如上所述被確定。然後,所述第一、第二和第三增強部分影像可以被拼接以形成所述對象/場景510 + 512的組合和完整影像(例如,圖6D的影像620)。許多其他可能的處理所述六個部分影像520.1-520.6的方式可以用於形成所述對象/場景510 + 512的組合的和完整的影像。In the above-described embodiments, stitching is performed, and then an enhanced partial image is determined and used to enhance the stitched image. Alternatively, the enhanced portion of the image is determined before stitching is performed. For example, the first, second and third enhanced partial images may be determined as described above. The first, second and third enhanced partial images may then be stitched to form the combined and complete image of the object/scene 510+512 (eg, image 620 of Figure 6D). Many other possible ways of processing the six partial images 520.1-520.6 may be used to form the combined and complete image of the object/scene 510+512.

在上述實施例中,所述第一、第二和第三增強部分影像用於代替所述拼接影像中的對應的部分影像。在替代實施例中,如果增強部分影像的分辨率不高於在所述拼接影像中增強部分影像應該代替的部分影像的分辨率,則不使用所述部分影像組的增強部分影像進行這種代替。In the above embodiment, the first, second and third enhanced partial images are used to replace the corresponding partial images in the stitched image. In an alternative embodiment, if the resolution of the enhanced partial image is not higher than the resolution of the partial image that the enhanced partial image should replace in the stitched image, the enhanced partial image of the partial image group is not used for such replacement .

例如,如果所述第一增強部分影像的分辨率不高於所述部分影像520.1的分辨率,則不使用所述第一部分影像組的所述第一增強部分影像來代替所述拼接影像的所述部分影像520.1 。當相對應的第一影像捕獲位置和第四影像捕獲位置之間的距離(或偏移)是所述感測元件150的大小的K倍時,這種情況會發生,其中K是非負整數。For example, if the resolution of the first enhanced partial image is not higher than the resolution of the partial image 520.1, the first enhanced partial image of the first partial image group is not used to replace all the stitched images Partial image 520.1. This occurs when the distance (or offset) between the corresponding first image capture location and the fourth image capture location is K times the size of the sensing element 150, where K is a non-negative integer.

儘管本發明已經公開了各個方面和實施例,但是其他方面和實施例對於本領域技術人員而言將是顯而易見的。本發明公開的各個方面和實施例是為了說明的目的而不是限制性的,其真正的範圍和精神應該以本發明中的申請專利範圍為准。While various aspects and embodiments of the present invention have been disclosed, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed in the present invention are for the purpose of illustration rather than limitation, and the true scope and spirit thereof should be subject to the scope of the claims in the present invention.

100:輻射檢測器 110:輻射吸收層 111:第一摻雜區 112:本徵區 113:第二摻雜區 114:離散區 119A、119B:電觸點 120:電子層 121:電子系統 130:填充材料 131:通孔 150:感測元件(像素) 190、190a、190b:感測區域 190w:寬度 195:周邊區域 200:封裝 400:印刷電路板 405:區 410:鍵合線 450:系統印刷電路板 488:盲區 490:影像感測器 492:距離 510:紙板箱 512:金屬劍 510+512:對象/場景 520.1、520.2、520.3、520.4、520.5、520.6、620:影像 630:標記 700、800:流程圖 710、720、730、740、810、820:步驟100: Radiation detector 110: Radiation absorbing layer 111: the first doping region 112: Eigen region 113: the second doping region 114: Discrete area 119A, 119B: electrical contacts 120: Electron layer 121: Electronic Systems 130: Filling material 131: Through hole 150: Sensing element (pixel) 190, 190a, 190b: Sensing area 190w: width 195: Surrounding area 200: Package 400: Printed Circuit Board 405: District 410: Bonding wire 450: System Printed Circuit Board 488: Blind Spot 490: Image Sensor 492: Distance 510: Cardboard Box 512: Metal Sword 510+512: Object/Scene 520.1, 520.2, 520.3, 520.4, 520.5, 520.6, 620: Image 630:Mark 700, 800: Flowchart 710, 720, 730, 740, 810, 820: Steps

圖1示意示出根據實施例的一種輻射檢測器。 圖2A示意示出根據實施例的所述輻射檢測器的簡化橫截面圖。 圖2B示意示出根據實施例的所述輻射檢測器的詳細橫截面圖。 圖2C示意示出根據實施例的所述輻射檢測器的替代詳細橫截面圖。 圖3示意示出根據實施例的包括了輻射檢測器和印刷電路板(PCB)的封裝的俯視圖。 圖4示意示出根據實施例的影像感測器的橫截面圖,其中圖3中的多個所述封裝被安裝到系統印刷電路板。 圖5A-圖5D示意示出根據實施例的處於操作中的所述影像感測器的俯視圖。 圖6A-圖6D示意示出根據替代實施例的處於操作中的所述影像感測器的俯視圖。 圖7示出根據實施例的概述所述影像感測器的操作的流程圖。 圖8示出根據實施例的總結和概括所述影像感測器的操作的另一流程圖。Figure 1 schematically shows a radiation detector according to an embodiment. Figure 2A schematically shows a simplified cross-sectional view of the radiation detector according to an embodiment. Figure 2B schematically shows a detailed cross-sectional view of the radiation detector according to an embodiment. Figure 2C schematically illustrates an alternative detailed cross-sectional view of the radiation detector according to an embodiment. 3 schematically illustrates a top view of a package including a radiation detector and a printed circuit board (PCB) according to an embodiment. 4 schematically illustrates a cross-sectional view of an image sensor according to an embodiment, wherein a plurality of the packages of FIG. 3 are mounted to a system printed circuit board. 5A-5D schematically illustrate top views of the image sensor in operation according to an embodiment. 6A-6D schematically illustrate top views of the image sensor in operation according to an alternative embodiment. 7 shows a flowchart outlining the operation of the image sensor, according to an embodiment. 8 shows another flowchart summarizing and summarizing the operation of the image sensor according to an embodiment.

700:流程圖 700: Flowchart

710、720、730、740:步驟 710, 720, 730, 740: Steps

Claims (23)

一種使用影像感測器的方法,所述影像感測器包括用於捕獲場景影像的N個感測區域,N為正整數,所述N個感測區域在物理上彼此分離,所述方法包括:對於i=1,…,P,和j=1,…,Q(i),將所述影像感測器放置在相對於所述場景的位置(i,j),並在所述影像感測器位於所述位置(i,j)時使用所述影像感測器捕獲所述場景的部分影像(i,j),從而捕獲總共R個部分影像,其中R是Q(i),i=1,…,P,的和,其中P是大於1的整數,其中Q(i),i=1,…,P,是正整數並且並非全部為1,其中對於i=1,...,P,位置組(i)包括所述位置(i,j),j=1,...,Q(i),並且其中在所述位置組(i),i=1,…,P,中一個位置組中的一個位置與所述位置組(i),i=1,…,P,中的另一個位置組中的另一個位置之間的最小距離實質上大於在所述位置組(i),i=1,…,P,中同一個位置組的兩個位置之間的最大距離;並且基於所述R個部分影像確定所述場景的組合影像。 A method of using an image sensor, the image sensor comprising N sensing areas for capturing an image of a scene, N being a positive integer, the N sensing areas being physically separated from each other, the method comprising : For i=1,...,P, and j=1,...,Q(i), place the image sensor at position (i,j) relative to the scene, and at the image sensor using the image sensor to capture a partial image (i, j) of the scene while the detector is at the position (i, j), thereby capturing a total of R partial images, where R is Q(i), i= The sum of 1, . , the position group (i) includes the position (i, j), j = 1, ..., Q(i), and where in the position group (i), i = 1, ..., P, one of The minimum distance between one position in the position group and another position in the other position group in the position group (i), i=1,...,P, is substantially greater than that in the position group (i) , i=1, . . . , P, the maximum distance between two positions in the same position group; and the combined image of the scene is determined based on the R partial images. 如請求項1所述的方法,其中N大於1。 The method of claim 1, wherein N is greater than one. 如請求項1所述的方法,其中所述的將所述影像感測器放置在相對於i=1,…,P,和j=1,…,Q(i),的位置(i,j)是一個一個地執行的。 The method of claim 1, wherein said image sensor is placed at a position (i,j) relative to i=1,...,P, and j=1,...,Q(i), ) are executed one by one. 如請求項1所述的方法,其中Q(i),i=1,…,P,相同且大於1。 The method of claim 1, wherein Q(i), i=1, . . . , P, are the same and greater than 1. 如請求項1所述的方法,其中所述的最小距離接近並小於所述N個感測區域中的感測區域的大小。 The method of claim 1, wherein the minimum distance is close to and smaller than the size of the N sensing regions. 如請求項1所述的方法,其中所述的最小距離大於所述最大距離的100倍。 The method of claim 1, wherein the minimum distance is greater than 100 times the maximum distance. 如請求項1所述的方法,其中所述最大距離小於所述N個感測區域的感測元件的大小的10倍。 The method of claim 1, wherein the maximum distance is less than 10 times the size of the sensing elements of the N sensing regions. 如請求項1所述的方法,其中所述的將所述影像感測器放置在相對於i=1,…,P,和j=1,…,Q(i),的所述位置(i,j)包括將所述影像感測器從所述位置組(i),i=1,...,P,中的一個位置組的一個位置直接移到所述位置組(i),i=1,...,P,中的另一個位置組的另一個位置,並且不包括將所述影像感測器從所述位置組(i),i=1,…,P,中的一個位置組的一個位置直接移到同一位置組的另一個位置。 The method of claim 1, wherein said placing said image sensor at said position (i) relative to i=1,...,P, and j=1,...,Q(i), , j) comprising directly moving the image sensor from a position of a position group in the position group (i), i=1, . . . , P, to the position group (i), i = 1, . A position in a position group is moved directly to another position in the same position group. 如請求項1所述的方法,其中所述的確定所述組合影像包括拼接所述部分影像(i,1),i=1,…,P,以形成所述場景的拼接影像。 The method of claim 1, wherein the determining the combined image comprises stitching the partial images (i, 1), i=1, . . . , P to form a stitched image of the scene. 如請求項9所述的方法,其中所述的確定所述組合影像進一步包括對於i=1,…,P,基於所述部分影像(i,j),j=1,…,Q(i),確定增強部分影像(i)。 The method of claim 9, wherein said determining said combined picture further comprises for i=1,...,P, based on said partial picture(i,j),j=1,...,Q(i) , to determine the enhanced part of the image (i). 如請求項10所述的方法,其中所述的確定所述組合影像進一步包括對於i=1,…,P,使用所述增強部分影像(i)來代替所述拼接影像的所述部分影像(i,1)。 The method of claim 10, wherein said determining the combined image further comprises, for i=1, . . . , P, using the enhanced partial image (i) in place of the partial image ( i, 1). 如請求項11所述的方法,其中所述的確定所述組合影像進一步包括在執行所述的使用所述增強部分影像(i)來代替所述拼接影像的所述部分影像(i,1)之後,均衡所述拼接影像的不同區域的分辨率。 The method of claim 11, wherein said determining said combined image further comprises performing said using said enhanced partial image (i) to replace said partial image (i, 1) of said combined image Afterwards, the resolutions of the different regions of the stitched image are equalized. 如請求項10所述的方法,其中所述的確定所述組合影像進一步包括對於i=1,…,P,如果所述增強部分影像(i)的分辨率高於所述部分影像(i,1)的分辨率,則使用所述增強部分影像(i)代替所述拼接影像的所述部分影像(i,1)。 The method of claim 10, wherein said determining said combined image further comprises for i=1, . . . , P, if said enhanced partial image (i) has a higher resolution than said partial image (i, 1), the enhanced partial image (i) is used to replace the partial image (i, 1) of the stitched image. 如請求項13所述的方法,其中所述的確定所述組合影像進一步包括在執行所述的使用之後,均衡所述拼接影像的不同區域的分辨率。 The method of claim 13, wherein said determining said combined image further comprises equalizing resolutions of different regions of said stitched image after said using. 如請求項10所述的方法,其中所述的確定所述增強部分影像(i)包括確定所述位置(i,j),j=1,...,Q(i),相對於彼此的位置。 The method of claim 10, wherein said determining said enhanced partial image (i) comprises determining said positions (i, j), j=1, . . . , Q(i), relative to each other Location. 如請求項15所述的方法,其中所述的確定所述位置(i,j),j=1,…,Q(i),相對於彼此的所述位置包括使用相對於所述場景靜止的標記。 The method of claim 15, wherein said determining said positions (i, j), j=1, . . . , Q(i), said positions relative to each other comprises using stationary relative to said scene mark. 如請求項15所述的方法,其中所述的確定所述位置(i,j),j=1,…,Q(i),相對於彼此的所述位置包括: 對所述部分影像(i,j),j=1,…,Q(i),進行上採樣,從而分別對部分影像(i,j),j=1,…,Q(i),進行上採樣;並且將所述上採樣的部分影像(i,j),j=1,…,Q(i),相關聯,以確定所述位置(i,j),j=1,…,Q(i),相對於彼此的位置。 The method of claim 15, wherein said determining said positions (i, j), j=1, . . . , Q(i), said positions relative to each other comprises: Up-sampling is performed on the partial images (i, j), j=1, . . . , Q(i), so that the partial images (i, j), j=1, . and correlate the upsampled partial images (i,j), j=1,...,Q(i), to determine the position (i,j), j=1,...,Q( i), the position relative to each other. 如請求項1所述的方法,其中所述的確定所述組合影像包括:對於i=1,…,P,基於所述部分影像(i,j),j=1,…,Q(i),確定增強部分影像(i)。 The method of claim 1, wherein said determining the combined image comprises: for i=1,...,P, based on the partial images (i,j), j=1,...,Q(i) , to determine the enhanced part of the image (i). 如請求項18所述的方法,其中所述的確定所述組合影像進一步包括拼接所述增強部分影像(i),i=1,…,P,以形成所述場景的拼接影像。 The method of claim 18, wherein said determining the combined image further comprises stitching the enhanced partial images (i), i=1, . . . , P, to form a stitched image of the scene. 如請求項19所述的方法,其中所述的確定所述組合影像進一步包括均衡所述拼接影像的不同區域的分辨率。 The method of claim 19, wherein said determining said combined image further comprises equalizing resolutions of different regions of said stitched image. 如請求項18所述的方法,其中所述的確定所述增強部分影像(i)包括確定所述位置(i,j),j=1,...,Q(i),相對於彼此的位置。 The method of claim 18, wherein said determining said enhanced partial image (i) comprises determining said positions (i, j), j=1, . . . , Q(i), relative to each other Location. 如請求項21所述的方法,其中所述的確定所述位置(i,j),j=1,…,Q(i),相對於彼此的所述位置包括使用相對於所述場景靜止的標記。 The method of claim 21, wherein said determining said positions (i, j), j=1, . . . , Q(i), said positions relative to each other comprises using stationary relative to said scene mark. 如請求項21所述的方法,其中所述的確定所述位置(i,j),j=1,…,Q(i),相對於彼此的所述位置包括: 對所述部分影像(i,j),j=1,…,Q(i),進行上採樣,從而分別對部分影像(i,j),j=1,…,Q(i),進行上採樣;並且將所述上採樣的部分影像(i,j),j=1,…,Q(i),相關聯,以確定所述位置(i,j),j=1,…,Q(i),相對於彼此的位置。The method of claim 21, wherein said determining said positions (i, j), j=1, . . . , Q(i), said positions relative to each other comprises: Up-sampling is performed on the partial images (i, j), j=1, . . . , Q(i), so that the partial images (i, j), j=1, . and correlate the upsampled partial images (i,j), j=1,...,Q(i), to determine the position (i,j), j=1,...,Q( i), the position relative to each other.
TW110105261A 2020-02-26 2021-02-17 Using methods for image sensor TWI762195B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/076786 WO2021168690A1 (en) 2020-02-26 2020-02-26 Image sensors and methods of operating the same
WOPCT/CN2020/076786 2020-02-26

Publications (2)

Publication Number Publication Date
TW202132813A TW202132813A (en) 2021-09-01
TWI762195B true TWI762195B (en) 2022-04-21

Family

ID=77490565

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110105261A TWI762195B (en) 2020-02-26 2021-02-17 Using methods for image sensor

Country Status (5)

Country Link
US (2) US11825201B2 (en)
EP (1) EP4111236A4 (en)
CN (1) CN115004061A (en)
TW (1) TWI762195B (en)
WO (1) WO2021168690A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4111236A4 (en) * 2020-02-26 2023-12-06 Shenzhen Xpectvision Technology Co., Ltd. Image sensors and methods of operating the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070023669A1 (en) * 2005-07-26 2007-02-01 Ge Medical Systems Israel, Ltd. Method and apparatus for acquiring radiation data
TW200942854A (en) * 2008-04-14 2009-10-16 Carestream Health Inc Dual-screen digital radiographic imaging detector array
US20100225837A1 (en) * 2009-03-09 2010-09-09 Fuji Xerox Co., Ltd. Display medium, display device and method of optical writing
CN109414231A (en) * 2016-06-12 2019-03-01 深圳帧观德芯科技有限公司 Method for determining X-ray detector dislocation
CN109906388A (en) * 2016-11-15 2019-06-18 深圳帧观德芯科技有限公司 Imaging sensor

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4422366C1 (en) * 1994-06-27 1996-01-04 Siemens Ag X=ray diagnostic appts. with detector elements arranged in matrix
US5986279A (en) * 1997-03-21 1999-11-16 Agfa-Gevaert Method of recording and reading a radiation image of an elongate body
US6273606B1 (en) * 1997-12-01 2001-08-14 Agfa-Gevaert Method and assembly for recording a radiation image of an elongate body
US6483893B1 (en) * 1998-11-27 2002-11-19 Wuestec Medical, Inc. Digital high resolution X-ray imaging
US6895106B2 (en) * 2001-09-11 2005-05-17 Eastman Kodak Company Method for stitching partial radiation images to reconstruct a full image
US6983080B2 (en) * 2002-07-19 2006-01-03 Agilent Technologies, Inc. Resolution and image quality improvements for small image sensors
US6793390B2 (en) * 2002-10-10 2004-09-21 Eastman Kodak Company Method for automatic arrangement determination of partial radiation images for reconstructing a stitched full image
JP2004362905A (en) * 2003-06-04 2004-12-24 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing electrolyte membrane for direct methanol fuel cell
WO2009082016A1 (en) * 2007-12-21 2009-07-02 Canon Kabushiki Kaisha Image processing apparatus and image processing method
US8600193B2 (en) * 2008-07-16 2013-12-03 Varian Medical Systems, Inc. Image stitching and related method therefor
WO2012147081A1 (en) * 2011-04-25 2012-11-01 Generic Imaging Ltd. System and method for correction of geometric distortion of multi-camera flat panel x-ray detectors
DE102012203291A1 (en) * 2012-03-02 2013-03-28 Siemens Aktiengesellschaft X-ray system for use as angiography-X-ray system for receiving X-ray images of examination object, has X-ray source for emitting X-ray radiation and digital X-ray detector with sensor surface and pixel resolution
US9497380B1 (en) * 2013-02-15 2016-11-15 Red.Com, Inc. Dense field imaging
US9928613B2 (en) * 2014-07-01 2018-03-27 SeeScan, Inc. Ground tracking apparatus, systems, and methods
US10499863B2 (en) * 2014-11-17 2019-12-10 Carestream Health, Inc. Tiled digital radiography detectors for long-length imaging
US10638986B2 (en) * 2014-11-17 2020-05-05 Carestream Health, Inc. Modular single shot digital radiography for long-length imaging
CN107249096B (en) * 2016-06-14 2021-02-26 杭州海康威视数字技术股份有限公司 Panoramic camera and shooting method thereof
CN109996494B (en) * 2016-12-20 2023-05-02 深圳帧观德芯科技有限公司 Image sensor with X-ray detector
EP3716853B1 (en) * 2017-12-01 2024-01-10 Koninklijke Philips N.V. Positron emission tomography (pet) systems with transformable task-optimal geometry
CN112639532B (en) * 2018-09-07 2024-09-06 深圳帧观德芯科技有限公司 Radiation with different orientations image sensor of detector
EP3852631A4 (en) * 2018-09-19 2022-04-13 Shenzhen Xpectvision Technology Co., Ltd. An imaging method
EP3853639B1 (en) * 2018-09-21 2024-06-12 Shenzhen Xpectvision Technology Co., Ltd. An imaging system
WO2020093231A1 (en) * 2018-11-06 2020-05-14 Shenzhen Xpectvision Technology Co., Ltd. Image sensors having radiation detectors and masks
EP3908185B1 (en) * 2019-01-10 2023-10-18 Shenzhen Xpectvision Technology Co., Ltd. An imaging system having radiation detectors of different orientations
CN113287299A (en) * 2019-01-10 2021-08-20 深圳帧观德芯科技有限公司 Image sensor with radiation detectors in different directions
US10835196B2 (en) * 2019-01-24 2020-11-17 General Electric Company Method and systems for camera-aided x-ray imaging
WO2020198936A1 (en) * 2019-03-29 2020-10-08 Shenzhen Xpectvision Technology Co., Ltd. An image sensor with radiation detectors and a collimator
EP3946056A4 (en) * 2019-03-29 2022-11-02 Shenzhen Xpectvision Technology Co., Ltd. An image sensor having a calibration pattern
EP4111236A4 (en) * 2020-02-26 2023-12-06 Shenzhen Xpectvision Technology Co., Ltd. Image sensors and methods of operating the same
WO2021168725A1 (en) * 2020-02-27 2021-09-02 Shenzhen Xpectvision Technology Co., Ltd. Imaging system
EP4111180A1 (en) * 2020-02-27 2023-01-04 Shenzhen Xpectvision Technology Co., Ltd. Method of phase contrast imaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070023669A1 (en) * 2005-07-26 2007-02-01 Ge Medical Systems Israel, Ltd. Method and apparatus for acquiring radiation data
TW200942854A (en) * 2008-04-14 2009-10-16 Carestream Health Inc Dual-screen digital radiographic imaging detector array
US20100225837A1 (en) * 2009-03-09 2010-09-09 Fuji Xerox Co., Ltd. Display medium, display device and method of optical writing
CN109414231A (en) * 2016-06-12 2019-03-01 深圳帧观德芯科技有限公司 Method for determining X-ray detector dislocation
CN109906388A (en) * 2016-11-15 2019-06-18 深圳帧观德芯科技有限公司 Imaging sensor

Also Published As

Publication number Publication date
US20240064407A1 (en) 2024-02-22
TW202132813A (en) 2021-09-01
US11825201B2 (en) 2023-11-21
WO2021168690A1 (en) 2021-09-02
CN115004061A (en) 2022-09-02
EP4111236A4 (en) 2023-12-06
US20220345627A1 (en) 2022-10-27
EP4111236A1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
US20230410250A1 (en) Imaging methods using radiation detectors
US20240064407A1 (en) Image sensors and methods of operating the same
US11904187B2 (en) Imaging methods using multiple radiation beams
US20230280482A1 (en) Imaging systems
TWI831899B (en) Image system and method for operating the same
US20230281754A1 (en) Imaging methods using an image sensor with multiple radiation detectors
TWI813940B (en) Imaging system and operating method thereof
CN115023605A (en) Phase contrast imaging method
WO2024031301A1 (en) Imaging systems and corresponding operation methods
TWI831514B (en) Imaging methods using bi-directional counters
US11948285B2 (en) Imaging systems with multiple radiation sources
US20230402486A1 (en) Imaging methods using radiation detectors
TWI811466B (en) A radiation detector system and using method thereof
US11882378B2 (en) Imaging methods using multiple radiation beams
US20230346332A1 (en) Imaging methods using multiple radiation beams
WO2023123301A1 (en) Imaging systems with rotating image sensors
WO2023077367A1 (en) Imaging methods with reduction of effects of features in an imaging system
TW202331301A (en) Method and system for performing diffractometry
TW202242449A (en) Imaging methods using an image sensor with multiple radiation detectors
CN118318311A (en) Radiation detector comprising perovskite