TWI756384B - Method and process for mass transfer of micro-leds - Google Patents

Method and process for mass transfer of micro-leds Download PDF

Info

Publication number
TWI756384B
TWI756384B TW107108834A TW107108834A TWI756384B TW I756384 B TWI756384 B TW I756384B TW 107108834 A TW107108834 A TW 107108834A TW 107108834 A TW107108834 A TW 107108834A TW I756384 B TWI756384 B TW I756384B
Authority
TW
Taiwan
Prior art keywords
micro
substrate
leds
led
wafers
Prior art date
Application number
TW107108834A
Other languages
Chinese (zh)
Other versions
TW201840015A (en
Inventor
提摩西詹姆士 歐斯禮
Original Assignee
美商康寧公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商康寧公司 filed Critical 美商康寧公司
Publication of TW201840015A publication Critical patent/TW201840015A/en
Application granted granted Critical
Publication of TWI756384B publication Critical patent/TWI756384B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination

Abstract

A method of forming a micro-LED device or display is provided. The method includes transferring a plurality of micro-LED material wafers onto a handling substrate. The method includes transferring a subset of the plurality of micro-LEDs from the handling substrate to a display backplane. The subset of transferred micro-LEDs includes at least one micro-LED from each of the plurality of micro-LED material wafers. The area defined by the perimeter of the handling substrate is greater than or is equal to the area defined by a perimeter of the display backplane. A large percentage of the total number of micro-LEDs needed for the display are transferred in a single step. The micro-LEDs may be formed by etching the micro-LED material from multiple wafers while supported by the handling substrate.

Description

用於大量轉移微型LED的方法及製程Method and process for mass transfer of micro LEDs

對於相關申請案的交互參照:本申請案根據專利法第28條之規定,主張對於申請於2017年3月16日的美國臨時申請案第62/472,121號的優先權,在此仰賴且併入此美國臨時申請案之內容以作為參考。揭示內容大抵相關於微型LED(micro-LED)裝置製造的領域,特定而言相關於用於將微型LED大量傳輸至裝置(諸如顯示器背板)的製程。CROSS-REFERENCE TO RELATED APPLICATIONS: This application claims priority under Section 28 of the Patent Act to US Provisional Application No. 62/472,121 filed on March 16, 2017, which is hereby relied upon and incorporated herein The contents of this US provisional application are incorporated by reference. The disclosure pertains generally to the field of micro-LED (micro-LED) device fabrication, and in particular to processes for mass-transferring micro-LEDs to devices, such as display backplanes.

一般而言,在生長基板(諸如藍寶石)上長成微型LED材料。微型LED材料隨後被蝕刻(通常是在位於生長基板上的同時)以形成微型LED。為了將微型LED利用在應用中(諸如顯示應用),將微型LED傳輸至顯示器背板。由於蝕刻之後微型LED的緊密排放,且需要在顯示器背板上稀疏地排放,特別是對於大面積顯示器而言有效率地傳輸微型LED已被證明是困難的。In general, micro LED material is grown on a growth substrate such as sapphire. The micro LED material is then etched (usually while on the growth substrate) to form the micro LED. In order to utilize the micro LEDs in applications such as display applications, the micro LEDs are transferred to the display backplane. Efficiently transporting micro-LEDs, especially for large-area displays, has proven difficult due to the tight placement of micro-LEDs after etching, and the need for sparse placement on the display backplane.

揭示內容的一個具體實施例,相關於形成微型LED顯示器的方法。方法包含將複數個微型LED材料晶圓轉移到處理基板的第一主表面上。由處理基板的第一主表面的周邊界定第一面積,且由微型LED材料晶圓之每一者形成複數個微型LED。方法包含將複數個微型LED的子集從處理基板轉移到顯示器背板的第一主表面,且顯示器背板具有耦合至所轉移的複數個微型LED之每一者的電性接點。所轉移的微型LED子集,包含來自複數個微型LED材料晶圓之每一者的至少一個微型LED,且第一面積等於或大於顯示器背板第一主表面周邊所界定的第二面積。One specific embodiment of the disclosure is related to a method of forming a micro LED display. The method includes transferring a plurality of wafers of micro LED material onto a first major surface of a handle substrate. A first area is defined by the perimeter of the first major surface of the handle substrate, and a plurality of micro LEDs are formed from each of the wafers of micro LED material. The method includes transferring a subset of the plurality of micro-LEDs from the handle substrate to a first major surface of a display backplane having electrical contacts coupled to each of the transferred plurality of micro-LEDs. The transferred subset of micro LEDs includes at least one micro LED from each of the plurality of wafers of micro LED material and has a first area equal to or greater than a second area defined by the perimeter of the first major surface of the display backplane.

揭示內容的額外具體實施例,相關於一種形成LED裝置的方法,LED裝置具有總數m個微型LED,微型LED被設置在選擇性導電基板上的陣列且具有平均間隔節距p2 。方法包含在不導電支撐基板的第一主表面上支撐緊密排放的微型LED陣列。緊密排放的微型LED陣列具有平均間隔節距p1 ,其中p2 ≥ 10*p1 。方法包含移動不導電支撐基板,使得緊密排放的微型LED陣列被定位為相對於選擇性導電基板的第一主表面。在不導電支撐基板被定位為使得緊密排放的微型LED陣列被定位為相對於選擇性導電基板的第一主表面的同時,方法包含從支撐基板的緊密排放陣列釋放一組n 個非鄰接的微型LED到導電性基板上,其中n ≥ 0.05*m。Additional embodiments of the disclosure relate to a method of forming an LED device having a total of m micro LEDs arranged in an array on a selectively conductive substrate and having an average spacing pitch p 2 . The method includes supporting a densely packed array of micro LEDs on a first major surface of a non-conductive support substrate. The closely spaced array of micro-LEDs has an evenly spaced pitch p 1 , where p 2 ≥ 10* p 1 . The method includes moving the non-conductive support substrate such that the closely packed array of micro LEDs is positioned relative to the first major surface of the selectively conductive substrate. While the non-conductive support substrate is positioned such that the closely packed array of micro LEDs is positioned relative to the first major surface of the selectively conductive substrate, the method includes releasing a set of n non-contiguous micro LEDs from the closely packed array of the support substrate LEDs onto conductive substrates where n ≥ 0.05*m.

揭示內容的額外具體實施例,相關於微型LED支撐裝置。微型LED支撐裝置包含玻璃或玻璃陶瓷基板。玻璃或玻璃陶瓷基板包含:第一主表面;與第一主表面相對的第二主表面;至少50 mol%的SiO2 ;大於200 mm的寬度;以及大於200 mm的長度。微型LED支撐裝置包含一至少10個微型LED材料層的陣列,陣列接合至玻璃或玻璃陶瓷基板的第一主表面,且每一微型LED材料層被形成為緊密排放的微型LED陣列。緊密排放的微型LED陣列包含小於或等於100 µm的平均間隔節距,且每一微型LED的寬度小於或等於100 µm。玻璃基板所支撐的微型LED的總數大於一千萬個。Additional embodiments of the disclosure are related to micro LED support devices. Micro LED supports contain glass or glass ceramic substrates. The glass or glass-ceramic substrate comprises: a first major surface; a second major surface opposite the first major surface; at least 50 mol% SiO2 ; a width greater than 200 mm; and a length greater than 200 mm. The micro-LED support device includes an array of at least 10 layers of micro-LED material bonded to the first major surface of the glass or glass-ceramic substrate, and each layer of micro-LED material is formed as a closely packed array of micro-LEDs. The densely packed array of micro-LEDs contains an average spacing pitch of less than or equal to 100 μm, and the width of each micro-LED is less than or equal to 100 μm. The total number of micro LEDs supported by the glass substrate is greater than ten million.

下面的詳細說明將闡述額外的特徵與優點,在相關技術領域中具有通常知識者根據說明將可顯然得知這些特徵與優點的部分,或者,在相關技術領域中具有通常知識者藉由實作本說明書與申請專利範圍所說明的(以及由附加圖式所說明的)具體實施例將可理解到這些特徵與優點的部分。The following detailed description will set forth additional features and advantages that will be apparent to those of ordinary skill in the relevant technical field from the description, or, to those of ordinary skill in the relevant technical field by implementation These features and advantages will be appreciated in part from the specific embodiments described in this specification and claimed scope (and by the accompanying drawings).

應瞭解到,上文的一般性說明與下文的詳細說明僅為示例性的,且意為提供概觀或框架以期瞭解申請專利範圍的本質與特性。It is to be understood that both the foregoing general description and the following detailed description are exemplary only and are intended to provide an overview or framework for understanding the nature and character of the claimed scope.

包含附加圖式以期進一步瞭解本說明,這些圖式被併入本說明書且構成本說明書的一部分。圖式圖示說明一或更多個具體實施例,並與說明一起用於解釋具體實施例的原理與作業。Additional drawings are included to provide a further understanding of this specification, and are incorporated into and constitute a part of this specification. The drawings illustrate one or more specific embodiments, and together with the description serve to explain the principles and operation of the specific embodiments.

一般性地參照圖式,圖示說明了用於形成微型LED顯示器背板的系統與方法的各種具體實施例。在各種具體實施例中,本文所討論的系統與方法用於填充微型LED背板,且利用相對少的步驟數以傳輸所有需要的微型LED到顯示器背板上。微型LED通常係由在微型LED材料被生長基板(例如藍寶石生長基板)支撐的同時,將個別微型LED從經沈積/長成的微型LED材料蝕刻成高度緊密的陣列來形成。所蝕刻的微型LED非常小(例如尺寸小於100 µm,有些小到12.5 µm x 12.5 µm,甚至更小),且鄰接的微型LED在所形成的狀態中的間距(亦即節距)亦非常小(例如節距小於100 µm,小於15 µm,甚至更小)。Referring generally to the drawings, various specific embodiments of systems and methods for forming micro LED display backplanes are illustrated. In various embodiments, the systems and methods discussed herein are used to populate a micro LED backplane and utilize a relatively small number of steps to transfer all required micro LEDs onto a display backplane. Micro LEDs are typically formed by etching individual micro LEDs from the deposited/grown micro LED material into a highly compact array while the micro LED material is supported by a growth substrate, such as a sapphire growth substrate. The micro-LEDs etched are very small (e.g., less than 100 µm in size, some as small as 12.5 µm x 12.5 µm, or even smaller), and the pitch (i.e., pitch) of adjoining micro-LEDs in the as-formed state is also very small (eg pitch less than 100 µm, less than 15 µm, or even smaller).

顯示器背板在鄰接微型LED之間的間距,通常大於在生長基板上所形成的狀態中的鄰接微型LED之間間距許多倍。在蝕刻之後,將微型LED從緊密狀態有效率地轉移到顯示器背板上的稀疏狀態,對於大面積微型LED裝置(或顯示器)的開發而言為一主要的挑戰,申請人所注意到的大多數的先前技術轉移方法,需要數百個個別的轉移步驟以填充大尺寸顯示器背板(例如尺寸大於約300 mm x 300 mm(或更大)的顯示器)。The spacing between adjacent micro-LEDs of the display backplane is typically many times greater than the spacing between adjacent micro-LEDs in the state formed on the growth substrate. Efficient transfer of micro-LEDs from a compact state to a sparse state on the display backplane after etching is a major challenge for the development of large-area micro-LED devices (or displays). Most prior art transfer methods require hundreds of individual transfer steps to fill large display backplanes (eg, displays with dimensions greater than about 300 mm x 300 mm (or larger)).

如本文所討論的,本文所討論的系統與方法以相當低數量的轉移步驟達成了稀疏背板填充(例如20個步驟以下,且在特定的具體實施例為12個轉移步驟,且在其他具體實施例為4個轉移步驟)。如將於下文更詳細討論的,本文所討論的高效率背板填充系統與方法,涉及將微型LED材料從大量的生長晶圓,接合成大處理基板上的陣列(例如覆瓦狀(tiled)),大處理基板與顯示器背板的尺寸同樣大(或更大)。As discussed herein, the systems and methods discussed herein achieve sparse backplane fill with a relatively low number of transfer steps (eg, 20 steps or less, and 12 transfer steps in certain embodiments, and 12 transfer steps in other embodiments) Example for 4 transfer steps). As will be discussed in more detail below, the high-efficiency backplane fill systems and methods discussed herein involve bonding microLED material from a bulk growth wafer into an array (eg, tiled) on a large process substrate. ), the large processing substrate is the same size (or larger) as the display backplane.

在來自多個晶圓的微型LED材料被由處理基板支撐之下,微型LED材料被蝕刻成微型LED陣列。申請人相信,藉由在多個晶圓的微型LED材料被背板支撐的同時,一次從多個晶圓蝕刻微型LED,將允許微型LED在整個處理基板上具有非常低位準的節距變異(至少相較於其中在生長基板上蝕刻微型LED,且隨後在蝕刻之後轉移到共同處理基板的製程)。此製程產生一種處理基板,處理基板支撐緊密排放的微型LED陣列,處理基板與顯示器背板同樣大(或可能更大)。With the micro LED material from multiple wafers supported by the handle substrate, the micro LED material is etched into micro LED arrays. Applicants believe that by etching micro-LEDs from multiple wafers at a time while their micro-LED material is supported by the backplane, it will allow micro-LEDs to have very low levels of pitch variation across the processed substrate ( At least compared to processes in which the micro-LEDs are etched on a growth substrate, and then transferred to a co-processing substrate after etching). This process produces a handle substrate that supports a tightly packed array of micro LEDs that is as large (or possibly larger) as the display backplane.

接著,將微型LED大支撐處理基板對齊顯示器背板,並將大量的非鄰接的微型LED從支撐基板釋放(例如經由雷射釋放)到顯示器背板上。為了在顯示器背板上提供稀疏的微型LED填充,來自處理基板、彼此間隔所需顯示器背板節距的非鄰接微型LED,被從處理基板釋放並接合至顯示器背板。Next, the micro-LED large support processing substrate is aligned with the display backplane, and a large number of non-contiguous micro-LEDs are released (eg, via a laser) from the support substrate onto the display backplane. To provide a sparse micro LED fill on the display backplane, non-adjacent microLEDs from the handle substrate, spaced apart from each other by the desired display backplane pitch, are released from the handle substrate and bonded to the display backplane.

因此,在此具體實施例中,在單一轉移步驟中將非常大量的微型LED(例如用於顯示器的微型LED總數的至少5%)沈積到顯示器背板上。如將瞭解到的,大多數的微型LED顯示器包含微型LED群組,在顯示器背板上的每一位置處微型LED群組包含紅微型LED、藍微型LED與綠微型LED,且在這種具體實施例中,從對於每一微型LED色彩的不同處理基板,轉移至少一次,以形成完全填充的顯示器背板。Thus, in this particular embodiment, a very large number of micro-LEDs (eg, at least 5% of the total number of micro-LEDs used in the display) are deposited onto the display backplane in a single transfer step. As will be appreciated, most micro-LED displays comprise groups of micro-LEDs comprising red micro-LEDs, blue micro-LEDs and green micro-LEDs at each location on the display backplane, and in this particular case In an embodiment, the transfer is performed at least once from a different process substrate for each microLED color to form a fully filled display backplane.

在特定的具體實施例中,申請人相信微型LED晶圓可被接合至處理基板,使得處理基板上的鄰接晶圓之間形成為空白行列形式的空間或間隙,且這些間隙大於所形成的微型LED節距。如下文將討論的,在這種具體實施例中,本文所討論的系統與方法包含使用額外微型LED填充處理基板,額外微型LED填充處理基板被用於填充顯示器背板上的「間隙」,這種間隙是由主要處理基板上的晶圓間間隙行列所造成的。然而在這種具體實施例中,所需的LED轉移步驟總數少於20,且特定而言可為12:對於三種色彩的微型LED分別進行一次主要轉移,對於三種色彩的微型LED分別進行一次列間隙填充轉移,對於三種色彩的微型LED分別進行一次行間隙填充轉移,且對於三種色彩的微型LED分別進行一次交會間隙填充轉移。即使在解決處理基板上的晶圓間間隙的具體實施例中,可由少於20個步驟填充顯示器背板,相較於典型背板填充製程的數百個轉移步驟。 In certain embodiments, Applicants believe that micro LED wafers can be bonded to a handle substrate such that spaces or gaps in the form of blank rows and columns are formed between adjacent wafers on the handle substrate, and that these gaps are larger than the formed micro-LED wafers. LED pitch. As will be discussed below, in this particular embodiment, the systems and methods discussed herein include filling a handle substrate with additional micro LEDs that are used to fill "gap" on the display backplane, which The seed gap is caused by the rows of inter-wafer gaps on the main processing substrate. In this particular embodiment, however, the total number of LED transfer steps required is less than 20, and may be 12 in particular: one main transfer for each of the three colors of micro-LEDs, and one column transfer for each of the three colors of micro-LEDs In the gap-fill transfer, one row gap-fill transfer is performed for the micro-LEDs of the three colors respectively, and an intersection gap-fill transfer is performed for the micro-LEDs of the three colors respectively. Even in embodiments that address the inter-wafer gap on the processing substrate, the display backplane can be filled in fewer than 20 steps, compared to the hundreds of transfer steps of a typical backplane fill process.

參照第1圖至第10圖,圖示說明了有效率地填充顯示器背板的方法。如第1圖圖示,複數個(例如至少10個、至少30個、至少100個)微型LED晶圓10被接合、黏合或轉移至處理基板12。如第1圖圖示,每一微型LED晶圓10的外表面被接合至處理基板12的第一主表面14。在特定具體實施例中,每一微型LED晶圓10包含被支撐在生長基板18上的微型LED材料層16(例如對於藍與綠色的微型LED為GaN,而對於紅色的微型LED為InP)。在此具體實施例中,每一晶圓的微型LED材料層16被接合至處理基板的第一主表面14(例如透過黏合材料)。如第2圖圖示,在接合至處理基板12之後,每一生長基板18被釋放(例如經由由箭頭19代表的雷射釋放製程,或替代性方法(諸如研磨拋光)),將每一微型LED材料層16從微型LED晶圓10之每一者接合至處理基板12。 Referring to Figures 1-10, a method for efficiently filling a display backplane is illustrated. As illustrated in FIG. 1 , a plurality (eg, at least 10, at least 30, at least 100) micro LED wafers 10 are bonded, bonded or transferred to a handle substrate 12 . As illustrated in FIG. 1 , the outer surface of each micro LED wafer 10 is bonded to the first major surface 14 of the handle substrate 12 . In certain embodiments, each micro LED wafer 10 includes a layer 16 of micro LED material (eg, GaN for blue and green micro LEDs and InP for red micro LEDs) supported on a growth substrate 18 . In this embodiment, the micro LED material layer 16 of each wafer is bonded (eg, through an adhesive material) to the first major surface 14 of the handle substrate. As illustrated in FIG. 2, after bonding to the handle substrate 12, each growth substrate 18 is released (eg, via a laser release process represented by arrows 19, or an alternative method (such as grinding and polishing)), each microscopic A layer 16 of LED material is bonded to the handle substrate 12 from each of the micro LED wafers 10 .

應瞭解到,為了說明,第1圖圖示在一個步驟中將生長基板18從微型LED材料層16移除。然而在一些具體實施例中,在生長基板18的微型LED材料層16黏合至處理基板12之後,且在附接下一鄰接的微型LED材料層16之前,可移除此生長基板18。在這種具體實施例中,申請人相信,藉由在附接鄰接的微型LED材料層16之前 移除生長基板18,鄰接的微型LED材料層16之間的間隙可被形成為非常小(約1mm)。 It should be appreciated that, for illustration, Figure 1 illustrates the removal of growth substrate 18 from micro LED material layer 16 in one step. In some embodiments, however, the growth substrate 18 may be removed after the micro LED material layer 16 of the growth substrate 18 is adhered to the handle substrate 12 and before attaching the next adjoining micro LED material layer 16 . In this particular embodiment, applicants believe that by prior to attaching the adjoining layer 16 of micro LED material With the growth substrate 18 removed, the gaps between adjoining micro LED material layers 16 can be formed to be very small (about 1 mm).

在特定具體實施例中,處理基板12具有一種黏合劑,此黏合劑初始為未固化,且在之後一旦微型LED材料層16接觸黏合劑則固化。在一個具體實施例中,黏合劑例如為紫外線(UV)固化黏合劑,且使紫外線光通過處理基板12以固化黏合劑。下文將更詳細討論微型LED的選擇性移除,可藉由在要釋放的微型LED的位置處使用雷射將此黏合劑加熱至似液態狀態,以達成個別微型LED的選擇性釋放。來自雷射的熱,亦可用於加熱在之後被冷卻且冷凍的顯示器背板上的焊錫(於下文討論),使得微型LED被接合至顯示器背板,且能夠從處理基板12釋放。 In certain embodiments, the handle substrate 12 has an adhesive that is initially uncured and then cured once the micro-LED material layer 16 contacts the adhesive. In one embodiment, the adhesive is, for example, an ultraviolet (UV) curing adhesive, and the ultraviolet light is passed through the processing substrate 12 to cure the adhesive. Selective removal of microLEDs, discussed in more detail below, can be achieved by using a laser to heat the adhesive to a liquid-like state at the location of the microLEDs to be released to achieve selective release of individual microLEDs. The heat from the laser can also be used to heat the solder (discussed below) on the display backplane, which is then cooled and frozen, so that the micro LEDs are bonded to the display backplane and can be released from the handle substrate 12 .

參照第1圖至第3圖,微型LED晶圓10被沿著寬度尺寸與長度尺寸兩者(在所圖示的指向中)接合,使得來自微型LED晶圓10的LED材料16在處理基板12上形成陣列或覆瓦狀設置)。如第3圖最佳地圖示的,在移除生長基板18之後,沿著處理基板12的第一主表面14,將來自微型LED晶圓10的大量微型LED材料層16設置於陣列或覆瓦狀圖案中。 Referring to FIGS. 1-3 , the micro LED wafer 10 is bonded along both the width dimension and the length dimension (in the orientation shown) such that the LED material 16 from the micro LED wafer 10 is in the process substrate 12 arrays or imbricate arrangements). As best illustrated in FIG. 3, after removal of the growth substrate 18, a plurality of layers 16 of micro LED material from the micro LED wafer 10 are disposed on an array or overlay along the first major surface 14 of the handle substrate 12. in a tiled pattern.

如第3圖圖示,處理基板12具有寬度尺寸W1與長度L1。如第1圖與第3圖圖示,處理基板12大於微型LED晶圓10相當多,使得多個微型LED晶圓10(與多個微型LED晶圓10的微型LED材料層16)適配在處理基板 12的周邊內。在這種具體實施例中,處理基板具有周邊2W1+2L1,且在特定具體實施例中2W1+2L1大於微型LED晶圓10最外側周邊的長度的3倍,特定而言大於5倍,更特定而言大於10倍。類似的,如第3圖圖示,處理基板12的第一主表面14的面積,大於每一微型LED材料層16的面積至少10倍。所說明的這些尺寸上的差異,允許由單一處理基板12支撐來自多個微型LED晶圓10的微型LED材料層16,處理基板12(例如)諸如單片式、連續連接的單一材料片(或這些片連接在一起的群組以形成的單一處理基板)。應瞭解到,為了說明,第3圖圖示20個微型LED材料層16接合至處理基板12,且在許多應用中(其中處理基板12經配置以填充大型顯示器背板(例如50吋顯示器、65吋顯示器、75吋顯示器等等)或多個顯示器背板),處理基板12與顯示器背板同樣大(或更大),且包含足夠的微型LED材料層16以填充第一主表面14的面積。 As shown in FIG. 3, the processing substrate 12 has a width dimension W1 and a length L1. As shown in FIGS. 1 and 3, the processing substrate 12 is considerably larger than the micro LED wafers 10, so that the plurality of micro LED wafers 10 (and the micro LED material layers 16 of the plurality of micro LED wafers 10) fit in the Processing substrates within the perimeter of 12. In such embodiments, the handle substrate has a perimeter 2W1+2L1, and in certain embodiments 2W1+2L1 is greater than 3 times the length of the outermost perimeter of the micro LED wafer 10, specifically greater than 5 times, more specifically more than 10 times. Similarly, as shown in FIG. 3 , the area of the first major surface 14 of the handle substrate 12 is at least 10 times larger than the area of each micro-LED material layer 16 . These dimensional differences as described allow for the support of micro-LED material layers 16 from multiple micro-LED wafers 10 by a single handle substrate 12, such as, for example, a monolithic, continuously connected single sheet of material (or Groups of these sheets connected together to form a single process substrate). It should be appreciated that, for illustration, Figure 3 shows 20 layers of micro LED material 16 bonded to the handle substrate 12, and in many applications (where the handle substrate 12 is configured to fill a large display backplane (eg, a 50-inch display, 65 inch displays, 75 inch displays, etc.) or multiple display backplanes), the handle substrate 12 is as large (or larger) as the display backplane, and contains sufficient layer 16 of micro LED material to fill the area of the first major surface 14 .

在特定具體實施例中,處理基板12的尺寸經設定以由少數的微型LED轉移步驟,填充相當大的顯示器背板。在特定具體實施例中,W1及或L1可為至少200mm、至少300mm、至少700mm、至少1270mm、至少1650mm、至少1900mm、至少2200mm等等。在這些具體實施例中,處理基板12的第一主表面14的面積大於300cm2、大於1000cm2、大於5000cm2、大於1000cm2等等。 In certain embodiments, the handle substrate 12 is sized to fill a relatively large display backplane with a small number of micro-LED transfer steps. In certain embodiments, W1 and or L1 may be at least 200 mm, at least 300 mm, at least 700 mm, at least 1270 mm, at least 1650 mm, at least 1900 mm, at least 2200 mm, and the like. In these specific embodiments, the area of the first major surface 14 of the handle substrate 12 is greater than 300 cm 2 , greater than 1000 cm 2 , greater than 5000 cm 2 , greater than 1000 cm 2 , and the like.

在特定具體實施例中,處理基板12為不導電支撐基板,且不包含用於對微型LED供電的電性連結(會存在在顯示器背板上)。在各種具體實施例中,處理基板12為玻璃或玻璃陶瓷材料片。在一些這種具體實施例中,處理基板12的材料為至少50mol%的SiO2,且在特定具體實施例中為在67mol%與70mol%的SiO2之間。在特定具體實施例中,處理基板12可為康寧公司所供應的Eagle XG玻璃。 In certain embodiments, the handle substrate 12 is a non-conductive support substrate and does not include electrical connections for powering the micro LEDs (as would be present on the display backplane). In various embodiments, the handle substrate 12 is a sheet of glass or glass-ceramic material. In some such embodiments, the material of the handle substrate 12 is at least 50 mol % SiO 2 , and in certain embodiments between 67 mol % and 70 mol % SiO 2 . In certain embodiments, the processing substrate 12 may be Eagle XG glass supplied by Corning Incorporated.

在各種具體實施例中,除了具有大周邊與面積以外,處理基板12可為相當輕薄,而協助進行如本文所討論的在製程期間內的處理。如第2圖圖示,處理基板12具有與第一主表面14相對的第二主表面26。處理基板12具有厚度T1,界定於第一主表面14與第二主表面26之間。在特定具體實施例中,T1為0.25mm至1mm之間。 In various embodiments, in addition to having a large perimeter and area, the handle substrate 12 can be relatively thin and light to facilitate in-process handling as discussed herein. As illustrated in FIG. 2 , the handle substrate 12 has a second major surface 26 opposite the first major surface 14 . The handle substrate 12 has a thickness T1 defined between the first major surface 14 and the second major surface 26 . In certain specific embodiments, T1 is between 0.25 mm and 1 mm.

如第3圖圖示,在一些具體實施例中,將微型LED晶圓10設置到處理基板12上,產生複數個水平指向的間隙列20、複數個垂直指向的間隙行22、與間隙列20和間隙行22交會處的複數個交會間隙24。在一些具體實施例中,申請人相信,由於微型LED晶圓10的尺寸,及或用於將微型LED材料層16接合至處理基板12的接合製程與釋放製程所帶來的限制條件,每一微型LED晶圓10在被接合至處理基板12時彼此的接近程度可受到限制。這種限制在微型LED材料層16的鄰接區之間產生了間隙列20、間隙行22與交會間隙24。 As shown in FIG. 3 , in some embodiments, the micro LED wafer 10 is disposed on the processing substrate 12 , resulting in a plurality of horizontally oriented gap columns 20 , a plurality of vertically oriented gap rows 22 , and a plurality of gap columns 20 A plurality of intersecting gaps 24 where the gap row 22 intersects. In some embodiments, Applicants believe that due to the size of the micro LED wafer 10, and/or constraints imposed by the bonding and release processes used to bond the micro LED material layer 16 to the handle substrate 12, each The proximity of the micro LED wafers 10 to each other when bonded to the handle substrate 12 may be limited. This confinement creates gap columns 20 , gap rows 22 , and intersection gaps 24 between adjoining regions of the micro LED material layer 16 .

如第3圖圖示,間隙列20、間隙行22與交會間隙24相較於微型LED材料層16的尺寸為相當大,且相較於將由微型LED材料層16形成的微型LED的尺寸為非常大。在各種具體實施例中,間隙列20與間隙行22一般而言具有間隙尺寸,圖示為G1。在特定具體實施例中,G1大於0.5mm,特定而言為0.5mm至1.5mm之間,且更特定而言為約1mm。應瞭解到,為了容易說明,在第3圖中誇示了間隙尺寸G1。作為範例,微型LED材料層的尺寸通常將為約100mm的等級,且在這種具體實施例中,處理基板12的表面面積的至少90%(特定而言為至少95%,且更特定而言為至少99%)被由微型LED材料層16佔據。如將於下文針對第10圖更詳細解釋的,本文所討論的各種顯示器背板填充方法,對每一種色彩的微型LED利用三個額外處理基板,以填充顯示器背板上對應於間隙列20與間隙行22和交會間隙24的空間。 As illustrated in FIG. 3 , the gap columns 20 , the gap rows 22 , and the intersection gaps 24 are relatively large compared to the dimensions of the micro LED material layer 16 , and are very large compared to the dimensions of the micro LEDs to be formed from the micro LED material layer 16 . Big. In various embodiments, the gap columns 20 and the gap rows 22 generally have a gap size, shown as G1. In certain embodiments, G1 is greater than 0.5 mm, specifically between 0.5 mm and 1.5 mm, and more specifically about 1 mm. It should be appreciated that the gap dimension G1 is exaggerated in Figure 3 for ease of explanation. As an example, the dimensions of the micro-LED material layer will typically be on the order of about 100 mm, and in such an embodiment, at least 90% (specifically at least 95%, and more specifically at least 95%, and more specifically at least 95%, and more specifically the surface area of the substrate 12 is processed) is at least 99% occupied by the micro LED material layer 16 . As will be explained in more detail below with respect to FIG. 10, the various display backplane filling methods discussed herein utilize three additional process substrates for each color of microLED to fill the display backplane corresponding to the gap columns 20 and 20. Space for gap row 22 and intersection gap 24 .

如第4圖圖示,一旦生長基板18被移除,留下微型LED材料層16由處理基板12支撐,則從位於處理基板12上的多個微型LED材料層16形成微型LED 30。如第4圖圖示,在由處理基板12支撐的同時從多個微型LED材料層16形成微型LED 30,且在特定具體實施例中,在被支撐在處理基板12上的同時從所有微型LED材料層16形成所有微型LED 30。 4, once the growth substrate 18 is removed, leaving the layer of micro LED material 16 supported by the handle substrate 12, the micro LEDs 30 are formed from the plurality of layers of micro LED material 16 on the handle substrate 12. As illustrated in FIG. 4 , the micro LEDs 30 are formed from multiple layers of micro LED material 16 while being supported by the handle substrate 12 , and in certain embodiments, from all of the micro LEDs while being supported on the handle substrate 12 Material layer 16 forms all micro LEDs 30 .

在特定具體實施例中,藉由在微型LED材料層16被處理基板12支撐的同時,蝕刻所有的微型LED材 料層16以形成複數個微型LED30,來形成微型LED 30。在一些具體實施例中,蝕刻以形成微型LED 30,包含在微型LED材料層16被支撐在處理基板12的第一主表面14上的同時,施加光阻塗層至所有微型LED材料層16上。 In certain embodiments, by etching all of the micro LED material while the micro LED material layer 16 is supported by the handle substrate 12 The material layer 16 is formed to form a plurality of micro LEDs 30 to form the micro LEDs 30 . In some embodiments, etching to form the micro LEDs 30 includes applying a photoresist coating to all of the micro LED material layers 16 while the micro LED material layers 16 are supported on the first major surface 14 of the handle substrate 12 .

應瞭解到,為了容易繪製,第4圖圖示的來自每一微型LED晶圓10的微型LED材料層16被蝕刻為16個微型LED。但是,從每一微型LED材料層16形成的微型LED 30的確切數量,將取決於微型LED晶圓10的尺寸以及每一微型LED 30的最終尺寸,每一微型LED材料層16形成大量的微型LED 30。在特定具體實施例中,每一微型LED材料層16形成超過一百萬個微型LED 30、至少一千萬個微型LED 30、至少三千萬個微型LED 30等等。因此在各種具體實施例中,每一處理基板12可支撐超過一千萬個微型LED、超過一億個微型LED、超過五億個微型LED、超過八億個微型LED等等。 It will be appreciated that the micro LED material layer 16 from each micro LED wafer 10 illustrated in Figure 4 is etched into 16 micro LEDs for ease of drawing. However, the exact number of micro LEDs 30 formed from each micro LED material layer 16 will depend on the size of the micro LED wafer 10 and the final size of each micro LED 30, each micro LED material layer 16 forming a large number of micro LEDs LED 30. In certain embodiments, each micro LED material layer 16 forms more than one million micro LEDs 30, at least ten million micro LEDs 30, at least thirty million micro LEDs 30, and the like. Thus, in various embodiments, each handle substrate 12 may support more than ten million micro LEDs, more than 100 million micro LEDs, more than 500 million micro LEDs, more than 800 million micro LEDs, and so on.

繼續參照第4圖,從每一微型LED材料層16形成的微型LED 30數量,取決於每一微型LED 30的尺寸(圖示為W2)、每一微型LED材料層16的尺寸(圖示為W3)、以及每一微型LED材料層16內的鄰接微型LED 30之間的節距間隔(圖示為P1)。在各種具體實施例中,W2小於或等於100μm,且P1小於或等於100μm。在各種具體實施例中,W3位於50mm至150mm之間,且更特定而言為約100mm。在一些具體實施例中,微型 LED 30可為非常小或緊密排放的微型LED。特定而言,在一些具體實施例中,微型LED 30可為矩形,且具有約11.5 x 11.5m的尺寸,且在一些這種具體實施例中,具有約12.5μm的節距P1。在一些具體實施例中,W2可小如5μm。 4, the number of micro LEDs 30 formed from each micro LED material layer 16 depends on the size of each micro LED 30 (shown as W2), the size of each micro LED material layer 16 (shown as W3), and the pitch spacing between adjacent micro LEDs 30 within each micro LED material layer 16 (shown as P1). In various embodiments, W2 is less than or equal to 100 μm and P1 is less than or equal to 100 μm. In various embodiments, W3 is between 50mm and 150mm, and more specifically about 100mm. In some embodiments, the micro The LEDs 30 may be very small or closely packed micro LEDs. In particular, in some embodiments, the micro LEDs 30 may be rectangular and have dimensions of about 11.5 x 11.5 m, and in some such embodiments, a pitch P1 of about 12.5 μm. In some embodiments, W2 can be as small as 5 μm.

參照第5圖至第9圖,圖示利用處理基板12填充一或更多個顯示器背板40。第5圖圖示處理基板12,且額外的微型LED材料16區域被蝕刻成微型LED 30,以圖示說明利用本文所討論的系統與方法的顯示器背板填充。為了容易圖示說明,第5圖圖示間隙列20與間隙行22為線。 Referring to FIGS. 5-9, one or more display backplanes 40 are illustrated with the handle substrate 12 filled. Figure 5 illustrates the substrate 12 being processed with additional micro LED material 16 areas etched into the micro LEDs 30 to illustrate display backplane fill using the systems and methods discussed herein. For ease of illustration, FIG. 5 illustrates the gap columns 20 and the gap rows 22 as lines.

一般而言,參照第6圖,選擇性導電基板,諸如具有導電跡線的絕緣基板(圖示為顯示器背板40),在顯示應用中為經配置以接收微型LED 30並支撐微型LED 30的支撐裝置。在特定應用中,顯示器背板40為包含一或更多個導電層/元件與電性接點的支撐裝置,這些導電層/元件與電性接點將被耦合至轉移到顯示器背板40的每一個微型LED 30。 In general, referring to FIG. 6 , a selectively conductive substrate, such as an insulating substrate with conductive traces (shown as display backplane 40 ), is configured to receive and support micro LEDs 30 in display applications support device. In certain applications, the display backplane 40 is a support device that includes one or more conductive layers/elements and electrical contacts that will be coupled to each of the conductive layers/components and electrical contacts transferred to the display backplane 40 . A tiny LED 30.

參照第6圖與第7圖,處理基板12被移動並定位,使得微型LED 30面向顯示器背板40的第一主表面42。如將瞭解到的,所需的顯示器背板40上的微型LED間隔節距P2,大於處理基板12上的在緊密經蝕刻狀態中的微型LED 30的經蝕刻、間隔節距P1。參照第7圖,為了容納顯示器背板40所需的較大的微型LED間隔節距 P2,將微型LED 30的子集從處理基板12(例如經由選擇性雷射釋放)轉移至顯示器背板40。如第7圖圖示,藉由轉移處理基板12上彼此間隔所需背板節距P2的非鄰接的微型LED 44,以容納顯示器背板40上所需的間隔節距。 Referring to FIGS. 6 and 7 , the handle substrate 12 is moved and positioned so that the micro LEDs 30 face the first major surface 42 of the display backplane 40 . As will be appreciated, the desired micro LED spacing pitch P2 on the display backplane 40 is greater than the etched, spacing pitch P1 of the micro LEDs 30 on the handle substrate 12 in the tightly etched state. Referring to FIG. 7, the larger micro-LED spacing pitch required to accommodate the display backplane 40 P2, transfer the subset of micro LEDs 30 from the processing substrate 12 (eg, via selective laser release) to the display backplane 40. As illustrated in FIG. 7, the desired spacing pitch on the display backplane 40 is accommodated by transferring the non-adjacent micro-LEDs 44 on the substrate 12 spaced apart from each other by the desired backplane pitch P2.

再者,為了降低或最小化所需的轉移步驟數量,處理基板12的第一主表面14的面積,大於或等於顯示器背板40的第一主表面42的面積。因此,因為處理基板12與顯示器背板40同樣大(或更大),在第6圖與第7圖圖示的面向設置中,處理基板12上的一個微型LED 30將面向顯示器背板40上的所需LED位置的大部分或全部。因此,彼此相隔顯示器節距P2的每一非鄰接微型LED 30的選擇性釋放,形成顯示器背板40上具有節距P2的經轉移的微型LED 44。以此方式,大部分(或全部)的顯示器背板40被由單一轉移步驟依所需填充微型LED 30。 Again, to reduce or minimize the number of transfer steps required, the area of the first major surface 14 of the processing substrate 12 is greater than or equal to the area of the first major surface 42 of the display backplane 40 . Thus, because the handle substrate 12 is as large (or larger) as the display backplane 40, one of the micro LEDs 30 on the handle substrate 12 will face on the display backplane 40 in the facing arrangement illustrated in FIGS. most or all of the desired LED positions. Thus, the selective release of each non-adjacent micro-LED 30 spaced from one another by display pitch P2 forms a transferred micro-LED 44 on display backplane 40 with pitch P2. In this way, most (or all) of the display backplane 40 is filled as desired with micro LEDs 30 from a single transfer step.

參照第7圖與第8圖,更詳細圖示從處理基板12轉移微型LED 30。將微型LED 30的子集從處理基板12釋放,形成具有空間48之排序圖案的部分填空基板46,空間48之排序圖案曾由被釋放而成為顯示器背板40上的經轉移的微型LED 44的微型LED 30所佔據。如第9圖圖示,顯示器背板40上的經轉移的微型LED 44,為從處理基板12轉移微型LED所空出的空間48的鏡像。 Referring to Figures 7 and 8, the transfer of the micro LEDs 30 from the process substrate 12 is illustrated in greater detail. A subset of the micro LEDs 30 are released from the processing substrate 12, forming a partially filled substrate 46 with an ordered pattern of spaces 48 that were released to become the transferred micro LEDs 44 on the display backplane 40. The micro LEDs 30 are occupied. As illustrated in FIG. 9 , the transferred micro-LEDs 44 on the display backplane 40 are a mirror image of the spaces 48 vacated by the transfer of the micro-LEDs from the handle substrate 12 .

此外,如第7圖至第9圖圖示,來自每一微型LED材料層16的至少一個微型LED 30被轉移至顯示器 背板40,且在這種具體實施例中,因為僅從處理基板12轉移微型LED 30的子集已填充顯示器背板40,處理基板12可用於填充多個顯示器背板。例如,第7圖至第9圖圖示從每一微型LED材料層16轉移25%的微型LED 30,且因此處理基板12可用於填充四個顯示器背板40。然而如前述,每一微型LED材料層16通常將包含數百萬個微型LED 30,且因為P2對P1的比將非常大,在每一轉移步驟中僅將從處理基板12轉移LED總數的一小部分到顯示器背板40(例如少於5%的微型LED 30、少於3%的微型LED 30、少於1%的微型LED 30等等)。因此,每一處理基板12可用於對於多個顯示器背板40的多個轉移步驟中,以填充大量的顯示器背板。 Additionally, as illustrated in Figures 7-9, at least one micro LED 30 from each micro LED material layer 16 is transferred to the display The backplane 40, and in this particular embodiment, because only a subset of the micro LEDs 30 transferred from the handle substrate 12 has filled the display backplane 40, the handle substrate 12 can be used to populate multiple display backplanes. For example, FIGS. 7-9 illustrate micro LEDs 30 that are 25% transferred from each micro LED material layer 16 , and thus handle substrate 12 can be used to fill four display backplanes 40 . However, as previously mentioned, each micro LED material layer 16 will typically contain millions of micro LEDs 30, and because the ratio of P2 to P1 will be very large, only one of the total number of LEDs will be transferred from the handle substrate 12 in each transfer step A small portion to the display backplane 40 (eg, less than 5% of micro-LEDs 30, less than 3% of micro-LEDs 30, less than 1% of micro-LEDs 30, etc.). Thus, each handle substrate 12 can be used in multiple transfer steps for multiple display backplanes 40 to fill a large number of display backplanes.

如將瞭解到的,因為許多顯示器背板40在每一LED位置處包含3個微型LED(一個為紅、一個為藍且一個為綠,見第12圖),針對第7圖至第9圖所討論的製程將由三個不同的基板重複進行,每一基板具有三種色彩之一的微型LED。此外,在特定具體實施例中,製程包含將處理基板填空排序,以解決微型LED 30所佔據的尺寸與空間。例如在一個具體實施例中,具有綠色的微型LED的完整處理基板12,如第7圖圖示,可無法相對於已被填充藍色的微型LED的顯示器背板40定位,由於完整處理基板12上的微型LED與已經存在顯示器背板40上的藍色的微型LED之間的干擾。因此在這種具體實施例中,在藍色的微型LED 30已經存在在顯示器背板40 上時,使用部分填空的綠色的微型LED承載處理基板12。因此,一些顯示器背板40首先可被由綠色的微型LED填充以提供部分填空處理基板12,以填充那些已經先接收藍色的微型LED的顯示器背板40,且一些顯示器背板40首先可被由藍色的微型LED 30填充以提供部分填空藍色的處理基板12,以填充那些已經先接收綠色的微型LED的基板。 As will be appreciated, since many display backplanes 40 include 3 micro LEDs at each LED location (one red, one blue and one green, see Figure 12), for Figures 7-9 The process in question will be repeated with three different substrates, each with microLEDs in one of three colors. Additionally, in certain embodiments, the process includes a fill-in sequence of the processing substrates to account for the size and space occupied by the micro LEDs 30 . For example, in one embodiment, a complete handle substrate 12 with green micro LEDs, as illustrated in FIG. 7, may not be positioned relative to the display backplane 40 that has been filled with blue micro LEDs, due to the complete handle substrate 12 Interference between the micro-LEDs on the display backplane 40 and the blue micro-LEDs that already exist on the display backplane 40 . Thus in this particular embodiment, the blue micro LEDs 30 are already present on the display backplane 40 When on, use partially filled green micro LEDs to carry the processing substrate 12 . Thus, some display backplanes 40 may first be filled with green micro LEDs to provide partial fill-in process substrate 12 to fill those display backplanes 40 that have received blue micro LEDs first, and some display backplanes 40 may first be filled with green micro LEDs Filled with blue micro LEDs 30 to provide partially filled blue handle substrates 12 to fill those substrates that had previously received green micro LEDs.

在一些具體實施例中,形成紅色的微型LED的材料的厚度(例如對於處理基板12的高度),大於藍色的微型LED或綠色的微型LED的材料高度。因此在這種具體實施例中,因為較大的高度,首先由紅色的微型LED 30填充顯示器背板40(或作為第二次填充),將干擾隨後的綠或藍色的微型LED 30的背板填充。因此在這種具體實施例中,在本文所討論的各種方法中,在所有的綠與藍色的微型LED 30都已被填充到顯示器背板40上之後,才填充紅色的微型LED 30。 In some embodiments, the thickness of the material forming the red micro-LEDs (eg, for the height of the handle substrate 12) is greater than the material height of the blue micro-LEDs or the green micro-LEDs. Thus in this particular embodiment, filling the display backplane 40 with the red micro LEDs 30 first (or as a second fill) will interfere with the back of the subsequent green or blue micro LEDs 30 because of the greater height plate filling. Thus in this particular embodiment, in the various methods discussed herein, the red micro LEDs 30 are filled after all of the green and blue micro LEDs 30 have been filled on the display backplane 40 .

因此,參照第5圖至第9圖,本文所討論的製程,允許形成具有總數m個微型LED的LED裝置(諸如顯示裝置),微型LED被設置在顯示器背板40上的陣列中且具有平均間隔節距P2。微型LED 30被支撐在處理基板12上的緊密排放陣列中,陣列具有平均間隔節距P1。在各種具體實施例中,P2大於P1 10倍,且更特定而言,P2大於P1 30倍。在這種具體實施例中,顯示器背板40的總數m個微型LED的一大部分,被以單一步驟 轉移。在各種具體實施例中,在每一釋放步驟中,釋放n個微型LED 30,在顯示器背板40上形成經釋放的微型LED 44。在特定的具體實施例中,在單一轉移步驟中轉移的大量的(n個)經轉移的微型LED 30,遵循下列關係之一或更多者:n

Figure 107108834-A0305-02-0020-1
0.05 * mn
Figure 107108834-A0305-02-0020-2
0.1 * mn
Figure 107108834-A0305-02-0020-4
0.2 * m、或n
Figure 107108834-A0305-02-0020-3
0.3 * m。因此,如圖示,即使利用具有間隙列20、間隙行22與交會間隙24的基板,針對第5圖至第9圖所說明的製程,允許由每一轉移步驟,轉移顯示器背板40所需的最終LED數量的非常大的部分。 Thus, with reference to Figures 5-9, the processes discussed herein allow the formation of LED devices, such as a display device, having a total of m micro-LEDs arranged in an array on the display backplane 40 with an average Spacing pitch P2. The micro LEDs 30 are supported in a closely packed array on the handle substrate 12, the array having an evenly spaced pitch P1. In various embodiments, P2 is 10 times greater than P1, and more specifically, P2 is 30 times greater than P1. In this particular embodiment, a large portion of the total m micro-LEDs of the display backplane 40 are transferred in a single step. In various embodiments, in each release step, n micro-LEDs 30 are released, forming released micro-LEDs 44 on the display backplane 40 . In certain specific embodiments, the plurality (n) of transferred micro-LEDs 30 transferred in a single transfer step follow one or more of the following relationships: n
Figure 107108834-A0305-02-0020-1
0.05 * m , n
Figure 107108834-A0305-02-0020-2
0.1 * m , n
Figure 107108834-A0305-02-0020-4
0.2 * m , or n
Figure 107108834-A0305-02-0020-3
0.3 * m . Thus, as shown, even with a substrate having gap columns 20, gap rows 22, and intersecting gaps 24, the process illustrated in FIGS. 5-9 allows for each transfer step to transfer the display backplane 40 required for transfer a very large portion of the final LED count.

參照第10圖,在其中處理基板12包含間隙列20、間隙行22與交會間隙24的具體實施例中,可需要額外的轉移步驟,以填充形成在顯示器背板40上的對應間隙。如第10圖圖示,從處理基板12轉移微型LED,在顯示器背板40上產生間隙,間隙對應於處理基板12上的間隙列20、間隙行22與交會間隙24。特定而言,在從處理基板12初始轉移之後,顯示器背板40包含對應於基板間隙列20的間隙列50、對應於基板間隙行22的間隙行52、以及對應於基板交會間隙24的間隙交會點54。如將瞭解到的,因為處理基板12包含間隙列20、間隙行22與交會間隙24,在從處理基板12釋放微型LED時,不具有LED的間隙列20、間隙行22、與交會間隙24區域無法轉移LED到相對的顯示器背板40區段,從而產生對應的背板間隙列50、間隙行52與間隙交會點54。 Referring to FIG. 10 , in embodiments in which the processing substrate 12 includes gap columns 20 , gap rows 22 , and intersecting gaps 24 , additional transfer steps may be required to fill corresponding gaps formed on the display backplane 40 . As illustrated in FIG. 10 , the transfer of the micro LEDs from the handle substrate 12 creates gaps on the display backplane 40 corresponding to the gap columns 20 , the gap rows 22 and the intersection gaps 24 on the handle substrate 12 . In particular, after initial transfer from handle substrate 12 , display backplane 40 includes gap columns 50 corresponding to substrate gap columns 20 , gap rows 52 corresponding to substrate gap rows 22 , and gap intersections corresponding to substrate intersection gaps 24 point 54. As will be appreciated, because the handle substrate 12 includes the gap columns 20 , the gap rows 22 , and the intersection gap 24 , when the micro LEDs are released from the handle substrate 12 , there are no LED gap columns 20 , gap rows 22 , and intersection gap 24 regions There is no way to transfer the LEDs to the opposing display backplane 40 segment, resulting in corresponding backplane gap columns 50 , gap rows 52 and gap intersections 54 .

如第10圖圖示,間隙列50、間隙行52與間隙交會點54的尺寸大於顯示器背板40上的所需節距P2,再者,在間隙填充轉移步驟之前,間隙列50、間隙行52與間隙交會點54的尺寸在顯示器背板40上產生不均勻分佈的微型LED 44。為了消除這些間隙與不均勻性,提供三個額外的處理基板,圖示為基板60、62與64。基板60、62與64被以相同的方式形成,且具有與前述處理基板12相同的設置。然而在基板60、62與64對準顯示器背板40(類似於第7圖圖示的方式)時,僅釋放所選擇的間隔開的微型LED 30,以填充間隙列50、間隙行52與間隙交會點54。如第10圖圖示,基板60為「交會點」基板,且將所選擇的微型LED(識別為編號1)釋放到顯示器背板40上,以填充顯示器背板40上的所有間隙交會點54。基板62為「列」基板,且將所選擇的微型LED(識別為編號2)釋放到顯示器背板40上,以填充間隙列50。基板64為「行」基板,且將所選擇的微型LED(識別為編號3)釋放到顯示器背板40上,以填充間隙行52。在特定具體實施例中,在間隙列50或間隙行52之前填充間隙交會點54。 As illustrated in FIG. 10, the size of the gap columns 50, the gap rows 52 and the gap intersection points 54 is larger than the desired pitch P2 on the display backplane 40. Furthermore, before the gap filling transfer step, the gap columns 50, the gap rows 54 are The dimensions of 52 and gap intersection 54 result in an uneven distribution of micro-LEDs 44 on display backplane 40 . To eliminate these gaps and non-uniformities, three additional process substrates are provided, shown as substrates 60 , 62 and 64 . Substrates 60 , 62 and 64 are formed in the same manner and have the same settings as previously described for processing substrate 12 . However, when substrates 60, 62, and 64 are aligned with display backplane 40 (similar to the manner illustrated in Figure 7), only selected spaced-apart micro LEDs 30 are released to fill gap columns 50, gap rows 52, and gaps Rendezvous point 54. As illustrated in Figure 10, the substrate 60 is the "intersection point" substrate, and the selected micro LEDs (identified as number 1) are released onto the display backplane 40 to fill all gaps in the display backplane 40 at the intersection points 54 . Substrate 62 is the "row" substrate and releases selected micro LEDs (identified as number 2 ) onto display backplane 40 to fill gap row 50 . Substrate 64 is the "row" substrate and releases selected micro LEDs (identified as number 3) onto display backplane 40 to fill gap row 52. In certain embodiments, gap intersections 54 are filled before gap columns 50 or gap rows 52 .

因此如第10圖圖示,在此具體實施例中,由四次轉移將給定色彩的所有微型LED填充到顯示器背板40上,一次來自「交會點」基板60,一次來自「列」基板62,一次來自「行」基板64,且一次來自處理基板12。在特定具體實施例中,先從「交會」基板60轉移,且最 後從處理基板12轉移,以填充顯示器背板40。在這種具體實施例中,總共需要12次轉移以完整填充顯示器背板40,因為對於三種色彩的微型LED之每一者要重複四次轉移。 Thus, as illustrated in Figure 10, in this particular embodiment, all micro-LEDs of a given color are filled onto the display backplane 40 by four transfers, one from the "intersection" substrate 60 and one from the "row" substrate 62 , once from the “row” substrate 64 and once from the process substrate 12 . In certain embodiments, the transfer from the "meeting" substrate 60 is performed first, and the last It is then transferred from the handle substrate 12 to fill the display backplane 40 . In this particular embodiment, a total of 12 transfers are required to completely fill the display backplane 40 because four transfers are repeated for each of the three colors of microLEDs.

如前述,為了容易繪製,第5圖至第10圖圖示節距P1在處理基板12、基板60、62與64上為僅為顯示器背板40上的節距P2的二分之一。第11圖與第12圖圖示說明經蝕刻的微型LED 30與顯示器背板40之間的節距差異典型值的範例。在此具體實施例中,處理基板12上的微型LED 30的節距P1為12.5μm,且顯示器背板40上的微型LED的節距P2為375μm。因此在此範例中,將處理基板12上每30個微型LED 30中的一個轉移至顯示器背板40,以提供375μm的顯示器背板節距。 As previously mentioned, FIGS. 5-10 illustrate that the pitch P1 on the process substrate 12 , substrates 60 , 62 and 64 is only one-half the pitch P2 on the display backplane 40 for ease of drawing. FIGS. 11 and 12 illustrate examples of typical values for the pitch difference between the etched micro LEDs 30 and the display backplane 40 . In this specific embodiment, the pitch P1 of the micro LEDs 30 on the processing substrate 12 is 12.5 μm, and the pitch P2 of the micro LEDs on the display backplane 40 is 375 μm. Thus in this example, one out of every 30 micro LEDs 30 on the handle substrate 12 is transferred to the display backplane 40 to provide a display backplane pitch of 375 μm.

除此之外,作為範例,第12圖圖示每一LED群組70包含三個微型LED。在一個具體實施例中,每一LED群組70包含藍色的微型LED 72、綠色的微型LED 74以及紅色的微型LED 76。在另一具體實施例中,每一LED群組70可包含相同色彩的三個LED,且在這種具體實施例中,可連同色彩轉換裝置使用顯示器背板40以形成最終顯示裝置。 In addition, as an example, FIG. 12 illustrates that each LED group 70 includes three micro LEDs. In one embodiment, each LED group 70 includes a blue micro-LED 72 , a green micro-LED 74 and a red micro-LED 76 . In another embodiment, each LED group 70 may include three LEDs of the same color, and in such an embodiment, the display backplane 40 may be used in conjunction with a color conversion device to form the final display device.

除了上文討論的處理優點與效率優點以外,本文所說明的方法可提供優於其他微型LED蝕刻與轉移方法的其他優點。例如,由於在生長基板上的蝕刻期間內來自晶格失配(lattice mismatch)的應力被釋放,已觀 察到在從生長晶圓釋放的期間內的微型LED橫向位移。申請人假設微型LED的橫向位移可被減少或避免,藉由如本文所討論的在處理基板12上蝕刻微型LED 30,而非在生長基板上蝕刻。 In addition to the processing and efficiency advantages discussed above, the methods described herein may provide other advantages over other micro LED etching and transfer methods. For example, it has been observed that stress from lattice mismatch is released during etching on the growth substrate. Lateral displacement of the micro LEDs during release from the growth wafer was observed. Applicants hypothesize that lateral displacement of the micro-LEDs can be reduced or avoided by etching the micro-LEDs 30 on the handle substrate 12 as discussed herein, rather than on the growth substrate.

除非另外明確說明,否則本文所闡述的任何方法都不應被解譯為要求其步驟被由特定次序執行。因此,如果方法請求項實際上沒有記載其步驟要遵循的次序,或者在請求項或說明書中沒有明確說明步驟被限制為特定次序,則並未意圖推斷出次序。此外,本文所使用的冠詞「一」意為包含一或更多個部件或元件,且不意為被解譯為表示僅有一個。 Unless explicitly stated otherwise, any method set forth herein should not be construed as requiring that its steps be performed in a particular order. Thus, if a method claim does not actually recite the order in which its steps are to be followed, or is not expressly stated in the claim or specification that the steps are limited to a particular order, no order is intended to be inferred. In addition, the article "a" as used herein is meant to include one or more elements or elements, and is not intended to be interpreted to mean only one.

在本發明技術領域中具有通常知識者將顯然瞭解到,可對所揭示的具體實施例進行各種修改與變異,而不脫離所揭示的具體實施例的精神與範圍。因為在本發明技術領域中具有通常知識者可思及併入具體實施例精神與實質的對於所揭示具體實施例的修改、結合、子結合與變異,所揭示具體實施例應被解譯為包含在附加申請專利範圍的範圍及其均等範圍內的任何內容。 It will be apparent to those skilled in the art of the present invention that various modifications and variations can be made in the disclosed embodiments without departing from the spirit and scope of the disclosed embodiments. As modifications, combinations, sub-combinations and variations of the disclosed embodiments that incorporate the spirit and substance of the disclosed embodiments may be contemplated by those skilled in the art of the invention, the disclosed embodiments should be construed as including Anything within the scope of the appended claims and their equivalents.

1:所選擇的微型LED 1 1: Selected Micro LED 1

2:所選擇的微型LED 2 2: Selected Micro LED 2

3:所選擇的微型LED 3 3: Selected Micro LED 3

10:微型LED晶圓 10: Micro LED Wafer

12:處理基板 12: Process the substrate

14:第一主表面 14: First main surface

16:微型LED材料層 16: Micro LED material layer

18:生長基板 18: Growth substrate

19:雷射釋放製程 19: Laser release process

20:間隙列 20: Gap Column

22:間隙行 22: Gap Row

24:交會間隙 24: Rendezvous Gap

26:第二主表面 26: Second main surface

30:微型LED 30: Micro LEDs

40:顯示器背板 40: Display backplane

42:第一主表面 42: First main surface

44:非鄰接的微型LED 44: Non-Contiguous Micro LEDs

46:部分填空基板 46: Partially fill the blank substrate

48:空間 48: Space

50:間隙列 50: Gap Column

52:間隙行 52: Gap Row

54:間隙交會點 54: Gap intersection point

60:基板 60: Substrate

62:基板 62: Substrate

64:基板 64: Substrate

70:LED群組 70: LED group

72:藍色的微型LED 72: Blue Micro LED

74:綠色的微型LED 74: Green Micro LED

76:紅色的微型LED 76: Red Micro LED

P1:節距 P1: pitch

P2:節距 P2: pitch

T1:厚度 T1: Thickness

G1:間隙尺寸 G1: Gap size

W1:寬度尺寸 W1: width dimension

W2:尺寸 W2: size

W3:尺寸 W3: Dimensions

L1:長度 L1: length

第1圖為根據示例性具體實施例的被接合至處理基板的微型LED晶圓的示意圖。FIG. 1 is a schematic diagram of a micro LED wafer bonded to a handle substrate in accordance with an exemplary embodiment.

第2圖為根據示例性具體實施例的在接合至處理基板之後,從微型LED材料層移出生長基板的示意圖。Figure 2 is a schematic illustration of removal of a growth substrate from a layer of micro LED material after bonding to a handle substrate in accordance with an exemplary embodiment.

第3圖為根據示例性具體實施例的在蝕刻之前,支撐來自多個晶圓的微型LED材料層的處理基板的示意透視圖。Figure 3 is a schematic perspective view of a handle substrate supporting layers of micro LED material from multiple wafers prior to etching in accordance with an exemplary embodiment.

第4圖為根據示例性具體實施例的,在由處理基板支撐的同時,從多個晶圓蝕刻成微型LED的微型LED材料的示意透視圖。4 is a schematic perspective view of micro-LED material etched into micro-LEDs from multiple wafers while supported by a handle substrate, according to an exemplary embodiment.

第5圖為根據示例性具體實施例的,支撐來自多個晶圓材料的所蝕刻的微型LED的處理基板的示意平面圖。5 is a schematic plan view of a handle substrate supporting etched micro LEDs from a plurality of wafer materials, in accordance with an exemplary embodiment.

第6圖為根據示例性具體實施例的,定位為鄰接顯示器背板的第5圖的處理基板的示意圖。FIG. 6 is a schematic diagram of the process substrate of FIG. 5 positioned adjacent to a display backplane, according to an exemplary embodiment.

第7圖為根據示例性具體實施例的,被從處理基板移出並接合至顯示器背板的所選的非鄰接微型LED。Figure 7 shows selected non-contiguous micro-LEDs removed from a handle substrate and bonded to a display backplane, in accordance with an exemplary embodiment.

第8圖為根據示例性具體實施例的,在移出所選的非鄰接微型LED之後的處理基板的示意平面圖。Figure 8 is a schematic plan view of a processed substrate after removal of selected non-adjacent micro LEDs, according to an exemplary embodiment.

第9圖為根據示例性具體實施例的,在從處理基板接收所選的非鄰接微型LED之後的顯示器背板的示意平面圖。9 is a schematic plan view of a display backplane after receiving selected non-contiguous micro LEDs from a processing substrate, according to an exemplary embodiment.

第10圖為根據示例性具體實施例的,圖示顯示器背板上的間隙填充的示意平面圖。10 is a schematic plan view illustrating gap fill on a display backplane, according to an exemplary embodiment.

第11圖為根據示例性具體實施例的具有小間隔節距的處理基板上的經蝕刻微型LED。Figure 11 is an etched micro LED on a handle substrate with a fine pitch pitch according to an exemplary embodiment.

第12圖為根據示例性具體實施例的具有大間隔節距的顯示器背板上的三個微型LED的群組。Figure 12 is a group of three micro LEDs on a display backplane with a large spacing pitch, according to an exemplary embodiment.

國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無Domestic storage information (please note in the order of storage institution, date and number) None

國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無Foreign deposit information (please note in the order of deposit country, institution, date and number) None

16‧‧‧微型LED材料層 16‧‧‧Micro LED Material Layer

30‧‧‧微型LED 30‧‧‧Micro LED

P1‧‧‧節距 P1‧‧‧Pitch

W2‧‧‧尺寸 W2‧‧‧Dimensions

W3‧‧‧尺寸 W3‧‧‧Dimensions

Claims (20)

一種形成一微型LED顯示器的方法,包含以下步驟: 將複數個微型LED材料晶圓轉移到一處理基板的一第一主表面上,其中由該處理基板的該第一主表面的一周邊界定一第一面積,其中由該等微型LED材料晶圓之每一者形成複數個微型LED;以及 將該複數個微型LED的一子集從該處理基板轉移到一顯示器背板的一第一主表面,該顯示器背板具有耦合至該複數個所轉移的微型LED之每一者的電性接點,其中該所轉移的微型LED的子集包含來自該複數個微型LED材料晶圓之每一者的至少一個微型LED,其中該第一面積大於或等於該顯示器背板的該第一主表面的一周邊界定的一第二面積。A method of forming a micro LED display, comprising the steps of: transferring a plurality of wafers of micro LED material onto a first main surface of a handle substrate, wherein a perimeter of the first main surface of the handle substrate defines a a first area in which a plurality of micro LEDs are formed from each of the wafers of micro LED material; and transferring a subset of the plurality of micro LEDs from the handle substrate to a first major surface of a display backplane , the display backplane has electrical contacts coupled to each of the plurality of transferred micro-LEDs, wherein a subset of the transferred micro-LEDs includes At least one micro LED, wherein the first area is greater than or equal to a second area defined by a perimeter of the first main surface of the display backplane. 如請求項1所述之方法,其中該處理基板的該第一面積大於該等微型LED材料晶圓之一者的一周邊界定的一第三面積。The method of claim 1, wherein the first area of the handle substrate is larger than a third area defined by a perimeter of one of the wafers of micro LED material. 如請求項2所述之方法,其中該處理基板的該第一面積大於該第三面積的10倍以上。The method of claim 2, wherein the first area of the processing substrate is more than 10 times larger than the third area. 如請求項1所述之方法,其中將該微型LED子集從該處理基板轉移至該顯示器背板的步驟,進一步包含以下步驟: 移動該處理基板,使得該等微型LED被定位為面向該顯示器背板的該第一主表面;以及 在該處理基板被定位為使得該等微型LED面向該顯示器背板的該第一主表面的同時,從該處理基板釋放n 個非鄰接微型LED至該顯示器背板的該第一主表面上,其中n 大於或等於要由該顯示器背板支撐的一LED總數的5%。The method of claim 1, wherein the step of transferring the subset of micro LEDs from the handle substrate to the display backplane further comprises the step of: moving the handle substrate such that the micro LEDs are positioned facing the display the first major surface of the backplane; and releasing n non-contiguous microLEDs from the handle substrate to the display while the handle substrate is positioned such that the microLEDs face the first major surface of the display backplate on the first major surface of the backplane, where n is greater than or equal to 5% of the total number of an LED to be supported by the display backplane. 如請求項1所述之方法,該方法進一步包含以下步驟:在該等微型LED材料晶圓被該處理基板支撐的同時,蝕刻所有的該等微型LED材料晶圓,以形成該複數個微型LED。The method of claim 1, further comprising the step of etching all of the wafers of micro LED material while the wafers of micro LED material are supported by the processing substrate to form the plurality of micro LEDs . 如請求項5所述之方法,其中蝕刻包含以下步驟:在該等微型LED材料晶圓被支撐在一處理基板的該第一主表面上的同時,將一光阻塗層施加並圖案化至所有的該等微型LED材料晶圓上。The method of claim 5, wherein etching comprises the step of applying and patterning a photoresist coating to the first major surface of a handle substrate while the wafers of micro LED material are supported on the All of these micro LED material on wafers. 如請求項1所述之方法,其中該處理基板為一玻璃材料片或一玻璃陶瓷材料片,且該第一面積為至少300 cm2The method of claim 1, wherein the processing substrate is a glass material sheet or a glass ceramic material sheet, and the first area is at least 300 cm 2 . 如請求項1所述之方法,其中該處理基板支撐至少10個微型LED晶圓。The method of claim 1, wherein the processing substrate supports at least 10 micro LED wafers. 如請求項1所述之方法,其中該等微型LED材料晶圓被定位在該處理基板的該第一主表面上,使得一垂直定向間隙位於每一微型LED材料晶圓與水平鄰接的微型LED材料晶圓之間,且一水平定向間隙位於每一微型LED材料晶圓與垂直鄰接的微型LED材料晶圓之間。The method of claim 1, wherein the wafers of micro LED material are positioned on the first major surface of the handle substrate such that a vertically oriented gap is located between each wafer of micro LED material and a horizontally adjacent micro LED between wafers of material, and a horizontally oriented gap is located between each wafer of micro LED material and a vertically adjacent wafer of micro LED material. 如請求項9所述之方法,該方法進一步包含以下步驟: 從一第二處理基板轉移複數個非鄰接、相隔開的微型LED到該顯示器背板的該第一主表面,至該顯示器背板上的所有該等垂直行內的區域; 從一第三處理基板轉移複數個非鄰接、相隔開的微型LED到該顯示器背板的該第一主表面,至該顯示器背板上的所有該等垂直列內的區域;以及 從一第四處理基板轉移複數個非鄰接、相隔開的微型LED到該顯示器背板的該第一主表面,至該顯示器背板上的所有該等水平列與垂直行之間的交會點內的區域。The method of claim 9, further comprising the steps of: transferring a plurality of non-contiguous, spaced-apart micro-LEDs from a second processing substrate to the first major surface of the display backplane to the display backplane all of the areas in the vertical rows on; transferring a plurality of non-contiguous, spaced-apart micro-LEDs from a third processing substrate to the first major surface of the display backplane to all of the display backplanes an area within a vertical row; and transferring a plurality of non-contiguous, spaced-apart micro-LEDs from a fourth processing substrate to the first major surface of the display backplane to all the horizontal rows and verticals on the display backplane The area within the intersection between the lines. 如請求項10所述之方法,其中在從該第二基板或該第三基板轉移該複數個非鄰接、相隔開的微型LED至該顯示器背板之前,從該第四處理基板轉移該複數個非鄰接、相隔開的微型LED到該顯示器背板的該第一主表面至該等交會點內的區域。The method of claim 10, wherein the plurality of non-contiguous, spaced-apart micro LEDs are transferred from the fourth processing substrate prior to transferring the plurality of non-contiguous, spaced-apart micro LEDs from the second substrate or the third substrate to the display backplane Non-contiguous, spaced-apart micro LEDs to the first major surface of the display backplane to areas within the intersections. 一種形成一微型LED裝置的方法,包含以下步驟: 將未經蝕刻的微型LED材料晶圓接合至一處理基板的一第一主表面,其中該處理基板的該第一主表面的一長度與一寬度之至少一者,大於該等微型LED材料晶圓的一長度與寬度,使得多個微型LED材料晶圓位於一單一處理基板上;以及 在該等微型LED材料晶圓被該處理基板支撐的同時,蝕刻該等微型LED材料晶圓以形成一微型LED陣列。A method of forming a micro LED device comprising the steps of: bonding an unetched wafer of micro LED material to a first main surface of a handle substrate, wherein a length of the first main surface of the handle substrate is related to a At least one of the widths is greater than a length and width of the micro LED material wafers, so that a plurality of micro LED material wafers are located on a single processing substrate; and the micro LED material wafers are supported by the processing substrate. At the same time, the wafers of micro LED material are etched to form a micro LED array. 如請求項12所述之方法,其中該處理基板的該第一主表面的該長度與該寬度兩者皆大於該等微型LED材料晶圓的一長度與一寬度,其中至少10個微型LED晶圓被接合至該處理基板的該第一主表面。The method of claim 12, wherein both the length and the width of the first major surface of the processing substrate are greater than a length and a width of the micro LED material wafers, wherein at least 10 micro LED wafers A circle is bonded to the first major surface of the handle substrate. 一種形成一LED裝置的方法,該LED裝置具有一總數m個微型LED,該等微型LED被設置在一選擇性導電基板上的一陣列且具有一平均間隔節距p2 ,該方法包含以下步驟: 在一不導電支撐基板的一第一主表面上支撐一緊密排放的微型LED陣列,該緊密排放的微型LED陣列具有一平均間隔節距p1 ,其中p2 ≥ 10*p1 ; 移動該不導電支撐基板,使得該緊密排放的微型LED陣列被定位為相對於該選擇性導電基板的一第一主表面;以及 在該不導電支撐基板被定位為使得該緊密排放的微型LED陣列被定位為相對於該選擇性導電基板的該第一主表面的同時,從該支撐基板的該緊密排放陣列釋放一組n 個非鄰接的微型LED到該導電性基板上,其中n ≥ 0.05*mA method of forming an LED device having a total of m micro LEDs arranged in an array on a selectively conductive substrate and having an average spacing pitch p 2 , the method comprising the steps of : supporting on a first major surface of a non-conductive support substrate a closely packed micro LED array having an evenly spaced pitch p 1 , where p 2 ≥ 10* p 1 ; moving the a non-conductive support substrate such that the closely spaced array of micro LEDs is positioned relative to a first major surface of the selectively conductive substrate; and the non-conductive support substrate is positioned such that the closely spaced array of micro LEDs is positioned To release a set of n non-contiguous micro-LEDs from the closely packed array of the support substrate onto the conductive substrate simultaneously with respect to the first major surface of the selectively conductive substrate, where n > 0.05* m . 如請求項14所述之方法,該方法進一步包含以下步驟:形成該緊密排放的微型LED陣列,其中形成該緊密排放的微型LED陣列的步驟包含以下步驟: 將至少10個微型LED晶圓接合至該不導電支撐基板,每一微型LED晶圓具有一微型LED材料層與一生長基板; 在將該微型LED晶圓接合至該不導電支撐基板之後,從每一微型LED晶圓移除該生長基板;以及 在被該不導電支撐基板支撐的同時,且在移除該等生長基板之後,從該等所接合的微型LED材料層形成該緊密排放的微型LED陣列。The method of claim 14, further comprising the step of forming the closely spaced array of micro LEDs, wherein the step of forming the closely spaced array of micro LEDs comprises the steps of: bonding at least 10 micro LED wafers to the non-conductive support substrate, each micro-LED wafer having a micro-LED material layer and a growth substrate; removing the growth from each micro-LED wafer after bonding the micro-LED wafer to the non-conductive support substrate a substrate; and while being supported by the non-conductive support substrate, and after removing the growth substrates, forming the closely packed micro LED array from the bonded layers of micro LED material. 一種微型LED支撐裝置,包含: 一玻璃或玻璃陶瓷基板,包含: 一第一主表面; 與該第一主表面相對的一第二主表面; 至少50 mol%的SiO2 ; 大於200 mm的一寬度;以及 大於200 mm的一長度;以及 一至少10個微型LED材料層的陣列,該陣列接合至該玻璃或玻璃陶瓷基板的該第一主表面,每一微型LED材料層被形成為一緊密排放的微型LED陣列,包含: 小於或等於100 µm的一平均間隔節距;以及 每一微型LED具有小於或等於100 µm的一寬度; 其中該玻璃基板所支撐的微型LED的總數大於一千萬個。A micro-LED supporting device, comprising: a glass or glass-ceramic substrate, comprising: a first main surface; a second main surface opposite to the first main surface; at least 50 mol% SiO 2 ; width; and a length greater than 200 mm; and an array of at least 10 micro-LED material layers bonded to the first major surface of the glass or glass-ceramic substrate, each micro-LED material layer formed as a tight An array of discharged micro LEDs comprising: an average spacing pitch of less than or equal to 100 µm; and each micro LED having a width of less than or equal to 100 µm; wherein the total number of micro LEDs supported by the glass substrate is greater than ten million indivual. 如請求項16所述之微型LED支撐裝置,其中該微型LED材料層陣列包含接合至該玻璃或玻璃陶瓷基板的該第一主表面的至少30個微型LED材料層,其中該玻璃基板支撐的微型LED的總數大於八億個。The micro-LED support device of claim 16, wherein the array of micro-LED material layers comprises at least 30 micro-LED material layers bonded to the first major surface of the glass or glass-ceramic substrate, wherein the glass substrate supports micro-LED material layers The total number of LEDs is greater than 800 million. 如請求項16所述之微型LED支撐裝置,其中該玻璃或玻璃陶瓷基板包含在0.25 mm至1 mm之間的該第一主表面與該第二主表面之間的一平均厚度,其中該玻璃或玻璃陶瓷基板包含在67至70 mol%之間的SiO2The micro LED support device of claim 16, wherein the glass or glass-ceramic substrate comprises an average thickness between the first and second major surfaces of between 0.25 mm and 1 mm, wherein the glass Or the glass-ceramic substrate contains between 67 and 70 mol % of SiO 2 . 如請求項16所述之微型LED支撐裝置,該微型LED支撐裝置進一步包含: 複數個長度定向間隙,位於每一微型LED材料層與水平鄰接的微型LED材料層之間;以及 複數個寬度定向間隙,位於每一微型LED材料層與垂直鄰接的微型LED材料層之間。The micro-LED support device of claim 16, further comprising: a plurality of length-oriented gaps between each layer of micro-LED material and a horizontally adjacent layer of micro-LED material; and a plurality of width-oriented gaps , located between each micro-LED material layer and the vertically adjacent micro-LED material layer. 如請求項16所述之微型LED支撐裝置,其中該等長度定向間隙與該等寬度定向間隙兩者的寬度,皆為至少0.5 mm。The micro LED support device of claim 16, wherein both the widths of the alignment gaps of equal length and the alignment gaps of equal widths are at least 0.5 mm.
TW107108834A 2017-03-16 2018-03-15 Method and process for mass transfer of micro-leds TWI756384B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762472121P 2017-03-16 2017-03-16
US62/472,121 2017-03-16

Publications (2)

Publication Number Publication Date
TW201840015A TW201840015A (en) 2018-11-01
TWI756384B true TWI756384B (en) 2022-03-01

Family

ID=63522687

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107108834A TWI756384B (en) 2017-03-16 2018-03-15 Method and process for mass transfer of micro-leds

Country Status (5)

Country Link
JP (1) JP7045390B2 (en)
KR (1) KR102478137B1 (en)
CN (1) CN110462834B (en)
TW (1) TWI756384B (en)
WO (1) WO2018170352A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6985031B2 (en) * 2017-05-19 2021-12-22 株式会社ディスコ Manufacturing method of LED display panel
CN110034224A (en) * 2019-04-26 2019-07-19 中国科学院长春光学精密机械与物理研究所 A kind of transfer method based on bar shaped Micro-LED
CN110112172B (en) * 2019-05-22 2021-06-22 南京大学 Full-color micron LED display chip based on gallium nitride nanopore array/quantum dot mixed structure and preparation method thereof
EP3985744A4 (en) 2019-06-13 2023-01-25 BOE Technology Group Co., Ltd. Mass transfer method and system for micro light-emitting diode
DE102019134756A1 (en) * 2019-12-17 2021-06-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung METHOD OF MANUFACTURING A LIGHTING DEVICE
KR20220164769A (en) * 2020-04-13 2022-12-13 엘지전자 주식회사 Display device, manufacturing method thereof, and multi-screen display device using the same
CN111477651A (en) * 2020-04-16 2020-07-31 广东工业大学 Bulk transfer method and transfer device based on liquid crystal optical gate mask
CN112992720B (en) * 2020-07-22 2022-04-29 重庆康佳光电技术研究院有限公司 Method and system for transferring huge amount of micro light emitting diode chips
US20230307575A1 (en) * 2020-08-06 2023-09-28 Vuereal Inc. Microdevice block transfer
WO2022249431A1 (en) * 2021-05-28 2022-12-01 東北マイクロテック株式会社 Alignment tray, alignment device, and alignment method
US20230411362A1 (en) * 2022-06-15 2023-12-21 Brendan Jude Moran Sparse led array systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130130440A1 (en) * 2011-11-18 2013-05-23 Hsin-Hua Hu Method of fabricating and transferring a micro device and an array of micro devices utilizing an intermediate electrically conductive bonding layer
US20150216042A1 (en) * 2012-05-25 2015-07-30 LuxVue Technology Corporation Micro device transfer head array
TW201611235A (en) * 2014-06-18 2016-03-16 艾克斯瑟樂普林特有限公司 Micro assembled LED displays and lighting elements
WO2016100662A1 (en) * 2014-12-19 2016-06-23 Glo Ab Light emitting diode array on a backplane and method of making thereof
TW201635482A (en) * 2015-03-18 2016-10-01 英特爾股份有限公司 Micro solar cell powered micro LED display

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940683A (en) * 1996-01-18 1999-08-17 Motorola, Inc. LED display packaging with substrate removal and method of fabrication
US6036327A (en) * 1997-07-28 2000-03-14 Lucent Technologies Inc. Transparent display with diffuser backed microtextured illuminating device and method of manufacture therefor
CN1244831A (en) * 1997-11-13 2000-02-16 海斯蒂亚技术公司 Method for transfer molding standard electronic packages and apparatus thereof
AU8004200A (en) * 2000-10-10 2002-04-22 Beecher Instr Method and device for creating micro-arrays
FR2823596B1 (en) * 2001-04-13 2004-08-20 Commissariat Energie Atomique SUBSTRATE OR DISMOUNTABLE STRUCTURE AND METHOD OF MAKING SAME
US6849558B2 (en) * 2002-05-22 2005-02-01 The Board Of Trustees Of The Leland Stanford Junior University Replication and transfer of microstructures and nanostructures
JP2003347524A (en) * 2002-05-28 2003-12-05 Sony Corp Transferring method of element, arraying method of element, and manufacturing method of image display
KR100555414B1 (en) * 2002-10-21 2006-02-24 일진디스플레이(주) Microlens array, lcd using this and producing method therefof
JP4082242B2 (en) * 2003-03-06 2008-04-30 ソニー株式会社 Element transfer method
FR2871291B1 (en) * 2004-06-02 2006-12-08 Tracit Technologies PROCESS FOR TRANSFERRING PLATES
KR101022017B1 (en) * 2008-10-01 2011-03-16 한국기계연구원 Apparatus for manufacturing hierarchical structure
JP2010147242A (en) * 2008-12-18 2010-07-01 Panasonic Electric Works Co Ltd Semiconductor light emitting device
JP2010251360A (en) * 2009-04-10 2010-11-04 Sony Corp Method of manufacturing display and display
US8865489B2 (en) * 2009-05-12 2014-10-21 The Board Of Trustees Of The University Of Illinois Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays
CN102237459B (en) * 2010-04-20 2013-01-16 北京大学 Method for preparing light emergent structure of light-emitting diode (LED) device
US8794501B2 (en) * 2011-11-18 2014-08-05 LuxVue Technology Corporation Method of transferring a light emitting diode
US9331230B2 (en) * 2012-10-30 2016-05-03 Cbrite Inc. LED die dispersal in displays and light panels with preserving neighboring relationship
US9799719B2 (en) * 2014-09-25 2017-10-24 X-Celeprint Limited Active-matrix touchscreen
CN113410146A (en) * 2015-01-23 2021-09-17 维耶尔公司 Selective micro device transfer to a receptor substrate
EP3323145A4 (en) * 2015-07-14 2018-05-23 Goertek Inc. Transferring method, manufacturing method, device and electronic apparatus of micro-led
US10453759B2 (en) 2015-09-11 2019-10-22 Sharp Kabushiki Kaisha Image display device
CN106206872A (en) * 2016-08-04 2016-12-07 南京大学 GaN base visible ray micron post array LED device that Si CMOS array drive circuit controls and preparation method thereof
JP2018060993A (en) * 2016-09-29 2018-04-12 東レエンジニアリング株式会社 Transfer method, mounting method, transfer device, and mounting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130130440A1 (en) * 2011-11-18 2013-05-23 Hsin-Hua Hu Method of fabricating and transferring a micro device and an array of micro devices utilizing an intermediate electrically conductive bonding layer
US20150216042A1 (en) * 2012-05-25 2015-07-30 LuxVue Technology Corporation Micro device transfer head array
TW201611235A (en) * 2014-06-18 2016-03-16 艾克斯瑟樂普林特有限公司 Micro assembled LED displays and lighting elements
WO2016100662A1 (en) * 2014-12-19 2016-06-23 Glo Ab Light emitting diode array on a backplane and method of making thereof
TW201635482A (en) * 2015-03-18 2016-10-01 英特爾股份有限公司 Micro solar cell powered micro LED display

Also Published As

Publication number Publication date
CN110462834A (en) 2019-11-15
JP2020514817A (en) 2020-05-21
JP7045390B2 (en) 2022-03-31
CN110462834B (en) 2023-09-19
WO2018170352A1 (en) 2018-09-20
TW201840015A (en) 2018-11-01
KR102478137B1 (en) 2022-12-15
KR20190121393A (en) 2019-10-25

Similar Documents

Publication Publication Date Title
TWI756384B (en) Method and process for mass transfer of micro-leds
EP2983021B1 (en) Pattern structure and method of manufacturing the pattern structure, and liquid crystal display device
US7585703B2 (en) Pixel control element selection transfer method, pixel control device mounting device used for pixel control element selection transfer method, wiring formation method after pixel control element transfer, and planar display substrate
US9496155B2 (en) Methods of selectively transferring active components
US11521887B2 (en) Method of transferring micro LED and micro LED transferring apparatus
JP2010251360A (en) Method of manufacturing display and display
JP4100203B2 (en) Element transfer method
KR20210057006A (en) Device transfer method and transfer plate using the same
JP2024008937A (en) Mass transfer method and system for micro light emitting diodes
JP2008118161A (en) Element transferring method
JP2003332523A (en) Transferring method and arraying method for element, and manufacturing method for image display device
JP2008122681A (en) Method for mounting article, method for manufacturing light emitting diode display device, and temporary fixation method for article intermediate to temporary fixation substrate
TWI359970B (en) Glass adhering structure for dispenser stage
JP3617522B2 (en) Flat display board
WO2020258644A1 (en) Microled chip transferring method
EP4080550A1 (en) Micro-led transfer method and micro-led transfer apparatus
JP2020107763A (en) Semiconductor element mounting method and semiconductor device manufacturing method
TW202238548A (en) Method for display manufacturing using groups of micro-leds and micro-led arrays
JP2003218402A (en) Element arranging method and method of manufacturing image display device
CN111628053B (en) Miniature LED carrier plate
KR101661640B1 (en) Electrostatic chuck
WO2023063358A1 (en) Receptor substrate , method for manufacturing receptor substrate, transfer method, led panel manufacturing method, and stamper
JP2003031847A (en) Device unloading method, device transferring method using the same, device arrangement method, and method of manufacturing image display unit
CN114388721A (en) Silicon-based OLED display substrate
KR101661641B1 (en) Large size electrostatic chuck