TWI757193B - Semiconductor memory structure and the method for forming the same - Google Patents

Semiconductor memory structure and the method for forming the same Download PDF

Info

Publication number
TWI757193B
TWI757193B TW110119325A TW110119325A TWI757193B TW I757193 B TWI757193 B TW I757193B TW 110119325 A TW110119325 A TW 110119325A TW 110119325 A TW110119325 A TW 110119325A TW I757193 B TWI757193 B TW I757193B
Authority
TW
Taiwan
Prior art keywords
liner
nitride
forming
memory structure
semiconductor memory
Prior art date
Application number
TW110119325A
Other languages
Chinese (zh)
Other versions
TW202247359A (en
Inventor
盧建鳴
吳柏翰
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW110119325A priority Critical patent/TWI757193B/en
Application granted granted Critical
Publication of TWI757193B publication Critical patent/TWI757193B/en
Publication of TW202247359A publication Critical patent/TW202247359A/en

Links

Images

Abstract

A semiconductor memory structure includes a semiconductor substrate, a bit line disposed on the semiconductor substrate, a dielectric liner disposed on a side of the bit line, a capacitor contact disposed on the semiconductor substrate, and a filler disposed on the semiconductor substrate. The bit line extends along a first direction. The dielectric liner includes a first nitride liner disposed on sidewalls of the bit line, an oxide liner disposed on sidewalls of the first nitride liner, and a second nitride liner disposed on sidewalls of the oxide liner. In a second direction perpendicular to the first direction, the capacitor contact is spaced apart from the bit line only by the first nitride liner, the oxide liner, and the second nitride liner. In the second direction, the width of the filler is greater than the width of the capacitor contact. A method for forming the semiconductor memory structure is also provided.

Description

半導體記憶體結構及其形成方法 Semiconductor memory structure and method of forming the same

本揭露係有關於一種半導體記憶體結構,且特別是有關於動態隨機存取記憶體之電容接觸件。 The present disclosure relates to a semiconductor memory structure, and more particularly, to capacitive contacts for dynamic random access memory.

動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)裝置廣泛地應用於消費性電子產品中。為了增加動態隨機存取記憶體裝置內的元件密度以及改善其整體表現,目前動態隨機存取記憶體裝置的製造技術持續朝向元件尺寸的微縮化而努力。 Dynamic Random Access Memory (DRAM) devices are widely used in consumer electronic products. In order to increase the device density within a DRAM device and improve its overall performance, current DRAM device fabrication techniques continue to strive towards the miniaturization of device size.

然而,當元件尺寸持續縮小時,許多挑戰隨之而生。舉例而言,在自對準蝕刻製程中難以清除邊角的材料,導致後續形成的電容接觸件容易於邊角有短路的情形。因此,業界仍需要改進動態隨機存取記憶體裝置的製造方法,以克服元件尺寸縮小所產生的問題。 However, as component sizes continue to shrink, many challenges arise. For example, in the self-aligned etching process, it is difficult to remove the material at the corners, so that the subsequently formed capacitive contacts are prone to short circuits at the corners. Therefore, the industry still needs to improve the manufacturing method of the DRAM device to overcome the problems caused by the shrinking device size.

本發明實施例提供一種半導體記憶體結構,其包含半導體基板、設置於半導體基板上的位元線、設置於位元線一側的介電襯層、設置於半導體基板上的電容接觸件、以及設置於半導體基板上的填充件。位元線沿著第一方向延伸。介電襯層包含設置於位元線的側壁上的第一氮化物襯層、設置於第一氮化物襯層的側壁上的氧化物襯層、以及設置於氧化物襯層的側壁上的第二氮化物襯層。在垂直第一方向的第二方向上,電容接觸件藉由第一氮化物襯層、氧化物襯層以及第二氮化物襯層與位元線間隔。在第二方向上,填充件的寬度大於電容接觸件的寬度。 An embodiment of the present invention provides a semiconductor memory structure, which includes a semiconductor substrate, a bit line disposed on the semiconductor substrate, a dielectric liner disposed on one side of the bit line, a capacitor contact member disposed on the semiconductor substrate, and A filler provided on a semiconductor substrate. The bit line extends along the first direction. The dielectric liner includes a first nitride liner disposed on the sidewall of the bit line, an oxide liner disposed on the sidewall of the first nitride liner, and a first nitride liner disposed on the sidewall of the oxide liner Dinitride liner. In a second direction perpendicular to the first direction, the capacitive contact is spaced from the bit line by the first nitride liner, the oxide liner, and the second nitride liner. In the second direction, the width of the filler is greater than the width of the capacitive contact.

本發明實施例提供一種半導體記憶體結構的形成方法,其包含提供半導體基板;形成複數個位元線於半導體基板上;形成介電襯層於位元線的側壁上;形成介電材料層於該些位元線之間;於介電材料層中形成開口,其中開口之側壁露出部分的第二氮化物襯層;沿著開口之側壁,側向(laterally)移除部分的第二氮化物襯層,直到露出氧化物襯層;形成填充件於開口中;以及以電容接觸件置換剩餘的介電材料層。位元線沿著第一方向延伸。形成該介電襯層的步驟包括:形成第一氮化物襯層於位元線的側壁上;形成氧化物襯層於第一氮化物襯層的側壁上;以及形成第二氮化物襯層於氧化物襯層的側壁上。 An embodiment of the present invention provides a method for forming a semiconductor memory structure, which includes providing a semiconductor substrate; forming a plurality of bit lines on the semiconductor substrate; forming a dielectric lining layer on the sidewalls of the bit lines; forming a dielectric material layer on Between the bit lines; an opening is formed in the dielectric material layer, wherein a sidewall of the opening exposes a portion of the second nitride liner; along the sidewall of the opening, a portion of the second nitride is removed laterally lining until the oxide lining is exposed; forming fillers in the openings; and replacing the remaining layers of dielectric material with capacitive contacts. The bit line extends along the first direction. The steps of forming the dielectric lining layer include: forming a first nitride lining layer on the sidewalls of the bit lines; forming an oxide lining layer on the sidewalls of the first nitride lining layer; and forming a second nitride lining layer on the sidewalls on the sidewalls of the oxide liner.

10:半導體記憶體結構 10: Semiconductor memory structure

100:半導體基板 100: Semiconductor substrate

110:隔離部件 110: Isolation parts

200:位元線 200: bit line

210,220:蓋層 210, 220: Cover

230,240,250:導電層 230, 240, 250: Conductive layer

260,270,280:介電層 260, 270, 280: Dielectric layer

300:介電襯層 300: Dielectric liner

305:間隔物 305: Spacer

310:第一氮化物襯層 310: first nitride liner

320,320’:氧化物襯層 320, 320': oxide liner

330,330’,330”:第二氮化物襯層 330, 330', 330": Second Nitride Liner

400,400’,400”:介電材料層 400, 400’, 400”: Dielectric material layers

500:條狀光阻 500: Strip photoresist

600:填充件 600: Filler

700:電容接觸件 700: Capacitive Contacts

C:凹口 C: Notch

H,H’,H”:開口 H,H',H": opening

D1:第一方向 D1: first direction

D2:第二方向 D2: Second direction

Le,Le’,Lm,Lm’:距離/寬度 Le,Le',Lm,Lm': distance/width

R:圓角 R: rounded corners

Z:高度方向 Z: height direction

讓本發明之特徵和優點能更明顯易懂,下文特舉不同實施例,並配合所附圖式作詳細說明如下:第1圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。 In order to make the features and advantages of the present invention more obvious and easy to understand, different embodiments are given below and described in detail with the accompanying drawings as follows: FIG. 1 illustrates the formation of a semiconductor memory structure according to some embodiments of the present invention. Stereoscopic view at different stages.

第2圖是根據本發明的一些實施例,繪示對應於第1圖中剖線A-A’之半導體記憶體結構的剖面圖。 FIG. 2 is a cross-sectional view of a semiconductor memory structure corresponding to the line A-A' in FIG. 1, according to some embodiments of the present invention.

第3-5圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。 3-5 are perspective views illustrating different stages of forming a semiconductor memory structure according to some embodiments of the present invention.

第6圖是根據本發明的一些實施例,繪示對應於第5圖之半導體記憶體結構的部分上視圖。 FIG. 6 is a partial top view of the semiconductor memory structure corresponding to FIG. 5 according to some embodiments of the present invention.

第7圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。 FIG. 7 is a perspective view illustrating various stages of forming a semiconductor memory structure according to some embodiments of the present invention.

第8圖是根據本發明的一些實施例,繪示對應於第7圖之半導體記憶體結構的部分上視圖。 FIG. 8 is a partial top view of the semiconductor memory structure corresponding to FIG. 7 according to some embodiments of the present invention.

第9圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。 FIG. 9 is a perspective view illustrating various stages of forming a semiconductor memory structure according to some embodiments of the present invention.

第10圖是根據本發明的一些實施例,繪示對應於第9圖之半導體記憶體結構的部分上視圖。 FIG. 10 is a partial top view of the semiconductor memory structure corresponding to FIG. 9 according to some embodiments of the present invention.

第11圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。 FIG. 11 is a perspective view illustrating various stages of forming a semiconductor memory structure according to some embodiments of the present invention.

第12圖是根據本發明的一些實施例,繪示對應於第11圖之半導體記憶體結構的部分上視圖。 FIG. 12 is a partial top view of the semiconductor memory structure corresponding to FIG. 11 according to some embodiments of the present invention.

第13-14圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。 FIGS. 13-14 are perspective views illustrating different stages of forming a semiconductor memory structure according to some embodiments of the present invention.

以下參照本發明實施例之圖式以更全面地闡述本揭露。然而,本揭露亦可以各種不同的實施方式實現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度可能會為了清楚起見而放大,並且在各圖式中相同或相似之參考號碼表示相同或相似之元件。 The present disclosure is more fully described below with reference to the drawings of embodiments of the present invention. However, the present disclosure can also be practiced in various different embodiments and should not be limited to the embodiments described herein. The thicknesses of layers and regions in the figures may be exaggerated for clarity, and the same or similar reference numbers indicate the same or similar elements throughout the various figures.

本發明實施例藉由移除部分的介電襯層,可減少後續形成的複數個電容接觸件於邊角處因距離過短而產生短路的問題,藉以提高半導體效能。 In the embodiment of the present invention, by removing part of the dielectric lining layer, the problem of short circuits at the corners due to the short distance between a plurality of capacitor contacts formed subsequently can be reduced, thereby improving the semiconductor performance.

第1圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。第2圖是根據本發明的一些實施例,繪示對應於第1圖中剖線A-A’之半導體記憶體結構的剖面圖。在一些實施例中,半導體記憶體結構10是動態隨機存取記憶體(DRAM)陣列(array)的一部分。 FIG. 1 is a perspective view illustrating various stages of forming a semiconductor memory structure according to some embodiments of the present invention. FIG. 2 is a cross-sectional view of a semiconductor memory structure corresponding to the line A-A' in FIG. 1, according to some embodiments of the present invention. In some embodiments, the semiconductor memory structure 10 is part of a dynamic random access memory (DRAM) array.

如第1及2圖所示,提供半導體基板100。在一些實施例中,半導體基板100可以是元素半導體基板,例如矽基板、或鍺基板;或化合物半導體基板,例如碳化矽基板、或砷化鎵基板。在一些實施例中,半導體基板100可以是絕緣體上的半導體(semiconductor-on-insulator,SOI)基板。 As shown in FIGS. 1 and 2, a semiconductor substrate 100 is provided. In some embodiments, the semiconductor substrate 100 may be an elemental semiconductor substrate, such as a silicon substrate, or a germanium substrate; or a compound semiconductor substrate, such as a silicon carbide substrate, or a gallium arsenide substrate. In some embodiments, the semiconductor substrate 100 may be a semiconductor-on-insulator (SOI) substrate.

如第2圖所示,於半導體基板100中設置隔離部件110。在一些實施例中,半導體基板100中設置隔離部件110以定義出主動區。在一些實施例中,隔離部件110可包含氮化物或氧化物,例如氧化矽(SiO)、氮化矽(SiN)、氮氧化矽(SiON)、及/或前述之組合。隔離部件110的形成可包含圖案化製程(例如微影製程和蝕刻製程)、沉積製程(例如化學氣相沉積(chemical vapor deposition,CVD))、平坦化製程(例如化學機械研磨(chemical mechanical polish,CMP))。在一些實施例中,蝕刻製程可包含乾蝕刻製程,例如反應式離子蝕刻(reactive ion etching,RIE)、中性粒子束蝕刻(neutral beam etch,NBE)、感應耦合電漿蝕刻(inductive coupled plasma etch)、適合的蝕刻製程或上述之組合等等。 As shown in FIG. 2 , a spacer member 110 is provided on the semiconductor substrate 100 . In some embodiments, isolation features 110 are disposed in the semiconductor substrate 100 to define active regions. In some embodiments, the isolation features 110 may include nitrides or oxides, such as silicon oxide (SiO), silicon nitride (SiN), silicon oxynitride (SiON), and/or combinations thereof. The formation of the isolation features 110 may include a patterning process (such as a lithography process and an etching process), a deposition process (such as chemical vapor deposition (CVD)), a planarization process (such as chemical mechanical polishing, CMP)). In some embodiments, the etching process may include a dry etching process, such as reactive ion etching (RIE), neutral beam etch (NBE), inductive coupled plasma etch ), a suitable etching process or a combination of the above, etc.

在一些實施例中,在半導體基板中更埋設字元線(未繪示)。在一些實施例中,字元線作為閘極,並包含閘極介電層、閘極襯層、以及閘極電極(未繪示)。 In some embodiments, word lines (not shown) are further embedded in the semiconductor substrate. In some embodiments, the word line acts as a gate and includes a gate dielectric layer, a gate liner, and a gate electrode (not shown).

如第1圖與第2圖所示,於半導體基板100上形成複數個位元線200,其沿著第一方向D1延伸。在一些實施例中,位元線200包含導電層230、240與250及位於其上的介電層260、270與280。藉由上層的介電層260、270與280,可保護下方膜層(例如導電層230、240與250)在後續製程中免於受到損害。 As shown in FIG. 1 and FIG. 2 , a plurality of bit lines 200 are formed on the semiconductor substrate 100 and extend along the first direction D1 . In some embodiments, bit line 200 includes conductive layers 230, 240, and 250 and dielectric layers 260, 270, and 280 thereon. By the upper dielectric layers 260 , 270 and 280 , the underlying film layers (eg, the conductive layers 230 , 240 and 250 ) can be protected from damage in subsequent processes.

在一些實施例中,導電層230、240與250包含摻雜的多晶矽、金屬、或金屬氮化物,例如鎢(W)、鈦(Ti)及氮化鈦 (TiN)等。在一些實施例中,介電層260、270與280包含氮化物或氧化物,例如氮化矽或氧化矽等。 In some embodiments, conductive layers 230, 240, and 250 comprise doped polysilicon, metal, or metal nitride, such as tungsten (W), titanium (Ti), and titanium nitride (TiN) etc. In some embodiments, the dielectric layers 260, 270 and 280 comprise nitrides or oxides, such as silicon nitride or silicon oxide, or the like.

如第2圖所示,設置於隔離部件110(或隔離區)上的位元線200更包含蓋層210與220,其設置於導電層230與隔離部件110之間。在一些實施例中,蓋層210與220可包含氧化矽(例如熱氧化矽、四乙氧基矽烷(tetraethylorthosilicate,TEOS)氧化物)、氮化矽(SiN)或氮氧化矽(SiON)。在一些實施例中,未設置於隔離部件110(或主動區)上的位元線200中的導電層230更延伸至半導體基板100中。 As shown in FIG. 2 , the bit line 200 disposed on the isolation member 110 (or the isolation region) further includes cap layers 210 and 220 , which are disposed between the conductive layer 230 and the isolation member 110 . In some embodiments, the capping layers 210 and 220 may include silicon oxide (eg, thermal silicon oxide, tetraethylorthosilicate (TEOS) oxide), silicon nitride (SiN), or silicon oxynitride (SiON). In some embodiments, the conductive layer 230 in the bit line 200 not disposed on the isolation feature 110 (or the active region) further extends into the semiconductor substrate 100 .

如第1圖與第2圖所示,於位元線200的側壁上形成介電襯層300。詳細來說,形成介電襯層300的步驟包括共形性地(conformally)形成第一氮化物材料層(未繪示)於位元線200的頂表面上與側壁上以及於半導體基板100上;共形性地形成氧化物材料層(未繪示)於第一氮化物材料層上;移除於位元線200的頂表面上與半導體基板100的頂表面上的第一氮化物材料層與氧化物材料層,以形成第一氮化物襯層310與氧化物襯層320;最後,共形性地形成第二氮化物襯層330於位元線200的頂表面上、氧化物襯層320的側壁上與於半導體基板100上。 As shown in FIGS. 1 and 2 , a dielectric liner 300 is formed on the sidewalls of the bit lines 200 . In detail, the step of forming the dielectric liner 300 includes conformally forming a first nitride material layer (not shown) on the top surface and sidewall of the bit line 200 and on the semiconductor substrate 100 ; Conformally forming an oxide material layer (not shown) on the first nitride material layer; removing the first nitride material layer on the top surface of the bit line 200 and the top surface of the semiconductor substrate 100 and oxide material layers to form the first nitride lining layer 310 and the oxide lining layer 320; finally, conformally form the second nitride lining layer 330 on the top surface of the bit line 200, the oxide lining layer The sidewalls of 320 are on the semiconductor substrate 100 .

在一些實施例中,在形成第一氮化物材料襯層的步驟之後更包含形成間隔物305於延伸至半導體基板100中的導電層230的兩側,以有效隔絕導電層230與後續形成的電容接觸件並避免短路。 In some embodiments, after the step of forming the first nitride material lining layer, it further includes forming spacers 305 on both sides of the conductive layer 230 extending to the semiconductor substrate 100 to effectively isolate the conductive layer 230 from the subsequently formed capacitors contacts and avoid short circuits.

在一些實施例中,第一與第二氮化物襯層310與330包含相同的材料,例如氮化矽,氧化物襯層320包含氧化矽。 In some embodiments, the first and second nitride liners 310 and 330 comprise the same material, eg, silicon nitride, and the oxide liner 320 comprises silicon oxide.

在一些實施例中,氧化物襯層320夾設於第一氮化物襯層310與第二氮化物襯層330之間,藉以防止位元線200與後續形成的電容接觸件之間產生寄生電容。 In some embodiments, the oxide liner 320 is sandwiched between the first nitride liner 310 and the second nitride liner 330, so as to prevent parasitic capacitance from being generated between the bit line 200 and the subsequently formed capacitive contacts .

接著,請參照第3-4圖,第3-4圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。 Next, please refer to FIGS. 3-4 . FIGS. 3-4 are perspective views illustrating different stages of forming a semiconductor memory structure according to some embodiments of the present invention.

如第3圖所示,於位元線200之間及之上毯覆性地(blanketly)形成介電材料層400。具體來說,介電材料層400形成於介電襯層300上,並完全填入位元線200之間的空隙。 As shown in FIG. 3 , a layer of dielectric material 400 is blanketly formed between and over the bit lines 200 . Specifically, the dielectric material layer 400 is formed on the dielectric liner 300 and completely fills the gaps between the bit lines 200 .

在一些實施例中,介電材料層400的材料可包含氧化矽、氮氧化矽、矽酸磷玻璃(phosphosilicate glass,PSG)、矽硼玻璃(borophosphosilicate glass,BPSG)、氟化矽酸鹽玻璃(fluoronated silicate glass,FSG)、有機矽酸玻璃(organosilicate glass,OSG)、SiOxCy、旋塗式玻璃(spin-on glass,SOG)、低介電常數介電材料,其他適合的材料等。在一些實施例中,介電材料層400的形成可包含沉積製程,例如化學氣相沉積(CVD)、物理氣相沉積(physical vapor deposition,PVD)、或原子層沉積(atomic layer deposition,ALD)等等。 In some embodiments, the material of the dielectric material layer 400 may include silicon oxide, silicon oxynitride, phosphosilicate glass (PSG), borophosphosilicate glass (BPSG), fluorinated silicate glass ( fluoronated silicate glass (FSG), organosilicate glass ( OSG), SiOxCy , spin-on glass (SOG), low-k dielectric materials, other suitable materials, and the like. In some embodiments, the formation of the dielectric material layer 400 may include a deposition process, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD) etc.

如第4圖所示,進行平坦化製程移除部分介電材料層400,使得剩餘的介電材料層400’之頂表面與位元線200的頂表面上的介電襯層300齊平。接著,於與第一方向D1垂直的第二 方向D2上間隔形成條狀光阻500於介電襯層300與剩餘的介電材料層400’之頂表面上。 As shown in FIG. 4 , a planarization process is performed to remove part of the dielectric material layer 400 , so that the top surface of the remaining dielectric material layer 400 ′ is flush with the dielectric liner 300 on the top surface of the bit line 200 . Next, in the second direction perpendicular to the first direction D1 In the direction D2, strip-shaped photoresists 500 are formed on top surfaces of the dielectric liner 300 and the remaining dielectric material layers 400' at intervals.

在一些實施例中,平坦化製程可包含化學機械研磨(CMP)或回蝕刻製程。在一些實施例中,條狀光阻500的形成可包含微影製程,其包含光阻塗佈、曝光前烘烤、使用遮罩曝光、顯影等等。 In some embodiments, the planarization process may include a chemical mechanical polishing (CMP) or etch back process. In some embodiments, the formation of strip photoresist 500 may include a lithography process including photoresist coating, pre-exposure bake, exposure using a mask, development, and the like.

接著,請參照第5-6圖,第5圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。第6圖是根據本發明的一些實施例,繪示對應於第5圖之半導體記憶體結構的部分上視圖。 Next, please refer to FIGS. 5-6. FIG. 5 is a perspective view illustrating different stages of forming a semiconductor memory structure according to some embodiments of the present invention. FIG. 6 is a partial top view of the semiconductor memory structure corresponding to FIG. 5 according to some embodiments of the present invention.

如第5-6圖所示,移除部分介電材料層400’與部分第二氮化物襯層330。詳細來說,使用條狀光阻500作為蝕刻遮罩,移除條狀光阻500正下方以外的介電材料層400’,而大致上不移除位元線200與介電襯層300,以形成開口H,並留下條狀光阻500正下方的介電材料層400”。接著,移除條狀光阻500,並移除位於位元線200的頂表面上與半導體基板100上的第二氮化物襯層330,僅留下位於位元線200側壁上的第二氮化物襯層330’。 As shown in FIGS. 5-6, a portion of the dielectric material layer 400' and a portion of the second nitride liner layer 330 are removed. In detail, the strip photoresist 500 is used as an etching mask to remove the dielectric material layer 400 ′ outside directly below the strip photoresist 500 , and the bit line 200 and the dielectric liner 300 are not substantially removed. The opening H is formed, and the dielectric material layer 400 ″ directly under the strip photoresist 500 is left. Next, the strip photoresist 500 is removed, and the top surface of the bit line 200 and the semiconductor substrate 100 are removed. The second nitride liner 330 leaves only the second nitride liner 330 ′ on the sidewall of the bit line 200 .

在此,「大致上不移除/蝕刻」可包含完全不移除/蝕刻、些微移除/蝕刻(相較於目標物的厚度之3%以下)。 Here, "substantially no removal/etching" may include no removal/etching at all, slight removal/etching (compared to less than 3% of the thickness of the target).

在一些實施例中,開口H之側壁露出部分的第二氮化物襯層330’,而開口H之底部露出半導體基板100。在一些實施例中,開口H具有圓角R,其位於第二氮化物襯層330’的側壁 上。在一些實施例中,在第一方向D1上,開口H與介電材料層400”交錯排列。 In some embodiments, the sidewall of the opening H exposes a portion of the second nitride liner 330', and the bottom of the opening H exposes the semiconductor substrate 100. In some embodiments, the opening H has a rounded corner R, which is located on the sidewall of the second nitride liner 330' superior. In some embodiments, in the first direction D1 , the openings H and the dielectric material layers 400 ″ are staggered.

如第6圖所示,開口H是由介電襯層300與介電材料層400”的側壁定義而成。 As shown in FIG. 6 , the opening H is defined by the sidewalls of the dielectric liner 300 and the dielectric material layer 400 ″.

在一些實施例中,部分介電材料層400’的移除包含蝕刻製程,例如具有蝕刻選擇性的乾蝕刻。舉例來說,使用高碳氟比之蝕刻氣體(如C4F8),以達到介電材料層400’對位元線200與介電襯層300之高選擇比。在一些實施例中,對介電材料層400’之蝕刻速率與對位元線200與介電襯層300之蝕刻速率之比為約10:1-30:1,例如約15:1-25:1。 In some embodiments, the removal of a portion of the dielectric material layer 400' includes an etching process, such as dry etching with etching selectivity. For example, an etching gas with a high carbon-to-fluorine ratio (eg, C 4 F 8 ) is used to achieve a high selectivity ratio of the dielectric material layer 400 ′ to the bit line 200 and the dielectric liner 300 . In some embodiments, the ratio of the etch rate of the dielectric material layer 400' to the etch rate of the bit line 200 and the dielectric liner 300 is about 10:1-30:1, eg, about 15:1-25 :1.

在一些實施例中,部分第二氮化物襯層330的移除包含蝕刻製程,例如使用高含氫氣體(如CH2F2)非等向性乾蝕刻,以移除位元線200上與半導體基板100上的第二氮化物襯層330而大致上不移除位元線200側壁上的第二氮化物襯層330。 In some embodiments, the removal of a portion of the second nitride liner 330 includes an etching process, such as anisotropic dry etching using a high hydrogen-containing gas (eg, CH 2 F 2 ), to remove the The second nitride liner 330 on the semiconductor substrate 100 is substantially not removed from the second nitride liner 330 on the sidewalls of the bit line 200 .

在一些實施例中,在高度方向Z上,位元線200的高度在移除部分第二氮化物襯層330的蝕刻製程之前與之後可大致上不變。在另一些實施例中,在高度方向Z上,位元線200上方膜層,例如介電層280,可能受移除部分第二氮化物襯層330的蝕刻製程的影響而部分被移除,因此位元線200在蝕刻製程之後的高度較移除部分第二氮化物襯層330的蝕刻製程之前的高度低。 In some embodiments, in the height direction Z, the height of the bit line 200 may be substantially unchanged before and after the etching process to remove a portion of the second nitride liner 330 . In other embodiments, in the height direction Z, the film layer above the bit line 200, such as the dielectric layer 280, may be partially removed by the etching process that removes part of the second nitride liner 330, Therefore, the height of the bit line 200 after the etching process is lower than that before the etching process in which part of the second nitride liner 330 is removed.

由於蝕刻製程並無法完全移除位於條狀光阻500正下方以外的介電材料層400’,例如部分欲去除的介電材料層400’ 可能殘留於邊角處,因此所形成的開口H具有圓角R,開口H在第一方向D1上只有最大寬度Lm,但由於圓角的形成,開口H在位元線200的寬度縮小為Le(Le<Lm)。也就是說,兩兩介電材料層400”之間的距離Lm在靠近位元線200處因圓角的產生而縮小至Le。 Since the etching process cannot completely remove the dielectric material layer 400' located outside the strip photoresist 500, for example, part of the dielectric material layer 400' to be removed It may remain at the corners, so the formed opening H has a rounded corner R, and the opening H has only the maximum width Lm in the first direction D1, but due to the formation of the rounded corner, the width of the opening H in the bit line 200 is reduced to Le (Le<Lm). That is to say, the distance Lm between the two dielectric material layers 400 ″ is reduced to Le near the bit line 200 due to the rounded corners.

由於剩下的介電材料層400”後續將置換為電容接觸件,介電材料層400”之間的距離過近,將導致靠近位元線200處之兩兩電容接觸件之間的距離過近而產生短路的問題。本發明實施例將說明解決上述問題的手段,以克服電容接觸件短路的問題,詳情請見後文所述。 Since the remaining dielectric material layers 400 ″ will be replaced with capacitor contacts later, the distance between the dielectric material layers 400 ″ is too close, resulting in an excessive distance between two capacitor contacts near the bit line 200 The problem of short circuit occurs. The embodiments of the present invention will describe the means for solving the above problems, so as to overcome the short circuit problem of the capacitive contacts. For details, please refer to the following description.

接著,請參照第7-10圖,第7、9圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。第8、10圖是根據本發明的一些實施例,繪示分別對應於第7、9圖之半導體記憶體結構的部分上視圖。 Next, please refer to FIGS. 7-10. FIGS. 7 and 9 are perspective views illustrating different stages of forming a semiconductor memory structure according to some embodiments of the present invention. FIGS. 8 and 10 are partial top views of the semiconductor memory structures corresponding to FIGS. 7 and 9, respectively, according to some embodiments of the present invention.

如第7-8圖所示,沿著開口H之側壁,側向移除部分的第二氮化物襯層330’,直到露出氧化物襯層320,以形成不連續的第二氮化物襯層330”。在一些實施例中,沿著第二方向D2擴大開口H而沿著第一方向D1維持原樣,而形成開口H’。相較於開口H,開口H’之圓角R更接近位元線200。 As shown in FIGS. 7-8 , along the sidewall of the opening H, a portion of the second nitride liner 330 ′ is laterally removed until the oxide liner 320 is exposed to form a discontinuous second nitride liner 330 ″. In some embodiments, the opening H is enlarged along the second direction D2 and remains as it is along the first direction D1 to form the opening H′. Compared with the opening H, the rounded corner R of the opening H′ is closer to the Metaline 200.

在一些實施例中,開口H’同時露出第二氮化物襯層330”與氧化物襯層320。在一些實施例中,在第一方向D1上,第二氮化物襯層330”與開口H’交錯排列。 In some embodiments, the opening H′ exposes the second nitride liner 330 ″ and the oxide liner 320 at the same time. In some embodiments, in the first direction D1 , the second nitride liner 330 ″ and the opening H 'Staggered.

在一些實施例中,部分第二氮化物襯層330’的移除包含蝕刻製程,例如具有蝕刻選擇性的等向性乾蝕刻,以蝕刻暴露於開口兩側側壁的第二氮化物襯層330。舉例來說,使用含氫氣體(如CH2F2或CH3F等)的乾蝕刻,以達到第二氮化物襯層330’對氧化物襯層320之高選擇比。在一些實施例中,對第二氮化物襯層330’之蝕刻速率與對氧化物襯層320之蝕刻速率之比為約25:1以上,例如約25:1-40:1。此外,在此實施例中,氧化物襯層320可作為蝕刻停止層。 In some embodiments, the removal of a portion of the second nitride liner 330 ′ includes an etching process, such as isotropic dry etching with etching selectivity, to etch the second nitride liner 330 exposed on the sidewalls on both sides of the opening . For example, dry etching using a hydrogen-containing gas (eg, CH 2 F 2 or CH 3 F, etc.) is used to achieve a high selectivity ratio of the second nitride liner 330 ′ to the oxide liner 320 . In some embodiments, the ratio of the etch rate for the second nitride liner 330' to the etch rate for the oxide liner 320 is greater than about 25:1, eg, about 25:1-40:1. Furthermore, in this embodiment, the oxide liner 320 can serve as an etch stop layer.

如第9-10圖所示,沿著開口H’之側壁,側向移除部分的氧化物襯層320,直到露出第一氮化物襯層310,以形成不連續的氧化物襯層320’。在一些實施例中,沿著第二方向D2擴大開口H’而沿著第一方向D1維持原樣,而形成開口H”。相較於開口H’,開口H”之圓角R更接近位元線200。 As shown in FIGS. 9-10, along the sidewall of the opening H', a portion of the oxide liner 320 is laterally removed until the first nitride liner 310 is exposed, so as to form a discontinuous oxide liner 320' . In some embodiments, the opening H' is enlarged along the second direction D2 while remaining the same along the first direction D1 to form the opening H". Compared with the opening H', the rounded corner R of the opening H' is closer to the bit cell Line 200.

在一些實施例中,開口H”同時露出第二氮化物襯層330”、氧化物襯層320’與第一氮化物襯層310。在一些實施例中,在第一方向D1上,氧化物襯層320’與開口H”交錯排列。 In some embodiments, the opening H" exposes the second nitride liner 330", the oxide liner 320' and the first nitride liner 310 simultaneously. In some embodiments, in the first direction D1, the oxide liner 320' is staggered with the openings H".

在一些實施例中,氧化物襯層320’與介電材料層400”包含相同的材料,例如氧化矽。在此實施例中,由於在第二方向D2上,介電材料層400”的厚度遠大於氧化物襯層320’,因此即使移除部分的氧化物襯層320’,仍可大致上不移除介電材料層400”。 In some embodiments, the oxide liner 320 ′ and the dielectric material layer 400 ″ include the same material, such as silicon oxide. In this embodiment, due to the thickness of the dielectric material layer 400 ″ in the second direction D2 Much larger than the oxide liner 320', so even if a portion of the oxide liner 320' is removed, the dielectric material layer 400" may not be substantially removed.

在一些實施例中,部分氧化物襯層320的移除包含蝕刻製程,例如具有蝕刻選擇性的濕蝕刻,以蝕刻暴露於開口兩側側壁上的氧化物襯層320。此外,在此蝕刻製程中,第一氮化物襯層310可作為蝕刻停止層。 In some embodiments, the removal of a portion of the oxide liner 320 includes an etching process, such as wet etching with etch selectivity, to etch the oxide liner 320 exposed on the sidewalls on both sides of the opening. In addition, in this etching process, the first nitride liner layer 310 can serve as an etch stop layer.

在使用濕蝕刻的實施例中,可利用蝕刻劑來調控蝕刻選擇性,例如蝕刻氧化物時可大致上不蝕刻氮化物。濕蝕刻所使用的蝕刻劑可包含緩衝氧化物蝕刻液(buffered oxide etch,BOE)、氫氟酸稀釋溶液(diluted HF,DHF)等。 In embodiments using wet etching, the etch selectivity may be controlled using an etchant, eg, oxides may be etched substantially without etching nitrides. The etchant used in the wet etching may include buffered oxide etch (BOE), diluted hydrofluoric acid (diluted HF, DHF), and the like.

由於移除了部分第二氮化物襯層330’與氧化物襯層320,圓角R由開口的中心沿著第二方向D2向位元線200推進,使得在第一方向D1上兩兩介電材料層400”(後續將取代為電容接觸件)之間的距離可大致上維持相同(Le’約等於Lm’),以避免後續形成的電容接觸件短路。 Since part of the second nitride lining layer 330 ′ and the oxide lining layer 320 are removed, the fillet R is pushed from the center of the opening to the bit line 200 along the second direction D2 , so that in the first direction D1 two two The distance between the electrical material layers 400 ″ (which will be replaced by the capacitive contacts later) can be maintained substantially the same (Le' is approximately equal to Lm') to avoid short-circuiting of the capacitive contacts formed later.

接著,請參照第11-12圖,第11圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。第12圖是根據本發明的一些實施例,繪示對應於第11圖之半導體記憶體結構的部分上視圖。 Next, please refer to FIGS. 11-12. FIG. 11 is a perspective view illustrating different stages of forming a semiconductor memory structure according to some embodiments of the present invention. FIG. 12 is a partial top view of the semiconductor memory structure corresponding to FIG. 11 according to some embodiments of the present invention.

如第11-12圖所示,形成填充件600於開口H”中。在一些實施例中,填充件600可包含氮化物,例如氮化矽、氮氧化矽等。在一些實施例中,填充件600的形成包含以沉積製程沉積填充材料,再以平坦化製程或蝕刻製程移除過多的填充材料,使得填充件600的頂表面大致上與位元線200的頂表面齊平。在一些實施 例中,填充件600之頂表面、位元線200之頂表面與介電材料層400”之頂表面大致上共平面。 As shown in Figures 11-12, a filler 600 is formed in the opening H". In some embodiments, the filler 600 may include a nitride, such as silicon nitride, silicon oxynitride, etc. In some embodiments, the filler Formation of element 600 includes depositing a fill material in a deposition process, and then removing excess fill material in a planarization process or an etch process such that the top surface of fill element 600 is substantially flush with the top surface of bit line 200. In some implementations In an example, the top surface of filler 600, the top surface of bit line 200, and the top surface of dielectric material layer 400" are substantially coplanar.

在一些實施例中,由於填充件600完全覆蓋開口H”,因此填充件600也具有圓角R。在此實施例中,圓角R直接接觸介電襯層300,例如同時直接接觸第一與第二氮化物襯層310與330”及氧化物襯層320。 In some embodiments, since the filler 600 completely covers the opening H", the filler 600 also has rounded corners R. In this embodiment, the rounded corners R directly contact the dielectric liner 300, eg, simultaneously directly contact the first and Second nitride liner layers 310 and 330 ″ and oxide liner layer 320 .

在一些實施例中,填充件600與第一氮化物襯層310包含相同的材料,例如氮化矽。也就是說,第一氮化物襯層310與填充件600之間並無界線。在第一氮化物襯層310與填充件600皆為氮化矽的實施例中,在第二方向D2上,位元線200與氮化矽交錯排列。 In some embodiments, the filler 600 and the first nitride liner 310 comprise the same material, eg, silicon nitride. That is, there is no boundary between the first nitride liner 310 and the filler 600 . In the embodiment in which the first nitride liner 310 and the filling member 600 are both silicon nitride, in the second direction D2, the bit lines 200 and the silicon nitride are staggered.

在一些實施例中,填充件600與介電材料層400”包含不同的材料,例如填充件600包含氮化矽而介電材料層400”包含氧化矽,以利於後續選擇性移除介電材料層400”。 In some embodiments, the filler 600 and the dielectric material layer 400" comprise different materials, for example, the filler 600 comprises silicon nitride and the dielectric material layer 400" comprises silicon oxide, so as to facilitate subsequent selective removal of the dielectric material Layer 400".

接著,請參照第13-14圖,以電容接觸件700置換介電材料層400”。詳細來說,完全移除介電材料層400”,以形成凹口C;以及以導電材料填充凹口C,以形成電容接觸件700。 Next, referring to FIGS. 13-14, the dielectric material layer 400" is replaced with the capacitive contact 700. In detail, the dielectric material layer 400" is completely removed to form the notch C; and the notch is filled with conductive material C, to form capacitive contacts 700 .

在一些實施例中,在第二方向D2上,電容接觸件700藉由第一氮化物襯層310、氧化物襯層320’、第二氮化物襯層330”與位元線200間隔,而填充件600僅藉由第一氮化物襯層310與位元線200間隔。也可以說,在任意兩位元線200之間的第二方向D2上,填充件600的寬度大於電容接觸件700的寬度。 In some embodiments, in the second direction D2, the capacitive contact 700 is spaced from the bit line 200 by the first nitride liner 310, the oxide liner 320', and the second nitride liner 330", while the The filler 600 is only spaced from the bit line 200 by the first nitride liner 310. It can also be said that the width of the filler 600 is larger than that of the capacitor contact 700 in the second direction D2 between any two element lines 200. width.

本發明實施例中電容接觸件700與位元線200之間設置第一氮化物襯層310、氧化物襯層320’、第二氮化物襯層330”而填充件600與位元線200之間設置第一氮化物襯層310,可在確保整體電性的情況下,進一步減少短路的問題。 In the embodiment of the present invention, the first nitride lining layer 310 , the oxide lining layer 320 ′, and the second nitride lining layer 330 ″ are disposed between the capacitor contact 700 and the bit line 200 , and the space between the filling member 600 and the bit line 200 is Disposing the first nitride lining layer 310 in between can further reduce the problem of short circuit while ensuring the overall electrical properties.

在一些實施例中,填充件600的圓角R直接接觸介電襯層300而大致上不直接接觸電容接觸件700,以減少兩兩電容接觸件700之間短路的可能性。在一些實施例中,在第一方向D1上,電容接觸件700與填充件600交錯排列。 In some embodiments, the rounded corners R of the fillers 600 directly contact the dielectric liner 300 and do not substantially directly contact the capacitive contacts 700 , so as to reduce the possibility of a short circuit between two capacitive contacts 700 . In some embodiments, in the first direction D1, the capacitive contacts 700 and the fillers 600 are staggered.

相較於不移除部分氮化物襯層與氧化物襯層的情況,本發明實施例藉由移除部分氮化物襯層與氧化物襯層,並將填充件的圓角推進至介電襯層中,可減少兩兩電容接觸件在靠近位元線處因圓角之距離過短而產生的短路問題。 Compared with the case of not removing part of the nitride liner and oxide liner, the embodiment of the present invention removes part of the nitride liner and oxide liner, and pushes the fillet of the filler to the dielectric liner In the layer, the short circuit problem caused by the short distance between the rounded corners near the bit lines can be reduced.

在一些實施例中,介電材料層400”的移除包含蝕刻製程,例如具有蝕刻選擇性的濕蝕刻,以蝕刻介電材料層400”直到完全露出填充件600的側壁。在一些實施例中,凹口C延伸並露出填充件600之間的半導體基板100之頂表面。 In some embodiments, the removal of the dielectric material layer 400 ″ includes an etching process, such as a wet etch with etch selectivity, to etch the dielectric material layer 400 ″ until the sidewalls of the filler 600 are fully exposed. In some embodiments, the notch C extends and exposes the top surface of the semiconductor substrate 100 between the fillers 600 .

在一些實施例中,濕蝕刻所使用的蝕刻劑可包含緩衝氧化物蝕刻液(BOE),以在大致上不移除填充件600與介電襯層300的情況下完全移除介電材料層400”。 In some embodiments, the etchant used in the wet etching may include a buffered oxide etchant (BOE) to completely remove the dielectric material layer without substantially removing the filler 600 and dielectric liner 300 400”.

在一些實施例中,導電材料可包含摻雜的多晶矽、金屬、或金屬矽化物等。金屬可包含鎢、鋁、銅、金、銀、上述之合金或其他合適的金屬材料。金屬矽化物可包含矽化鈷。 In some embodiments, the conductive material may include doped polysilicon, metal, or metal silicide, or the like. The metal may include tungsten, aluminum, copper, gold, silver, alloys of the above, or other suitable metallic materials. The metal silicide may include cobalt silicide.

應注意的是,在形成電容接觸件700之後仍可形成額外的部件,例如電容、金屬層與介電層等等,以完成記憶元件(如動態隨機存取記憶體(DRAM))的製作。 It should be noted that additional components, such as capacitors, metal layers, dielectric layers, etc., may still be formed after the capacitive contact 700 is formed to complete the fabrication of memory devices such as dynamic random access memory (DRAM).

綜上所述,本發明實施例藉由移除部分的氮化物襯層與氧化物襯層,可使兩兩電容接觸件在靠近位元線處的距離增加,而減少短路的情形。 To sum up, in the embodiment of the present invention, by removing part of the nitride lining layer and the oxide lining layer, the distance between the two capacitor contacts near the bit line can be increased, thereby reducing the short circuit situation.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許之更動與潤飾。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention is disclosed in the foregoing embodiments, it is not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention pertains may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be determined by the scope of the appended patent application.

10:半導體記憶體結構 10: Semiconductor memory structure

100:半導體基板 100: Semiconductor substrate

200:位元線 200: bit line

300:介電襯層 300: Dielectric liner

310:第一氮化物襯層 310: first nitride liner

320’:氧化物襯層 320': oxide liner

330”:第二氮化物襯層 330": Second Nitride Liner

600:填充件 600: Filler

700:電容接觸件 700: Capacitive Contacts

D1:第一方向 D1: first direction

D2:第二方向 D2: Second direction

R:圓角 R: rounded corners

Z:高度方向 Z: height direction

Claims (10)

一種半導體記憶體結構,包括: 一半導體基板; 一位元線,設置於該半導體基板上,並沿著一第一方向延伸; 一介電襯層,設置於該位元線的一側,其中該介電襯層包括: 一第一氮化物襯層,設置於該位元線之側壁上; 一氧化物襯層,設置於該第一氮化物襯層之側壁上;以及 一第二氮化物襯層,設置於該氧化物襯層之側壁上; 一電容接觸件,設置於該半導體基板上,其中在垂直於該第一方向的一第二方向上,該電容接觸件藉由該第一氮化物襯層、該氧化物襯層以及該第二氮化物襯層與該位元線間隔;以及 一填充件,設置於該半導體基板上,其中在該第二方向上,該填充件的寬度大於該電容接觸件的寬度。 A semiconductor memory structure comprising: a semiconductor substrate; a bit line, disposed on the semiconductor substrate and extending along a first direction; A dielectric liner is disposed on one side of the bit line, wherein the dielectric liner includes: a first nitride liner disposed on the sidewall of the bit line; an oxide liner disposed on the sidewall of the first nitride liner; and a second nitride lining layer disposed on the sidewall of the oxide lining layer; A capacitive contact is disposed on the semiconductor substrate, wherein in a second direction perpendicular to the first direction, the capacitive contact is formed by the first nitride liner, the oxide liner and the second a nitride liner spaced from the bit line; and A filling member is disposed on the semiconductor substrate, wherein in the second direction, the width of the filling member is larger than the width of the capacitive contact member. 如請求項1之半導體記憶體結構,其中在該第一方向上,該第一氮化物襯層為連續設置,且該氧化物襯層與該第二氮化物襯層為不連續設置。The semiconductor memory structure of claim 1, wherein in the first direction, the first nitride lining layer is continuously arranged, and the oxide lining layer and the second nitride lining layer are discontinuously arranged. 如請求項1之半導體記憶體結構,其中在上視圖中,該填充件具有一圓角,其中該圓角直接接觸該介電襯層。The semiconductor memory structure of claim 1, wherein in the top view, the filler has a rounded corner, wherein the rounded corner directly contacts the dielectric liner. 如請求項3之半導體記憶體結構,其中該圓角不直接接觸該電容接觸件。The semiconductor memory structure of claim 3, wherein the rounded corner does not directly contact the capacitive contact. 如請求項1之半導體記憶體結構,其中在該第一方向上,該填充件與該電容接觸件交錯排列。The semiconductor memory structure of claim 1, wherein in the first direction, the filler and the capacitive contact are staggered. 如請求項1之半導體記憶體結構,其中在該第二方向上,該填充件僅藉由該第一氮化物襯層與該位元線間隔。The semiconductor memory structure of claim 1, wherein in the second direction, the filler is spaced from the bit line only by the first nitride liner. 一種半導體記憶體結構的形成方法,包括: 提供一半導體基板; 形成複數個位元線於該半導體基板上,且該些位元線沿著一第一方向延伸; 形成一介電襯層於該些位元線的側壁上,其中形成該介電襯層的步驟包括: 形成一第一氮化物襯層於該些位元線的側壁上; 形成一氧化物襯層於該第一氮化物襯層的側壁上;以及 形成一第二氮化物襯層於該氧化物襯層的側壁上; 形成一介電材料層於該些位元線之間; 於該介電材料層中形成一開口,其中該開口之側壁露出部分的該第二氮化物襯層; 沿著該開口之側壁,側向(laterally)移除部分的該第二氮化物襯層,直到露出該氧化物襯層; 形成一填充件於該開口中;以及 以一電容接觸件置換剩餘的該介電材料層。 A method for forming a semiconductor memory structure, comprising: providing a semiconductor substrate; forming a plurality of bit lines on the semiconductor substrate, and the bit lines extend along a first direction; A dielectric liner is formed on the sidewalls of the bit lines, wherein the step of forming the dielectric liner includes: forming a first nitride liner on the sidewalls of the bit lines; forming an oxide liner on the sidewalls of the first nitride liner; and forming a second nitride liner on the sidewall of the oxide liner; forming a layer of dielectric material between the bit lines; forming an opening in the dielectric material layer, wherein a sidewall of the opening exposes a portion of the second nitride liner; along sidewalls of the opening, laterally removing a portion of the second nitride liner until the oxide liner is exposed; forming a filler in the opening; and The remaining layer of dielectric material is replaced with a capacitive contact. 如請求項7之半導體記憶體結構的形成方法,其中側向移除部分的該第二氮化物襯層的步驟包括沿著與該第一方向垂直的一第二方向擴大該開口。The method for forming a semiconductor memory structure of claim 7, wherein the step of laterally removing a portion of the second nitride liner comprises expanding the opening along a second direction perpendicular to the first direction. 如請求項7之半導體記憶體結構的形成方法,其中形成該介電材料層的步驟包括: 沉積一介電材料於該介電襯層上;以及 平坦化該介電材料,以形成該介電材料層,其中該介電材料層之頂表面與該介電襯層的頂表面齊平。 The method for forming a semiconductor memory structure of claim 7, wherein the step of forming the dielectric material layer comprises: depositing a dielectric material on the dielectric liner; and The dielectric material is planarized to form the layer of dielectric material, wherein the top surface of the layer of dielectric material is flush with the top surface of the dielectric liner. 如請求項7之半導體記憶體結構的形成方法,其中形成該第二氮化物襯層的步驟包括:形成該第二氮化物襯層於該些位元線的頂表面上、與在該些位元線之間的半導體基板上;以及 其中形成該開口的步驟更包括:移除該些位元線的頂表面上與在該些位元線之間的該半導體基板上的該第二氮化物襯層,以露出該半導體基板。 The method for forming a semiconductor memory structure of claim 7, wherein the step of forming the second nitride lining layer comprises: forming the second nitride lining layer on the top surfaces of the bit lines, and forming the second nitride lining layer on the bit lines. on the semiconductor substrate between the element lines; and The step of forming the opening further includes: removing the second nitride liner on the top surface of the bit lines and on the semiconductor substrate between the bit lines to expose the semiconductor substrate.
TW110119325A 2021-05-28 2021-05-28 Semiconductor memory structure and the method for forming the same TWI757193B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110119325A TWI757193B (en) 2021-05-28 2021-05-28 Semiconductor memory structure and the method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110119325A TWI757193B (en) 2021-05-28 2021-05-28 Semiconductor memory structure and the method for forming the same

Publications (2)

Publication Number Publication Date
TWI757193B true TWI757193B (en) 2022-03-01
TW202247359A TW202247359A (en) 2022-12-01

Family

ID=81710569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110119325A TWI757193B (en) 2021-05-28 2021-05-28 Semiconductor memory structure and the method for forming the same

Country Status (1)

Country Link
TW (1) TWI757193B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020142539A1 (en) * 2001-03-28 2002-10-03 Taiwan Semiconductor Manufacturing Co., Ltd. Self-aligned method for fabricating a capacitor under bit-line (cub) dynamic random access memory (DRAM) cell structure
US6967370B2 (en) * 2003-02-28 2005-11-22 Infineon Technologies, Ag Integrated semiconductor circuit having a multiplicity of memory cells
TW200644173A (en) * 2005-06-09 2006-12-16 Nanya Technology Corp Memory cell manufacturing method and memory cell layout structure
US20070246803A1 (en) * 2006-04-25 2007-10-25 Micron Technology, Inc. Semiconductor constructions, and methods of forming semiconductor constructions
TW201909387A (en) * 2017-05-25 2019-03-01 華邦電子股份有限公司 Dynamic random access memory and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020142539A1 (en) * 2001-03-28 2002-10-03 Taiwan Semiconductor Manufacturing Co., Ltd. Self-aligned method for fabricating a capacitor under bit-line (cub) dynamic random access memory (DRAM) cell structure
US6967370B2 (en) * 2003-02-28 2005-11-22 Infineon Technologies, Ag Integrated semiconductor circuit having a multiplicity of memory cells
TW200644173A (en) * 2005-06-09 2006-12-16 Nanya Technology Corp Memory cell manufacturing method and memory cell layout structure
US20070246803A1 (en) * 2006-04-25 2007-10-25 Micron Technology, Inc. Semiconductor constructions, and methods of forming semiconductor constructions
TW201909387A (en) * 2017-05-25 2019-03-01 華邦電子股份有限公司 Dynamic random access memory and method of manufacturing the same

Also Published As

Publication number Publication date
TW202247359A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
JP4903313B2 (en) Self-aligned contact pad formation method in damascene gate process
KR100846099B1 (en) Method of manufacturing semiconductor device including recessed channel transistor
US10475794B1 (en) Semiconductor device and method for fabricating the same
US11251070B2 (en) Semiconductor device including a passivation spacer and method of fabricating the same
TWI538226B (en) Manufacturing method of stacked capacitor having high structural strength
US10090155B2 (en) Semiconductor device having interconnect structure
US20140159131A1 (en) Reservoir capacitor of semiconductor device and method for fabricating the same
US10770464B2 (en) Semiconductor device including bit line structure of dynamic random access memory (DRAM) and method for fabricating the same
CN107958888B (en) Memory element and manufacturing method thereof
US20190355732A1 (en) Method of manufacturing memory structure
CN108962817B (en) Semiconductor structure and forming method thereof
TWI757193B (en) Semiconductor memory structure and the method for forming the same
US20110248336A1 (en) Semiconductor device and method of manufacturing the same
JP4638139B2 (en) Method for forming metal wiring of semiconductor element
US20220068654A1 (en) Semiconductor memory structure
TWI757043B (en) Semiconductor memory structure and method for forming the same
US20230067536A1 (en) Semiconductor memory structure and the method for forming the same
US11101179B2 (en) Semiconductor structure with protection portions and method for forming the same
US10910386B2 (en) Semiconductor device and method for fabricating the same
KR100643568B1 (en) Method for fabrication of deep contact hole in semiconductor device
TWI685087B (en) Semiconductor structures and methods for fabricating the same
TWI588973B (en) Memory device and method of manufacturing the same
CN115513206A (en) Semiconductor memory structure and forming method thereof
TWI750574B (en) Semiconductor memory structure and method for forming the same
KR100604812B1 (en) Method for fabricating semiconductor device using self-aligned contact process