JPH07159246A - Temperature measuring method for semiconductor wafer - Google Patents

Temperature measuring method for semiconductor wafer

Info

Publication number
JPH07159246A
JPH07159246A JP5341469A JP34146993A JPH07159246A JP H07159246 A JPH07159246 A JP H07159246A JP 5341469 A JP5341469 A JP 5341469A JP 34146993 A JP34146993 A JP 34146993A JP H07159246 A JPH07159246 A JP H07159246A
Authority
JP
Japan
Prior art keywords
temperature
wafer
component
semiconductor wafer
emissivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5341469A
Other languages
Japanese (ja)
Inventor
Risa Ueda
りさ 植田
Masanao Sasaki
正直 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP5341469A priority Critical patent/JPH07159246A/en
Publication of JPH07159246A publication Critical patent/JPH07159246A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a noncontact temperature measuring method for measuring the temperature of a semiconductor wafer under surface treatment with emissivity varying every moment accurately regardless of the variation of the emissivity. CONSTITUTION:Infrared radiation from a semiconductor wafer under surface treatment process is divided into a p-polarization component and an s- polarization component. The temperature is measures by means of a radiation thermometer starting from an angle where the predetermined emissivity of p-component(epsilonp) is constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばスパッタ、エッ
チング、酸化成膜等の表面処理を施す加熱過程にある半
導体ウエハーの温度を非接触状態で精度よく測定する方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for accurately measuring the temperature of a semiconductor wafer in a non-contact state during a heating process in which a surface treatment such as sputtering, etching or oxide film formation is performed.

【0002】[0002]

【従来の技術】半導体装置の製造工程のうち、例えばS
iウエハーの表面に酸化膜を形成する処理段階において
は、適正な成膜状態を得るためにウエハーの温度を正確
に制御する必要がある。このため、従来からウエハーの
裏面に熱電対を接触させて測温する方法や放射温度計を
用いて測温する方法によって、加熱処理中のウエハー温
度が測定されている。
2. Description of the Related Art Among semiconductor device manufacturing processes, for example, S
At the processing step of forming an oxide film on the surface of the i-wafer, it is necessary to accurately control the temperature of the wafer in order to obtain an appropriate film formation state. For this reason, conventionally, the temperature of the wafer being heated is measured by a method of measuring the temperature by bringing a thermocouple into contact with the back surface of the wafer or a method of measuring the temperature by using a radiation thermometer.

【0003】このうち後者の放射温度計を用いる方法
は、半導体ウエハーと非接触の状態で測温できる利点が
ある関係で熱電対法に比べて実用化率が高いが、被測定
体からの赤外放射を温度に換算するためにウエハーの放
射率を設定する操作が必要となる。ところが、処理中に
おける半導体ウエハーの放射率は一定ではないので、温
度測定系とは別に放射率測定系を設け、ここで測定した
データをフィードバックして温度を得る方法(特開平3
−165514号公報、特開平4−297054号公報)や、半導体
ウエハーを直接に測定せず、これに密着したサセプター
の温度を放射温度計で測る方法(特開平4−226047号公
報) 等が試みられている。
Of these, the latter method using a radiation thermometer has a high practical use rate as compared with the thermocouple method because it has the advantage of being able to measure the temperature in a state of non-contact with the semiconductor wafer, but the red color from the measured object is high. It is necessary to set the emissivity of the wafer in order to convert the external radiation into temperature. However, since the emissivity of the semiconductor wafer during processing is not constant, an emissivity measuring system is provided in addition to the temperature measuring system, and the data measured here is fed back to obtain the temperature (Japanese Patent Laid-Open No. Hei 3).
-165514, Japanese Patent Laid-Open No. 4-297054), and a method of measuring the temperature of a susceptor in close contact with a semiconductor wafer by a radiation thermometer without directly measuring the semiconductor wafer (Japanese Patent Laid-Open No. 4-226047). Has been.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の放射温度計による測温方法では、温度測定系と
は別に放射率測定系を設置したとしても、膜形成等の処
理中に同時進行的に放射率を測定することができない関
係で、結局、リアルタイムで連続的に温度モニターする
ことができない問題点がある。
However, in the above-described conventional temperature measuring method using the radiation thermometer, even if the emissivity measuring system is installed separately from the temperature measuring system, the simultaneous progress during the processing such as film formation. Since the emissivity cannot be measured, there is a problem that the temperature cannot be continuously monitored in real time.

【0005】本発明は、このような問題点を解決するた
めになされたもので、放射率が刻々変化する表面処理中
の半導体ウエハー温度を、放射率変動の影響を受けずに
非接触で正確に測温する方法の提供を目的としている。
The present invention has been made in order to solve such a problem, and accurately measures the temperature of a semiconductor wafer during surface treatment in which the emissivity changes every moment without being affected by the change in the emissivity. The purpose is to provide a method of measuring temperature.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による半導体ウエハーの温度測定方法は、表
面処理過程にある半導体ウエハーから放射される赤外線
放射を偏光のp成分とs成分に分け、予め求められたp
成分の放射率(εp)が一定となる角度から放射温度計
を用いて測温することを構成上の特徴とする。
A method for measuring the temperature of a semiconductor wafer according to the present invention to achieve the above object is to convert infrared radiation emitted from a semiconductor wafer undergoing a surface treatment into a p component and a s component of polarized light. Divided and p obtained in advance
A structural feature is that the temperature is measured using an emission thermometer from an angle at which the emissivity (εp) of the component is constant.

【0007】一般に、半導体ウエハーの成膜化等による
処理過程においては、膜厚などによる表面状態の変化に
伴って光の干渉効果に基づく表面の反射率が周期的に変
化していく。放射率εの大きさは、反射率Rと透過率T
からε=1−(R+T)と表されるが、Siウエハーは
1μm 以下の波長域においては不透明(T=0)である
から、反射率Rの変化は放射率εの変化と同義に捉える
ことができる。しかし、Siウエハー表面にSiO2
を形成する際の膜厚変化に伴う放射率の変動は図1に示
すように極めて大きく、これを通常の放射温度計で測温
することは至難である。
Generally, in the process of forming a film on a semiconductor wafer, the reflectance of the surface changes periodically due to the interference effect of light with the change of the surface state due to the film thickness and the like. The emissivity ε depends on the reflectance R and the transmittance T.
Is expressed as ε = 1- (R + T), but since the Si wafer is opaque (T = 0) in the wavelength range of 1 μm or less, the change in reflectance R should be regarded as the same as the change in emissivity ε. You can However, when the SiO 2 film is formed on the surface of the Si wafer, the change in the emissivity due to the change in the film thickness is extremely large as shown in FIG. 1, and it is difficult to measure the temperature with an ordinary radiation thermometer.

【0008】このように膜厚の変化する半導体ウエハー
からの反射光は、偏光フィルターや偏光プリズム等を用
いることにより、s成分とp成分に分けることができ
る。まず、屈折率nj 、厚さdj (j=1,2,…,l) のl
層の非吸収性多層膜を考えると、次式(1) のスネルの法
則が成り立つことが知られている〔「光工学ハンドブッ
ク」、1986,2,20 発行(朝倉書店),p160-169 〕。 n0 sinφ0 = nj sin φj (j=1,2,… l+1) ……(1)
The reflected light from the semiconductor wafer whose film thickness changes in this way can be divided into an s component and a p component by using a polarizing filter, a polarizing prism or the like. First, l of refractive index n j and thickness d j (j = 1,2, ..., l)
It is known that the Snell's law of the following equation (1) holds when considering a non-absorbing multilayer film of layers ["Optical Engineering Handbook", published 1986, February 20, 20 (Asakura Shoten), p160-169] . n 0 sin φ 0 = n j sin φ j (j = 1,2,… l + 1) …… (1)

【0009】(1) 式で、入射角φ0 はウエハーの法線と
入射光のなす角度である。一方、偏光のs成分とp成分
についての実効屈折率ηj は、ηj =-nj ・cos φ
j (s成分)、ηj = nj /cos φj (p成分)、また
δj =2π nj ・ dj cos φj /λとおくと、均質単層
膜の性質を示す特性行列Μj は (2)式のように表され
る。
In the equation (1), the incident angle φ 0 is an angle formed by the incident light and the normal line of the wafer. On the other hand, the effective refractive index η j for the s component and p component of polarized light is η j = -n j · cos φ
When j (s component), η j = n j / cos φ j (p component), and δ j = 2π n j · d j cos φ j / λ are set, a characteristic matrix Μ showing the properties of a homogeneous single layer film j is expressed as in equation (2).

【0010】[0010]

【数1】 [Equation 1]

【0011】従って、多層膜を表す行列Μは、各層に対
応する特性行列の積として (3)式で与えられる。
Therefore, the matrix Μ representing the multilayer film is given by the equation (3) as the product of the characteristic matrices corresponding to each layer.

【0012】[0012]

【数2】 [Equation 2]

【0013】最初の媒質側からみた多層膜の振幅反射係
数は、(4) 式で示される。
The amplitude reflection coefficient of the multilayer film when viewed from the first medium side is expressed by the equation (4).

【0014】[0014]

【数3】 [Equation 3]

【0015】ただし、(1) 式のスネルの法則によりη
1+1 =ηo が成立するので、(4) 式は(5) 式のようにな
る。
However, according to Snell's law of equation (1), η
Since 1 + 1 = η o holds, Eq. (4) becomes Eq. (5).

【0016】[0016]

【数4】 [Equation 4]

【0017】(5) 式の値は複素数を含むので、多層膜の
反射率R0 はこれの実効値として (6)式により求められ
る。
Since the value of the equation (5) includes a complex number, the reflectance R 0 of the multilayer film is obtained by the equation (6) as its effective value.

【0018】[0018]

【数5】 [Equation 5]

【0019】以上のようにして、dが変化する多層膜の
反射率を偏光のs、p両成分について算出することがで
きる。この計算をSiウエハーに対して行ったところ、
ある特定の入射角度では放射率が一定になることが検証
された。
As described above, the reflectance of the multilayer film in which d changes can be calculated for both the s and p components of polarized light. When this calculation is performed on a Si wafer,
It was verified that the emissivity was constant at a certain incident angle.

【0020】本発明は、上記の原理を応用し、予め求め
られたp成分の放射率(εp)が一定となる角度に放射
温度計の視野を合わせてセットし、表面処理過程にある
半導体ウエハーの温度を連続的に測温する。
In the present invention, the above principle is applied to a semiconductor wafer in the process of surface treatment, in which the field of view of the radiation thermometer is set at an angle at which the emissivity (εp) of the p component obtained in advance is constant. The temperature of is measured continuously.

【0021】[0021]

【作用】本発明によれば、放射率が一定となる入射角度
を測定角とし、被測温体となる半導体ウエハーからの温
度に対応した放射を偏光成分に分けて検出することによ
り、膜厚の変化等による放射率の変動に影響されずに半
導体ウエハーの測温が可能となる。したがって、放射率
が刻々変化する表面処理中の半導体ウエハーを対象とし
て、常に非接触状態によるリアルタイムでの正確な温度
モニタが可能になり、品質の信頼性を向上させることが
できる。
According to the present invention, the incident angle at which the emissivity is constant is taken as the measurement angle, and the radiation corresponding to the temperature from the semiconductor wafer as the temperature-measuring object is divided into polarization components and detected, so that the film thickness It is possible to measure the temperature of the semiconductor wafer without being affected by the change in the emissivity due to the change in the temperature. Therefore, it is possible to perform accurate temperature monitoring in real time in a non-contact state at all times for a semiconductor wafer undergoing surface treatment whose emissivity changes from moment to moment, and improve the reliability of quality.

【0022】[0022]

【実施例】以下、本発明の温度測定方法をSiウエハー
表面へSiO2 およびSi3 4膜を形成する表面処理
過程での測温に適用した実施例に基づいて説明する。
EXAMPLES Hereinafter, the temperature measuring method of the present invention will be described with reference to an example in which it is applied to temperature measurement in a surface treatment process for forming SiO 2 and Si 3 N 4 films on the surface of a Si wafer.

【0023】放射温度計にはシリコンソーラセルを赤外
検出器として用いたものを使い、測定波長はSiウエハ
ーが不透明である0.9μm とした。同波長でのSi、
SiO2 およびSi3 4 の屈折率は、順に3.65、
1.45、2.00である。これは、先に述べた各偏光
成分の反射率算出過程においてj=1,2のモデルであ
る。
A radiation thermometer using a silicon solar cell as an infrared detector was used, and the measurement wavelength was 0.9 μm at which the Si wafer was opaque. Si at the same wavelength,
The refractive indices of SiO 2 and Si 3 N 4 are 3.65,
They are 1.45 and 2.00. This is a model of j = 1, 2 in the process of calculating the reflectance of each polarization component described above.

【0024】図2〜図9は、測定波長0.9μm のとき
に0〜5000オングストロームまでSiO2 膜の膜厚
が変化する段階におけるSiウエハーの反射率を様々な
入射角度φ0 から観察した際の偏光成分別(s成分およ
びp成分)の算出結果を示したグラフであり、また図1
0〜図17は同様にSi3 4 膜についてのグラフであ
る。SiO2 膜(図2〜9)およびSi3 4 膜(図1
0〜17)共に、入射角が10°〜30°程度までは、
s成分、p成分どちらも膜厚の変化による反射率Rの変
化が顕著であるが、入射角が50〜60°になると、膜
厚の変動に係わりなくp成分の反射率Rは変化しなくな
る。したがって、この入射角度50〜60°の範囲が、
p成分の放射率(εp)が一定となり、上記条件のSi
ウエハーに対する最適測定角度となる。
2 to 9 show the reflectance of a Si wafer at various incident angles φ 0 when the thickness of the SiO 2 film changes from 0 to 5000 angstroms at a measurement wavelength of 0.9 μm. 2 is a graph showing calculation results for each polarization component (s component and p component) of FIG.
Similarly, FIGS. 0 to 17 are graphs of the Si 3 N 4 film. SiO 2 film (FIGS. 2-9) and Si 3 N 4 film (FIG. 1)
0 to 17), when the incident angle is about 10 ° to 30 °,
Both of the s component and the p component show a remarkable change in the reflectance R due to the change in the film thickness, but when the incident angle is 50 to 60 °, the reflectance R of the p component does not change regardless of the change in the film thickness. . Therefore, the range of this incident angle of 50 to 60 ° is
The emissivity (εp) of the p component becomes constant, and Si under the above conditions
This is the optimum measurement angle for the wafer.

【0025】上記の入射角50〜60°の角度範囲で、
SiO2 およびSi3 4 被膜を形成する表面処理中の
Siウエハーが視野に入るように放射温度計を設置し
た。放射温度計の前面には、Siウエハーからの赤外放
射を偏光成分(s成分、p成分)に分けて検出するため
の偏光フイルター(50φ×2.0t )を取付けた。こ
のようにして、膜厚が0〜5000オングストロームま
で変化する表面処理過程でのSiウエハの温度をモニタ
ーした。処理温度は900および1050℃とし、同時
に測定した熱電対での結果を真温度として測定結果を比
較したところ、測定誤差は±1℃以内であった。この結
果から、本発明による温度測定方法は、膜厚増加に伴う
放射率の変動影響を受けることなく、半導体ウエハーの
温度を正確に測定できることが認められた。
In the above-mentioned incident angle range of 50 to 60 °,
The radiation thermometer was placed so that the Si wafer during the surface treatment forming the SiO 2 and Si 3 N 4 coatings was in view. On the front surface of the radiation thermometer, a polarization filter (50φ × 2.0t) for detecting the infrared radiation from the Si wafer by dividing it into polarization components (s component, p component) was attached. In this way, the temperature of the Si wafer was monitored during the surface treatment process in which the film thickness varied from 0 to 5000 angstroms. When the treatment temperature was set to 900 and 1050 ° C., and the results of the thermocouple measured at the same time were used as the true temperature and the measurement results were compared, the measurement error was within ± 1 ° C. From this result, it was confirmed that the temperature measuring method according to the present invention can accurately measure the temperature of the semiconductor wafer without being affected by the change in the emissivity due to the increase in the film thickness.

【0026】[0026]

【発明の効果】以上のとおり、本発明によれば従来技術
では測温が不可能とされていた表面処理過程にある半導
体ウエハーの温度を非接触状態で正確かつリアルタイム
に測定することが可能となる。したがって、例えばスパ
ッタ、エッチング、酸化成膜等の表面処理工程におい
て、半導体ウエハーの温度を連続的にモニターする温度
管理操作に極めて有用である。
As described above, according to the present invention, it is possible to accurately and in real time measure the temperature of a semiconductor wafer in a surface treatment process, which has been impossible to measure temperature in the prior art, in a non-contact state. Become. Therefore, it is extremely useful for a temperature control operation for continuously monitoring the temperature of a semiconductor wafer in a surface treatment process such as sputtering, etching, and oxide film formation.

【図面の簡単な説明】[Brief description of drawings]

【図1】Siウエハー表面にSiO2 膜を形成した際の
膜厚と放射率の関係を示したグラフである。
FIG. 1 is a graph showing the relationship between film thickness and emissivity when a SiO 2 film is formed on the surface of a Si wafer.

【図2】実施例において、入射角10°から観察したS
iウエハー表面のSiO2 膜厚と反射率との関係を偏光
成分別に示したグラフである。
FIG. 2 shows S observed from an incident angle of 10 ° in the example.
5 is a graph showing the relationship between the SiO 2 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図3】実施例において、入射角20°から観察したS
iウエハー表面のSiO2 膜厚と反射率との関係を偏光
成分別に示したグラフである。
FIG. 3 shows S observed from an incident angle of 20 ° in the example.
5 is a graph showing the relationship between the SiO 2 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図4】実施例において、入射角30°から観察したS
iウエハー表面のSiO2 膜厚と反射率との関係を偏光
成分別に示したグラフである。
FIG. 4 shows S observed from an incident angle of 30 ° in the example.
5 is a graph showing the relationship between the SiO 2 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図5】実施例において、入射角40°から観察したS
iウエハー表面のSiO2 膜厚と反射率との関係を偏光
成分別に示したグラフである。
FIG. 5 shows S observed from an incident angle of 40 ° in the example.
5 is a graph showing the relationship between the SiO 2 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図6】実施例において、入射角50°から観察したS
iウエハー表面のSiO2 膜厚と反射率との関係を偏光
成分別に示したグラフである。
FIG. 6 shows S observed at an incident angle of 50 ° in the example.
5 is a graph showing the relationship between the SiO 2 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図7】実施例において、入射角60°から観察したS
iウエハー表面のSiO2 膜厚と反射率との関係を偏光
成分別に示したグラフである。
FIG. 7 shows S observed from an incident angle of 60 ° in the example.
5 is a graph showing the relationship between the SiO 2 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図8】実施例において、入射角70°から観察したS
iウエハー表面のSiO2 膜厚と反射率との関係を偏光
成分別に示したグラフである。
FIG. 8 shows S observed from an incident angle of 70 ° in the example.
5 is a graph showing the relationship between the SiO 2 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図9】実施例において、入射角80°から観察したS
iウエハー表面のSiO2 膜厚と反射率との関係を偏光
成分別に示したグラフである。
FIG. 9 shows S observed from an incident angle of 80 ° in the example.
5 is a graph showing the relationship between the SiO 2 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図10】実施例において、入射角10°から観察したS
iウエハー表面のSi3 4 膜厚と反射率との関係を偏
光成分別に示したグラフである。
FIG. 10 shows S observed from an incident angle of 10 ° in Examples.
6 is a graph showing the relationship between the Si 3 N 4 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図11】実施例において、入射角20°から観察したS
iウエハー表面のSi3 4 膜厚と反射率との関係を偏
光成分別に示したグラフである。
FIG. 11 shows S observed at an incident angle of 20 ° in the example.
6 is a graph showing the relationship between the Si 3 N 4 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図12】実施例において、入射角30°から観察したS
iウエハー表面のSi3 4 膜厚と反射率との関係を偏
光成分別に示したグラフである。
FIG. 12 shows S observed at an incident angle of 30 ° in Examples.
6 is a graph showing the relationship between the Si 3 N 4 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図13】実施例において、入射角40°から観察したS
iウエハー表面のSi3 4 膜厚と反射率との関係を偏
光成分別に示したグラフである。
FIG. 13 shows S observed at an incident angle of 40 ° in Examples.
6 is a graph showing the relationship between the Si 3 N 4 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図14】実施例において、入射角50°から観察したS
iウエハー表面のSi3 4 膜厚と反射率との関係を偏
光成分別に示したグラフである。
[FIG. 14] S observed from an incident angle of 50 ° in Examples.
6 is a graph showing the relationship between the Si 3 N 4 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図15】実施例において、入射角60°から観察したS
iウエハー表面のSi3 4 膜厚と反射率との関係を偏
光成分別に示したグラフである。
FIG. 15 is an S image observed at an incident angle of 60 ° in Examples.
6 is a graph showing the relationship between the Si 3 N 4 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図16】実施例において、入射角70°から観察したS
iウエハー表面のSi3 4 膜厚と反射率との関係を偏
光成分別に示したグラフである。
FIG. 16 is an S image observed at an incident angle of 70 ° in Examples.
6 is a graph showing the relationship between the Si 3 N 4 film thickness on the i-wafer surface and the reflectance for each polarization component.

【図17】実施例において、入射角80°から観察したS
iウエハー表面のSi3 4 膜厚と反射率との関係を偏
光成分別に示したグラフである。
FIG. 17 shows S observed from an incident angle of 80 ° in Examples.
6 is a graph showing the relationship between the Si 3 N 4 film thickness on the i-wafer surface and the reflectance for each polarization component.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面処理過程にある半導体ウエハーから
放射される赤外線放射を偏光のp成分とs成分に分け、
予め求められたp成分の放射率 (εp) が一定となる角
度から放射温度計を用いて測温することを特徴とする半
導体ウエハーの温度測定方法。
1. Infrared radiation emitted from a semiconductor wafer undergoing surface treatment is divided into a p component and a s component of polarized light.
A method for measuring a temperature of a semiconductor wafer, which comprises measuring a temperature from an angle at which a predetermined p-component emissivity (εp) is constant, using a radiation thermometer.
JP5341469A 1993-12-09 1993-12-09 Temperature measuring method for semiconductor wafer Pending JPH07159246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5341469A JPH07159246A (en) 1993-12-09 1993-12-09 Temperature measuring method for semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5341469A JPH07159246A (en) 1993-12-09 1993-12-09 Temperature measuring method for semiconductor wafer

Publications (1)

Publication Number Publication Date
JPH07159246A true JPH07159246A (en) 1995-06-23

Family

ID=18346310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5341469A Pending JPH07159246A (en) 1993-12-09 1993-12-09 Temperature measuring method for semiconductor wafer

Country Status (1)

Country Link
JP (1) JPH07159246A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009081748A1 (en) * 2007-12-20 2011-05-06 学校法人 東洋大学 Radiation temperature measurement method and radiation temperature measurement system
US9865513B2 (en) 2014-05-21 2018-01-09 Mitsubishi Electric Corporation Semiconductor device manufacturing method
CN112420498A (en) * 2019-08-22 2021-02-26 株式会社斯库林集团 Heat treatment method and heat treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009081748A1 (en) * 2007-12-20 2011-05-06 学校法人 東洋大学 Radiation temperature measurement method and radiation temperature measurement system
US9865513B2 (en) 2014-05-21 2018-01-09 Mitsubishi Electric Corporation Semiconductor device manufacturing method
DE112014006683B4 (en) 2014-05-21 2019-10-02 Mitsubishi Electric Corporation Semiconductor device manufacturing method
CN112420498A (en) * 2019-08-22 2021-02-26 株式会社斯库林集团 Heat treatment method and heat treatment apparatus

Similar Documents

Publication Publication Date Title
US5501637A (en) Temperature sensor and method
US6392756B1 (en) Method and apparatus for optically determining physical parameters of thin films deposited on a complex substrate
US5313044A (en) Method and apparatus for real-time wafer temperature and thin film growth measurement and control in a lamp-heated rapid thermal processor
EP0231264B1 (en) Method and apparatus for nondestructively determining the characteristics of a multilayer thin film structure
US10760896B2 (en) Ellipsometer and method for estimating thickness of film
US5929995A (en) System and method for directing electromagnetic beams
US20030197864A1 (en) Monitoring temperature and sample characteristics using a rotating compensator ellipsometer
US6174081B1 (en) Specular reflection optical bandgap thermometry
JPH07159246A (en) Temperature measuring method for semiconductor wafer
EP0545302A1 (en) Method and apparatus for monitoring oxide superconducting film
US5717490A (en) Method for identifying order skipping in spectroreflective film measurement equipment
JP3520379B2 (en) Optical constant measuring method and device
US5624190A (en) Method and apparatus for measuring the temperature of an object, in particular a semiconductor, by ellipsometry
US6731386B2 (en) Measurement technique for ultra-thin oxides
CN103674892A (en) Method for monitoring thin-film growth based on total internal reflection polarized phase-difference measurement
JPH05273045A (en) Temperature measuring apparatus for object covered with transparent thin film
Hansen et al. Thickness and refractive index analysis of ellipsometry data of ultra-thin semi-transparent films
JPH0743310A (en) Particle inspection method
JP2002194553A (en) Method for real time control of manufacturing of thin film structure through ellipsometric measurement
Spanier Double film thickness measurements in the semiconductor industry
Pereira et al. How thin an optical coating? The case of atomic layer deposited TiO2 on native oxide/Si
JPH03215957A (en) Measurement of film thickness
JP2007225426A (en) Test method of optical anisotropic film
JP3007944B2 (en) A method for determining the optical properties of thin films.
JPH04294226A (en) Ellipsometer