TWI760773B - Heat treatment method - Google Patents
Heat treatment method Download PDFInfo
- Publication number
- TWI760773B TWI760773B TW109121249A TW109121249A TWI760773B TW I760773 B TWI760773 B TW I760773B TW 109121249 A TW109121249 A TW 109121249A TW 109121249 A TW109121249 A TW 109121249A TW I760773 B TWI760773 B TW I760773B
- Authority
- TW
- Taiwan
- Prior art keywords
- semiconductor wafer
- substrate
- emissivity
- heat treatment
- chamber
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 108
- 238000000034 method Methods 0.000 title claims abstract description 36
- 230000005855 radiation Effects 0.000 claims abstract description 114
- 239000000758 substrate Substances 0.000 claims abstract description 100
- 239000010408 film Substances 0.000 claims abstract description 66
- 239000010409 thin film Substances 0.000 claims abstract description 39
- 238000009826 distribution Methods 0.000 claims abstract description 16
- 230000035945 sensitivity Effects 0.000 claims abstract description 16
- 238000004364 calculation method Methods 0.000 claims description 25
- 238000009529 body temperature measurement Methods 0.000 claims description 13
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 239000004065 semiconductor Substances 0.000 abstract description 300
- 235000012431 wafers Nutrition 0.000 description 294
- 238000012546 transfer Methods 0.000 description 155
- 238000012545 processing Methods 0.000 description 94
- 238000001816 cooling Methods 0.000 description 86
- 229910052736 halogen Inorganic materials 0.000 description 59
- 150000002367 halogens Chemical class 0.000 description 59
- 239000007789 gas Substances 0.000 description 54
- 230000007246 mechanism Effects 0.000 description 52
- 239000010410 layer Substances 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 238000005259 measurement Methods 0.000 description 17
- 235000012239 silicon dioxide Nutrition 0.000 description 17
- 239000010453 quartz Substances 0.000 description 16
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 14
- 239000012535 impurity Substances 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 229910052724 xenon Inorganic materials 0.000 description 13
- 230000002093 peripheral effect Effects 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000009434 installation Methods 0.000 description 9
- 230000003595 spectral effect Effects 0.000 description 8
- 238000000137 annealing Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 230000004913 activation Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 5
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 description 1
- 229910001632 barium fluoride Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 229910001634 calcium fluoride Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/2636—Bombardment with radiation with high-energy radiation for heating, e.g. electron beam heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0003—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
- G01J5/0007—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter of wafers or semiconductor substrates, e.g. using Rapid Thermal Processing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/268—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
- H01L21/2686—Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation using incoherent radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67115—Apparatus for thermal treatment mainly by radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67248—Temperature monitoring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68707—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Robotics (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
本發明提供一種即便形成有多層薄膜亦能夠正確地測定基板之溫度之熱處理方法及熱處理裝置。 The present invention provides a heat treatment method and heat treatment apparatus capable of accurately measuring the temperature of a substrate even if a multilayer thin film is formed.
其解決方法為,設定並輸入形成於半導體晶圓之正面之薄膜相關之膜資訊、半導體晶圓相關之基板資訊、及上部輻射溫度計之設置角度。基於上述各種資訊,計算形成有多層膜之半導體晶圓之正面之輻射率。該輻射率係自上部輻射溫度計之設置角度所觀察到之半導體晶圓之表觀輻射率。進而,基於上部輻射溫度計之感度分佈,求出半導體晶圓之正面之輻射率之加權平均值。使用所求出之輻射率之加權平均值,測定熱處理時半導體晶圓之正面溫度。由於是基於膜資訊等求出輻射率,故而即便形成有多層薄膜,亦能夠正確地測定半導體晶圓之正面溫度。 The solution is to set and input the film information related to the thin film formed on the front surface of the semiconductor wafer, the substrate information related to the semiconductor wafer, and the setting angle of the upper radiation thermometer. Based on the above-mentioned various information, the emissivity of the front surface of the semiconductor wafer on which the multilayer film is formed is calculated. The emissivity is the apparent emissivity of the semiconductor wafer observed from the setting angle of the upper radiation thermometer. Furthermore, based on the sensitivity distribution of the upper radiation thermometer, the weighted average value of the emissivity of the front surface of the semiconductor wafer is obtained. Using the weighted average value of the obtained emissivity, the front surface temperature of the semiconductor wafer during heat treatment was measured. Since the emissivity is obtained based on film information or the like, even if a multilayer thin film is formed, the front surface temperature of the semiconductor wafer can be accurately measured.
Description
本發明係關於一種藉由對半導體晶圓等薄板狀精密電子基板(以下簡稱為「基板」)照射閃光而加熱該基板之熱處理方法及熱處理裝置。 The present invention relates to a heat treatment method and heat treatment apparatus for heating a thin-plate-shaped precision electronic substrate such as a semiconductor wafer (hereinafter simply referred to as a "substrate") by irradiating the substrate with flash.
半導體器件之製造工藝中,於極短時間內加熱半導體晶圓之閃光燈退火(FLA)備受關注。閃光燈退火係藉由使用氙氣閃光燈(以下,簡稱為「閃光燈」時即意指氙氣閃光燈)對半導體晶圓之正面照射閃光而僅使半導體晶圓之正面於極短時間(幾毫秒以下)內升溫之熱處理技術。 In the manufacturing process of semiconductor devices, flash lamp annealing (FLA), which heats semiconductor wafers in a very short time, has attracted much attention. Flash annealing is to heat up only the front side of the semiconductor wafer in a very short time (less than a few milliseconds) by irradiating the front side of the semiconductor wafer with a xenon flash lamp (hereinafter referred to as "flash lamp", which means a xenon flash lamp). heat treatment technology.
氙氣閃光燈之輻射光譜分佈係紫外區域至近紅外區域,波長較先前之鹵素燈短,與矽之半導體晶圓之基礎吸收帶大體一致。因此,於自氙氣閃光燈對半導體晶圓照射閃光時,透射光少,能夠使半導體晶圓急速地升溫。又,亦已判明:若為幾毫秒以下之極短時間之閃光照射,則能夠僅使半導體晶圓之正面附近選擇性地升溫。 The radiation spectral distribution of xenon flash lamps is from the ultraviolet region to the near-infrared region, and the wavelength is shorter than that of the previous halogen lamp, which is roughly consistent with the basic absorption band of silicon semiconductor wafers. Therefore, when the semiconductor wafer is irradiated with flash light from the xenon flash lamp, there is little transmitted light, and the temperature of the semiconductor wafer can be rapidly increased. In addition, it has also been found that the temperature can be selectively raised only in the vicinity of the front surface of the semiconductor wafer by flash irradiation for an extremely short period of several milliseconds or less.
此種閃光燈退火用於需要於極短時間內加熱之處理,例如典型的是注入至半導體晶圓中之雜質之活化。若自閃光燈對藉由離子注入法而注入有雜質之半導體晶圓之正面照射閃光,則能夠將該半導體晶圓之正面在極短時間內升溫至活化溫度,能夠不使雜質較深地擴散而僅執行雜質活化。 Such flash annealing is used for processes that require heating in a very short time, such as the activation of impurities implanted into semiconductor wafers typically. If the front surface of the semiconductor wafer into which the impurities are implanted by the ion implantation method is irradiated with flash from the flash lamp, the front surface of the semiconductor wafer can be raised to the activation temperature in a very short time, and the impurities can be prevented from diffusing deeply. Perform impurity activation only.
於半導體晶圓之熱處理中(不限於閃光燈退火),晶圓溫度之管理變得重要。於閃光燈退火中,照射閃光時半導體晶圓之正面之最高達到溫度亦成為是否已正確地進行處理之重要工藝管理指標。因此,一般藉由非接觸式輻射溫度計來測定半導體晶圓之溫度。於利用輻射溫度計進行之溫度測定中,測定對象物之輻射率是必需的,先前係使用矽之輻射率來測定半導體晶圓之溫度。 In thermal processing of semiconductor wafers (not limited to flash annealing), wafer temperature management becomes important. In flash annealing, the maximum temperature reached on the front side of the semiconductor wafer when the flash is irradiated also becomes an important process management indicator for whether it has been properly processed. Therefore, the temperature of the semiconductor wafer is generally measured by a non-contact radiation thermometer. In temperature measurement using a radiation thermometer, the emissivity of the object to be measured is necessary, and the emissivity of silicon has been used to measure the temperature of a semiconductor wafer previously.
於半導體晶圓之正面成膜有抗蝕膜、層間絕緣膜或高介電常數膜等各種薄膜之情況亦較多。此種形成有薄膜之半導體晶圓之輻射率成為與矽不同之值,但專利文獻1中公開了如下內容:若使輻射溫度計相對於半導體晶圓之測定角度變淺(例如15°以下),則表觀輻射率將不再與薄膜之膜種類或膜厚相關。因此,藉由使輻射溫度計相對於半導體晶圓之設置角度變淺,即便使用矽之輻射率亦能夠測定出形成有薄膜之半導體晶圓之溫度。 Various thin films such as a resist film, an interlayer insulating film, or a high dielectric constant film are often formed on the front surface of a semiconductor wafer. The emissivity of a semiconductor wafer with such a thin film formed has a value different from that of silicon, but Patent Document 1 discloses that if the measurement angle of the radiation thermometer with respect to the semiconductor wafer is made shallow (for example, 15° or less), Then the apparent emissivity will no longer be related to the film type or film thickness of the film. Therefore, by making the installation angle of the radiation thermometer shallow with respect to the semiconductor wafer, the temperature of the semiconductor wafer on which the thin film is formed can be measured even using the emissivity of silicon.
[專利文獻1]日本專利特開2018-157064號公報 [Patent Document 1] Japanese Patent Laid-Open No. 2018-157064
然而,於近年之半導體技術中,隨著三維高密度化之發展,有將各種薄膜多層(例如100層以上)地進行積層之傾向。已判明:若將薄膜多層地進行積層,則即便使輻射溫度計之測定角度變淺,表觀輻射率亦會大幅變動。因此,會產生在對形成有多層膜之半導體晶圓照射閃光時,無法正確地測定其正面之最高達到溫度之問題。若無法正確地測定閃光照射時半導體晶圓之正面之最高達到溫度,則將弄不清楚是否已正確地進行處理,結果,亦有良率變差之風險。 However, in recent semiconductor technology, with the development of three-dimensional high density, there is a tendency to laminate various thin films in multiple layers (eg, 100 or more layers). It has been found that the apparent emissivity fluctuates greatly even if the measurement angle of the radiation thermometer is made shallow when the thin films are laminated in multiple layers. Therefore, when the semiconductor wafer on which the multilayer film is formed is irradiated with a flash, the maximum temperature of the front surface cannot be accurately measured. If the maximum temperature reached on the front surface of the semiconductor wafer during flash irradiation cannot be accurately measured, it will be unclear whether or not the processing has been performed correctly, and as a result, there is a risk that the yield will be deteriorated.
本發明係鑒於上述問題而完成,其目的在於提供一種即便形成有多層薄膜亦能夠正確地測定基板之溫度之熱處理方法及熱處理裝置。 The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a heat treatment method and a heat treatment apparatus capable of accurately measuring the temperature of a substrate even if a multilayer thin film is formed.
為了解決上述問題,技術方案1之發明係一種熱處理方法,其特徵在於:該熱處理方法係藉由對基板照射閃光而加熱該基板者,且具備:輻射率計算步驟,其基於形成於基板上之薄膜相關之膜資訊、上述基板相關之基板資訊、及對上述基板之溫度進行測定之輻射溫度計之設置角度,計算自上述輻射溫度計所觀察到之上述基板之輻射率;及溫度測定步驟,其將上述輻射率計算步驟中計算出之上述輻射率設定於上述輻射溫度計,以上述輻射溫度計測定藉由閃光照射予以加熱後之上述基板之溫度。 In order to solve the above-mentioned problems, the invention of claim 1 is a heat treatment method, characterized in that the heat treatment method heats the substrate by irradiating a flash light on the substrate, and includes: an emissivity calculation step based on the radiance formed on the substrate. The film information related to the thin film, the substrate information related to the above-mentioned substrate, and the setting angle of the radiation thermometer for measuring the temperature of the above-mentioned substrate, the emissivity of the above-mentioned substrate observed from the above-mentioned radiation thermometer is calculated; and the temperature measurement step, which will The emissivity calculated in the emissivity calculation step is set in the radiation thermometer, and the temperature of the substrate heated by flash irradiation is measured with the radiation thermometer.
又,技術方案2之發明係如技術方案1之發明之熱處理方法,其特徵在於:上述膜資訊包含上述薄膜之膜種類、膜厚及層構成,上述基板資訊包含上述基板之種類。 Furthermore, the invention of claim 2 is the heat treatment method of claim 1, wherein the film information includes the film type, film thickness and layer configuration of the thin film, and the substrate information includes the type of the substrate.
又,技術方案3之發明係如技術方案1之發明之熱處理方法,其特徵在於進而具備設定並輸入上述膜資訊及上述基板資訊之輸入步驟。
Furthermore, the invention of
又,技術方案4之發明係如技術方案1之發明之熱處理方法,其特徵在於具備:反射率測定步驟,其測定上述基板之反射率;及特定步驟,其基於上述基板之反射率而特定出上述膜資訊。
In addition, the invention of
又,技術方案5之發明係如技術方案1至4中任一項發明之熱處理方法,其特徵在於:於上述輻射率計算步驟中,基於上述輻射溫度計之感度分佈而計算上述基板之輻射率之加權平均值。
Furthermore, the invention of
又,技術方案6之發明係一種熱處理裝置,其特徵在於:該熱處理裝置係藉由對基板照射閃光而加熱該基板者,且具備:腔室,其收容成為處理對象之基板;閃光燈,其對收容在上述腔室內之上述基板照射閃光;輻射溫度計,其測定上述基板之溫度;及輻射率計算部,其基於形成於上述基板上之薄膜相關之膜資訊、上述基板相關之基板資訊、及上述輻射溫度計之設置角度,計算自上述輻射溫度計所觀察到之上述基板之輻射率;將由上述輻射率計算部計算出之上述輻射率設定於上述輻射溫度計,以上述輻射溫度計測定藉由來自上述閃光燈之閃光照射予以加熱後之上述基板之
溫度。
In addition, the invention of
又,技術方案7之發明係如技術方案6之發明之熱處理裝置,其特徵在於:上述膜資訊包含上述薄膜之膜種類、膜厚及層構成,上述基板資訊包含上述基板之種類。
The invention of
又,技術方案8之發明係如技術方案6之發明之熱處理裝置,其特徵在於進而具備設定並輸入上述膜資訊及上述基板資訊之輸入部。
Moreover, the invention of
又,技術方案9之發明係如技術方案6之發明之熱處理裝置,其特徵在於具備:反射率測定部,其測定上述基板之反射率;及特定部,其基於上述基板之反射率而特定出上述膜資訊。
In addition, the invention of claim 9 is the heat treatment apparatus of the invention of
又,技術方案10之發明係如技術方案6至9中任一項發明之熱處理裝置,其特徵在於:上述輻射率計算部基於上述輻射溫度計之感度分佈而計算上述基板之輻射率之加權平均值。
The invention of
根據技術方案1至5之發明,基於形成於基板上之薄膜相關之膜資訊、基板相關之基板資訊、及對基板之溫度進行測定之輻射溫度計之設置角度,計算自輻射溫度計所觀察到之基板之輻射率,藉由已被設定該輻射率之輻射溫度計而測定基板之溫度,故而即便形成有多層薄膜亦能夠正確地測定基板之溫度。 According to the inventions of claims 1 to 5, the substrate observed from the radiation thermometer is calculated based on the film information related to the thin film formed on the substrate, the substrate information related to the substrate, and the setting angle of the radiation thermometer that measures the temperature of the substrate. Since the emissivity of the substrate is measured by a radiation thermometer whose emissivity is set, the temperature of the substrate can be accurately measured even if a multilayer thin film is formed.
尤其是,根據技術方案5之發明,基於輻射溫度計之感度分佈而計算基板之輻射率之加權平均值,故而能夠更正確地測定基板之溫度。
In particular, according to the invention of
根據技術方案6至10之發明,基於形成於基板上之薄膜相關之膜資訊、基板相關之基板資訊、及輻射溫度計之設置角度,計算自輻射溫度計所觀察到之基板之輻射率,藉由已被設定該輻射率之輻射溫度計來測定基板之溫度,故而即便形成有多層薄膜亦能夠正確地測定基板之溫度。
According to the inventions of
尤其是,根據技術方案10之發明,基於輻射溫度計之感度分佈而計算基板之輻射率之加權平均值,故而能夠更正確地測定基板之溫度。
In particular, according to the invention of
3:控制部 3: Control Department
4:鹵素燈室 4: Halogen lamp room
5:閃光燈室 5: Flash Room
6:處理腔室 6: Processing chamber
7:保持部 7: Keeping Department
10:移載機構 10: Transfer mechanism
11:移載臂 11: Transfer arm
12:頂起銷 12: Jack up pins
13:水平移動機構 13: Horizontal movement mechanism
14:升降機構 14: Lifting mechanism
20:下部輻射溫度計 20: Lower radiation thermometer
21:透明窗 21: Transparent window
24:紅外線感測器 24: Infrared sensor
25:上部輻射溫度計 25: Upper radiation thermometer
26:透明窗 26: Transparent window
29:紅外線感測器 29: Infrared sensor
31:反射率計算部 31: Reflectance calculation section
32:輻射率計算部 32: Emissivity calculation department
33:輸入部 33: Input part
34:顯示部 34: Display part
35:磁碟 35: Disk
36:特定部 36: specific department
39:溫度預測部 39: Temperature Prediction Department
41:殼體 41: Shell
43:反射器 43: Reflector
51:殼體 51: Shell
52:反射器 52: Reflector
53:燈光放射窗 53: Light emission window
61:腔室側部 61: Chamber side
61a:貫通孔 61a: Through hole
61b:貫通孔 61b: Through hole
62:凹部 62: Recess
63:上側腔室窗 63: Upper side chamber window
64:下側腔室窗 64: Lower side chamber window
65:熱處理空間 65: Heat treatment space
66:搬送開口部(爐口) 66: Conveyance opening (furnace mouth)
68:反射環 68: Reflection Ring
69:反射環 69: Reflection Ring
71:基台環 71: Abutment ring
72:連結部 72: Links
74:基座 74: Pedestal
75:保持板 75: Hold Plate
75a:保持面 75a: Keep Face
76:導向環 76: Guide ring
77:基板支持銷 77: Substrate support pins
78:開口部 78: Opening
79:貫通孔 79: Through hole
81:氣體供給孔 81: Gas supply hole
82:緩衝空間 82: Buffer space
83:氣體供給管 83: Gas supply pipe
84:閥 84: Valve
85:處理氣體供給源 85: Process gas supply source
86:氣體排出孔 86: Gas discharge hole
87:緩衝空間 87: Buffer space
88:氣體排出管 88: Gas discharge pipe
89:閥 89: Valve
100:熱處理裝置 100: Heat treatment device
101:移載傳送部 101: Transfer and transfer department
110:裝載口 110: Loading port
120:交接機器人 120: Handover Robot
121:手部 121: Hands
130:冷卻部 130: Cooling Department
131:第1冷卻腔室 131: 1st cooling chamber
140:冷卻部 140: Cooling Department
141:第2冷卻腔室 141: 2nd cooling chamber
150:搬送機器人 150: Transfer Robot
151a:搬送手 151a: Carrier
151b:搬送手 151b: Carrier
160:熱處理部 160: Heat Treatment Department
170:搬送腔室 170: Transfer Chamber
181:閘閥 181: Gate valve
182:閘閥 182: Gate valve
183:閘閥 183: Gate valve
184:閘閥 184: Gate valve
185:閘閥 185: Gate valve
190:排氣機構 190: Exhaust mechanism
191:氣體排出管 191: Gas discharge pipe
192:閥 192: Valve
230:對準部 230: Alignment Department
231:對準腔室 231: Alignment Chamber
232:反射率測定部 232: Reflectance Measurement Section
235:受光部 235: Light Receiver
236:半反射鏡 236: Half mirror
237:旋轉支持部 237: Rotation support
238:旋轉馬達 238: Rotary Motor
300:投光部 300: Projection part
C:載具 C: vehicle
DB:資料庫 DB:Database
FL:閃光燈 FL: Flash
HL:鹵素燈 HL: halogen lamp
W:半導體晶圓 W: semiconductor wafer
圖1係表示本發明之熱處理裝置之俯視圖。 FIG. 1 is a plan view showing a heat treatment apparatus of the present invention.
圖2係圖1之熱處理裝置之前視圖。 FIG. 2 is a front view of the heat treatment apparatus of FIG. 1 .
圖3係表示熱處理部之構成之縱剖視圖。 Fig. 3 is a longitudinal sectional view showing the structure of the heat treatment section.
圖4係表示保持部之整體外觀之立體圖。 FIG. 4 is a perspective view showing the overall appearance of the holding portion.
圖5係基座之俯視圖。 Figure 5 is a top view of the base.
圖6係基座之剖視圖。 Figure 6 is a cross-sectional view of the base.
圖7係移載機構之俯視圖。 FIG. 7 is a top view of the transfer mechanism.
圖8係移載機構之側視圖。 Figure 8 is a side view of the transfer mechanism.
圖9係表示複數個鹵素燈之配置之俯視圖。 FIG. 9 is a plan view showing an arrangement of a plurality of halogen lamps.
圖10係表示反射率測定部及控制部之構成之圖。 FIG. 10 is a diagram showing the configuration of a reflectance measurement unit and a control unit.
圖11係表示第1實施方式之溫度測定順序之流程圖。 FIG. 11 is a flowchart showing a temperature measurement procedure in the first embodiment.
圖12係表示資訊輸入畫面之一例之圖。 FIG. 12 is a diagram showing an example of an information input screen.
圖13係表示半導體晶圓之光譜輻射率之一例之圖。 FIG. 13 is a diagram showing an example of the spectral emissivity of a semiconductor wafer.
圖14係表示上部輻射溫度計之感度分佈之圖。 Fig. 14 is a graph showing the sensitivity distribution of the upper radiation thermometer.
圖15係表示修正後之半導體晶圓之光譜輻射率之圖。 FIG. 15 is a graph showing the spectral radiance of the semiconductor wafer after correction.
圖16係表示第2實施方式之溫度測定順序之流程圖。 FIG. 16 is a flowchart showing a temperature measurement procedure in the second embodiment.
以下,一面參照圖式一面對本發明之實施方式詳細地進行說明。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<第1實施方式> <First Embodiment>
首先,對本發明之熱處理裝置之整體構成進行說明。圖1係表示本發明之熱處理裝置100之俯視圖,圖2係其前視圖。熱處理裝置100係對作為基板之圓板形狀之半導體晶圓W照射閃光而加熱該半導體晶圓W之閃光燈退火裝置。成為處理對象之半導體晶圓W之尺寸並無特別限定,例如為300mm或450mm。再者,於圖1及以下各圖中,為了容易理解,而視需要誇張或簡化各部之尺寸或數量來進行繪製。又,於圖1~圖3各圖中,為了明確其等之方向關係,而標註了將Z軸方向設為鉛直方向,將XY平面設為水平面之XYZ正交座標系統。
First, the overall configuration of the heat treatment apparatus of the present invention will be described. FIG. 1 is a plan view showing a
如圖1及圖2所示,熱處理裝置100具有:移載傳送部101,其用以將未處理之半導體晶圓W自外部搬入至裝置內,並且將處理完畢之半導體晶圓W搬出至裝置外;對準部230,其進行未處理之半導體晶圓W之定位;2
個冷卻部130、140,其等進行加熱處理後之半導體晶圓W之冷卻;熱處理部160,其對半導體晶圓W實施閃光加熱處理;及搬送機器人150,其相對於冷卻部130、140及熱處理部160進行半導體晶圓W之交接。又,熱處理裝置100具備控制部3,該控制部3對設置在上述各處理部之動作機構及搬送機器人150進行控制,推進半導體晶圓W之閃光加熱處理。
As shown in FIG. 1 and FIG. 2 , the
移載傳送部101具有:裝載口110,其排列載置複數個載具C(於本實施方式中為2個);及交接機器人120,其自各載具C取出未處理之半導體晶圓W,並且將處理完畢之半導體晶圓W收納於各載具C。收容有未處理之半導體晶圓W之載具C由無人搬送車(AGV(Automatic Guided Vehicle,自動導引搬送車)、OHT(Overhead Hoist Transport,高架提昇搬送車))等搬送並載置於裝載口110,並且收容有處理完畢之半導體晶圓W之載具C由無人搬送車自裝載口110運走。
The transfer and
又,於裝載口110中,載具C構成為能夠如圖2之箭頭CU所示般升降移動,以使交接機器人120能夠相對於載具C將任意半導體晶圓W取出或放入。再者,作為載具C之形態,除了將半導體晶圓W收納於密閉空間內之FOUP(front opening unified pod,前開式晶圓盒)以外,亦可為SMIF(Standard Mechanical Inter Face,標準機械界面)盒或將所收納之半導體晶圓W暴露於外部大氣中之OC(open cassette,開放式晶圓匣)。
In addition, in the
又,交接機器人120能夠進行如圖1之箭頭120S所示之滑行移動、如箭頭120R所示之回轉動作及升降動作。藉此,交接機器人120相對於2個
載具C將半導體晶圓W取出或放入,並且相對於對準部230及2個冷卻部130、140交接半導體晶圓W。藉由交接機器人120進行之相對於載具C之半導體晶圓W之取出或放入係藉由手部121之滑行移動、及載具C之升降移動而進行。又,交接機器人120與對準部230或冷卻部130、140之半導體晶圓W之交接係藉由手部121之滑行移動、及交接機器人120之升降動作而進行。
In addition, the
對準部230連接於沿著Y軸方向之移載傳送部101之側方而設置。對準部230係使半導體晶圓W在水平面內旋轉而朝向適合閃光加熱之方向之處理部。對準部230係於作為鋁合金製殼體之對準腔室231之內部,設置有將半導體晶圓W支持為水平姿勢並使其旋轉之機構(圖10之旋轉支持部237、旋轉馬達238)、及光學地檢測在半導體晶圓W之周緣部所形成之凹口或定向平面等之機構等而構成。又,於對準腔室231中設置有對支持在其內部之半導體晶圓W之正面之反射率進行測定之反射率測定部232。反射率測定部232對半導體晶圓W之正面照射光,並且接收由該正面反射之反射光,根據該反射光之強度測定半導體晶圓W之正面反射率。
The
相對於對準部230之半導體晶圓W之交接係藉由交接機器人120而進行。自交接機器人120向對準腔室231係以晶圓中心位於規定位置之方式遞交半導體晶圓W。於對準部230中,係以如下方式來調整半導體晶圓W之朝向:以自移載傳送部101接收到之半導體晶圓W之中心部作為旋轉中心,使半導體晶圓W繞鉛直方向軸旋轉,並光學地檢測凹口等。又,反射率測定部232測定半導體晶圓W之正面反射率。方向調整結束後之半導體
晶圓W係藉由交接機器人120自對準腔室231取出。
The handover of the semiconductor wafer W with respect to the
作為供搬送機器人150所用之半導體晶圓W之搬送空間,設置有收容搬送機器人150之搬送腔室170。於該搬送腔室170之三個方位連通連接有熱處理部160之處理腔室6、冷卻部130之第1冷卻腔室131及冷卻部140之第2冷卻腔室141。
A
作為熱處理裝置100之主要部分之熱處理部160係對進行了預加熱之半導體晶圓W照射來自氙氣閃光燈FL之閃光(flash light)而進行閃光加熱處理之基板處理部。關於該熱處理部160之構成,將於下文進一步說明。
The
2個冷卻部130、140具有大致相同之構成。冷卻部130、140分別於作為鋁合金製殼體之第1冷卻腔室131、第2冷卻腔室141之內部具備金屬製冷卻板、及載置在其上表面之石英板(均省略圖示)。該冷卻板係藉由珀爾帖元件或恆溫水循環而調節至常溫(約23℃)。將經熱處理部160實施了閃光加熱處理之半導體晶圓W搬入至第1冷卻腔室131或第2冷卻腔室141,並載置於該石英板上加以冷卻。
The two
第1冷卻腔室131及第2冷卻腔室141均位於移載傳送部101與搬送腔室170之間,且連接於其等兩者。於第1冷卻腔室131及第2冷卻腔室141中,形成設置有用以將半導體晶圓W搬入搬出之2個開口。第1冷卻腔室131之2個開口中連接於移載傳送部101之開口能夠藉由閘閥181進行開閉。另一方面,第1冷卻腔室131之連接於搬送腔室170之開口能夠藉由閘
閥183進行開閉。即,第1冷卻腔室131與移載傳送部101經由閘閥181連接,第1冷卻腔室131與搬送腔室170經由閘閥183連接。
The
於移載傳送部101與第1冷卻腔室131之間進行半導體晶圓W之交接時,開啟閘閥181。又,於第1冷卻腔室131與搬送腔室170之間進行半導體晶圓W之交接時,開啟閘閥183。於閘閥181及閘閥183關閉時,第1冷卻腔室131之內部成為密閉空間。
The
又,第2冷卻腔室141之2個開口中連接於移載傳送部101之開口能夠藉由閘閥182進行開閉。另一方面,第2冷卻腔室141之連接於搬送腔室170之開口能夠藉由閘閥184進行開閉。即,第2冷卻腔室141與移載傳送部101經由閘閥182連接,第2冷卻腔室141與搬送腔室170經由閘閥184連接。
In addition, among the two openings of the
於移載傳送部101與第2冷卻腔室141之間進行半導體晶圓W之交接時,開啟閘閥182。又,於第2冷卻腔室141與搬送腔室170之間進行半導體晶圓W之交接時,開啟閘閥184。於閘閥182及閘閥184關閉時,第2冷卻腔室141之內部成為密閉空間。
The
進而,冷卻部130、140分別具有向第1冷卻腔室131、第2冷卻腔室141供給乾淨之氮氣之氣體供給機構與排出腔室內之環境氣體之排氣機構。該等氣體供給機構及排氣機構亦可設為能夠將流量分為2個等級加以切換。
Furthermore, the
設置於搬送腔室170內之搬送機器人150能夠以沿著鉛直方向之軸作為中心而如箭頭150R所示般回轉。搬送機器人150具有由複數個臂節所構成之2個連桿機構,於這2個連桿機構之前端分別設置有保持半導體晶圓W之搬送手151a、151b。該等搬送手151a、151b上下隔開規定間距而配置,且能夠藉由連桿機構分別獨立地沿同一水平方向直線地滑行移動。又,搬送機器人150藉由使供設置2個連桿機構之底座升降移動,而使2個搬送手151a、151b以隔開規定間距之狀態升降移動。
The
於搬送機器人150將第1冷卻腔室131、第2冷卻腔室141或熱處理部160之處理腔室6作為交接對方進行半導體晶圓W之交接(取出或放入)時,首先,兩個搬送手151a、151b以與交接對方對向之方式回轉,然後(或者在回轉期間內)升降移動,其中任意一個搬送手位於與交接對方交接半導體晶圓W之高度。然後,使搬送手151a(151b)沿水平方向直線地滑行移動而與交接對方進行半導體晶圓W之交接。
When the
搬送機器人150與交接機器人120之半導體晶圓W之交接能夠經由冷卻部130、140進行。即,冷卻部130之第1冷卻腔室131與冷卻部140之第2冷卻腔室141亦作為用以在搬送機器人150與交接機器人120之間交接半導體晶圓W之路徑發揮功能。具體而言,藉由由搬送機器人150或交接機器人120其中一方遞交至第1冷卻腔室131或第2冷卻腔室141之半導體晶圓W由另一方接收來進行半導體晶圓W之交接。由搬送機器人150及交接機器人120構成將半導體晶圓W自載具C搬送至熱處理部160之搬送機構。
The transfer of the semiconductor wafers W between the
如上所述,於第1冷卻腔室131及第2冷卻腔室141與移載傳送部101之間分別設置有閘閥181、182。又,於搬送腔室170與第1冷卻腔室131及第2冷卻腔室141之間分別設置有閘閥183、184。進而,於搬送腔室170與熱處理部160之處理腔室6之間設置有閘閥185。於熱處理裝置100內搬送半導體晶圓W時,適當地開閉該等閘閥。又,亦自氣體供給部對搬送腔室170及對準腔室231供給氮氣,並且藉由排氣部將其等內部之環境氣體排出(均省略圖示)。
As described above, the
其次,對熱處理部160之構成進行說明。圖3係表示熱處理部160之構成之縱剖視圖。熱處理部160具備:收容半導體晶圓W並進行加熱處理之處理腔室6、內置複數個閃光燈FL之閃光燈室5、及內置複數個鹵素燈HL之鹵素燈室4。於處理腔室6之上側設置閃光燈室5,並且於下側設置鹵素燈室4。又,熱處理部160於處理腔室6之內部具備:將半導體晶圓W保持為水平姿勢之保持部7、及在保持部7與搬送機器人150之間進行半導體晶圓W之交接之移載機構10。
Next, the configuration of the
處理腔室6係於筒狀之腔室側部61之上下安裝石英製腔室窗而構成。腔室側部61具有上下開口之大致筒形狀,其上側開口被安裝上側腔室窗63而封閉,其下側開口被安裝下側腔室窗64而封閉。構成處理腔室6之頂部之上側腔室窗63係由石英所形成之圓板形狀構件,作為使自閃光燈FL射出之閃光透射至處理腔室6內之石英窗發揮功能。又,構成處理腔室6之底部之下側腔室窗64亦為由石英所形成之圓板形狀構件,作為使來自鹵素
燈HL之光透射至處理腔室6內之石英窗發揮功能。
The
又,於腔室側部61之內側之壁面之上部安裝有反射環68,於下部安裝有反射環69。反射環68、69均形成為圓環狀。上側之反射環68係藉由自腔室側部61之上側嵌入而安裝。另一方面,下側之反射環69係藉由自腔室側部61之下側嵌入並利用省略圖示之螺釘加以固定而安裝。即,反射環68、69均裝卸自如地安裝於腔室側部61。將處理腔室6之內側空間、即由上側腔室窗63、下側腔室窗64、腔室側部61及反射環68、69所包圍之空間規定為熱處理空間65。
Moreover, the
藉由在腔室側部61安裝反射環68、69,而在處理腔室6之內壁面形成有凹部62。即,形成有由腔室側部61之內壁面中未安裝反射環68、69之中央部分、反射環68之下端面、反射環69之上端面所包圍之凹部62。凹部62於處理腔室6之內壁面沿著水平方向形成為圓環狀,且圍繞保持半導體晶圓W之保持部7。腔室側部61及反射環68、69由強度與耐熱性優異之金屬材料(例如不鏽鋼)所形成。
又,於腔室側部61形成設置有用以對處理腔室6進行半導體晶圓W之搬入及搬出之搬送開口部(爐口)66。搬送開口部66設為能夠由閘閥185予以開閉。搬送開口部66連通連接於凹部62之外周面。因此,於閘閥185開啟搬送開口部66時,能夠自搬送開口部66通過凹部62向熱處理空間65搬入半導體晶圓W及自熱處理空間65搬出半導體晶圓W。又,當閘閥185關閉搬送開口部66時,處理腔室6內之熱處理空間65成為密閉空間。
In addition, the
進而,於腔室側部61貫穿設置有貫通孔61a及貫通孔61b。貫通孔61a係圓筒狀之孔,用以將自保持在下述基座74上之半導體晶圓W之上表面放射之紅外光導向上部輻射溫度計25之紅外線感測器29。另一方面,貫通孔61b係圓筒狀之孔,用以將自半導體晶圓W之下表面放射之紅外光導向下部輻射溫度計20之紅外線感測器24。貫通孔61a及貫通孔61b係以其等之貫通方向之軸與保持於基座74上之半導體晶圓W之主面相交之方式,相對於水平方向傾斜地設置。於貫通孔61a之面向熱處理空間65之側之端部安裝有透明窗26,該透明窗26由使上部輻射溫度計25可測定之波長區域之紅外光透過之氟化鈣材料構成。又,於貫通孔61b之面向熱處理空間65之側之端部安裝有透明窗21,該透明窗21由使下部輻射溫度計20可測定之波長區域之紅外光透過之氟化鋇材料構成。
Further, through-
又,於處理腔室6之內壁上部形成設置有對熱處理空間65供給處理氣體之氣體供給孔81。氣體供給孔81形成設置於較凹部62更靠上側位置,亦可設置於反射環68。氣體供給孔81經由在處理腔室6之側壁內部形成為圓環狀之緩衝空間82而連通連接於氣體供給管83。氣體供給管83連接於處理氣體供給源85。又,於氣體供給管83之路徑中途介插有閥84。當閥84開啟時,將處理氣體自處理氣體供給源85向緩衝空間82輸送供給。流入至緩衝空間82之處理氣體以在流體阻力小於氣體供給孔81之緩衝空間82內擴散之方式流動,而自氣體供給孔81向熱處理空間65內供給。作為處理氣體,可使用氮(N2)等惰性氣體、或氫(H2)、氨(NH3)等反應性氣體(於本實施方式中為氮)。
In addition, a
另一方面,於處理腔室6之內壁下部形成設置有排出熱處理空間65內之氣體之氣體排出孔86。氣體排出孔86形成設置於較凹部62更靠下側位置,亦可設置於反射環69。氣體排出孔86經由在處理腔室6之側壁內部形成為圓環狀之緩衝空間87而連通連接於氣體排出管88。氣體排出管88連接於排氣機構190。又,於氣體排出管88之路徑中途介插有閥89。當閥89開啟時,將熱處理空間65之氣體自氣體排出孔86經過緩衝空間87向氣體排出管88排出。再者,氣體供給孔81及氣體排出孔86可沿著處理腔室6之周向設置有複數個,亦可為狹縫狀。又,處理氣體供給源85及排氣機構190可為設置於熱處理裝置100之機構,亦可為供設置熱處理裝置100之工廠之公用設備。
On the other hand, a
又,於搬送開口部66之前端亦連接有排出熱處理空間65內之氣體之氣體排出管191。氣體排出管191經由閥192連接於排氣機構190。藉由開啟閥192,而經由搬送開口部66排出處理腔室6內之氣體。
Moreover, the
圖4係表示保持部7之整體外觀之立體圖。保持部7係具備基台環71、連結部72及基座74而構成。基台環71、連結部72及基座74均由石英所形成。即,整個保持部7由石英所形成。
FIG. 4 is a perspective view showing the overall appearance of the holding
基台環71係圓環形狀缺失一部分而成之圓弧形狀之石英構件。該缺失部分係為了防止下述移載機構10之移載臂11與基台環71之干涉而設置。基台環71係藉由載置於凹部62之底面,而支持於處理腔室6之壁面(參
照圖3)。於基台環71之上表面,沿著其圓環形狀之周向豎立設置有複數個連結部72(於本實施方式中為4個)。連結部72亦為石英構件,藉由熔接固接於基台環71。
The
基座74由設置於基台環71之4個連結部72支持。圖5係基座74之俯視圖。又,圖6係基座74之剖視圖。基座74具備保持板75、導向環76及複數個基板支持銷77。保持板75係由石英所形成之大致圓形之平板狀構件。保持板75之直徑比半導體晶圓W之直徑大。即,保持板75具有比半導體晶圓W大之平面尺寸。
The
於保持板75之上表面周緣部設置有導向環76。導向環76係具有比半導體晶圓W之直徑大之內徑之圓環形狀之構件。例如,於半導體晶圓W之直徑為300mm之情形時,導向環76之內徑為320mm。導向環76之內周被設為自保持板75朝向上方變寬之傾斜面。導向環76與保持板75相同由石英所形成。導向環76可熔接於保持板75之上表面,亦可藉由另外加工所得之銷等固定於保持板75。或者,亦可將保持板75與導向環76加工成一體構件。
A
將保持板75之上表面中較導向環76更靠內側之區域設為保持半導體晶圓W之平面狀之保持面75a。於保持板75之保持面75a豎立設置有複數個基板支持銷77。於本實施方式中,沿著與保持面75a之外周圓(導向環76之內周圓)為同心圓之圓周每隔30°豎立設置有共計12個基板支持銷77。配置有12個基板支持銷77之圓之直徑(相對向之基板支持銷77之間之距離)小於
半導體晶圓W之直徑,若半導體晶圓W之直徑為300mm,則該圓之直徑為270mm~280mm(於本實施方式中為270mm)。各個基板支持銷77由石英所形成。複數個基板支持銷77可藉由熔接設置於保持板75之上表面,亦可與保持板75加工成一體。
In the upper surface of the holding
返回至圖4,豎立設置於基台環71之4個連結部72與基座74之保持板75之周緣部藉由熔接而固接。即,基座74與基台環71係藉由連結部72而固定地連結。藉由如此將保持部7之基台環71支持於處理腔室6之壁面,而將保持部7安裝於處理腔室6。於保持部7被安裝在處理腔室6之狀態下,基座74之保持板75成為水平姿勢(法線與鉛直方向一致之姿勢)。即,保持板75之保持面75a成為水平面。
Returning to FIG. 4 , the four connecting
搬入至處理腔室6之半導體晶圓W被以水平姿勢載置並保持在安裝於處理腔室6之保持部7之基座74上。此時,半導體晶圓W由豎立設置於保持板75上之12個基板支持銷77支持而保持於基座74上。更嚴格而言,12個基板支持銷77之上端部與半導體晶圓W之下表面接觸而支持該半導體晶圓W。由於12個基板支持銷77之高度(基板支持銷77之上端至保持板75之保持面75a之距離)均等,故而能夠藉由12個基板支持銷77將半導體晶圓W支持為水平姿勢。
The semiconductor wafer W carried into the
又,半導體晶圓W由複數個基板支持銷77與保持板75之保持面75a隔開規定間隔地支持。導向環76之厚度大於基板支持銷77之高度。因此,藉由導向環76防止由複數個基板支持銷77支持之半導體晶圓W之水平方向
之錯位。
In addition, the semiconductor wafer W is supported by the plurality of substrate support pins 77 and the holding
再者,如圖4及圖5所示,於基座74之保持板75上下貫通地形成有開口部78。開口部78係為了供下部輻射溫度計20(參照圖3)接收自半導體晶圓W之下表面放射之放射光(紅外光)而設置。即,下部輻射溫度計20經由開口部78及安裝於腔室側部61之貫通孔61b中之透明窗21接收自半導體晶圓W之下表面放射之光而測定該半導體晶圓W之溫度。進而,於基座74之保持板75貫穿設置有供下述移載機構10之頂起銷12為了交接半導體晶圓W而貫通之4個貫通孔79。
Furthermore, as shown in FIGS. 4 and 5 , an
圖7係移載機構10之俯視圖。又,圖8係移載機構10之側視圖。移載機構10具備2根移載臂11。移載臂11被設為沿著大致圓環狀之凹部62之圓弧形狀。於各個移載臂11豎立設置有2根頂起銷12。各移載臂11能夠藉由水平移動機構13進行旋動。水平移動機構13使一對移載臂11於相對於保持部7進行半導體晶圓W之移載之移載動作位置(圖7之實線位置)與俯視下不與保持在保持部7上之半導體晶圓W重疊之退避位置(圖7之二點鏈線位置)之間水平移動。移載動作位置位於基座74之下方,退避位置較基座74更靠外側。作為水平移動機構13,可為藉由單獨之馬達分別使各移載臂11旋動之機構,亦可為使用連桿機構藉由1個馬達使一對移載臂11聯動而旋動之機構。
FIG. 7 is a top view of the
又,一對移載臂11藉由升降機構14與水平移動機構13一起升降移動。當升降機構14使一對移載臂11於移載動作位置上升時,共計4根頂起
銷12穿過貫穿設置於基座74之貫通孔79(參照圖4、5),從而頂起銷12之上端自基座74之上表面突出。另一方面,當升降機構14使一對移載臂11於移載動作位置下降而將頂起銷12自貫通孔79拔出,從而水平移動機構13使一對移載臂11以打開之方式移動時,各移載臂11移動至退避位置。一對移載臂11之退避位置位於保持部7之基台環71之正上方。由於基台環71被載置於凹部62之底面,故而移載臂11之退避位置位於凹部62之內側。再者,於移載機構10之設置有驅動部(水平移動機構13及升降機構14)之部位附近亦設置有省略圖示之排氣機構,而構成為將移載機構10之驅動部周邊之環境氣體向處理腔室6之外部排出。
In addition, the pair of
返回至圖3,設置於處理腔室6之上方之閃光燈室5係於殼體51之內側具備由複數根(於本實施方式中為30根)氙氣閃光燈FL所構成之光源、及以覆蓋該光源之上方之方式設置之反射器52而構成。又,於閃光燈室5之殼體51之底部安裝有燈光放射窗53。構成閃光燈室5之底部之燈光放射窗53係由石英所形成之板狀之石英窗。藉由將閃光燈室5設置於處理腔室6之上方,燈光放射窗53與上側腔室窗63相對向。閃光燈FL自處理腔室6之上方經由燈光放射窗53及上側腔室窗63而向熱處理空間65照射閃光。
Returning to FIG. 3 , the
複數個閃光燈FL係分別具有長條圓筒形狀之棒狀燈,且以各自之長度方向沿著由保持部7保持之半導體晶圓W之主面(即沿著水平方向)相互平行之方式排列成平面狀。因此,由閃光燈FL之排列所形成之平面亦為水平面。
The plurality of flash lamps FL are rod-shaped lamps each having an elongated cylindrical shape, and are arranged in such a manner that their respective longitudinal directions are parallel to each other along the main surface (ie, along the horizontal direction) of the semiconductor wafer W held by the holding
氙氣閃光燈FL具備:棒狀之玻璃管(放電管),其於其內部封入有氙氣且於其兩端部配設有與電容器連接之陽極及陰極;及觸發電極,其附設於該玻璃管之外周面上。由於氙氣為電絕緣體,故而即便於電容器中蓄積了電荷,通常狀態下在玻璃管內亦不會有電流流動。然而,於對觸發電極施加高電壓而破壞了絕緣之情形時,蓄積於電容器中之電流瞬間流入至玻璃管內,藉由此時氙之原子或分子之激發而放出光。關於此種氙氣閃光燈FL,由於預先蓄積於電容器中之靜電能量被轉換為0.1毫秒至100毫秒之極短光脈衝,故而與如鹵素燈HL之連續點亮之光源相比,具有能夠照射極強光之特徵。即,閃光燈FL係於未達1秒之極短時間內瞬間發光之脈衝發光燈。再者,閃光燈FL之發光時間可藉由對閃光燈FL進行電力供給之燈電源之線圈常數進行調整。 The xenon flash lamp FL includes: a rod-shaped glass tube (discharge tube) in which xenon gas is sealed and an anode and a cathode connected to a capacitor are arranged at both ends thereof; and a trigger electrode attached to the glass tube on the peripheral surface. Since xenon gas is an electrical insulator, even if electric charge is accumulated in the capacitor, no current flows in the glass tube under normal conditions. However, when a high voltage is applied to the trigger electrode and the insulation is broken, the current accumulated in the capacitor flows into the glass tube instantaneously, and light is emitted by the excitation of xenon atoms or molecules at this time. With regard to such a xenon flash lamp FL, since the electrostatic energy stored in the capacitor in advance is converted into extremely short light pulses of 0.1 millisecond to 100 milliseconds, it is possible to irradiate extremely strong light compared to a light source that is continuously lit such as a halogen lamp HL. characteristics of light. That is, the flash lamp FL is a pulsed light-emitting lamp that emits light instantaneously in an extremely short period of less than 1 second. Furthermore, the light-emitting time of the flash lamp FL can be adjusted by the coil constant of the lamp power supply for supplying power to the flash lamp FL.
又,反射器52於複數個閃光燈FL之上方以覆蓋其等整體之方式設置。反射器52之基本功能係將自複數個閃光燈FL射出之閃光向熱處理空間65側反射。反射器52由鋁合金板所形成,其正面(面向閃光燈FL一側之面)藉由噴砂處理被實施了粗面化加工。
Also, the
設置於處理腔室6之下方之鹵素燈室4於殼體41之內側內置有複數根(於本實施方式中為40根)鹵素燈HL。複數個鹵素燈HL自處理腔室6之下方經由下側腔室窗64向熱處理空間65進行光照射。
The
圖9係表示複數個鹵素燈HL之配置之俯視圖。於本實施方式中,上下2層各配設有20根鹵素燈HL。各鹵素燈HL係具有長條圓筒形狀之棒狀
燈。上層、下層中,20根鹵素燈HL均以各自之長度方向沿著由保持部7保持之半導體晶圓W之主面(即沿著水平方向)相互平行之方式排列。因此,上層、下層中,由鹵素燈HL之排列所形成之平面均為水平面。
FIG. 9 is a plan view showing the arrangement of a plurality of halogen lamps HL. In this embodiment, 20 halogen lamps HL are arranged on each of the upper and lower layers. Each halogen lamp HL is rod-shaped with a long cylindrical shape
light. In the upper layer and the lower layer, the 20 halogen lamps HL are arranged so that their respective longitudinal directions are parallel to each other along the main surface (ie, along the horizontal direction) of the semiconductor wafer W held by the holding
又,如圖9所示,上層、下層中均為,較之與由保持部7保持之半導體晶圓W之中央部對向之區域,與周緣部對向之區域之鹵素燈HL之配設密度更高。即,上下層中均為,較之燈排列之中央部,周緣部之鹵素燈HL之配設間距更短。因此,能夠對在藉由來自鹵素燈HL之光照射進行加熱時容易發生溫度降低之半導體晶圓W之周緣部進行更多光量之照射。
Further, as shown in FIG. 9 , in both the upper and lower layers, the halogen lamps HL are disposed in the region facing the peripheral portion of the semiconductor wafer W held by the holding
又,由上層之鹵素燈HL所構成之燈組與由下層之鹵素燈HL所構成之燈組被以呈格子狀交叉之方式排列。即,以上層之各鹵素燈HL之長度方向與下層之各鹵素燈HL之長度方向正交之方式配設有共計40根鹵素燈HL。 In addition, the lamp group composed of the halogen lamps HL in the upper layer and the lamp group composed of the halogen lamps HL in the lower layer are arranged so as to cross in a lattice shape. That is, a total of 40 halogen lamps HL are arranged so that the longitudinal direction of each halogen lamp HL of the upper layer and the longitudinal direction of each halogen lamp HL of the lower layer are orthogonal to each other.
鹵素燈HL係藉由對配設於玻璃管內部之燈絲通電,使燈絲白熾化而發光之燈絲方式之光源。玻璃管之內部封入有於氮氣或氬氣等惰性氣體中導入微量鹵族元素(碘、溴等)而成之氣體。藉由導入鹵族元素,能夠抑制燈絲之折損並且將燈絲之溫度設定為高溫。因此,鹵素燈HL具有與通常之白熾燈泡相比壽命較長且能夠連續地照射強光之特性。即,鹵素燈HL係連續發光至少1秒以上之連續點亮燈。又,鹵素燈HL由於為棒狀燈,故而壽命較長,藉由沿水平方向配置鹵素燈HL,向上方之半導體晶圓W之輻射效率變得優異。 The halogen lamp HL is a light source of a filament type which makes the filament incandescent and emits light by energizing the filament arranged inside the glass tube. The inside of the glass tube is filled with a gas obtained by introducing a trace amount of halogen elements (iodine, bromine, etc.) into an inert gas such as nitrogen or argon. By introducing the halogen element, the breakage of the filament can be suppressed and the temperature of the filament can be set to a high temperature. Therefore, the halogen lamp HL has the characteristics of being able to continuously irradiate strong light with a longer life than a general incandescent light bulb. That is, the halogen lamp HL is a continuous lighting lamp which continuously emits light for at least 1 second or more. Moreover, since the halogen lamp HL is a rod-shaped lamp, the lifetime is long, and by arranging the halogen lamp HL in the horizontal direction, the radiation efficiency of the semiconductor wafer W toward the upper side becomes excellent.
又,於鹵素燈室4之殼體41內,亦於2層鹵素燈HL之下側設置有反射器43(圖3)。反射器43將自複數個鹵素燈HL射出之光向熱處理空間65側反射。
In addition, in the
如圖3所示,於處理腔室6中設置有上部輻射溫度計25及下部輻射溫度計20這2個輻射溫度計(於本實施方式中為高溫計)。上部輻射溫度計25設置於由基座74保持之半導體晶圓W之斜上方,並且下部輻射溫度計20設置於由基座74保持之半導體晶圓W之斜下方。上部輻射溫度計25之紅外線感測器29之光軸與半導體晶圓W之主面所成之角度較小,例如為10°。同樣地,下部輻射溫度計20之紅外線感測器24之光軸與半導體晶圓W之主面所成之角度例如亦為10°。上部輻射溫度計25接收自半導體晶圓W之上表面放射之紅外光,並根據該紅外光之強度測定該上表面之溫度。上部輻射溫度計25之紅外線感測器29具備InSb(銻化銦)光學元件,以便能夠應對被照射閃光之瞬間半導體晶圓W之上表面之急劇之溫度變化。另一方面,下部輻射溫度計20接收自半導體晶圓W之下表面放射之紅外光,並根據該紅外光之強度測定該下表面之溫度。
As shown in FIG. 3 , two radiation thermometers (a pyrometer in the present embodiment) of an
除了上述構成以外,熱處理部160為了防止於半導體晶圓W之熱處理時鹵素燈HL及閃光燈FL所產生之熱能引起鹵素燈室4、閃光燈室5及處理腔室6之溫度過度上升,進而具備各種冷卻用構造。例如,於處理腔室6之壁體設置有水冷管(省略圖示)。又,將鹵素燈室4及閃光燈室5設為於內部形成氣流而進行排熱之空氣冷卻構造。又,亦向上側腔室窗63與燈光放射窗53之間隙供給空氣,而對閃光燈室5及上側腔室窗63進行冷卻。
In addition to the above-mentioned configuration, the
圖10係表示設置於對準部230之反射率測定部232及控制部3之構成之圖。反射率測定部232具備投光部300、受光部235及半反射鏡236。於對準部230之對準腔室231內設置有支持半導體晶圓W並使其旋轉之旋轉支持部237、及旋轉驅動該旋轉支持部237之旋轉馬達238。旋轉馬達238使支持半導體晶圓W之旋轉支持部237旋轉,由此調整該半導體晶圓W之朝向。
FIG. 10 is a diagram showing the configuration of the
投光部300具備氙氣光源、鹵素光源或LED(Light Emitting Diode,發光二極體)光源等光源而射出反射率測定用光。受光部235具備將所接收到之光之強度轉換為電信號之受光元件。自投光部300射出之光被半反射鏡236反射而垂直地照射至由旋轉支持部237支持之半導體晶圓W之上表面。自投光部300照射之光被半導體晶圓W之上表面反射。該反射光透過半反射鏡236被受光部235接收。控制部3基於受光部235所接收到之反射光之強度算出半導體晶圓W之上表面之反射率。再者,投光部300較佳為具備所照射之波長區域不同之複數個光源。若投光部300具備波長區域不同之複數個光源,則能夠遍及較大波長範圍地測定半導體晶圓W之反射率。又,投光部300亦可對半導體晶圓W之上表面之多處照射光。若對半導體晶圓W之上表面之多處照射光,則能夠降低局部之圖案相關性。
The
控制部3對設置於熱處理裝置100之上述各種動作機構進行控制。控制部3之硬件構成與一般之電腦相同。即,控制部3具有:作為進行各種運算處理之電路之CPU(Central Processing Unit,中央處理器)、作為記憶
基本程式之讀出專用記憶體之ROM(Read Only Memory,唯讀記憶體)、作為記憶各種資訊之自由讀寫記憶體之RAM(Random Access Memory,隨機存取記憶體)、及預先記憶控制用軟體或資料等之磁碟35。藉由控制部3之CPU執行規定之處理程式,熱處理裝置100中之處理得以推進。反射率計算部31、特定部36、輻射率計算部32及溫度預測部39係藉由控制部3之CPU執行規定之處理程式而實現之功能處理部。關於反射率計算部31、特定部36、輻射率計算部32及溫度預測部39之處理內容,將於下文進一步說明。又,圖1中,於移載傳送部101內示出了控制部3,但不限於此,控制部3可配置於熱處理裝置100內之任意位置。
The
又,控制部3連接有顯示部34及輸入部33。控制部3於顯示部34顯示各種資訊。熱處理裝置100之操作員能夠一面確認顯示於顯示部34上之資訊,一面自輸入部33輸入各種指令或參數。作為輸入部33,例如可使用鍵盤或滑鼠。作為顯示部34,例如可使用液晶顯示器。於本實施方式中,作為顯示部34及輸入部33,採用的是設置於熱處理裝置100之外壁之液晶觸控面板,使其兼具兩者功能。
In addition, a
其次,對本發明之熱處理裝置100之處理動作進行說明。此處,首先對針對成為製品之通常之半導體晶圓(成品晶圓)W進行之典型處理動作進行說明。成為處理對象之半導體晶圓W係藉由離子注入法添加了雜質(離子)之半導體基板。該雜質之活化係藉由利用熱處理裝置100進行之閃光照射加熱處理(退火)而執行。
Next, the processing operation of the
首先,將注入有雜質之未處理之半導體晶圓W以在載具C中收容有多片之狀態載置於移載傳送部101之裝載口110。然後,交接機器人120自載具C逐片取出未處理之半導體晶圓W,並搬入至對準部230之對準腔室231。於對準腔室231中,使支持於旋轉支持部237之半導體晶圓W以其中心部作為旋轉中心在水平面內繞鉛直方向軸旋轉,並光學地檢測凹口等,由此調整半導體晶圓W之朝向。
First, the unprocessed semiconductor wafer W into which impurities have been implanted is placed on the
其次,移載傳送部101之交接機器人120自對準腔室231取出被調整了朝向之半導體晶圓W,並搬入至冷卻部130之第1冷卻腔室131或冷卻部140之第2冷卻腔室141。搬入至第1冷卻腔室131或者第2冷卻腔室141之未處理之半導體晶圓W被搬送機器人150搬出至搬送腔室170。於未處理之半導體晶圓W自移載傳送部101經過第1冷卻腔室131或者第2冷卻腔室141被移送至搬送腔室170時,第1冷卻腔室131及第2冷卻腔室141作為用以交接半導體晶圓W之路徑發揮功能。
Next, the
取出了半導體晶圓W之搬送機器人150以朝向熱處理部160之方式回轉。繼而,閘閥185將處理腔室6與搬送腔室170之間開啟,搬送機器人150將未處理之半導體晶圓W搬入至處理腔室6。此時,於先行完成加熱處理之半導體晶圓W存在於處理腔室6之情形時,藉由搬送手151a、151b其中一者取出加熱處理後之半導體晶圓W後,將未處理之半導體晶圓W搬入至處理腔室6而進行晶圓更換。然後,閘閥185將處理腔室6與搬送腔室170之間關閉。
The
於利用鹵素燈HL對搬入至處理腔室6之半導體晶圓W進行預加熱之後,藉由來自閃光燈FL之閃光照射進行閃光加熱處理。藉由該閃光加熱處理,對注入至半導體晶圓W中之雜質進行活化。
After preheating the semiconductor wafer W carried into the
於閃光加熱處理結束後,閘閥185再次將處理腔室6與搬送腔室170之間開啟,搬送機器人150將閃光加熱處理後之半導體晶圓W自處理腔室6搬出至搬送腔室170。取出了半導體晶圓W之搬送機器人150以自朝向處理腔室6變成朝向第1冷卻腔室131或第2冷卻腔室141之方式回轉。又,閘閥185將處理腔室6與搬送腔室170之間關閉。
After the flash heating process is completed, the
然後,搬送機器人150將加熱處理後之半導體晶圓W搬入至冷卻部130之第1冷卻腔室131或冷卻部140之第2冷卻腔室141。此時,該半導體晶圓W若於加熱處理前是經過第1冷卻腔室131而來的,則於加熱處理後亦搬入至第1冷卻腔室131,若於加熱處理前是經過第2冷卻腔室141而來的,則於加熱處理後亦搬入至第2冷卻腔室141。於第1冷卻腔室131或第2冷卻腔室141中,對閃光加熱處理後之半導體晶圓W進行冷卻處理。由於自熱處理部160之處理腔室6搬出時半導體晶圓W整體之溫度相對較高,故而要將其於第1冷卻腔室131或者第2冷卻腔室141內冷卻至常溫附近。
Then, the
於經過規定之冷卻處理時間後,交接機器人120將冷卻後之半導體晶圓W自第1冷卻腔室131或者第2冷卻腔室141搬出,並返還給載具C。當載具C中收容有規定片數之處理完畢之半導體晶圓W時,該載具C被自移載傳送部101之裝載口110搬出。
After a predetermined cooling process time has elapsed, the
繼續對熱處理部160中之加熱處理進行說明。於將半導體晶圓W搬入至處理腔室6之前,開啟用以供氣之閥84,並且開啟用以排氣之閥89、192,開始對處理腔室6內供氣及排氣。當開啟閥84時,自氣體供給孔81對熱處理空間65供給氮氣。又,當開啟閥89時,自氣體排出孔86排出處理腔室6內之氣體。藉此,自處理腔室6內之熱處理空間65之上部供給之氮氣向下方流動,自熱處理空間65之下部排出。
Next, the heat treatment in the
又,藉由開啟閥192,亦自搬送開口部66排出處理腔室6內之氣體。進而,藉由省略圖示之排氣機構,亦排出移載機構10之驅動部周邊之環境氣體。再者,於熱處理部160中對半導體晶圓W實施熱處理時,對熱處理空間65持續地供給氮氣,其供給量根據處理步驟而適當變更。
In addition, by opening the
繼而,閘閥185打開而開啟搬送開口部66,藉由搬送機器人150經由搬送開口部66將成為處理對象之半導體晶圓W搬入至處理腔室6內之熱處理空間65。搬送機器人150使保持未處理之半導體晶圓W之搬送手151a(或者搬送手151b)進入至保持部7之正上方位置並停止。然後,移載機構10之一對移載臂11自退避位置水平移動至移載動作位置並上升,藉此頂起銷12穿過貫通孔79自基座74之保持板75之上表面突出而接收半導體晶圓W。此時,頂起銷12上升至較基板支持銷77之上端更靠上方。
Next, the
於將未處理之半導體晶圓W載置於頂起銷12上後,搬送機器人150使搬送手151a自熱處理空間65退出,藉由閘閥185關閉搬送開口部66。然
後,藉由一對移載臂11下降,半導體晶圓W被自移載機構10交接至保持部7之基座74,並被以水平姿勢自下方保持。半導體晶圓W由豎立設置於保持板75上之複數個基板支持銷77支持而保持於基座74上。又,半導體晶圓W被以經過圖案形成且注入有雜質之正面作為上表面而保持於保持部7上。於由複數個基板支持銷77支持之半導體晶圓W之背面(與正面為相反側之主面)與保持板75之保持面75a之間形成規定間隔。下降至基座74之下方之一對移載臂11藉由水平移動機構13退避至退避位置、即凹部62之內側。
After the unprocessed semiconductor wafer W is placed on the lift pins 12 , the
於半導體晶圓W被保持部7之基座74自下方保持為水平姿勢後,40根鹵素燈HL一齊點亮而開始預加熱(輔助加熱)。自鹵素燈HL射出之鹵素光透過由石英所形成之下側腔室窗64及基座74自半導體晶圓W之下表面照射。藉由接受來自鹵素燈HL之光照射,半導體晶圓W被預加熱而溫度上升。再者,由於移載機構10之移載臂11已退避至凹部62之內側,故而不會妨礙鹵素燈HL之加熱。
After the semiconductor wafer W is held in a horizontal posture from below by the
於利用鹵素燈HL進行預加熱時,半導體晶圓W之溫度由下部輻射溫度計20測定。即,下部輻射溫度計20經由透明窗21接收自保持於基座74上之半導體晶圓W之下表面經由開口部78放射之紅外光而測定升溫中之晶圓溫度。所測得之半導體晶圓W之溫度被傳遞至控制部3。控制部3一面監視藉由來自鹵素燈HL之光照射而升溫之半導體晶圓W之溫度是否已達到規定之預加熱溫度T1,一面控制鹵素燈HL之輸出。即,控制部3根據由下部輻射溫度計20測得之測定值,以半導體晶圓W之溫度成為預加熱溫度
T1之方式對鹵素燈HL之輸出進行反饋控制。如此,下部輻射溫度計20亦為於預加熱階段用以控制鹵素燈HL之輸出的溫度感測器。將預加熱溫度T1設為添加至半導體晶圓W中之雜質無因熱而擴散之顧慮之600℃至800℃左右(於本實施方式中為700℃)。
During preheating with the halogen lamp HL, the temperature of the semiconductor wafer W is measured by the
於半導體晶圓W之溫度達到預加熱溫度T1之後,控制部3將半導體晶圓W暫時維持在該預加熱溫度T1。具體而言,於由下部輻射溫度計20所測得之半導體晶圓W之溫度達到預加熱溫度T1之時間點,控制部3調整鹵素燈HL之輸出,將半導體晶圓W之溫度大致維持在預加熱溫度T1。
After the temperature of the semiconductor wafer W reaches the preheating temperature T1, the
藉由如此利用鹵素燈HL進行預加熱,而使半導體晶圓W整體均勻地升溫至預加熱溫度T1。於利用鹵素燈HL進行預加熱之階段,雖有較容易發生散熱之半導體晶圓W之周緣部之溫度比中央部低之傾向,但鹵素燈室4中之鹵素燈HL之配設密度為,與周緣部對向之區域者高於與半導體晶圓W之中央部對向之區域者。因此,照射至容易發生散熱之半導體晶圓W之周緣部之光量變多,能夠使預加熱階段之半導體晶圓W之面內溫度分佈變得均勻。
By preheating with the halogen lamp HL in this way, the entire semiconductor wafer W is heated up uniformly to the preheating temperature T1. In the stage of pre-heating with the halogen lamp HL, although the temperature of the peripheral portion of the semiconductor wafer W, where heat dissipation is more likely to occur, tends to be lower than that of the central portion, the arrangement density of the halogen lamps HL in the
於半導體晶圓W之溫度達到預加熱溫度T1後經過規定時間之時間點,閃光燈FL對半導體晶圓W之正面進行閃光照射。此時,自閃光燈FL放射之閃光之一部分直接射向處理腔室6內,其他部分一度被反射器52反射後射向處理腔室6內,藉由該等閃光之照射進行半導體晶圓W之閃光加熱。
At a time point when a predetermined time has elapsed after the temperature of the semiconductor wafer W reaches the preheating temperature T1 , the flash lamp FL irradiates the front surface of the semiconductor wafer W with flash light. At this time, a part of the flash light emitted from the flash lamp FL is directly emitted into the
閃光加熱係藉由來自閃光燈FL之閃光(flash light)照射而進行,故而能夠以短時間使半導體晶圓W之正面溫度上升。即,自閃光燈FL照射之閃光係將預先蓄積在電容器中之靜電能量轉換為極短之光脈衝、且照射時間為0.1毫秒以上100毫秒以下程度之極短之強閃光。並且,藉由來自閃光燈FL之閃光照射而被閃光加熱之半導體晶圓W之正面溫度瞬間上升至1000℃以上之處理溫度T2,將注入至半導體晶圓W中之雜質活化後,正面溫度急速下降。藉由上部輻射溫度計25測定閃光照射時半導體晶圓W之正面溫度。於閃光加熱中,能夠於極短時間內使半導體晶圓W之正面溫度升降,故而能夠一面抑制注入至半導體晶圓W中之雜質因熱而擴散、一面進行雜質之活化。再者,雜質之活化所需之時間與其熱擴散所需之時間相比極短,故而在0.1毫秒至100毫秒左右之不會發生擴散之短時間內即可完成活化。
Since the flash heating is performed by the irradiation of the flash light from the flash lamp FL, the front surface temperature of the semiconductor wafer W can be raised in a short time. That is, the flash irradiated from the flash lamp FL is an extremely short intense flash of about 0.1 milliseconds or more and 100 milliseconds or less by converting the electrostatic energy previously stored in the capacitor into extremely short light pulses. In addition, the front surface temperature of the semiconductor wafer W heated by the flash by the flash irradiation from the flash lamp FL instantly rises to the processing temperature T2 above 1000° C., and the front surface temperature drops rapidly after the impurity implanted into the semiconductor wafer W is activated. . The front surface temperature of the semiconductor wafer W at the time of flash irradiation was measured by the
於閃光加熱處理結束後經過規定時間後,鹵素燈HL熄滅。藉此,半導體晶圓W自預加熱溫度T1急速地降溫。降溫中之半導體晶圓W之溫度由下部輻射溫度計20予以測定,其測定結果被傳遞至控制部3。控制部3根據下部輻射溫度計20之測定結果,監視半導體晶圓W之溫度是否已降溫至規定溫度。然後,於半導體晶圓W之溫度已降溫至規定溫度以下後,移載機構10之一對移載臂11再次自退避位置水平移動至移載動作位置並上升,藉此頂起銷12自基座74之上表面突出而自基座74接收熱處理後之半導體晶圓W。繼而,開啟由閘閥185關閉之搬送開口部66,藉由搬送機器人150之搬送手151b(或搬送手151a)將載置於頂起銷12上之處理後之半導體
晶圓W搬出。搬送機器人150使搬送手151b進入至由頂起銷12頂起之半導體晶圓W之正下方位置並停止。然後,藉由一對移載臂11下降,將閃光加熱後之半導體晶圓W遞交並載置於搬送手151b上。然後,搬送機器人150使搬送手151b自處理腔室6退出而將處理後之半導體晶圓W搬出。
The halogen lamp HL is turned off after a predetermined time has elapsed after the completion of the flash heat treatment. Thereby, the temperature of the semiconductor wafer W is rapidly lowered from the preheating temperature T1. The temperature of the semiconductor wafer W under cooling is measured by the
其次,進一步詳細地說明半導體晶圓W之正面溫度之測定。半導體晶圓W之正面之溫度由上部輻射溫度計25予以測定。為了藉由上部輻射溫度計25測定半導體晶圓W之正面之溫度,需要將半導體晶圓W之正面之輻射率(自上部輻射溫度計25所觀察到之表觀輻射率)設定在上部輻射溫度計25中。典型而言,於成為製品之半導體晶圓W之正面形成有多層薄膜之情況較多。雖然上部輻射溫度計25之測定角度較淺,但當半導體晶圓W之正面積層有多層薄膜時,輻射率亦根據多層膜之狀態而變動。因此,於第1實施方式中,藉由如下方式測定半導體晶圓W之正面溫度。
Next, the measurement of the front surface temperature of the semiconductor wafer W will be described in more detail. The temperature of the front surface of the semiconductor wafer W is measured by the
圖11係表示第1實施方式之溫度測定順序之流程圖。第1實施方式中,於熱處理裝置100中對成為處理對象之半導體晶圓W開始處理之前,裝置之操作員自輸入部33設定並輸入各種資訊(步驟S11)。操作員輸入各種資訊之時機只要為於熱處理裝置100中開始處理半導體晶圓W之前之任意時間點即可,例如可為收容有半導體晶圓W之載具C被載置於裝載口110時。
FIG. 11 is a flowchart showing a temperature measurement procedure in the first embodiment. In the first embodiment, before the processing of the semiconductor wafer W to be processed in the
圖12係表示資訊輸入畫面之一例之圖。於本實施方式中,作為輸入部33及顯示部34,採用的是兼具兩者功能之觸控面板。圖12所示的是於
該觸控面板上顯示之輸入畫面之一例。操作員自圖12所示之輸入畫面輸入在半導體晶圓W之正面所形成之薄膜之膜資訊、半導體晶圓W本身之基板資訊、及與上部輻射溫度計25相關之裝置資訊。
FIG. 12 is a diagram showing an example of an information input screen. In this embodiment, as the
膜資訊中包含在半導體晶圓W之正面所形成之薄膜之膜種類、膜厚及層構成。具體而言,操作員自圖12之「層1」~「層4」各項輸入在半導體晶圓W之正面形成有多層之各薄膜之膜種類(類型)及膜厚(厚度)。又,操作員自「重複次數」一項輸入多層膜中之「層1」~「層4」之重複次數作為層構成。於圖12之例中,膜厚15nm之氮化矽(SiN)薄膜與膜厚15nm之二氧化矽(SiO2)薄膜交替地形成有4×25=100層。
The film information includes the film type, film thickness, and layer composition of the thin film formed on the front surface of the semiconductor wafer W. Specifically, the operator inputs the film type (type) and film thickness (thickness) of each thin film having multiple layers formed on the front surface of the semiconductor wafer W from “Layer 1” to “
又,基板資訊中包含形成有多層膜之半導體晶圓W之基材之種類。具體而言,操作員自圖12之「基板」一項輸入半導體晶圓W之基材之種類。於圖12之例子中,輸入矽(Si)作為半導體晶圓W之基材之種類。 In addition, the substrate information includes the type of the base material of the semiconductor wafer W on which the multilayer film is formed. Specifically, the operator inputs the type of the base material of the semiconductor wafer W from the item "substrate" in FIG. 12 . In the example of FIG. 12 , silicon (Si) is input as the type of the substrate of the semiconductor wafer W. As shown in FIG.
進而,裝置資訊中包含上部輻射溫度計25之設置角度。上部輻射溫度計25之設置角度係上部輻射溫度計25之紅外線感測器29之光軸相對於半導體晶圓W之主面之法線所成之角度。具體而言,自圖12之「角度」一項輸入上部輻射溫度計25之設置角度。再者,由於上部輻射溫度計25之設置角度係裝置之固定參數,故而亦可設定為固定值而無需逐一輸入。
Furthermore, the installation angle of the
其次,控制部3之輻射率計算部32基於所設定並輸入之各種資訊計算半導體晶圓W之正面之輻射率(步驟S12)。具體而言,操作員選擇圖12之
「計算」,藉此輻射率計算部32基於所設定並輸入之各種資訊進行運算處理而計算半導體晶圓W之正面之輻射率。形成有薄膜之半導體晶圓W之反射率係基於上述各種資訊使用菲涅耳公式等公知之理論公式算出。輻射率計算部32藉由1減去所算出之反射率而計算半導體晶圓W之輻射率(將半導體晶圓W之透射率假定為0)。再者,於步驟S12中基於各種資訊所計算出之半導體晶圓W之正面之輻射率係自上部輻射溫度計25之設置角度所觀察到之表觀輻射率。又,於步驟S12中,計算至少包含上部輻射溫度計25之測定波長區域5μm~6.5μm在內之波長區域之半導體晶圓W之正面之光譜輻射率。
Next, the
其次,輻射率計算部32計算步驟S12中所求出之半導體晶圓W之正面之輻射率之加權平均值(步驟S13)。圖13係表示步驟S12中所求出之半導體晶圓W之正面之光譜輻射率之一例之圖。圖14係表示上部輻射溫度計25之感度分佈之圖。如圖14所示,上部輻射溫度計25之測定波長區域5μm~6.5μm中,波長6μm~6.5μm之感度比波長5μm~6μm之感度低。即,於利用上部輻射溫度計25進行溫度測定時,5μm~6μm之波長區域更重要。因此,輻射率計算部32基於如圖14所示之上部輻射溫度計25之感度分佈來修正圖13所示之光譜輻射率。結果,求出如圖15所示之修正後之半導體晶圓W之正面之光譜輻射率。輻射率計算部32根據圖15所示之修正後之光譜輻射率計算上部輻射溫度計25之測定波長區域5μm~6.5μm之平均值。即,輻射率計算部32基於上部輻射溫度計25之感度分佈計算半導體晶圓W之正面之輻射率之加權平均值。
Next, the
然後,利用上部輻射溫度計25執行半導體晶圓W之正面之溫度測定(步驟S14)。此時,將步驟S13中所計算出之半導體晶圓W之正面之輻射率之加權平均值設定在上部輻射溫度計25中。上部輻射溫度計25使用該輻射率之加權平均值測定藉由閃光照射進行加熱之半導體晶圓W之正面溫度。
Then, the temperature measurement of the front surface of the semiconductor wafer W is performed using the upper radiation thermometer 25 (step S14). At this time, the weighted average value of the emissivity of the front surface of the semiconductor wafer W calculated in step S13 is set in the
於第1實施方式中,設定並輸入在半導體晶圓W之正面所形成之薄膜之膜資訊、半導體晶圓W之基板資訊、及上部輻射溫度計25之設置角度,基於上述各種資訊求出形成有多層膜之半導體晶圓W之正面之正確之輻射率。該輻射率係自上部輻射溫度計25所觀察到之表觀輻射率。然後,上部輻射溫度計25使用所求出之輻射率來測定藉由閃光照射進行加熱之半導體晶圓W之正面之溫度。由於上部輻射溫度計25係使用基於膜資訊等而正確地計算出之輻射率來進行溫度測定,故而即便形成有多層薄膜,亦能夠正確地測定半導體晶圓W之溫度。結果,能夠正確地測定閃光照射時半導體晶圓W之正面之最高達到溫度(處理溫度T2)。
In the first embodiment, the film information of the thin film formed on the front surface of the semiconductor wafer W, the substrate information of the semiconductor wafer W, and the installation angle of the
又,係基於上部輻射溫度計25之感度分佈求出半導體晶圓W之正面之輻射率之加權平均值,且上部輻射溫度計25使用該加權平均值進行溫度測定。因此,上部輻射溫度計25能夠更正確地測定半導體晶圓W之正面溫度。
In addition, the weighted average value of the emissivity of the front surface of the semiconductor wafer W is obtained based on the sensitivity distribution of the
<第2實施方式> <Second Embodiment>
其次,對本發明之第2實施方式進行說明。第2實施方式之熱處理裝 置之構成與第1實施方式相同。又,第2實施方式中之半導體晶圓W之處理順序亦與第1實施方式相同。第2實施方式與第1實施方式之不同之處在於半導體晶圓W之輻射率之計算方法。 Next, a second embodiment of the present invention will be described. Heat treatment equipment of the second embodiment The configuration is the same as that of the first embodiment. In addition, the processing procedure of the semiconductor wafer W in the second embodiment is also the same as that in the first embodiment. The second embodiment is different from the first embodiment in the calculation method of the emissivity of the semiconductor wafer W. FIG.
圖16係表示第2實施方式之溫度測定順序之流程圖。第2實施方式中,於半導體晶圓W之溫度測定之前,創建表示半導體晶圓W之反射率與膜資訊之相關關係之資料庫DB(圖10)。具體而言,藉由模擬分別求出在矽半導體基板上形成有各種膜種類及膜厚之薄膜時之反射率。然後,將所求出之反射率與作為模擬條件而設定之薄膜之膜種類及膜厚彼此建立關聯地登記於資料庫DB中。所創建之資料庫DB被儲存於作為控制部3之記憶部之磁碟35中。將複數個薄膜之膜種類及膜厚與反射率彼此建立關聯地登記於資料庫DB中。
FIG. 16 is a flowchart showing a temperature measurement procedure in the second embodiment. In the second embodiment, before the temperature measurement of the semiconductor wafer W, a database DB ( FIG. 10 ) showing the correlation between the reflectance of the semiconductor wafer W and the film information is created. Specifically, the reflectance when thin films of various film types and film thicknesses are formed on a silicon semiconductor substrate is obtained by simulation. Then, the obtained reflectance and the film type and film thickness of the thin film set as simulation conditions are associated with each other and registered in the database DB. The created database DB is stored in the
於第2實施方式中,測定成為處理對象之半導體晶圓W之反射率(步驟S21)。如上所述,為了調整朝向,而將成為處理對象之半導體晶圓W搬入至對準部230之對準腔室231中。於對準腔室231中,半導體晶圓W由旋轉支持部237支持。自反射率測定部232之投光部300射出之光被半反射鏡236反射而以0°入射角照射至半導體晶圓W之正面。自投光部300照射之光在半導體晶圓W之正面反射,該反射光透過半反射鏡236被受光部235接收。控制部3之反射率計算部31藉由受光部235所接收之來自半導體晶圓W之反射光之強度除以投光部300所照射之光之強度而算出半導體晶圓W之正面之反射率。再者,亦可一面藉由旋轉馬達238使由旋轉支持部237支持之半導體晶圓W旋轉一面測定該半導體晶圓W之反射率。
In the second embodiment, the reflectance of the semiconductor wafer W to be processed is measured (step S21 ). As described above, in order to adjust the orientation, the semiconductor wafer W to be processed is carried into the
其次,控制部3之特定部36基於步驟S21中所測得之半導體晶圓W之反射率來特定出膜資訊(步驟S22)。具體而言,特定部36自資料庫DB中提取與步驟S21中所測得之反射率建立有對應關係之膜種類及膜厚。如此特定出之膜種類及膜厚係形成於半導體晶圓W上之薄膜之膜種類及膜厚。
Next, the specifying
與第1實施方式同樣地設定並輸入薄膜之膜種類及膜厚以外之各種資訊。即,由操作員自輸入部33設定並輸入半導體晶圓W之基板資訊、上部輻射溫度計25之設置角度、及薄膜之層構成。
Various information other than the film type and film thickness of the thin film is set and input in the same manner as in the first embodiment. That is, the operator sets and inputs the substrate information of the semiconductor wafer W, the installation angle of the
以下之步驟S23~步驟S25之順序與第1實施方式中之步驟S12~步驟S14之順序相同。首先,控制器3之輻射率計算部32基於包含步驟S22中所特定出之膜資訊之各種資訊計算半導體晶圓W之正面之輻射率(步驟S23)。再者,雖然步驟S21中測定出了半導體晶圓W之正面之反射率,但由於該反射率係可見光區域之反射率,故而與上部輻射溫度計25之測定波長區域(5μm~6.5μm)之反射率不同。因此,僅僅藉由1減去步驟S21中所測得之反射率並無法求出上部輻射溫度計25之測定波長區域之輻射率。故而,與第1實施方式同樣地,基於包含薄膜之膜資訊之各種資訊來計算半導體晶圓W之正面之輻射率。
The sequence of the following steps S23 to S25 is the same as the sequence of the steps S12 to S14 in the first embodiment. First, the
其次,輻射率計算部32計算半導體晶圓W之正面之輻射率之加權平均值(步驟S24)。此處,與第1實施方式同樣地,輻射率計算部32基於上部輻射溫度計25之感度分佈來計算半導體晶圓W之正面之輻射率之加權平均
值。然後,利用上部輻射溫度計25執行半導體晶圓W之正面之溫度測定(步驟S25)。
Next, the
於第2實施方式中,並不輸入在半導體晶圓W之正面所形成之薄膜之膜種類及膜厚,而是根據半導體晶圓W之反射率來進行特定。然後,基於包含所特定出之膜種類及膜厚之各種資訊求出形成有多層膜之半導體晶圓W之正面之正確之輻射率。上部輻射溫度計25使用所求出之輻射率來測定藉由閃光照射進行加熱之半導體晶圓W之正面之溫度。與第1實施方式同樣地,上部輻射溫度計25係使用基於膜資訊等而正確地計算出之輻射率來進行溫度測定,故而即便形成有多層薄膜,亦能夠正確地測定半導體晶圓W之溫度。結果,能夠正確地測定閃光照射時半導體晶圓W之正面之最高達到溫度(處理溫度T2)。
In the second embodiment, the film type and film thickness of the thin film formed on the front surface of the semiconductor wafer W are not input, but are specified according to the reflectance of the semiconductor wafer W. Then, based on various information including the specified film type and film thickness, the correct emissivity of the front surface of the semiconductor wafer W on which the multilayer film is formed is obtained. The
<第3實施方式> <Third Embodiment>
其次,對本發明之第3實施方式進行說明。第3實施方式之熱處理裝置之構成與第1實施方式相同。又,第3實施方式中之半導體晶圓W之處理順序亦與第1實施方式相同。於第3實施方式中,使用第1實施方式或者第2實施方式中所求出之輻射率於閃光照射前預測半導體晶圓W之正面之最高達到溫度。 Next, a third embodiment of the present invention will be described. The configuration of the heat treatment apparatus of the third embodiment is the same as that of the first embodiment. In addition, the processing procedure of the semiconductor wafer W in the third embodiment is also the same as that in the first embodiment. In the third embodiment, the maximum attained temperature of the front surface of the semiconductor wafer W is predicted before flash irradiation using the emissivity obtained in the first embodiment or the second embodiment.
閃光照射時半導體晶圓W之正面之最高達到溫度與對閃光燈FL施加之電壓相關。將第1實施方式或者第2實施方式中所求出之正確之輻射率設定在上部輻射溫度計25中,藉由上部輻射溫度計25來測定對閃光燈FL施
加某種模式之電壓而照射閃光時半導體晶圓W之正面之最高達到溫度。藉此,預先求出對閃光燈FL施加之電壓與閃光照射時半導體晶圓W之正面之最高達到溫度之相關關係。
The maximum attained temperature of the front surface of the semiconductor wafer W during flash irradiation is related to the voltage applied to the flash lamp FL. The correct emissivity obtained in the first embodiment or the second embodiment is set in the
於半導體晶圓W之處理時,針對每個晶圓規定了對閃光燈FL施加之電壓。控制部3之溫度預測部39基於該施加電壓與上述相關關係來預測閃光照射時半導體晶圓W之正面之最高達到溫度。藉由已被設定第1實施方式或第2實施方式中所求出之正確之輻射率之上部輻射溫度計25所獲得之半導體晶圓W之實測溫度與預測溫度表現出良好之匹配性。
During processing of the semiconductor wafers W, the voltage to be applied to the flash lamp FL is specified for each wafer. The
<變化例> <Variation example>
以上,對本發明之實施方式進行了說明,但本發明能夠於不脫離其主旨之範圍內進行上述以外之各種變更。例如,於上述實施方式中,係計算自上部輻射溫度計25所觀察到之半導體晶圓W之正面之輻射率,但亦可計算自下部輻射溫度計20所觀察到之半導體晶圓W之背面之輻射率。於該情形時,基於在半導體晶圓W之背面所形成之薄膜之膜資訊、半導體晶圓W之基板資訊、及與下部輻射溫度計20之設置角度相關之各種資訊求出半導體晶圓W之背面之輻射率。雖然與半導體晶圓W之正面相比,背面形成有多層薄膜之情況較少,但藉由與上述實施方式同樣地求出半導體晶圓W之背面之輻射率,並將該輻射率設定在下部輻射溫度計20中,能夠藉由下部輻射溫度計20正確地測定半導體晶圓W之背面之溫度。
As mentioned above, although embodiment of this invention was described, this invention can make various changes other than the above in the range which does not deviate from the summary. For example, in the above embodiment, the emissivity of the front side of the semiconductor wafer W observed from the
又,於上述實施方式中,係基於上部輻射溫度計25之感度分佈求出
半導體晶圓W之正面之輻射率之加權平均值,但加權平均並非必需,亦可直接使用基於各種資訊所計算出之半導體晶圓W之輻射率來進行溫度測定。即便於不使用加權平均值之情形時,亦會根據所求出之半導體晶圓W之輻射率計算出上部輻射溫度計25之測定波長區域5μm~6.5μm之平均值並將其設定在上部輻射溫度計25中。如此亦能夠使用基於包含膜資訊等之各種資訊所計算出之輻射率來正確地測定半導體晶圓W之正面溫度。然而,如上述實施方式般,基於上部輻射溫度計25之感度分佈求出半導體晶圓W之正面之輻射率之加權平均值並將該加權平均值設定在上部輻射溫度計25中的話,能夠更正確地測定半導體晶圓W之正面溫度。
In addition, in the above-mentioned embodiment, it is calculated based on the sensitivity distribution of the
又,於上述實施方式中,閃光燈室5中具備30根閃光燈FL,但並不限於此,閃光燈FL之根數可設為任意數量。又,閃光燈FL並不限於氙氣閃光燈,亦可為氪氣閃光燈。又,鹵素燈室4所具備之鹵素燈HL之根數亦不限於40根,可設為任意數量。
In addition, in the above-described embodiment, the
又,於上述實施方式中,使用燈絲方式之鹵素燈HL作為連續發光1秒以上之連續點亮燈進行半導體晶圓W之預加熱,但並不限於此,亦可使用放電型之電弧燈(例如氙弧燈)代替鹵素燈HL作為連續點亮燈進行預加熱。 In addition, in the above-mentioned embodiment, the preheating of the semiconductor wafer W is performed using the halogen lamp HL of the filament type as the continuous lighting lamp that continuously emits light for 1 second or more, but it is not limited to this, and a discharge type arc lamp ( For example, a xenon arc lamp) is used for preheating as a continuous lighting lamp instead of the halogen lamp HL.
又,被熱處理裝置100作為處理對象之基板並不限於半導體晶圓,亦可為用於液晶顯示裝置等平板顯示器之玻璃基板或太陽能電池用基板。
In addition, the substrate to be processed by the
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019151893A JP7370763B2 (en) | 2019-08-22 | 2019-08-22 | Heat treatment method and heat treatment equipment |
JP2019-151893 | 2019-08-22 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202123341A TW202123341A (en) | 2021-06-16 |
TWI760773B true TWI760773B (en) | 2022-04-11 |
Family
ID=74645914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109121249A TWI760773B (en) | 2019-08-22 | 2020-06-23 | Heat treatment method |
Country Status (5)
Country | Link |
---|---|
US (1) | US11876006B2 (en) |
JP (1) | JP7370763B2 (en) |
KR (1) | KR20210023748A (en) |
CN (1) | CN112420498B (en) |
TW (1) | TWI760773B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7370763B2 (en) * | 2019-08-22 | 2023-10-30 | 株式会社Screenホールディングス | Heat treatment method and heat treatment equipment |
KR102583261B1 (en) * | 2020-10-28 | 2023-09-27 | 세메스 주식회사 | Apparatus and method for treating substrates |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201724266A (en) * | 2015-12-22 | 2017-07-01 | 斯庫林集團股份有限公司 | Thermal processing apparatus and thermal processing method |
TW201906012A (en) * | 2017-06-28 | 2019-02-01 | 日商斯庫林集團股份有限公司 | Heat treatment device and heat treatment method |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4764026A (en) * | 1986-07-07 | 1988-08-16 | Varian Associates, Inc. | Semiconductor wafer temperature measuring device and method |
JPH04125433A (en) | 1990-09-18 | 1992-04-24 | Sumitomo Electric Ind Ltd | Method for measuring temperature by means of infrared rays |
US5165791A (en) | 1990-09-18 | 1992-11-24 | Sumitomo Electric Industries, Ltd. | Method and apparatus for measuring temperature based on infrared light |
EP0612862A1 (en) * | 1993-02-24 | 1994-08-31 | Applied Materials, Inc. | Measuring wafer temperatures |
JPH07159246A (en) * | 1993-12-09 | 1995-06-23 | Tokai Carbon Co Ltd | Temperature measuring method for semiconductor wafer |
JPH09246200A (en) * | 1996-03-12 | 1997-09-19 | Shin Etsu Handotai Co Ltd | Heating method and radiant heater |
JPH10321539A (en) * | 1997-05-22 | 1998-12-04 | Hitachi Ltd | Method and device for producing semiconductor |
JPH11160028A (en) * | 1997-11-27 | 1999-06-18 | Dainippon Screen Mfg Co Ltd | Film thickness measuring apparatus and film thickness measuring method |
JP4056148B2 (en) * | 1998-10-09 | 2008-03-05 | 東京エレクトロン株式会社 | Temperature measurement method using a radiation thermometer |
KR100396216B1 (en) | 2001-06-19 | 2003-09-02 | 코닉 시스템 주식회사 | Method for measuring temperature of a wafer in a rapid thermal processing apparatus |
JP3753375B2 (en) * | 2002-01-24 | 2006-03-08 | 株式会社堀場製作所 | Wafer temperature measurement method in semiconductor process |
JP4675579B2 (en) | 2003-06-30 | 2011-04-27 | 大日本スクリーン製造株式会社 | Optical energy absorption ratio measuring method, optical energy absorption ratio measuring apparatus and heat treatment apparatus |
JP2006090978A (en) * | 2004-09-27 | 2006-04-06 | Toshiba Corp | Radiation temperature measuring method, radiation temperature indicator and substrate processing apparatus |
US8222574B2 (en) * | 2007-01-15 | 2012-07-17 | Applied Materials, Inc. | Temperature measurement and control of wafer support in thermal processing chamber |
JP2008235858A (en) * | 2007-02-20 | 2008-10-02 | National Institute Of Advanced Industrial & Technology | Method of measuring semiconductor surface temperature, and device therefor |
JP2011080790A (en) | 2009-10-05 | 2011-04-21 | National Institute Of Advanced Industrial Science & Technology | Reference light source device for radiation thermometer |
JP2012074430A (en) | 2010-09-28 | 2012-04-12 | Dainippon Screen Mfg Co Ltd | Heat treatment device and heat treatment method |
JP5819633B2 (en) | 2011-05-13 | 2015-11-24 | 株式会社Screenホールディングス | Heat treatment apparatus and heat treatment method |
DE102012005428B4 (en) * | 2012-03-16 | 2014-10-16 | Centrotherm Photovoltaics Ag | Device for determining the temperature of a substrate |
TWI563542B (en) * | 2014-11-21 | 2016-12-21 | Hermes Epitek Corp | Approach of controlling the wafer and the thin film surface temperature |
JP6654374B2 (en) * | 2015-08-17 | 2020-02-26 | 株式会社Screenホールディングス | Heat treatment method and heat treatment apparatus |
CN106505015B (en) * | 2016-09-30 | 2019-04-05 | 中国电子科技集团公司第四十八研究所 | A kind of temperature measuring device for fast heat treatment device |
JP6906837B2 (en) | 2017-02-13 | 2021-07-21 | 株式会社ディスコ | Laser processing equipment |
JP6838992B2 (en) * | 2017-02-21 | 2021-03-03 | 株式会社Screenホールディングス | Heat treatment equipment and heat treatment method |
JP7265314B2 (en) * | 2017-03-03 | 2023-04-26 | 株式会社Screenホールディングス | Heat treatment method and heat treatment apparatus |
US11476167B2 (en) * | 2017-03-03 | 2022-10-18 | SCREEN Holdings Co., Ltd. | Heat treatment method and heat treatment apparatus of light irradiation type |
JP6824080B2 (en) | 2017-03-17 | 2021-02-03 | 株式会社Screenホールディングス | Measurement position adjustment method for heat treatment equipment and radiation thermometer |
JP6942615B2 (en) * | 2017-11-20 | 2021-09-29 | 株式会社Screenホールディングス | Heat treatment method and heat treatment equipment |
JP7013259B2 (en) | 2018-01-26 | 2022-01-31 | 株式会社Screenホールディングス | Heat treatment equipment and heat treatment method |
JP7518334B2 (en) * | 2019-02-07 | 2024-07-18 | 日本製鉄株式会社 | Temperature Measurement Method |
JP7372074B2 (en) * | 2019-08-07 | 2023-10-31 | 株式会社Screenホールディングス | Heat treatment method |
JP7370763B2 (en) * | 2019-08-22 | 2023-10-30 | 株式会社Screenホールディングス | Heat treatment method and heat treatment equipment |
JP7336369B2 (en) * | 2019-11-25 | 2023-08-31 | 株式会社Screenホールディングス | SUBSTRATE SUPPORTING DEVICE, HEAT TREATMENT APPARATUS, SUBSTRATE SUPPORTING METHOD, HEAT TREATMENT METHOD |
JP7461214B2 (en) * | 2020-05-19 | 2024-04-03 | 株式会社Screenホールディングス | heat treatment equipment |
-
2019
- 2019-08-22 JP JP2019151893A patent/JP7370763B2/en active Active
-
2020
- 2020-06-23 TW TW109121249A patent/TWI760773B/en active
- 2020-07-01 US US16/918,049 patent/US11876006B2/en active Active
- 2020-07-24 CN CN202010725076.6A patent/CN112420498B/en active Active
- 2020-08-20 KR KR1020200104602A patent/KR20210023748A/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201724266A (en) * | 2015-12-22 | 2017-07-01 | 斯庫林集團股份有限公司 | Thermal processing apparatus and thermal processing method |
TW201906012A (en) * | 2017-06-28 | 2019-02-01 | 日商斯庫林集團股份有限公司 | Heat treatment device and heat treatment method |
Also Published As
Publication number | Publication date |
---|---|
CN112420498A (en) | 2021-02-26 |
US11876006B2 (en) | 2024-01-16 |
CN112420498B (en) | 2024-08-13 |
KR20210023748A (en) | 2021-03-04 |
US20210057245A1 (en) | 2021-02-25 |
TW202123341A (en) | 2021-06-16 |
JP7370763B2 (en) | 2023-10-30 |
JP2021034505A (en) | 2021-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102504970B1 (en) | Substrate support device, thermal processing apparatus, substrate support method, and thermal processing method | |
KR102549304B1 (en) | Heat treatment method and heat treatment apparatus | |
WO2021131276A1 (en) | Heat treatment apparatus and heat treatment method | |
KR20200033733A (en) | Heat treatment method and heat treatment apparatus | |
TWI738120B (en) | Heat treatment method and heat treatment apparatus | |
KR20210143123A (en) | Thermal processing apparatus | |
TWI754850B (en) | Heat treatment method and heat treatment apparatus | |
TWI760773B (en) | Heat treatment method | |
TWI757561B (en) | Heat treatment method | |
TWI688007B (en) | Heat treatment method | |
TW202025309A (en) | Heat treatment method and heat treatment apparatus | |
TW202030802A (en) | Heat treatment method and heat treatment apparatus | |
JP7294802B2 (en) | Heat treatment method and heat treatment apparatus | |
JP7304151B2 (en) | Heat treatment method and heat treatment apparatus | |
KR20240037154A (en) | Heat treatment method and heat treatment apparatus | |
JP2023045652A (en) | Thermal treatment method and thermal treatment device | |
CN115831807A (en) | Heat treatment apparatus and heat treatment method | |
CN118629895A (en) | Heat treatment device and heat treatment method | |
TW202002083A (en) | Heat treatment apparatus and heat treatment method |